(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-15
(45)【発行日】2022-08-23
(54)【発明の名称】階層型分散送電網の制御
(51)【国際特許分類】
H02J 13/00 20060101AFI20220816BHJP
H02J 3/38 20060101ALI20220816BHJP
【FI】
H02J13/00 311R
H02J13/00 301A
H02J3/38 120
(21)【出願番号】P 2017500018
(86)(22)【出願日】2015-07-06
(86)【国際出願番号】 US2015039230
(87)【国際公開番号】W WO2016004432
(87)【国際公開日】2016-01-07
【審査請求日】2018-07-02
【審判番号】
【審判請求日】2020-09-28
(32)【優先日】2014-07-04
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2015-07-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】509222372
【氏名又は名称】エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109335
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(72)【発明者】
【氏名】マタン ステファン
(72)【発明者】
【氏名】ホートン フレッド
(72)【発明者】
【氏名】マローネ フランク
【合議体】
【審判長】清水 稔
【審判官】井上 信一
【審判官】山本 章裕
(56)【参考文献】
【文献】米国特許出願公開第2012/0271470(US,A1)
【文献】特開2013-183622(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 13/00
(57)【特許請求の範囲】
【請求項1】
送電網を制御する方法であって、
制御ノードを用いて、公益事業体の送電網との共通結合点(PCC)の需要家の側における、該PCC及び前記制御ノードの下流側の発電機器及び負荷に対して、前記需要家の側から前記PCCにおいて見た発電量および電力需要を監視するステップであって、
前記需要家の側は、下流側の前記発電量および下流側の前記電力需要と前記PCCを境に同じ側にあり、前記制御ノードは前記PCCに結合された複数の制御ノードの1つであり、
各制御ノードは、該各制御ノードの下流側の他の制御ノードを監視することを含み、そして、前記各制御ノードの下流側の発電量および電力需要を監視する、前記監視するステップと、及び
前記制御ノードと関連付けられた、前記PCCの前記需要家の側における電力変換器の動作を調節して、前記制御ノード及び該制御ノードからの信号による前記監視することに応答して、前記PCCと前記下流側の発電機器及び負荷との間の電力潮流を制御し、前記需要家から制御ノードに関して見られるような前記PCCの下流側の電力潮流の有効電力対無効電力の比を調節し、前記制御ノードに関連付けられた前記電力変換器の動作及び下流側の他の制御ノードに関連付けられた電力変換器の動作は、前記各制御ノードの下流側の他の制御ノードに対する発電量および電力需要を含む、前記PCCの送電網側から前記PCCから見られる電気的特徴を変更して、前記送電網側から前記PCCにおいて見られる前記PCCにおける送電網の規制の準拠を維持するステップと、を含む、方法。
【請求項2】
前記PCCが顧客の施設と前記制御ノードのメーター
の下流側の前記送電網との接続、又は前記メーターの下流側の複数の顧客の施設を包含する近隣地域の送電網との接続を備える、請求項1に記載の方法。
【請求項3】
前記PCCが集中送電網管理装置の下流側に少なくとも1つの追加のPCCを含む、請求項1に記載の方法。
【請求項4】
前記電力変換器の動作を調節するステップが、前記PCCの前記需要家の側において前記電力変換器によって発電された無効電力の位相オフセットを調節するステップを含む、請求項1に記載の方法。
【請求項5】
送電網を制御する装置であって、
制御ノードの共通結合点(PCC)において前記送電網と結合する送電網接続装置であって、前記
制御ノードは前記PCCに接続された複数の
制御ノードの1つである、送電網接続装置と、
各制御ノードの下流側の他の制御ノードを監視することを含み、前記PCCの下流側および、前記
制御ノードと前記PCCを境に同じ側にあり、かつ前記送電網の集中送電網管理装置とは前記PCCを境に反対側にある、前記PCCの需要家の側から見た前記PCCの需要家の側の
制御ノードの下流側の発電量および電力需要を監視するコントローラーと、及び、
前記
制御ノード及び該
制御ノードからの信号による前記監視することに応答して、 前記
制御ノードに関して前記PCCの前記需要家の側から見られる、前記PCCと前記下流側の発電量又は電力需要との間の電力潮流を調節し、前記需要家から前記
制御ノードに関して見られるような前記PCCの下流側の電力潮流の有効電力対無効電力の比を変更する、電力変換器と、を備え
前記電力変換器の動作及び前記複数の
制御ノードの他方と関連付けられた電力変換器の動作は、各制御ノードの下流側の他の制御ノードに対する発電量および電力需要を含む、前記PCCの送電網の側から前記PCCにおいて見られる電気的特徴を変更して、前記送電網の側から前記PCCにおいて見られる前記PCCにおける送電網の規制の準拠を維持する、装置。
【請求項6】
前記PCCが、顧客の施設の送電網と前記送電網との接続、複数の顧客の施設を包含する前記送電網のサブセクションの送電網との接続、近隣地域と前記送電網との接続、または前記送電網のインフラストラクチャーの変圧器を含む接続点を備える、請求項5に記載の装置。
【請求項7】
前記電力変換器は、前記送電網から見たときの電力の無効電力成分の前記PCCにおける調節を含め、前記電力潮流を調節するものである、請求項5に記載の装置。
【請求項8】
前記電力変換器は、前記送電網から見たときの電力の有効電力成分の前記PCCにおける調節を含め、前記電力潮流を調節するものである、請求項5に記載の装置。
【請求項9】
電力計量装置であって、
制御ノードの共通結合点(PCC)において送電網と結合する送電網接続装置であって、前記
制御ノードは前記PCCに接続された複数の
制御ノードの1つである、送電網接続装置と、
各制御ノードの下流側の他の制御ノードを監視することを含み、前記PCCの下流側および、前記
制御ノードと前記PCCを境に同じ側にあり、かつ前記送電網の集中送電網管理装置とは前記PCCを境に反対側にある、前記PCCの需要家の側から見た前記PCCの需要家の側の
制御ノードの下流側の発電量および電力需要を監視するコントローラーと、及び、
電力変換器に接続される入出力部(input/output:I/O)とを備え、前記コントローラーは、前記I/Oを介して1つ以上の信号を前記電力変換器に送って、前記電力変換器に、前記
制御ノード及び該
制御ノードからの信号による前記監視することに応答して、
前記
制御ノードに関して前記PCCの前記需要家の側から見られる、前記PCCと前記下流側の発電量又は電力需要との間の電力潮流を調節させ、前記需要家から前記
制御ノードに関して見られるような前記PCCの下流側の電力潮流の有効電力対無効電力の比を変更させるようになっており、
前記電力変換器の動作及び前記複数の
制御ノードの他方と関連付けられた電力変換器の動作は、
前記各制御ノードの下流側の他の制御ノードに対する発電量および電力需要を含む、前記PCCの送電網の側から前記PCCにおいて見られる電気的特徴を変更して、前記送電網の側から前記PCCにおいて見られる前記PCCにおける送電網の規制の準拠を維持させる、電力計量装置。
【請求項10】
前記コントローラーは、再生エネルギー源によって発電された電力の前記
制御ノードにおける監視を含め、前記発電を監視するものである、請求項9に記載の電力計量装置。
【請求項11】
前記コントローラーが、前記I/Oを介して信号を送って、前記電力変換器に、前記送電網から見たときの電力の無効電力成分の前記PCCにおける調節を含め、前記電力潮流を調節させる、請求項9に記載の電力計量装置。
【発明の詳細な説明】
【技術分野】
【0001】
優先権
本出願は、2014年7月4日付で出願された米国特許仮出願第62/021,085号に基づく非仮出願であり、同仮出願の優先権の利益を主張するものである。前記仮出願は、この参照により本明細書に組み入れられる。
【0002】
本出願は、「HIERARCHICAL AND DISTRIBUTED POWER GRID CONTROL」と題された米国特許出願第14/791,429号の優先権の利益を主張する国際出願である。本出願は、「GRID NETWORK GATEWAY AGGREGATION」と題された米国特許出願第14/791,438号に関連する。
【0003】
分野
本発明の実施形態は、広くは送電網に関し、より具体的には送電網内の階層型分散制御に関する。
【0004】
著作権表示/許諾
本特許文書の開示の一部には、著作権保護の対象となる資料が含まれている場合がある。著作権の保有者は、本特許文書または本特許開示のいずれかの者が特許商標局の特許ファイルまたは記録に表示されているとおりに複製することに異議を唱えてはいないが、その外についてはすべての著作権を留保する。著作権の告示は下記のすべてのデータ、本明細書に添付の図面、ならびに下記のすべてのソフトウェアに適用される。著作権2015年 Apparent Inc. 無断転用禁止。
【0005】
背景
従来の公益事業体の送電網は集中電源(例えば石炭火力発電機、原子力発電機、水力発電ダム発電機、ウィンドファーム、またはその他)および集中管理装置を含んでいる。「送電網」は、異なる電源からの電力をマクロレベルで送電網のインフラストラクチャー全体にわたって共有することができるように、その他の電源と接続することもできる。しかし、送電網は、従来、関連付けられる電柱および鉄塔を伴う公益事業体の電力線などのかなりの量のインフラストラクチャーならびに電力を配電するための変電所を含んでいる。送電網は、従来、相互接続された需要家のピーク時の需要を満たすだけの十分な電力を提供できる大規模な発電機に基づいている。顧客としては、住宅、企業、セルラー電話タワー、もしくはその他の公共施設ボックス、またはその他の電力利用者を挙げることができる。最も少量のエネルギー利用者から商用重機の大電力需要を有する大企業まで、異なる需要家によってピーク需要が異なる場合がある。
【0006】
従来の送電網インフラストラクチャーは、構築し保守するための費用が高い。さらに、集中電源から数百キロメートルも離れている場合もある需要家にエネルギーを送出する必要がある。変電所および近隣地域の変圧器などのその他インフラストラクチャーは、電圧を送電網上に供給される電流と同相に維持し、電圧レベルを規制されたレベルに維持するために、集中管理装置によって制御されている。通常、送電網から電力を引き出す電動装置は、送電網の力率を劣化させる。マクロスケールでは、送電網管理装置は、このような電動装置による送電網の力率の擾乱を制御するように試みてきた。近代的な電子機器のより新しいスイッチング電源の設計は、無効電力を必要とし送電網にノイズを導入して返すことにより、送電網の力率および電圧安定化をさらに複雑なものとしている。
【0007】
送電網により供給される電力は、一般的に、有効電力成分および無効電力成分からなる。有効電力は、電圧波形と電流波形とが完全に同期して供給される電力である。無効電力は、電圧波形と電流波形とが同期せずに供給される電力である。無効電力は、電流波形と電圧波形との位相差に基づいて進み位相または遅れ位相であることができる。
【0008】
需要家にとっての電力は、電力を計算するために提供されるエネルギー自体とは異なる理解をすることができる。電力は、通常、W・h、即ち、ワット時によって表される。ワット時に公益事業体が課金する料率を掛けることにより、需要家が公益事業体に支払わなければならない金額がもたらされる。しかし、エネルギーはいろいろな方法で表すことができ、複数の異なる方法で計測することができる。例としては、(VA)V・I(電圧ベクトル×電流ベクトルで求めるボルトアンペア)、V・I・PF(電圧ベクトル×電流ベクトル×力率で求めるワット)、およびW^2の平方根(ワットの二乗の平方根で求めるボルトアンペア無効電力)が挙げられる。需要家は、通常、施設に供給されるエネルギーのコストを示すワット時での電力を見る。公益事業体もまた、利用者の施設での無効電力消費量を計測し課金し始めている。
【0009】
需要家の場所で電力を発生させるための再生可能資源を局所的に追加する送電網の需要家が著しく増えている。再生可能エネルギー源は太陽エネルギーおよび/または風力である傾向があるが、非常に著しい数のソーラーシステムが追加されつつある。顧客の電源に対する1つの制約は、これらが同時に電力を発生させる傾向にあり、送電網上で使用できるよりも大きな電力を発生させかねないことである。送電網インフラストラクチャーは、従来的には片方向方式であり、顧客の施設から集中管理装置および集中電源に向かって逆送出される有効電力は、送電網の電圧制御および送電網上の無効電力の不安定性の問題を招きかねない。これらの問題により、送電事業者は送電網に接続できる再生可能エネルギーの量を制限してきた。場合によっては、送電網上に戻る電力の流れを制御するために、需要家の所またはその近傍に追加のハードウェアまたは送電網インフラストラクチャーが必要である。
【0010】
再生可能資源によって引き起こされる問題に加えて、空調機器および無効電力を大量に引き出すその他の負荷の使用の増加が、送電網管理装置が電圧レベルを必要なレベルに保つうえでのさらなる負担を招いている。近年の猛暑の結果、輪番節電および輪番停電が行われている。あるいは、人々が仕事から帰宅してそこでの電力消費量を増加させるとき、負荷の変化に対応するために設備のインターフェースがリセットされ、送電網上の一時的な中断が起こる。従来より、集中管理装置は、送電網の規制(例えば電圧レベル)の準拠を維持しなければならない。送電網に接続されているものが過電圧シナリオに至るたびにそれが送電網から切り離され、これにより、次に周辺地域に追加的な負荷が生じかねず、結果的に、集中管理装置が送電網の安定性を復帰させることができないうちに送電網のより広範な領域が遮断されるおそれがある。
【0011】
図面の簡単な説明
以下の説明は、本発明の実施形態の実施の例として示された実例を有する図の検討を含んでいる。図面は、制限としてではなく、例として理解すべきものである。本明細書内で使用するにあたって、1つ以上の「実施形態」に関する言及は、本発明の少なくとも1つの実施態様に含まれる特定の機構、構造、および/または特徴の記述として理解すべきである。したがって、本明細書内に記載されている「一実施形態」または「別の実施形態」のような言い回しは、本発明の様々な実施形態および実施態様を記述しており、必ずしもすべてが同一の実施形態を指すものではない。しかし、これらはまた、必ずしも相互に排他的ではない。
【図面の簡単な説明】
【0012】
【
図1】
図1は、階層型送電網制御を有するシステムの実施形態のブロック図である。
【
図2】
図2は、近隣地域内の共通結合点での監視および制御を有するシステムの実施形態のブロック図である。
【
図3】
図3は、近隣地域間の共通結合点での監視および制御を伴うシステムの実施形態のブロック図である。
【
図4】
図4は、分散送電網システムの実施形態のブロック図である。
【
図5】
図5は、メーターによる監視に基づいてコンバーターによって制御されているエネルギー源を含む需要家の施設を有するシステムの実施形態のブロック図である。
【
図6】
図6は、メーターによる監視に基づいて需要家の施設を制御するコンバーターを有するシステムの実施形態のブロック図である。
【
図7】
図7は、複素電流ベクトルを説明する異なるエネルギーシグネチャーを監視するメーターを有するシステムの実施形態のブロック図である。
【
図8】
図8は、電流の高調波成分が基本電流成分に対してオフセット角を有するシステム内の電流の成分の実施形態の図形表現である。
【
図9】
図9は、電流ベクトルが基本電流成分と高調波電流成分との合成であるシステム内の電流の成分の実施形態の図形表現である。
【
図10】
図10は、PCCにおいて電力を監視する計量装置の実施形態のブロック図である。
【
図11】
図11は、複素電流ベクトルを説明する異なるエネルギーシグネチャーを監視する処理の実施形態のフロー図である。
【
図12】
図12は、共通結合点で監視されるエネルギーシグネチャーに基づいて共通結合点における電力需要を提供する処理の実施形態のフロー図である。
【
図13】
図13は、共通結合点において有効・無効電力消費量を調節する処理の実施形態のフロー図である。
【
図14】
図14は、送電網の飽和に対処するステップを含むことのできる、送電網に動的支援を提供する処理の実施形態のフロー図である。
【
図15】
図15は、ハードウェア波形制御装置に結合されたソフトウェアフィードバック制御サブシステムを用いて高調波歪みを制御するシステムの実施形態のブロック図である。
【
図16】
図16は、局所電源から送電網に連結している負荷へと力率調節を伴って電力を転送するシステムの実施形態のブロック図である。
【
図17】
図17は、分散送電網のノードの実施形態のブロック図である。
【
図18】
図18は、分散送電網の制御を提供する処理の実施形態のフロー図である。
【0013】
下記の実施形態のいくつかまたはすべてを描写することのできる図の説明ならびに本明細書内で提示される発明の概念の他の潜在的な実施形態または実施態様の検討を含む、特定の詳細および実施態様の説明を以下に記す。
【0014】
詳細な説明
本明細書で説明するとき、制御ノードは、分散送電網の制御を可能とする。複数の独立した制御ノードを送電網全体に分散させることができる。制御ノードは、複数の制御ノードを複数の制御ノードの共通の制御ノードに接続することにより階層的に構造化することができる。各制御ノードは、送電網との共通結合点(point of common coupling:PCC)を管理する。PCCは、複数の下流側の負荷および/または局所電源が送電網に接続される相互接続点である。本明細書内の目的として、各制御ノードは、複数の負荷および/またはエネルギー源に結合し、したがって、PCCと関連付けられる。各制御ノードはその送電網とのインターフェースまたは相互接続をその他一切の制御ノードから独立して管理するので、送電網制御インテリジェンスを送電網全体にわたって分散させることができる。
【0015】
一実施形態において、各制御ノードは、公益事業体の送電網とPCCまたは制御ノードの下流側のすべての機器との間の発電量および電力需要をその制御ノードのPCCにおいて監視し管理することにより、その他の制御ノードから独立して動作する。下流側の機器には、太陽発電および/または風力発電などのエネルギー源、有効電力および/または無効電力の需要家(例えば需要家ノード)などの負荷、ならびにその他のPCCまたはその他の制御ノードを含むことができる。一実施形態において、各制御ノードは、その送電網とのインターフェースまたは相互接続を管理して送電網の規制の準拠を維持する。一実施形態において、制御ノードは、下流側に接続されている任意数の需要家ノードおよび任意数のエネルギー源を有する。需要家ノードは、顧客の施設であることができる。一実施形態において、顧客の施設は、複数の需要家ノードを含むことができる。一実施形態において、需要家ノードが複数の顧客の施設を含む場合がある。一実施形態において、1つの制御ノードが複数の顧客の施設を管理する。各制御ノードは、下流側から発電量および電力需要を監視し、送電網上の需要が許容レベル内であることを保証することができる。制御ノードは、PCCを介して制御ノードと集中送電網管理装置との間のインターフェースを調節することにより送電網制御を提供して、PCCにおける送電網の規制の準拠を維持することができる。
【0016】
一実施形態において、制御ノードは、下流側の有効電力の消費量を調節する。一実施形態において、制御ノードは、下流側の無効電力の消費量を調節する。一実施形態において、制御ノードは、下流側の無効電力の発生量を調節する。一実施形態において、制御ノードは、下流側の有効電力の発生量を調節する。一実施形態において、制御ノードは、PCCにおけるエネルギーを制御して、送電網の観点からPCCで見た(即ち、送電網側からまたはPCCを通って下流側を望む集中送電網管理装置もしくは送電網インフラストラクチャーから見たときの)電力の量および種類を管理する。
【0017】
図1は、階層型送電網制御を有するシステムの実施形態のブロック図である。システム100は、階層型制御を有する送電網を表している。一実施形態において、システム100は、発電所110および送電網基幹回線120を含むが、一実施形態において、階層型送電網は、集中送電網管理装置および集中送電網発電所に接続することなく適用することができる。システム100は、電力需要家が相互におよび電源に接続されている送電網システムを表している。
【0018】
発電所110は、送電網基幹回線120に給電する大規模発電所を表している。発電所110は、従来的には、水力発電ダム発電機、原子力発電所、石炭火力発電所、または大規模ウィンドファームである。近年の大規模ソーラーファームもまた、追加されている。送電網基幹回線120は、鉄塔、電線、変圧器、変電所、および需要家を発電所110に相互接続するためのその他のインフラストラクチャーを含んでいる。送電網基幹回線120は、電力を何キロメートルも伝送する高圧電線を有する送電網インフラストラクチャーを含んでいる。実際上、複数の電源または発電所を同一の送電網基幹回線120に接続することができるが、すべてが大規模で、通常、可能な限り大きな電力を発生させ可能な限り多くの需要家に供給するように設計されている。送電網基幹回線120は、従来、発電所110から需要家への片方向配電のために設計されている。「送電網」または「公益事業体の送電網」に関する言及は、発電所110および送電網基幹回線120のインフラストラクチャーを指すことができる。
【0019】
一実施形態において、送電網は、送電網の様々な異なるセグメントに階層的に分離できるネットワークとして考えることができる。各送電網セグメントは、別個の制御ノードによって制御することができる。一実施形態において、システム100は、制御ノード130、140、および150を含んでいる。各制御ノードは、送電網の複数の負荷および/または複数のサブセグメントが相互に結合するPCC、即ち、共通結合点を管理することができる。PCCは、各セグメントおよびサブセグメントを相互におよび/または送電網に接続することができる。
【0020】
PCCは、地理的な接続点であると共に、またはその代わりに、電気的等価点であることができることが理解されるであろう。図示の階層の最上位は、下流側のすべてのセグメントおよび部分を相互に直接接続するPCC[0]である。PCC[0]はまた、下流側のすべての点を送電網基幹回線120に接続することもできる。「下流側」に関する言及は、配電経路に沿ってより遠くにある機器または品目を指す。したがって、送電網の配電経路上の一点にある住宅または顧客の施設がある場合、配電経路に沿ってより遠くにある別の顧客の施設はその下流側である。追加の構造物を有するその他の送電網セグメントは発電所110からより遠くにあり、したがって集中送電網管理装置から見たときに配電経路のより先にあることから、PCC[0]の下流側であることができることが理解されるであろう。
【0021】
システム100は、送電網ネットワークと呼ぶことができ、送電網基幹回線120および発電所110を含む場合もあれば、含まない場合もある。送電網ネットワークは、各PCCが複数の下位レベルのPCCをアグリゲートすることができるという点において、階層的であることができる。各PCCは、下流側のすべての機器に接続点を提供する。PCC[0]は、システム100の階層の最上位にある。一実施形態において、図示していない複数の追加の機器をPCC[0]に接続することができる。図示していないこのような機器は、ノード130と並列にPCC[0]に結合することとなる。送電網ネットワークの階層の最下位レベルは、PCC[3]を有する顧客の施設160にあるノード162のような、顧客の施設にある制御ノートであることが理解されるであろう。一実施形態において、顧客の施設に1つ以上の制御ノードが存在する。一実施形態において、システム100内には制御ノードを有しない顧客の施設が存在する。
【0022】
システム100内には、顧客の施設160および顧客の施設180の2つの顧客の施設が図示されている。また、顧客の施設は、需要家または需要家ノードと呼ぶこともできる。一実施形態において、顧客の施設としては、家庭、企業、公園、負荷、サーモスタット、ポンプ、車両充電スタンド、および/またはその他の電力の需要家を挙げることができる。各顧客の施設は、電力に依存して動作する1つ以上の負荷または機器を含んでいる。一実施形態において、顧客の施設160は、単一の制御ノード162を含んでいる。一実施形態において、顧客の施設180は、複数の制御ノード182および184を含んでいる。顧客の施設にゼロ個以上の制御ノードが存在することができる。送電網ネットワークの設計ならびに顧客の施設における負荷および電源の数次第で、1つの顧客の施設に多くの制御ノードが存在することができる。システム100内に、その他の顧客の施設を含むことができる。顧客の施設のうちのゼロ個以上は、他の図面に関して下記により詳細に述べるエネルギーの発生を含むことができる。
【0023】
一実施形態において、各PCCは、制御ノードに関連付けられる。PCCに関連付けられた制御ノードは、その制御ノードにおける電気的動作を管理または制御する。例えば、一実施形態において、システム100内で、制御ノード130はPCC[1]に関連付けられており、送電網側からPCC[1]において見たときのPCC[1]の下流側の負荷需要および発電量を管理する。送電網側から望む、または送電網側から見ることに関する言及は、どのような正味電力需要(必要な電力または発生する電力のいずれか)がその点に存在するかを指す。送電網側から見るということはまた、その点の下流側を望むときにその点にどのような位相オフセットまたは正味無効電力が存在するかということを指すこともできる。PCCは、発電量および需要のアグリゲーション点である。正味電力需要は、同一のPCCのセグメントまたは領域内で発生する有効電力および無効電力に対する負荷需要に基づく必要な有効電力と無効電力との差であることができる。同一のセグメント内とは、PCC「内」、即ち、PCCに接続されている下流側ネットワーク内であると言うことができる。
【0024】
一実施形態において、各制御ノードは、その独自のPCCを独立して制御することができる。したがって、制御ノード130はPCC[1]を制御し、制御ノード150はPCC[2]を制御し、制御ノード140はPCC[4]を制御し、制御ノード162はPCC[3]を制御する。一実施形態において、独立した制御とは、各制御ノードがそのPCCにおける運転を監視および制御してPCCを送電網ルールの準拠に可能な限り近く維持することである。各制御ノードが規制の準拠を完全に達成することは常に可能ではないかもしれない。一実施形態において、制御ノードは、近隣の制御ノードの出力がどのようなものであるか、例えば当の制御ノードから近隣の制御ノードの方を望んだときにどのような需要が見えるかに基づいて動作する。しかし、別の制御ノードの動作を見ることによって動作を制御するということは、各制御ノードの動作が相互に依存することを意味しない。むしろ、一実施形態において、各制御ノードは、ノード全体(その「下側」または下流側に接続されているすべて)が他のノードの動作に関係なくすべての要件に従うことを確実にしようとする。近隣の制御ノードまたは近隣のPCCの性能または動作を監視することは、どのように動作し、上流側の送電網に対して支援を提供するべきか否かを決定するための検討であることができる。一実施形態において、各制御ノードは、集中データセンターおよび/または集中送電網管理装置からの入力を受信しこれに応答することができるが、このような入力なしでも動作することができる。このように、各制御ノードは、独立して動作してその接続点で見たときの正味の電力運用を制御する。
【0025】
一実施形態において、各制御ノードは、コンバーター装置またはインバーター装置および計量装置を含んでいる。一実施形態において、コンバーターは、電力変換装置または単に変換装置と呼ばれる。コンバーターに関する言及は、一緒に動作してPCCにおける運転および/またはインターフェースを制御することのできる1つまたは複数のコンバーターを含む場合がある。一実施形態において、制御ノードとコンバーターとは、別個の装置である。したがって、コンバーター132は、制御ノード130の一部であることができ、または単にPCC[1]でこれに接続することができる。同様に、コンバーター142は制御ノード140に関連付けられ、コンバーター152は制御ノード150に関連付けられ、コンバーター164は制御ノード162に関連付けられ、コンバーター192は制御ノード182に関連付けられ、コンバーター194は制御ノード184に関連付けられている。その他のネットワーク構成も可能である。システム100の全体が図示されていないことは理解されるであろう。
【0026】
既述のように、各顧客の施設が負荷であることができ、または負荷を含むことができる。顧客の施設160は、1つ以上の負荷172を含んでいる。各負荷172が電力を消費する。負荷172は、需要にとっての有効電力成分および需要にとっての無効電力成分を有する電力の需要を発生させることができる。従来より、無効電力は、顧客の施設にある重機(例えばコンデンサーバンクおよび/または誘導電動機)を除けば、送電網によって提供されてきた。負荷172は、照明、コンピューター機器、エンターテイメント装置、モーター、暖房換気空調(heating, ventilation,and air conditioning:HVAC)装置、家庭用および厨房用機器、または動作に電気を必要とするその他任意の種類の機器のような任意の形態の負荷であることができる。このような機器には、電源コンセントに接続することにより充電される再充電式機器を含むことができる。これらの機器の多くは、無効電力需要を発生させる。この無効電力の需要は、その負荷のPCCで見られ、需要が満たされない限り、その上流側のその他のPCCで見ることができる。一実施形態において、ノード162およびコンバーター164は、負荷172に無効電力を提供することができる。
【0027】
顧客の施設180内に負荷(具体的に図示せず)があることは理解されるであろう。一実施形態において、コンバーター164は、負荷172が結合しているPCC[3]に結合している。一実施形態において、コンバーター192および194は、負荷とPCC(PCC[2])との間に結合することができる。コンバーター164はPCC[3]に結合しており、PCC[3]における特定の性能パラメーターを維持するように動作するように設定することができる。一実施形態において、実際には、コンバーター164は、PCC[3]と制御ノード162のメーターとの間に結合している。性能パラメータは、PCCにおける有効電力および無効電力の制御に関連付けることができる。一実施形態において、コンバーターが負荷とPCCとの間に結合しているとき、コンバーターは、それに結合している特定の負荷を維持するように設定されている。
【0028】
一実施形態において、各制御ノードは、制御ノードに内蔵され、またはこれに関連付けられ、またその一部である計量装置またはエネルギー計を含んでいる。計量装置の実施形態のより詳細については、下記に述べる。計量装置は、PCCでのエネルギー使用量を計測し、下流側の正味電力需要または発電量を決定することができる。一実施形態において、計量装置は、PCCにおける送電網ネットワークの運転の監視を可能とする。一実施形態において、計量装置は、エネルギーシグネチャーを計測することができる。各コンバーターは、PCCにおける電力使用量を制御することができる。一実施形態において、コンバーターは、PCCにおける有効電力および/または無効電力の使用を制御する。
【0029】
一実施形態において、システム100の送電網の階層は、需要家の施設にある1つ以上の制御ノード、近隣地域内の1つ以上の制御ノード、変電所における1つ以上の制御ノード、またはその他の階層を含むことができる。階層内の各制御ノードは、その下位の運転を独立して制御し、上流側に伝達する。このように、各制御ノードは、送電網の規制の準拠を独立して管理することができる。送電網ネットワークのセグメントが故障した場合、階層のより上位の、即ち、より上流側のノードが運転を調節して、そのPCCよりも下位のサブネットワークの外側で故障が見られないように、即ち、発生しないように防止するように試みることができる。このように、分散送電網は故障からより迅速かつ効率的に回復することができ、送電網のその他のセグメントが故障するリスクを低減させることができる。例えば、送電網ネットワークの各分散制御ノードは、有効電力および無効電力の消費量を動的に調節してそのPCCにおける接続が送電網の接続要件に従うように維持することができる。
【0030】
一実施形態において、システム100の各分散制御ノードは、送電網または送電網ネットワークが関連付けられたPCCを介して送電網のセグメントをどのように見るかを制御することができる。このように、制御ノード130は送電網がPCC[1]の下流側のすべてをどのように見るかを制御でき、制御ノード150は送電網または送電網ネットワークがPCC[3]の下流側のすべてをどのように見るかを制御することができ、以下同様である。送電網がPCCを介して送電網のセグメントをどのように見るかを制御する機能は、送電網ネットワークのセグメント内での適応性のより高い挙動を可能とすることができる。例えば、現行の規制では、特定の状態(過電圧、過電流、単独運転、および/またはその他の状態)の違反により特定のインバーターがオフラインとなることが義務付けられているが、PCCと送電網との接続を制御することにより、送電網がPCCを介してのみセグメントを見ることが可能となる。このように、各制御ノードは、送電網ネットワークとの接続をPCCで制御することができるので、インバーターが回復に努めるためにより長時間オンラインであることを可能とすることができる。PCCに接続されている機器が集合的に規制に準拠している場合、PCCの下流側の各インバーターは、理論的には、通過要件および/または過電圧要件をある期間一時的に違反することができる。一実施形態において、あるPCCでの制御ノードおよびコンバーターが他のコンバーターからサポートを得られるようにし、またはそれらのコンバーターでの挙動を変えてPCCでの正味状態を変化させることができる場合、各インバーターは、同様に、制御ノードがPCC内のその他の機器の動作を変えることによりPCCを規制準拠の範囲内に維持する間、送電網条件に一時的に違反することができる。
【0031】
一実施形態において、分散制御または送電網もしくは送電網ネットワークは、送電網に混乱が生じた場合には共通結合点を押し出すステップを含む。通常であればその点で送電網の故障を引き起こすであろうPCC[2]での問題について検討する。一実施形態において、制御ノード150および130は、その状態を検出することができる。制御ノート150は、無効電力制御を変化させるなどのコンバーター152の動作を介してPCC[2]での送電網の状態を変化させるよう試みることができる。制御ノード150はまた、制御ノード130にその状態を通知することができる。一実施形態において、制御ノード130は、制御ノード140に合図することによりその状態に呼応して(例えばコンバーター142によって)その動作を変え、PCC[1]で見られる正味状態を均衡させる。制御ノード130はまた、その状態に呼応してコンバーター132の動作を変えることもできる。制御ノードの動作に基づき、PCC[2]の故障状態が規格によって許容されるよりも長時間続くかもしれない一方で、PCC[1]における状態は規格および規制に準拠することができる。このように、PCC[2]およびその設備は、問題を修正するように試みるために稼働し続けることができる。
【0032】
このように、制御ノードの分散およびこれらのノードを通じた制御動作の分散により、規制準拠の点を発電機および/または送電網基幹回線の方に可能な限り遠くに押しやって局所的な障害の影響を最小限に抑えることができる。このように、一実施形態において、送電網ネットワーク100の階層内の各点は、規制準拠に関しては別個の制御点である。一実施形態において、システム100は、階層の上方および下方に分散された冗長規制準拠を提供する。一実施形態において、各制御ノードは、規制準拠の範囲内で動作するように試みる。このような動作により、通常、送電網の各セグメントおよびサブセグメントの規制準拠に向けた動作を保証することができるが、一レベルで故障が発生した場合、より上位のレベルがこれを補正することができれば、送電網が遮断される結果には至らない。例えば、PCC[2]での故障に呼応して制御ノード130が動作を調節することができれば、制御ノード150およびその下流側のすべてはオンライン状態を維持してエラー状態を修正するよう試みることができる。このような動作では、送電網のセグメントは、その状態を補償できない最後の制御および規制準拠の点に至るまで遮断されることはない。
【0033】
図2は、近隣地域内の共通結合点での監視および制御を有するシステムの実施形態のブロック図である。システム200は送電網ネットワークを含み、
図1のシステム100の実施形態に係る送電網ネットワークおよび/またはシステムの一例であることができる。送電網210は送電網インフラストラクチャーを表しており、集中発電機または発電所および集中送電網制御装置(具体的には図示せず)を含むことができる。
【0034】
近隣地域230は、送電網ネットワークのセグメントまたはサブセグメントを表している。近隣地域230は、PCC220を介して送電網210に結合する。PCC220は、これに関連付けられた制御ノード222を有する。制御ノード222は本明細書内で説明する任意の実施形態に係る制御ノードであることができ、PCC220における送電網の性能を制御するための処理論理回路を含むことができる。一実施形態において、制御ノード222は、PCCの動作を制御するためのコンバーターを含んでいる。一実施形態において、近隣地域は、システム200の分散制御の階層内の一レベルである。階層のその他のレベルについては具体的には図示していない。しかし、PCC220は、分散制御ノードを有するその他のPCCを介して送電網210に結合することができる。
【0035】
一実施形態において、近隣地域230は、送電網の任意のセグメントまたはサブセグメントであることができる。近隣地域230は、一般的に、送電網の顧客の施設の集合または集団を表している。集団は、制御ノードによって制御される任意の集団であることができる。一実施形態において、集団は、例えば、1つの変圧器によって給電されるすべての顧客の施設、1つの変電所、またはその他何らかの集団であることができる。一実施形態において、近隣地域は、複数の建物ならびに/または負荷および発電装置を有する、共通点(PCC220)を介して送電網210に結合する大規模な顧客の施設であることができる。このようなシナリオでは、単一の顧客の施設内に集団が存在する場合がある。一実施形態において、制御メーターに取り付けられたすべてまたは同一の制御メーターおよび/もしくは制御ノードの下流側については、異なる制御メーターに結合しているその他の機器(負荷)が別個に制御することができる。制御メーターは、これらに取り付けられたすべての負荷と送電網との接続を制御することができる。
【0036】
顧客の施設240について検討する。一実施形態において、顧客の施設240は、メーター242、コンバーター244、負荷246、およびエネルギー源248を含む。負荷246は、任意の種類および数の負荷を含むことができる。コンバーター244は、本明細書内で説明する任意の実施形態に係るコンバーターであることができる。エネルギー源248は、任意の種類の局所的なエネルギー源を含むことができる。太陽発電および風力発電が一般的な局所的エネルギー源である。このようなエネルギー源は、局所的に使用することができおよび/または送電網に送り返すことができる電力を発生させるので、通常、「電力」源と呼ばれる。しかし、従来のシステムは、電力、即ち、電圧×電流(P=VI)の観点から電源の出力を規制する。このような従来の運転は、特定の電流および/または電圧に固定しなければエネルギーをより高い自由度で使用することができることを考慮していない。電力を規制すると、必ず電力を無駄にすることになる。
【0037】
従来の方法とは対照的に、コンバーター244は、エネルギー源248が発生させたエネルギーを、有効電力であれ、無効電力であれ、またはその組み合わせであれ、負荷246が必要とする任意の種類の電力に変換することができる。さらに、コンバーター244は、エネルギーを有効電力および/または無効電力として、PCC220を介して送電網210に戻すことができる。このように、エネルギー源248は、出力を特定の電圧または電流に規制せずにエネルギーを転送することから、システム200との関連では「エネルギー」源と呼ぶことがより適切である。このようなコンバーターのより詳細については、下記に述べる。
【0038】
発電という意味で電力に制約があるように、顧客の施設240の運転を監視し計量するという意味で、電力の計量にもまた制約がある場合がある。エネルギーの計測を実施するには、複数の方法がある。概して、エネルギー計測を実施する方法に関する詳細には触れずに、エネルギーを正確に計測することが可能であると仮定する。このように、メーター242は、エネルギー計測を実施することができる。一実施形態において、メーター242は、ワット時(Wh)の代わりにエネルギーを計測する制御メーターである。一実施形態において、メーター242の動作は、システム200内のエネルギー消費およびエネルギー転送を制御するために使用することができる。一実施形態において、メーター242は、負荷246のエネルギーシグネチャーを追跡して共通結合点の制御の仕方を決定することができる。そのように具体的に図示され標識されてはいないものの、メーター242とコンバーター244の組み合わせにより顧客の施設240における制御ノードを提供することができることが理解されるであろう。このように、負荷246とコンバーター244およびメーター246との接続点がPCCであることができる。顧客の施設240のPCCは、負荷246による電力消費または電力需要に加えて、エネルギー源248による発電を含んでいる。
【0039】
一実施形態において、近隣地域230は、メーター252、コンバーター254、負荷256、およびエネルギー源258を同様に含む追加の顧客の施設250を含んでいる。負荷256および/またはエネルギー源258の量および種類が負荷246またはエネルギー源248と同じである必要はない。むしろ、各顧客の施設は、任意数の負荷および/または発電装置を有することができる。一実施形態において、近隣地域230は、エネルギー源を有する任意数の顧客の施設を有することができる。一実施形態において、近隣地域230は、エネルギー源を有しない1つ以上の顧客の施設を含むことができる。一実施形態において、エネルギー源を有しない顧客の施設であっても、下記のさらなる詳細に従って、メーターおよび電力変換器などの制御ノードを装着することができる。
【0040】
近隣地域230内のメーターは、(例えば、メーター242およびメーター252ならびにその他)は、相互と連絡して計量情報および/または制御情報を共有することができる。一実施形態において、このようなメーター間または制御ノード間の情報の共有は、メーターおよび/または制御ノードが、近隣地域(PCC220)の共通結合点(PCC)がネットワーク内をどのように移動するか、または異なるPCCを介した制御がネットワークまたは送電網全体の中でどのように行われるかを制御することを可能とすることができる。計量ノード間の通信には、任意の媒体を使用することができる。相互におよび/または集中データセンターと情報を共有する機能により、送電網上で何か起こっているかに基づいてネットワークまたは送電網が適応的に動作することを可能とすることができる。このように、一実施形態において、システム200は、分散リアルタイムデータの監視および共有を可能とする。データを受け取る他の装置は、無効電力補償を提供して、電圧支援を提供しおよび/またはそれらの制御の範囲内で有効電力の運転を変更して、PCCにおける正味運転を変更することができる。
【0041】
上述のように、一実施形態において、PCCに結合している1つ以上の顧客の施設は、ソーラーシステムなどのエネルギー源を含んでいる。図示のように、顧客の施設240および顧客の施設250は共に、それぞれのエネルギー源248および258を含んでいる。近隣地域230内のエネルギー源を含む各顧客の施設は、エネルギー源からのエネルギーの分配を制御するためのそれぞれの電力変換器246および256を含むことができる。一実施形態において、各コンバーターは、顧客の施設がエネルギー源から局所的負荷(246および256など)に有効電力および/または無効電力を提供することを可能とする。一実施形態において、各コンバーターは、エネルギー源から送電網へと(例えば、近隣地域230が送電網に接続されているPCC220を介して送電網210へと)有効電力および/または無効電力を逆に提供することができる。一実施形態において、1つの需要家の施設における1つのコンバーターによって提供される電力は、PCCで見たときの電力使用量に作用することができる。例えば、局所的な消費のためおよび/または送電網に戻すために顧客の施設240におけるコンバーター244によって発生した電力は、メーター252およびコンバーター254によってPCC220で見られる正味電力使用量を変化させることができる。一実施形態において、各コンバーターは、近隣地域内の隣接した顧客の施設の電力使用量を支援することができる。このように、各顧客の施設240および250は、まず自給自足のために運転し、近隣地域230に拡張し、そして次にその他の近隣地域および/または送電網210全体へと送電網の階層を上って拡張するように運転することができる。
【0042】
システム200の階層を上って電力を提供することができるのと同様に、システム200はまた、送電網ネットワークの階層または構成の異なる各レベルでアイソレーションを達成することができる。一実施形態において、各メーター242および252は、装置自体の下流側の送電網のセグメント内の局所的な運転および近隣のメーターから局所的な運転までを監視する。例えば、近隣地域230内または送電網の階層の各レベル内のメーターは、電力需要および発電量の情報を含むことのできる監視情報を共有または配信することができる。このように、各メーターは、局所的な運転をリスニングし、その局所エリアの外側で何が起こっているかを認識しておくことができる。一実施形態において、このような動作により、システム200が、送電網全体上で何が起こっているかに基づいてPCCを移動させることが可能となる。上述のことと同様に、仮に近隣地域230内の何かが停止するかまたはエラー状態に陥ると、近隣地域230は、アイソレーションのルート変更を行って送電網の反応をシフトすることができる。近隣地域230は、近隣地域内の制御ノードの個別の動作によって、および制御ノード222によって、アイソレーションのルート変更を行うことができる。このような動作により、送電網がより長時間稼働し続けることができる。一実施形態において、近隣地域230は、その送電網のサブグループ内の無効電力需要を効果的に制御する一方で、場合によっては送電網全体から有効電力のみを取り出すことができる。このような操作は、PCC220および送電網ネットワークの階層内のその他のPCCにおける情報をアグリゲートすることにより可能である。このように、一実施形態において、近隣地域230自体は、送電網210の集中ディスパッチもしくは送電網管理動作を必要とせずまたはこれを待たずにPCC220において送電網イベントに対応することができる。一実施形態において、システム200は、送電網のイベント次第でPCCの領域を動的に再定義することができる。
【0043】
図3は、近隣地域間の共通結合点での監視および制御を伴うシステムの実施形態のブロック図である。システム300は送電網ネットワークを含み、
図1のシステム100および/または
図2のシステム200の実施形態に係る送電網ネットワークおよび/またはシステムの一例であることができる。送電網310は送電網インフラストラクチャーを表しており、集中発電機または発電所302および集中送電網制御装置(具体的には図示せず)を含むことができる。システム300は、2つの近隣地域324および334を図示しているが、システム300には任意数の近隣地域を含むことができることが理解されるであろう。図示のとおり、近隣地域324が近隣地域334よりも発電所302に近いことを考えると、近隣地域324は近隣地域334よりも上流側である。
【0044】
近隣地域324および334の各々は、本明細書内で説明する近隣地域の任意の実施形態に係る送電網の任意のセグメントまたはサブセグメントを表している。近隣地域324は、関連付けられた分散制御ノード322を有するPCC320を介して送電網310に結合している。近隣地域334は、関連付けられた分散制御ノード332を有するPCC330を介して送電網310に結合している。一実施形態において、近隣地域324および334は、システム300内の階層の同レベルである。一実施形態において、近隣地域324および334は、階層の異なるレベルであり、例えば、PCC320および/またはPCC330のいずれも、同数である必要はない他のPCCを介して送電網310に結合できる。一方の近隣地域が他方に支援(例えば、電圧支援)を提供する一実施形態において、これらの近隣地域は、一方のPCCの制御が送電網310から見たときの他方のPCCにおける性能に作用することができるほど地理的または電気的に十分近接しているであろう。
【0045】
制御ノード322および332は、本明細書内で説明する制御ノードの任意の実施形態に係る制御ノードであることができる。一実施形態において、制御ノード322および332がまずそれぞれのPCC320および330において規制に準拠しようとし、次に送電網310全体の規制準拠を支援しようとする。一実施形態において、各制御ノードを、ゲートウェイ装置とみなすことができる。ゲートウェイ装置は、それに関連付けられたPCCにおける性能、力率、負荷制御および/または高調波歪みを制御することができる。各制御ノードは、上流側への電力出力および下流側の電力消費量を制御するための、関連付けられた電力変換器を有する。
【0046】
一実施形態において、制御ノード322および332は、送電網ネットワーク内で位置認識している。一実施形態において、各制御ノードは、送電網ネットワークの階層内で自らの位置を知ることができる。さらに、一実施形態において、各制御ノードは、送電網に対して発電所からの自らの位置を知ることができる。例えば、制御ノード322は、システム300の階層内の自らの位置を知ることができ、自らの位置が制御ノード332の上流側であることを知ることができる。一実施形態において、各近隣地域の各ノードは、まずその局所的な近隣地域の電力消費量を管理しようと努め、また、送電網の状態(例えば、その他の近隣地域で何が起こっているか)次第では送電網を支援することもできる。送電網の状態には、電圧レベル、力率、高調波歪み、および/またはその他の電気的パラメータなどの任意の性能パラメータを含めることができる。位置認識により、制御ノードが送電網の上流側の運転に関連する状態を考慮できるようにして制御ノードがより具体的な支援を提供できるようにすることが可能である。一実施形態において、各制御ノードが、送電網内で何が起こっているか、即ち、送電網の状態に基づいてより上位レベルのPCCに支援を提供できるようにすることができる。このように、例えば、隣接する近隣地域324が送電網の要件に準拠していない場合には、近隣地域334が送電網310に電力を供給することができる。このようにすれば、各制御ノードが局所的な規制準拠を保証しようとし、また全体的な規制準拠を達成するための支援を提供しようとすることができる。
【0047】
近隣地域324は、複数の電力需要家342、344、350および図示していないその他の需要家を含んでいる。需要家342、344、および350は、本明細書内で説明する任意の種類の電力需要家であることができる。一実施形態において、単一の需要家が複数の顧客の施設を含んでいる。一実施形態において、1つの顧客の施設が複数の需要家を含んでいる。一実施形態において、需要家と顧客の施設との間には1対1の関係がある。需要家342および344は、局所的なエネルギー源または局所的な発電装置を有しないことが観察されるであろう。需要家350は、局所的な発電装置であるエネルギー源354を含んでいる。一実施形態において、需要家350は、局所的に発生したエネルギーの使用を局所的に管理し、近隣地域324および究極的には送電網310に戻るエネルギーの出力を管理するための制御ノード352を含んでいる。
【0048】
近隣地域334はまた、複数の需要家348、360、370、およびその他の需要家を含むように図示されている。近隣地域は、図示されているものよりも少なくても、図示されているよりも数倍多くてもよい任意数の需要家を含むことができることは理解されるであろう。一実施形態において、近隣地域とは、電力消費量および送電網への電力の返送の独立した制御を有する、送電網に接続された電力需要家のセグメントを指すことができる。近隣地域334内に図示したように、需要家348は局所的な発電装置を含んでいないが、需要家360は局所的なエネルギー源364を含み、需要家370は局所的なエネルギー源374を含んでいる。需要家360および370はまた、それぞれの制御ノード362および372をも含んでいる。
【0049】
近隣地域324および334は、局所的な発電装置を含まない任意数の需要家および局所的な発電装置を含む任意数の需要家を含むことができることは理解されるであろう。このように、近隣地域は、局所的な発電装置を含む需要家および含まない需要家の任意の組み合わせを含むことができる。一実施形態において、需要家は、制御ノード346を含む需要家344のように、局所的な発電装置を有せずに制御ノードを含むことができる。このような構成において、局所的な制御ノード346は、局所的なエネルギー源がなくても需要家344の無効電力消費量を制御することができる。より詳細を下記に述べる。
【0050】
一実施形態において、制御ノードが切断管理装置を含んでいない場合、その制御ノードはPCCに関連付けられておらず、および/またはゲートウェイ装置ではない。例えば、一実施形態において、近隣地域324は、PCC320に関連付けられたノード322のみを有し、近隣地域324内にはサブPCCは存在しない。このような実施態様において、ノード322をゲートウェイ装置とみなすことができる。一実施形態において、切断管理はゲートウェイ装置においてのみ実行される。ゲートウェイ装置は、下流側のすべての機器を送電網に提示する。一実施形態において、近隣地域324はサブPCCを有しなくてもよく、近隣地域334はサブPCCを有してもよい(あるいはその逆でもよい)。システム300内に存在する任意の階層ネットワーク構造によれば、ノード332は、たとえサブPCCを有しても近隣地域334のゲートウェイ装置として動作することができ、その他のサブPCCは近隣地域内のサブゲートウェイ装置によって管理されることとなる。
【0051】
送電網内の位置認識は、装置が送電網からストリング状に連なった装置の中でその位置を知っている状況を指して、ストリング位置認識と呼ぶことができる。マイクロインバーターまたはその他の電力変換器による自らの領域外での支援の提供を可能とすることにより、位置認識がマイクロインバーターまたはその他の電力変換器の有用性を向上させることができる。例えば、ノード322および332に関連付けられたマイクロインバーターまたはその他の電力変換器が、位置認識を用いて送電網の支援をより良く提供できるかもしれない。一実施形態において、バルクインバーターは、位置認識を使用してその動作を所望の総出力に合わせて調節することができる。バルクインバーターとは、スター構成もしくはカスケード構成またはその他のネットワーク構成で相互に接続されたインバーターを指す。バルクインバーターとは、需要家および/または発電装置の制御を提供することに関連して動作する複数のインバーターの一群を指す。Translator's note: "operate in connection to provide" may be a typo for "operate in connection with providing". It is translated as such.このように、制御ノードの任意の例が、1つ以上の電力変換器を含むことができる。一実施形態において、近隣地域324内のストリング状に連なった装置の先頭であるノード322および近隣地域334内のストリング状に連なった装置の先頭であるノード332のような、ストリング状に連なった装置の先頭のものがゲートウェイ装置であり、ストリング全体の結合を制御する。このようなストリングの先頭が、送電網に対してストリング全体を代表することができる。
【0052】
図4は、分散送電網システムの実施形態のブロック図である。システム400は送電網ネットワークを含み、
図1のシステム100および/または
図2のシステム200および/または
図3のシステム300の実施形態に係る送電網ネットワークおよび/またはシステムの一例であることができる。システム400は、前述のシステムのうちの1つのセグメントまたは一部のみであってもよい。一実施形態において、システム400は、前述のシステムのうちの1つの代替形態であることができる。一実施形態において、システム400は、集中送電網管理装置を有せずに運転する送電網ネットワークである。一実施形態において、システム400は、集中発電所または送電網全体に電力を供給するその他の大規模電源を有せずに運転する送電網ネットワークである。一実施形態において、システム400は、仮想送電網および/またはモジュール型送電網である。一実施形態において、システム400は、独立したセグメントとして依然として従来の送電網に接続することのできる仮想送電網である。一実施形態において、システム400は、その他の仮想送電網および/またはモジュール型送電網のセグメントに接続することができる。
【0053】
システム400は、本明細書内で説明する任意の実施形態に係る近隣地域であることのできる近隣地域440および近隣地域460を図示している。より具体的には、近隣地域440および460は、局所的なエネルギー源を含む任意数の需要家およびこれらを含まない任意の需要家を有することができ、局所的な制御ノードを含む任意数の需要家およびこれらを含まない任意数の需要家を含むことができる。近隣地域440は、制御ノード432に結合している。同様に、近隣地域は、制御ノード434に結合している。制御ノード432および434は、本明細書内で説明する任意の実施形態に係る制御ノードを代表することができる。制御ノード432および434は何らかのインフラストラクチャーによって相互に結合しており、このインフラストラクチャーは、送電網インフラストラクチャーと同じでもよく、または単に、制御ノードが相互に結合して相互に電気的な支援を提供することを可能とするのに十分な容量を有する送電線であってもよい。
【0054】
一実施形態において、制御ノードは、PCCである。したがって、制御ノード432はPCC422であることができ、制御ノード434はPCC424であることができる。一実施形態において、制御ノード432および434は、集中データセンター410と結合している。データセンター410は、システム400の送電網ネットワーク内の複数の分散ノードの動作に関する情報を集合することができる。データセンター410は、制御ノード432および434がデータセンターにデータを提供し、データセンターから情報を受け取るという点において、集中的である。一実施形態において、データセンター410は、各ノードが送電網の状態に応じてどのような動作を行うべきかを決定することのできる処理エンジンおよび解析エンジンを含んでいる。一実施形態において、データセンター410は、集中送電網管理装置と同様であるが、より簡易であることもできる。集中送電網管理装置が、通常、集中発電所と送電網との相互接続またはインターフェースならびに場合によっては変電所の運転を制御するのに対し、データセンターは分散ノードに情報を提供することができる。分散ノードは、送電網ネットワークのそれぞれのセグメント内で独立して動作して送電網の状態に対応することができる。一実施形態において、データセンター410は、分散制御ノードにディスパッチ情報を提供する。
【0055】
一実施形態において、近隣地域440は、局所的なエネルギー源を有しない1つ以上の需要家442を含んでいる。一実施形態において、近隣地域440は、局所的なエネルギー源452および局所的な制御ノード454を含む1つ以上の需要家450を含んでいる。エネルギー源および局所的な制御ノードは、本明細書内で説明する任意の実施形態によることができる。一般的に、近隣地域440は、近隣地域内の電力需要を表す総負荷および近隣地域内の発電量を表す総容量を有する。負荷から容量を差し引いたものが正味電力需要を表すことができ、これは正となることもあれば負となることもある。負の電力需要は、近隣地域440がその局所的な需要家によって消費されるよりも大きなエネルギーを発生させることを示すことができる。電力需要は、需要家が異なる量の電力を使用し発生させるにつれて、一日および年間を通じて変動することが理解されるであろう。制御ノード432は、その関連付けられた近隣地域440の正味電力需要を継続的に監視することができる。
【0056】
一実施形態において、近隣地域460は、局所的なエネルギー源を有しない1つ以上の需要家462および局所的なエネルギー源472および局所的な制御ノード474を含む1つ以上の需要家470を含んでいる。近隣地域440の説明は、近隣地域460にも等しくよく当てはめることができる。近隣地域460はまた、近隣地域内の電力需要を表す総負荷および近隣地域内の発電量を表す総容量を有し、これらは近隣地域440の総負荷および総容量とは全く異なることができる。
【0057】
一実施形態において、これら近隣地域のいずれかまたは両方が、局所的なエネルギー貯蔵装置を含むことができる。例えば、近隣地域440はエネルギーストア444を伴って図示され、近隣地域460はエネルギーストア464を伴って図示されている。一実施形態において、少なくとも1つの近隣地域がエネルギー貯蔵装置を有しない。一実施形態において、すべての近隣地域がエネルギー貯蔵装置を含んでいる。エネルギー貯蔵装置444および464は、近隣地域内に存在することのできる任意の種類のエネルギー貯蔵装置を表している。エネルギー貯蔵装置444および464は、近隣地域内の個々の需要家のすべての局所的なエネルギー貯蔵装置リソースの合計を表すことができる。一実施形態において、1つ以上の近隣地域が、近隣地域用エネルギーストアを含んでいる。近隣地域用エネルギーストアは、個々の需要家における局所的なエネルギー貯蔵装置に追加的なものまたはその代替的なものであることができる。
【0058】
一実施形態において、エネルギーストア444および464としては、電池リソースを挙げることができ、この電池リソースは任意の種類の電池を含むことができる。電池は、化学的および/または電気的手段によってエネルギーを貯蔵する装置であり、このエネルギーは後ほど取り出すことのできる。しかし、エネルギー貯蔵装置は、電池に限定されない。例えば、一実施形態において、一需要家に対して局所的であるかまたは複数の需要家間もしくは近隣地域全体で共有されるかのいずれかであるエネルギーストアは、活性エネルギーを位置エネルギー(この位置エネルギーは後に位置エネルギーから活性エネルギーへの逆変換によって回収することができる)に変換する作業を実行する機構を含んでいる。例えば、エネルギーストアとして水貯蔵システムを検討する。需要家内および/または近隣地域内に余剰の容量が存在するとき、システムがポンプを起動してこれを余剰電力で動作させて、重力に逆らって汲み上げる、基本的には任意の方法で水を「坂の上」に汲み上げることができる。エネルギーの回収としては、重力を利用して水を坂の下に逆流させて発電機またはミニ発電機を回転させてエネルギーを発生させる方法を挙げることができる。もう1つの代替的な方法として、エネルギーを使用して空気を圧縮し、次に空気が減圧するときにこれを利用して発電機を運転することができる。エネルギー貯蔵装置が従来の電池リソースに限定されないその他の例を使用することもできることは理解されるであろう。
【0059】
一実施形態において、システム400は、分散制御装置を含む送電網のセグメントである。このようなシナリオにおいて、送電網ネットワークの階層内の各ノードは、そのPCCにおいて規格の準拠または期待される性能に合わせて自らの状態を管理することができる。一実施形態において、各ノードはまた、送電網ネットワーク側(そのセグメントの上流側)で性能が低下する状態を見ると、近隣のセグメントまたはPCCに電気的な支援を提供することもできる。一実施形態において、各ノードは、データセンター410もしくはその他のノードからの情報の受信および/または集中管理装置からのディスパッチ情報もしくは制御情報の受信に応じて近隣のセグメントまたはPCCに電気的な支援を提供することができる。
【0060】
一実施形態において、システム400は、送電網ネットワークに電力を供給するために結合されている1つ以上の電源412を含んでいる。1つ以上の電源412は、需要家における局所的なエネルギー源に対する追加であることができる。一実施形態において、個々の電源412のいずれも、需要家の電力需要を満たすだけの十分な容量を有しない。例えば、産業用または公益事業体規模の発電所ではなく、1つ以上の電源412を送電網のセグメントに局所的に含めることができる。このセグメントは、近隣地域内にあることもでき、または複数の近隣地域間で共有することもできる。電源412は、公益事業体の完全な実施態様よりも小型でありながら、通常、需要家または顧客の施設で使用されるであろうものよりは大型であろう、より小規模の発電機を含むことができる。近隣地域に設置された電源412は、制御ノードに直接関連付けることができる(例えば、電源412を制御ノード432に結合させ、これによって制御することができる)。制御ノードは、電源の出力を管理することができる。
【0061】
大規模発電所を必要とせず、かつその代わりにより小規模なエネルギー発生装置(例えば、近隣地域の発電機、近隣地域の太陽発電設備、小規模水力発電機またはその他の電源)を用いて、今日の送電網と比較して最小限のインフラストラクチャーで送電網ネットワークを設置することができる。このようなモジュール型送電網ネットワークは、現在の需要に基づいて送電網から構築し、その後その他の独立した送電網ネットワークのセグメントと相互接続することを可能とすることができる。各セグメントは独立して継続的に運転することができるが、その後、利用可能性に基づいて、近隣のセグメントとの間で発電量および電力需要をより良く配分できる利益を享受できる。各インターフェースまたは相互接続点は、電力の使用および上流側への電力の提示を制御するための、各々1つ以上の電力変換器を含むことのできる1つ以上の制御ノードを含むことができる。このように、局所的な送電網ネットワークを構築し、その後、この構築された送電網ネットワークと別の局所的な送電網ネットワークとをインターフェースする送電網ネットワークの階層の別の層が追加されたときに、この層によってこの2つの独立したセグメントを結合させることができる。
【0062】
一実施形態において、近隣地域440が、局所的なエネルギー源452を有する複数の顧客の施設450を有することについて検討する。従来であれば、送電網は、単一の大規模発電所から需要家へと電力を供給するように設計されているので、一方向性として設計され構築されている。顧客の施設450における発電装置を用いて、近隣地域440および接続されている送電網に至るまでが事実上双方向性のシステムとなることができ、電力を集中電源から需要家へと供給することができるが、一方では、需要家もまた、送電網上に送り返す余剰容量を発生させることができる。近隣地域および隣接する近隣地域のための発電量が瞬間的な電力需要を超えると、発電された電力は送電網を遡って発電所の方に向かって押し返される。このような状態は、送電網インフラストラクチャーに難題を突きつける場合がある。
【0063】
送電網事業者(例えば、公益事業体)は、著しい量のエネルギーが送電網を遡って発電所の方へと押し返されるシナリオのリスクを低減するために、通常、どのくらいの局所的な発電量を送電網に接続できるかに制限を設定している。このような制限は、しばしば飽和と呼ばれ、送電網に加えることが許される容量の閾値量がある。飽和の閾値に達すると、需要家は、通常、公益事業体が需要家の発電を送電網から選択的に切断することを可能とする追加的なインフラストラクチャー(追加的な設備)の支払いをしなければならない。また、このようなシナリオでは、発電を送電網が使用できず、したがって、送電網事業者は需要家にその支払いをしないので、需要家は同じレベルのコスト削減を享受できず、需要家と公益事業体とは互いに相容れない状態となる。
【0064】
一実施形態において、システム400は、送電網の飽和に対処する代替的な機構を提供することができる。一実施形態において、システム400内の分散制御は、PCCで見たときおよび/または顧客の施設もしくは制御ノードの下流側の任意の場所から見たときの電力需要および発電量の動的な制御を提供することができる。一実施形態において、制御ノードは、有効および無効電力需要ならびに有効および無効電力の発生量を制御するための電力変換器を含んでいる。より具体的には、制御ノードは、PCCから下流側を見たときの電力の有効電力成分およびPCCから上流側を見たときの有効電力成分に作用するように、動作を調節することができる。制御ノードは、PCCから下流側を見たときの電力の無効電力成分およびPCCから上流側を見たときの無効電力成分に作用するように、動作を調節することができる。一実施形態において、制御ノードは、需要および発電に制御を適用する電力変換器として、1つ以上のインバーターまたは1つ以上のマイクロインバーターを含むことができる。
【0065】
一実施形態において、ノード432は、送電網ネットワーク内の上流側を接続する送電網接続装置を含んでいる。送電網接続装置は、既知の接続装置ならびに高電圧信号線および低電圧信号線を含むことができる。ノード432は、近隣地域440の送電網ネットワークのセグメントのPCC(PCC422)であり、またはこれに接続されている。ノード432は、どのように動作するかを決定するためのコントローラーもしくはマイクロプロセッサーなどの制御論理回路またはその他の論理回路を含んでいる。一実施形態において、ノード432は、近隣地域440内で飽和閾値に達したことを決定する。このような決定は、発電量が電力需要を超えることを決定するための動的監視の結果として行うとができる。このような決定は、データセンターまたは集中送電網管理装置からの通知に応じて行うことができる。このような決定は、その他の分散制御ノードからのデータに応じて行うことができる。一実施形態において、近隣地域440内の各エネルギー源452は、近隣地域内の制御ノード454に関連付けられている。一実施形態において、各制御ノード454は、その関連付けられたエネルギー源452の容量に関する情報で設定されている。一実施形態において、各局所的な制御ノード454は制御ノード432に登録し、これによりノード432が近隣地域440の総容量を知ることができる。
【0066】
一実施形態において、ノード432は、設定および/または需要家に分散しているメーターもしくはその他の機器との通信を介した動的識別などによって、近隣地域440の総ピーク有効電力需要を知っている。一実施形態において、有効電力の値を識別する総ピーク有効電力需要の閾値割合があり、有効電力の発生容量がこの値を超えると、近隣地域は飽和しているとみなされる。一実施形態において、ノード432は、飽和状態に応じて電力変換器の動作を動的に調節して近隣地域440と送電網との間のインターフェースを調節する。一実施形態において、ノード432は、PCC422の上流側から見たとき(例えば、PCC424から見たときおよび/または集中送電網管理装置もしくは送電網ネットワークの別の部分から見たとき)の近隣地域440の有効電力対無効電力の比を調節する。
【0067】
一実施形態において、ノード432は、近隣地域440に関する送電網の飽和のレベルを示すデータセンター410または送電網管理装置からのディスパッチ情報を受信する。一実施形態において、ノード432は、PCC422の下流側の送電網の飽和のレベルを示すメーターおよび/またはノード454を介するなどして下流側からの情報を受信する。一実施形態において、ノード432は、下流側の制御ノード454と通信してこれらの有効電力出力を調節するなどにより、近隣地域440による少なくとも有効電力の発生量を調節する。一実施形態において、ノード432は、下流側と通信して制御ノード454に上流側への無効電力出力対有効電力出力の比を変えさせることができる。一実施形態において、ノード432は、PCC422における有効電力および/もしくは無効電力の発生量ならびに/または需要を調節してPCC422の上流側で見たときの電気的状態を調節する。一実施形態において、ノード432および/またはノード454は、動作を調節して有効電力および/または無効電力の少なくとも一部をエネルギーストア444に分流させる。
【0068】
一実施形態において、システム400は、仮想送電網または仮想送電網のセグメントを表している。仮想送電網として、システム400は、従来の公益事業体の送電網に共通の従来型のインフラストラクチャー、集中発電所、または集中送電網管理装置を必要としない。システム400は、一実施形態において、各近隣地域440、460が他方の領域から独立して局所的な電力を発電し、局所的な需要を満たすことができるという点において、仮想送電網であることができる。独立しているにもかかわらず、近隣地域440および460は相互に結合して各近隣地域が他方の近隣地域に支援を提供しおよび/または他方から支援を受けることを可能とすることができる。従来の送電網には大掛かりなインフラストラクチャーが必要であることに比べて、近隣地域440と460との間の相互接続は、最小限であることができる。
【0069】
一実施形態において、ノード432および434は、PCCとして相互に結合しており、および/または別のPCCを介して相互に結合しているとみなすこともできる。一実施形態において、PCC422およびPCC424は別個の制御ノード(明示的には図示せず)を有する、PCC426を介して相互に結合するであろう。PCC426は、送電網ネットワークの階層でPCC422および424よりも上位であるとみなすことができる。PCC426は、下流側のすべての接続点の運転を制御しようとし、および上流側の接続点を管理する制御ノードの観点から管理することができる。一実施形態において、ノード432および434は、PCC426を介してではなく送電網ネットワークの階層の最上位レベルにおいて相互に結合しており、相互に通信し、送電網支援を提供することができる。一実施形態において、近隣地域440内で利用可能な任意の発電量は、たとえ自らのピーク電力需要を満たすに十分であっても、近隣地域440および460のピーク電力需要を満たすには不十分である。このことは、近隣地域460の発電量についても同じである。
【0070】
制御ノード432および434は、これらの局所的な電源を独立して管理する。各近隣地域の観点からは、近隣地域内の発電リソースが発電できるという点において、近隣地域全体が「電源」を有するように見える。ノード432および434は、それぞれの近隣地域から各々局所的に発電された電力の配電を制御する。近隣地域と呼んではいても、各々が局所的な発電装置を有し、各々が制御ノードを有する別個の2つの需要家にも同様の原理を適用できることが理解されるであろう。2つの需要家を相互に結合することにより、仮想送電網を形成することができる。このように、仮想送電網は、個別の需要家のレベルでも、または大規模な需要家群および近隣地域のレベルでも運転することができる。一実施形態において、各制御ノードは、その局所的な電力需要および局所的な発電量に基づくと共に、結合している近隣地域または需要家からの電力需要および発電量に関する監視および/または通信に基づいて動作する。
【0071】
一実施形態において、1つ以上の仮想送電網ネットワークのセグメントを公益事業体の送電網に接続することができる。一実施形態において、1つ以上の追加的な需要家または近隣地域が、仮想送電網として、相互に結合している需要家または近隣地域と相互に結合することができる。一実施形態において、各制御ノードは、ネットワーク構造を発見するための通信および制御論理回路を含んでいる。一実施形態において、システム400内のノード432のような1つの制御ノードが、マスターノードとして動作することができる。マスター制御ノードは、それに結合した1つ以上のスレーブノードを有することができる。例えば、ノード434は、ノード432にとってのスレーブノードであることができる。マスター/スレーブのシナリオにおいて、制御ノード432は、ノード434の動作を制御して、ノード434に、マスターノード432が発する1つ以上の命令または要求に従って局所的なまたは下流側のリソースを制御させることができる。このように、ノード432は、その局所的なセグメントおよびスレーブセグメントとして接続されている1つ以上のサブセグメントの制御を提供することができる。このようなシナリオにおいて、ノード432は、規制または要件に対する各送電網ネットワークのセグメントの準拠を保証する役割を担うことができる。ノード432は、このように、システム400全体の電力および電力需要の配分を制御することができる。
【0072】
一実施形態において、システム400の送電網ネットワークは、その大きさをモジュール式に調節することができる。送電網ネットワーク内の各近隣地域440、460、等々が独立して運転できることから、近隣地域、需要家、および/またはネットワークのその他のセグメントもしくは集団を送電網ネットワークに動的に追加しおよび/または除外することができる。例えば、開発途上地域では、第1の近隣地域440をその発電装置を用いて構築してその需要家の需要を満たすように試みることができる。一実施形態において、電源412を接続することができてもそれ自体では近隣地域440のピーク需要を満たすには不十分であるが、局所的なエネルギー源が需要を満たすのに不十分であるときには需要を提供することができる。一実施形態において、近隣地域460をさらに開発することができ、その後、近隣地域440に接続(例えば、ノード432および434を結合)することができる。より上位レベルのPCCおよび制御ノードを介して、ならびに/または近隣地域の制御ノードを結合することにより、その他の近隣地域を同様に追加することができる。このとき、一実施形態において、制御ノードを介した配電によって電源412が両方の近隣地域に給電することができ、近隣地域は、概ね局所的な発電装置に依存するであろうが、支援電源としての電源412から電力を受け取ることができる。一実施形態において、エネルギーストアからの電力の変換を含む局所的な発電量が需要を満たさない場合、電源412からの電力が使用される。一実施形態において、一方の制御ノードが、無効電力出力を調節して近隣地域の相互接続点における電圧および電力潮流を変化させることにより、他方の制御ノードを支援する。近隣地域において局所的に発電されおよび/または消費される電力の無効電力または位相オフセットを変化させることにより、他方の近隣地域が追加的な電力を受け取る必要があるかまたは放出する必要があるか次第で電力を異なる方向に流す電気的状態を生じさせることができる。
【0073】
図5は、メーターによる監視に基づいてコンバーターによって制御されているエネルギー源を含む需要家の施設を有するシステムの実施形態のブロック図である。システム500は、送電網ネットワークの要素を表している。システム500は、システム100、システム200、システム300、および/またはシステム400のうちの1つ以上に従うことのできる送電網ネットワークの実施形態の要素の一例を提供している。システム500は、
図10の実施形態に従うことのできる電力計を表すメーター522を含んでいる。
【0074】
一実施形態において、システム500は、ノード520に結合している需要家530を含んでいる。ノード520は、公益事業体の送電網、仮想送電網、または送電網ネットワークの任意の実施形態であることのできる送電網510に結合しているハードウェアを含んでいる。ノード520は、下流側の電力(例えば、需要家530および潜在的にはその他の需要家による正味電力需要)を監視する電力計量装置を表すメーター522を含んでいる。一実施形態において、ノード520は、データセンター540に接続するための外部入出力部(input/output:I/O)524を含んでいる。データセンター540は、送電網510に関する情報の集中リポジトリーを表している。一実施形態において、データセンター540は、メーター522/ノード520にディスパッチ情報を提供する。ノード520は、制御ノードを表しており、本明細書内で説明する任意の実施形態に係る制御ノードの一例であることができる。
【0075】
メーター522は、ノード520が電力需要および発電量を監視することを可能とする。エネルギー源536などの1つ以上のエネルギー源が、発電することができる。需要家530は、負荷540[0:(N-1)]を含んでいる。負荷540は、任意の種類の負荷であることができる。一実施形態において、需要家530は、電力変換器を表し、例えば、マイクロインバーターであることのできる、コンバーター532を含んでいる。一実施形態において、需要家530は、コンバーター532を含んでいない。メーター522は、その動作を制御するコントローラーまたはプロセッサーを含んでいる。一実施形態において、メーター522は、電力需要を監視し、1つ以上のコンバーター526および/または532を制御する。
【0076】
コンバーター526は、ノード520における局所的な電力変換器を表している。一実施形態において、各制御ノードは、メーター522および電力変換器526を含んでいる。一実施形態において、各制御ノードは仮想であり、コンバーター532に結合したメーター522を含んでいる。一実施形態において、ノード520は仮想であり、メーター522および電力変換器によって提供される制御の抽象概念を表している。一実施形態において、コンバーター532は、必ずしも顧客の施設内にはないが、顧客の施設の配電を制御する。コンバーター526は、PCC512の電力変換器であることができる。配電の制御とは、下流側の顧客への配電および顧客の施設から発電された電力の上流側への配電を指すことができる。一実施形態において、メーター522は、PCC512における送電網の規制の準拠を表示する役割を担う。一実施形態において、メーター522は、送電網510の状態の変化により、PCC512において規制準拠を維持する有効電力対無効電力の比に調節が必要であることを決定する。一実施形態において、メーター522は、コンバーター526および/またはコンバーター532に命令または要求を提供して動作を調節する。コンバーター532は、需要家530に関する動作を調節することができる。コンバーター526は、需要家530がそのうちの1つである複数の需要家に対する動作を調節することができる。
【0077】
一実施形態において、メーター522は、PCC512で見たときの力率が調節されるべきであることを決定することができる。一実施形態において、メーター522は、PCC512でより大きな有効電力が必要であることを決定することができる。一実施形態において、メーター522は、PCC512でより大きな無効電力が必要であることを決定することができ、電力が送電網510の電圧波形よりも進むべきかまたは遅れるべきかを決定することができる。メーター522は、PCC512におけるエネルギーの計測に基づいてこれらの決定を行うことができる。一実施形態において、メーター522は、送電網510および/またはPCC512の下流側に接続されている機器の飽和状態を示す情報に応じることができる。このように、メーター522は、送電網510からのディスパッチ情報および/またはデータセンター540からの情報に応じることができる。
【0078】
図6は、メーターによる監視に基づいて需要家の施設を制御するコンバーターを有するシステムの実施形態のブロック図である。システム600は、送電網ネットワークの要素を表している。システム600は、システム100、システム200、システム300、および/またはシステム400のうちの1つ以上に従うことのできる送電網ネットワークの要素の実施形態の一例を提供している。システム600は、
図5のシステム500に類似しているが、顧客の施設にエネルギー源リソースを含んでいない。エネルギーの局所的な発生がなくとも、顧客の施設は、本明細書内で説明する電力変換器および制御ノードによる動的なインテリジェント制御によって著しい利益を得ることができる。
【0079】
システム600は、本明細書内で説明する任意の実施形態に係る電力需要家を表す需要家630を含んでいる。需要家630は、ノード620に結合している。ノード620は、PCC612を介して送電網610に結合するためのハードウェアを含んでいる。送電網610は、公益事業体の送電網、仮想送電網、または送電網ネットワークの任意の実施形態であることができる。ノード620は、下流側の電力(例えば、需要家630および潜在的にはその他の需要家による正味電力需要)を監視する電力計量装置を表すメーター622を含んでいる。一実施形態において、ノード620は、データセンター640に接続するための外部入出力部(input/output:I/O)624を含んでいる。
【0080】
データセンター640は、送電網610の情報に関する集中リポジトリーを表している。一実施形態において、データセンター640は、メーター622/ノード620にディスパッチ情報を提供する。ノード620は、制御ノードを表しており、本明細書内で説明する任意の実施形態に係る制御ノードの一例であることができる。
【0081】
メーター622は、ノード620が需要家630および潜在的にはその他の需要家による電力需要を監視することを可能とする。需要家630は、負荷634[0:(N-1)]を含んでいる。負荷634は、任意の種類の負荷であることができる。一実施形態において、需要家630は、電力変換器を表し、例えば、マイクロインバーターであることのできる、コンバーター632を含んでいる。メーター622は、その動作を制御するコントローラーまたはプロセッサーを含んでいる。一実施形態において、メーター622は、電力需要を監視し、コンバーター632の動作を制御する。一実施形態において、コンバーター632は、ノード620の一部である。一実施形態において、ノード620は仮想であり、メーター622およびコンバーター632によって提供される制御の抽象概念を表している。一実施形態において、コンバーター632は、必ずしも顧客の施設内にはないが、顧客の施設の配電を制御する。
【0082】
コンバーター632は、需要家630への配電を制御する。需要家630は発電装置を含んでいないので、配電の制御とは下流側の需要家への配電を指し、需要家の電力需要の制御を含むことができる。一実施形態において、メーター622は、PCC612における送電網の規制の準拠を表示する役割を担う。一実施形態において、メーター622は、送電網610の状態の変化により、PCC612において規制準拠を維持する有効電力対無効電力の比に調節が必要であることを決定する。一実施形態において、メーター622は、コンバーター632に命令または要求を提供して動作を調節する。コンバーター632は、需要家630に関する動作を調節することができる。
【0083】
一実施形態において、メーター622は、需要家630が有効電力に加えて、またはその代わりに無効電力を必要としていることを決定することができる。従来より、需要家は、送電網から全無効電力を引き出す必要があった。したがって、需要家630の全無効電力需要は送電網610によって提供されていた。一実施形態において、コンバーター632は、上流側に対する動作および/または下流側に対する動作によってPCC612におけるインターフェースを変化させることができる。上流側に対する動作は、送電網610から見たときの力率、有効電力、無効電力、およびその他がどのように制御されるかを含む。コンバーター632は、送電網610から見たときの電力需要を管理することにより動作を変化させることができる。一実施形態において、コンバーター632は、需要家630の需要および送電網610における電力の利用可能性に基づいてインターフェースを変化させることができる。
【0084】
需要家630が負荷634を動作させるための有効電力を必要としているシナリオについて検討する。従来より、需要家による有効電力の要求は、需要家が有効電力を局所的に発生させるかおよび/または送電網610から有効電力を引き出すか、いずれかを行う必要があった。一実施形態において、送電網610が(例えば、送電網の電圧を維持するために送電網電圧に対して進み位相または遅れ位相で送電網から電流を引き出すことにより)引き出された無効電力の利益を得ることができる場合、コンバーター632は、送電網に対するインターフェースを変化させて送電網610から無効電力を引き出す一方で、負荷634に対するインターフェースを変化させて引き出した無効電力から有効電力を提供することができる。同様に、一実施形態において、コンバーター632は、送電網610から有効電力を引き出して負荷634に無効電力を提供するように動作することができる。このような動作は、コンバーター632が、(メーター622を介してまたはメーター622によって監視されているときに)負荷への入力インピーダンスの位相オフセットおよび/または送電網への入力インピーダンスの位相オフセットを変化させることが必要となる場合がある。
【0085】
このように、ノード620および/またはメーター622ならびにコンバーター632は、エネルギー源を有しない需要家に利益を提供することができる。
図5の需要家530は、自らの電力の少なくとも一部を提供することができ、メーター522およびコンバーター526/532は、計算によって、局所的に発電された電力からどのような電力を生成すべきかを決定することができる。需要家630はエネルギー源を含まないが、メーター622およびコンバーター632は、送電網610からの電力を需要家630でどのように使用するかを制御することができる。一実施形態において、様々な負荷についてメーター622が計測したエネルギーシグネチャー(エネルギーシグネチャーについては下記により詳細に説明する)に基づいて、メーター622は、送電網610からの電力をどのように使用するかを計算することができる。一実施形態において、コンバーター632は、送電網610から有効電力のみを引き出すことができるが、その後負荷634が使用する無効電力を生成することができる。このように、コンバーター632は、送電網から引き出した有効電力のみから需要家630の無効電力需要を供給することができる。このように、需要家630は、送電網610には有効電力を使用しているように見え、無効電力を使用しているようには見えない。場合によっては、無効電力は有効電力よりも安価である。しかし、たとえ一時的であれ無効電力の消費が好ましい状態が存在するならば、コンバーター632は無効電力を引き出し、負荷634が消費する有効電力を生成することができる。一実施形態において、一般的に、コンバーター632は、送電網610から無効電力および有効電力の任意の組み合わせで電力を引き出し、負荷634が必要とする有効電力および無効電力のどんな組み合わせであれ提供することができる。データセンター640からのディスパッチ情報がこのような動作に作用することができ、および/またはこのような動作がデータセンター640に情報を提供することができる。
【0086】
一実施形態において、需要家は、局所的な電力変換器632を含んでいる。コンバーター632は、インターフェースを管理または制御するために1つ以上の動作を行うことができる。一実施形態において、インターフェースは、機器とPCCとの相互接続を表す。一実施形態において、インターフェースは、機器と別の点との電気的相互接続または電気的結合を意味する。例えば、コンバーター632は、送電網と負荷との間で電力またはエネルギーがどのように転送されるかを変更することなどにより、PCCと1つ以上の局所的な負荷との間のインターフェースを調節するように動作することができる。一実施形態において、コンバーター632は、局所的なエネルギー源と局所的な負荷との間のインターフェースを調節するように、例えば、局所的なエネルギー源から負荷に電力を供給するように、動作することができる。一実施形態において、コンバーター632は、局所的なエネルギー源とPCCとの間のインターフェースを調節するように、例えば、エネルギー源からの電力をPCCの需要家側から送電網に供給するように、動作することができる。一実施形態において、コンバーター632は、エネルギー貯蔵装置とPCCおよび/またはエネルギー源との間のインターフェースを調節するように、例えば、エネルギーストアを充電し、および/またはエネルギーストアからの電力を負荷および/または送電網での使用のために提供するように、動作することができる。
【0087】
図7は、複素電流ベクトルを説明する異なるエネルギーシグネチャーを監視するメーターを有するシステムの実施形態のブロック図である。システム700は、負荷に結合している制御ノードの要素を表している。システム700は、本明細書内で説明する任意の実施形態に係る制御ノードの一例であることができる。より具体的には、システム700は、メーター710およびコンバーター740を含んでいる。一実施形態において、メーター710およびコンバーター740は、制御ノードの監視および制御の動作を実行する。一実施形態において、システム700は、エネルギーシグネチャーに従って電力使用量を監視し、制御する。
【0088】
一実施形態において、メーター710は、顧客の施設またはその他の下流側接続点での電力使用量を監視する。一実施形態において、コンバーター740は、メーター710による監視に基づいて発電量および/または電力使用量の制御を提供する。コンバーター740は、たとえ有効電力のみを生成する電源からでさえ、どんな種類の電力が発電されるかを制御することにより、発電を制御することができる。コンバーター740は、どんな種類の電力が負荷にとって利用可能となるかを制御することにより、電力消費量を制御することができ、たとえ負荷が利用可能な種類とは異なる無効電力および有効電力の組み合わせを必要とする場合でも、コンバーター740は、負荷の電力需要を満たすために適した有効電力成分および無効電力成分を発生させることができる。
【0089】
一実施形態において、メーター710は、貯蔵要素および処理要素を含んでいる。例えば、メーター710は、データを記憶するためのオンボードメモリーを含むことができる。メーター710は、計算および制御動作を実行するためのプロセッサーおよび/または埋め込み型コンピューティングボードを含むことができる。一実施形態において、メーター710は、シグネチャー712を記憶する。シグネチャー712は、1つ以上の負荷の複素電流ベクトルを表す。複素電流ベクトルは、負荷が活性状態にあるときに引き出される合成電流である。一実施形態において、メーター710は、メーター710が監視するN個の負荷730の数よりも多い場合もあれば少ない場合もあるM個のシグネチャーを記憶する。MがNよりも小さい場合は、メーター710は、例えば、有効電力から閾値を超えて逸脱することのない、または滅多に逸脱することのない負荷のシグネチャーの記憶を省略することができる。一実施形態において、メーター710は、特定の負荷毎の代わりに時刻に基づいてシグネチャーを記憶し、この場合、負荷の数とは異なる数のエネルギーシグネチャーを得ることができる。
【0090】
一実施形態において、負荷730[0]は、これに対応する電流、即ち、電流[0]という電流シグネチャーを有する。さらに、負荷730[1]はこれに対応する電流、即ち、電流[1]という電流シグネチャーを有し、このようにして負荷730[N-1]がそれに対応する電流、即ち、電流[N-1]である電流シグネチャーを有するまで続く。電流[0:(N-1)]であるシグネチャー電流は、有効電力成分および無効電力成分を有する複素ベクトル電流であることができる。
図8および9に関して、より詳細を下記に述べる。合成電流720は、様々な負荷の複素電流ベクトルを含む複素電流ベクトルである。各負荷の電流ベクトルである電流[0:(N-1)]は、皮相電力成分および負荷が使用する有効電力をシフトさせる高調波成分を有することから、それ自体が複素的であることができる。一実施形態において、メーター710は、シグネチャーを追跡し、オンラインとなりおよび/またはオフラインとなる特定の負荷の検出に基づいて、コンバーター740に異なる動作をさせることができる。
【0091】
一実施形態において、メーター710は、監視されている電流のベクトル計算および/またはベクトル解析を実行するためのプロセッサーを含んでいる。このように、メーター710は、様々なエネルギーシグネチャーまたは電流シグネチャーを識別および追跡することができる。様々な負荷が活性状態にある、即ち、動作中であるとき、オンラインとなる負荷に関連付けられる特定の識別可能な電流ベクトルが存在することを指して、シグネチャー712を電流シグネチャーと呼ぶことができる。複素ベクトル自体が、活性状態にある負荷による複素エネルギーの使用量の表現であることを指して、シグネチャー712をエネルギーシグネチャーと呼ぶことができる。
【0092】
従来のシステムは、機器または負荷が時間当たり平均でどのくらいのエネルギーを消費するかの表現を含む、所謂「エネルギー断面」を監視することが知られている。シグネチャー712は、従来のエネルギー断面の概念を、改良または修正された情報で拡張することができる。より具体的には、シグネチャー712は、負荷のためのエネルギーの計測可能な電力成分だけではなく、高調波または高調波ノイズに関する情報をも含めて表すことができる。このように、一実施形態において、メーター710は、高調波情報ならびに計測可能なエネルギー使用量を統合することができる。結果として得られるシグネチャー712の表現は、以前から知られている電力ベクトルではない。その代わりに、結果として得られるシグネチャー712の表現は、高調波の情報を含んでいる。一実施形態において、高調波の知識は、コンバーター740の動作に、電源とのインターフェースを調節して高調波を抑制するように通知することができる。
【0093】
システム700が、顧客の施設の制御ノードが送電網ネットワークに結びついており、顧客の施設が送電網ネットワークに供給して返すソーラー電源またはその他のエネルギー源を含む例を提供することを検討する。制御ノードは、メーター710およびスマートインバーターであることのできるコンバーター740を含んでいる。送電網ネットワークは、情報を提供し、公益事業体の従来の役割を果たすことのできるデータセンターを含むことができる。データセンターが集中電力の配電を制御する代わりに、データセンターは、配電される電力の分散制御のための分散情報を提供することができる。一実施形態において、データセンターは、情報をディスパッチして送電網ネットワークの発電機を制御し、分散制御ノードの動作を制御し、エネルギー貯蔵装置の動作を制御し、および/またはその他の機能を実行することができる。
【0094】
一実施形態において、コンバーター740は、顧客の施設のエネルギー源によって発電された電力を制御することができる。メーター710は、電力使用量に関して顧客の施設が何をしているかを監視することのできる機器である。一実施形態において、メーター710および/またはコンバーター740は、データセンターからディスパッチ情報を受け取ることができる。制御ノードはまた、データセンターに情報を提供することもできる。コンバーター740は、顧客の施設および/または送電網が必要とする電力を特定的に発生させることができる。一実施形態において、公益事業体は、特定の種類のエネルギーの発生に対して優遇料率を提供することができる。
【0095】
例として、送電網に接続されたモーターについて検討する。これは、従来より、リアクタンスノイズが送電網に逆流することを防止するためのコンデンサーバンクに接続されている。モーターが送電網に送り返されるリアクタンスノイズを発生させるだけではなく、発光ダイオード(light emitting diode:LED)式照明、薄型テレビ、コンピューター機器(特にスイッチング電源のような電子機器用の電源)、およびその他の電子機器もまた送電網にノイズを乗せる。機器は、システムが補償しなければならないインピーダンスおよび/または熱を生じさせる共鳴または磁気的特性に基づいて、送電網上に逆流するノイズを発生させる。このように、負荷に電力を提供する電流および/または顧客の施設から送電網への電力は、磁気共鳴によって押し出しおよび/または引き出さなければならず、このことは電流を流すためにより大きなエネルギーを要する。磁気共鳴場を通して電流を流すためには、磁気共鳴が存在しない電線を通して同じ大きさの電流を流すよりも大きなエネルギーを必要とする。
【0096】
無効電力の生成に関する言及は、高調波歪みを補償するための位相特性および波形特性を有する電流の発生を指すことができる。このように、メーター710は、送電網とどのようにインターフェースするかを決定するために使用するシグネチャー712を計算し記憶することができる。メーター710は、任意の時点でどのようなシグネチャーが存在するかを計測し監視することができる。例えば、メーター710は、需要家の電力需要を定期的かつ継続的に監視することができる。継続的な監視とは、入力線および/または出力線をサンプリングして合成電流720が何であるかを決定する定期的なサイクルであることが理解されるであろう。メーター710は、コンバーター740に指示してその入力インピーダンスおよび/もしくは出力インピーダンスを変えさせ、ならびに/またはその出力電流波形の発生を変えさせて可能な限り理想に近い出力信号を提供させることができる。
図15および16に関してより詳細を下記に述べる。
【0097】
一実施形態において、コンバーター740は、その動作を調節して送電網が見たときの高調波成分を低減する。このように、コンバーター740は、PCCにおいて送電網に提示される電力需要および/または発電量を高調波が取り除かれた状態にすることができる。このように、システム700は、送電網に対する支援および送電網の状態の修正ができることに加えて、より効率的にインターフェースすることができ、結果的に送電網との間でエネルギーをより良く転送し合うことができる。一実施形態において、送電網から受け取る負荷への出力であれ、および/または顧客の施設から供給される送電網への出力であれ、コンバーター740がどのように出力電力を発生させるべきかの計算において、送電網に対する支援および/または送電網の状態は1つの要因である。
【0098】
一実施形態において、シグネチャー712および/またはデータセンターもしくは送電網事業者(例えば、集中送電網管理装置)からのディスパッチ情報および/またはメーターによるエネルギーの監視に応じて、システム700は、PCCおよび/または需要家における無効電力の制御を可能とする。無効電力は、ボルトアンペア無効電力(volt-amperes reactive:VARs)と呼ぶことができる。一実施形態において、メーター710は、電流の高調波を含め、負荷によって引き出される電流を計測する。負荷としては、送電網に電気的に結合している、エネルギーを消費する複数の異なる機器のうちの任意の1つを挙げることができる。一実施形態において、メーター710は、計測される電流の電流ベクトルを計算することにより、エネルギーシグネチャーを生成する。エネルギーシグネチャーは、(複数の別個の負荷機器の集合体が負荷電流を生成すると仮定して)負荷または負荷の状態に固有なものとなる。エネルギーシグネチャーは、動作中の負荷の複素電流ベクトルを含んでいる。一実施形態において、メーター710は、基本電流の有効電力成分および無効電力成分ならびに負荷の1つ以上の高調波の有効電力成分および無効電力成分を識別する。一実施形態において、エネルギーシグネチャー712は、基本電流に対する高調波の角変位を含んでいる。メーター710は、(例えば、情報をコンバーターに提供することにより)コンバーター740の動作を制御してPCCで見たときの高調波に起因する負荷のノイズ寄与度を制御する。コンバーターは、PCCとのインターフェースを調節して負荷から送電網上に導入されるノイズを補償し、したがってこれを低減することができる。
【0099】
既述のように、一実施形態において、コンバーター740は、局所的なエネルギー源による電力出力の無効電力成分を調節する。一実施形態において、コンバーター740は、負荷による電力需要の無効電力成分を調節する。一実施形態において、コンバーター740は、負荷の動作電圧の周波数を調節する(例えば、低減し、または増加させる)。一実施形態において、コンバーター740は、PCCを境に負荷730と同じ側にあり、PCCの内部からインターフェースを制御する。一実施形態において、コンバーター740は、負荷730に対してPCCの送電網側にあり、PCCの送電網側からのインターフェースを制御し、需要家からPCCを覗いたときに電力需要および/または発電量を送電網がどのように見るかを調節する。
【0100】
一実施形態において、メーター710は、送電網の電気的状態および/または性能の状態を監視する一実施形態において、メーター710は、送電網の状態を示すディスパッチ情報またはその他の配信情報を受け取る。一実施形態において、メーターは、PCCで送電網の状態を計測することによりディスパッチ情報を受け取るとみなすことができる。一実施形態において、メーター710は、送電網の局所的な負荷730と同じ側にある。一実施形態において、コンバーター740は、送電網の局所的な負荷730と同じ側にある。一実施形態において、メーター710は、シグネチャー712を計算し記憶する。一実施形態において、メーター710は、シグネチャー情報で事前設定される。一実施形態において、メーター710は、それに接続されている特定の負荷730のシグネチャー712に向けられている。一実施形態において、メーター710は、一日を通して発生する異なる負荷状態としてシグネチャー712を計算し記憶する。一実施形態において、ベクトルがシグネチャーの定義済みの範囲内であるときは合成電流720は同一であるとみなされ、または合成電流720がシグネチャー712の定義範囲内であるときはシグネチャーが存在すると決定される。一実施形態において、メーター710は、具体的に識別されたシグネチャー712に基づいて、動作のための具体的なパラメータをコンバーター740に提供する。
【0101】
一実施形態において、メーター710は、合成電流720の計測および計算に基づいて、1つ以上の負荷730または負荷状態に固有のエネルギーシグネチャー712を識別する。一実施形態において、負荷730は、特定の機器を識別するのとは対照的に、負荷状態(様々な負荷が同時にオンとなっているシナリオ)を表す。メーター710は、基本電流の有効電力成分および無効電力成分、ならびに高調波の有効電力成分、無効電力成分、および基本電流に対する角変位の識別を含め、負荷730の複素電流ベクトルを識別することができる。既述のように、メーター710は、コンバーター740を、負荷に基づいて送電網上に導入されるノイズを低減または最小限に抑えるように動作させることができる。
【0102】
一実施形態において、メーター710は、メーター710がその一部である制御ノードによって管理されているPCCにおいて、送電網ネットワークが電圧支援を必要としていることを示すディスパッチ情報を送電網ネットワークから受け取る。一実施形態において、コンバーター740は、電圧支援を提供するために送電網ネットワーク上に正の無効電力を提供する。一実施形態において、コンバーター740は、電圧支援を提供するために送電網ネットワーク上に負の無効電力を提供する。コンバーター740は、送電網ネットワークの下流側ノードが必要とする電圧支援に応じて正の無効電力を提供することができる。コンバーター740は、送電網ネットワークの上流側ノードが必要とする電圧支援に応じて負の無効電力を提供することができる。メーター710が位置認識機能を含む場合、制御ノードは、メーター710により電圧支援を必要とするのが上流側かまたは下流側かを決定し、適切な措置をとることができる。
【0103】
一実施形態において、メーター710は、たとえ他の負荷が存在する場合であっても、異なる負荷のエネルギーシグネチャーを計算または処理することができる。例えば、システム700内に既に存在する合成電流について検討する。別の負荷730が追加的にオンラインとなることにより、全体的な合成電流が変化する。一実施形態において、メーター710は、新しい合成電流と以前の合成電流との差を計算して新しい負荷のエネルギーシグネチャーを決定する。このように、メーター710は、特定の負荷を識別し、システム700内の運転に変化をもたらすことを決定して特定の負荷730の電力需要に対応することができる。このような計算は、具体的な負荷を見分けるために、ベクトル解析および/または計算を必要とする場合があることは理解されるであろう。
【0104】
図8は、電流の高調波成分が基本電流成分に対してオフセット角を有するシステム内の電流の成分の実施形態の図形表現である。ダイアグラム810は、電流の複素ベクトル表現を提供している。ベクトルは、大きさと方向を有する。従来なされたように単に電力を計測する代わりに、一実施形態において、メーターおよび/または制御ノードが、複素電力ベクトルの表現を含むエネルギーシグネチャーとしての電力を監視することができる。一実施形態において、各シグネチャーは、シグネチャーを定義しおよび/または「名づける」特徴を識別する。各シグネチャーは、基本電流のベクトルおよび1つ以上の高調波のベクトルを提供する複素ベクトル表現を含んでいる。
【0105】
ベクトル820は、基本電流のベクトルである。一般的な表現において、x座標は、ページを横切って左から右へと延伸するベクトル成分である。y成分は、ページの下部から上部へと至る。簡略化のためにここでは表示していないものの、ベクトルが負のy成分を有し得ることは理解されるであろう。xy座標は、ベクトルの端部を画定する。ここで、基本電流ベクトル820のx座標およびy座標が平面を画定すると仮定する。発明者らによってなされた研究および著作によれば、高調波を想像する最も適切な方法は、高調波を3次元ベクトルとして表現することである。したがって、ベクトル820のxy座標が基準面を画定する場合、高調波のうちの1つ以上は、基本電流ベクトルの平面に対してオフセット角を有することができる。
【0106】
例えば、ダイアグラム810の例について検討する。第1高調波がベクトル830を有するとして図示されており、このベクトル830はx成分およびy成分を含み、これら成分の大きさは基本電流の成分に対して任意の大きさであることができる。第1高調波ベクトル830は、xおよびy座標に加えて、基本電流ベクトル820の基準面に対してベクトルのオフセット角852を画定するz座標成分を含んでいる。基本電流および高調波の起点が同じであることは理解されるであろう。このように、高調波ベクトル、即ち、複素ベクトルの第3の次元は必ずしも絶対z座標成分ではなく、基本電流に対するオフセット角である。
【0107】
図示のように、第3高調波ベクトル840もまた、x成分およびy成分ならびに第1高調波ベクトル830のオフセット角852とは異なる(より大きいまたはより小さい)ことのできるオフセット角854を有している。オフセット角の角度シフトは、電流に対する磁気効果を表す。発明者らは、最大第40高調波までの電力消費に対する顕著な効果を計測した。このように、高調波オフセットの寄与を軽視すべきではない。高調波は、電流を流そうとするときの磁束の異なる共鳴効果により、オフセット角に対してシフトする。基本電流ベクトル820が、需要家が期待する電流である。しかし、高調波成分は、かなりの(計測可能な)電力消費量を追加する場合がある。高調波のオフセットは、期待される単純な2次元電流ベクトルを3次元電流ベクトル(複素電流ベクトル)にシフトすることができる。シフトしたまたはオフセットした高調波成分によって表される磁気成分を克服するためには追加的な電力が必要となるので、従来の電力ベクトル図では需要家による電力使用量を完全に取り扱うことができない。
【0108】
図9は、電流ベクトルが基本電流成分と高調波電流成分との合成であるシステム内の電流の成分の実施形態の図形表現である。ダイアグラム910、920、930、および940は、
図8のダイアグラム810の実施形態に係る複素電流ベクトルの成分の部分を図示している。図示のように、ダイアグラム910は基本電流ベクトル912を表している。基本電流はx成分およびy成分を含み、高調波の基準座標系を画定する。
【0109】
ダイアグラム920は、x成分およびy成分ならびにオフセット角924を含む第1高調波ベクトル922を表している。ダイアグラム930は、x成分およびy成分ならびにオフセット角934を含む第3高調波ベクトル932を表している。ダイアグラム940は、x成分およびy成分ならびにオフセット角944を含む第5高調波ベクトル942を表している。基本電流912および様々な高調波(922、932、942)は、各々について従来的に期待されるところの2次元「電力ベクトル図」の表現として示されている。しかし、すでに述べたように、高調波は往々にして基本電流の成分ベクトルに対してオフセット角を有しており、したがって、結果として得られる合成電流ベクトルは、基本電流ベクトル912と同じ平面内にはないであろう。
【0110】
むしろ、合成電流ベクトルの電力ベクトル図を3次元ボックス内の三角形とみなされたい。ダイアグラム950は、この概念の簡略図を提供している。基本電流ベクトル912がダイアグラム950の3次元ボックスの一面上にあることが観察されるであろう。ある意味で、高調波が合成電流の三角形をボックスの「中に」押し込む。合成電流ベクトル952は、基本電流ベクトル912に対して大きさがより大きいと共に角度的にオフセットしている。オフセット954は、オフセット角を表している。基本電流ベクトル912および合成電流ベクトル952がボックスの「形状」を画定することが理解されるであろう。高調波の寄与の程度により、ボックスの形状が異なる。合成電流ベクトル952は、計量装置によって記憶されたシグネチャーであることができる。基本電流912の基準面は、送電網の電力(PCCを介して送電網で見たときの電力状態を指す)の平面として画定することができる。
【0111】
発生するノイズおよび高調波に関しては、一般的に、スイッチング電源および磁気共鳴に対して規制があることが理解されるであろう。各機器が、規制準拠(例えば、UL認定)の試験を受ける。各機器または負荷が個別に設計どおりおよび試験されたとおりに機能すると、各々が規制により義務付けられたとおりに従う。しかし、複数の負荷および/または機器が相互に結合すると、予期しない共鳴が生じる傾向がある。発明者らは、第1から最大第40までの高調波によるエネルギーベクトル図に対する寄与度を計測した。このように、通常、送電線上ではかなりの量の高調波ノイズが発生している。高調波抑制は、従来より、特定のノイズ成分を標的としたフィルターを含む。しかし、いろいろな機器がオンラインとなりオフラインとなるに従って、およびネットワークの電気共振構造が継続的に変化するので、ノイズ成分は継続的に変化する場合がある。一実施形態において、メーター710は、各負荷または負荷群の特徴を検出する。これらの特徴を高調波のシグネチャーと呼ぶことができる。
【0112】
一実施形態において、電力計またはエネルギー計は、エネルギーの寄与度を計測することにより、このようなシフトを高調波電流ベクトルのオフセット角として検出することができる。電力変換器は、負荷および/またはPCCを送電網と整合させるために必要な無効電力を提供することにより、実際の合成電流を補償することができる。このように、負荷における電流は、合成電流を単に力率においてではなく複素ベクトルにおいて送電網と整合させるために、コンバーターによって調節することができる。このような動作により、当然ながら、送電網に負荷をかけることにより生じる高調波歪みが排除され、または少なくとも低減される。
【0113】
一実施形態において、負荷に関して説明されることはまた、エネルギー生成に関しても実行することができる。一実施形態において、メーターは、PCCにおけるエネルギーシグネチャーを決定することができ、(公益事業体以外の力率を所望の場合は)送電網を所望のオフセット量にオフセットさせ、および/または公益事業体の力率を所望の場合は送電網と整合させるためにはどのような電流が必要となるかを計算することができる。コンバーターは、送電網のインターフェースをPCCの下流側とより効率的に整合させるために、動作を調節して電力出力を無効電力需要に調節するのみならず複素電流ベクトルのシフトにも調節することができる。
【0114】
ダイアグラム950内に表示されているエネルギーベクトル図は、負荷または需要家によって引き出される電力の電流成分を見るときに見られる効果の数学的表現として表すことができることは理解されるであろう。この効果は、通常、熱として現れる廃棄エネルギーである。従来よりの問題は、システムがうまく整合せずに、かなりのノイズ成分があることである。一実施形態において、制御ノードは、特定のエネルギーシグネチャーの送電網との接続を提供するために、インピーダンスを整合させるのみならずノイズまたは高調波の補正をも整合させる。このように、制御ノードは、送電網上に電力を出力するにせよまたは送電網から電力を受け取るにせよ、電力インターフェースに関して送電網ネットワークとの「よりクリーンな」接続を提供することができる。
【0115】
図10は、PCCにおいて電力を監視する計量装置の実施形態のブロック図である。計量装置1000は、本明細書内で説明する任意の実施形態に係る電力計またはエネルギー計であることができる。一実施形態において、計量装置1000は、本明細書内で説明する任意の実施形態に係る制御ノードまたはその一部である。装置1000は、送電網ネットワークと相互接続して上流側と接続しおよび/または近隣の送電網ネットワークノードと接続するためのハードウェア構成要素を含んでいる。一実施形態において、装置1000は、1つ以上の負荷および/または電力計量装置の下流側に結合しているその他の機器もしくはノードと相互接続するためのハードウェア構成要素を含んでいる。装置1000は、送電網から供給される電力を計測しこれに課金するために送電網によって使用されるメーターとは別個であってもよいことは理解されるであろう。送電網の個々のメーターに複数の装置1000が結合することができる。
【0116】
装置1000は、負荷インターフェース1020を含んでいる。負荷インターフェース1020は、下流側の機器と相互接続するためのハードウェアを提供する。装置1000は、下流側の機器のエネルギー使用量を監視する。一実施形態において、装置1000は、電圧検知ハードウェア1024および電流検知ハードウェア1022を含んでいる。電流検知ハードウェア1022は、負荷によって引き出される電流を計測することができ、電力需要の高調波成分を計測することのできるハードウェアを含むことができる。電流検知装置1022は、負荷または負荷群によって引き出される電流の大きさ、位相オフセット(例えば、力率)、周波数、および/またはその他の電気的特性を含むことができる。一実施形態において、装置1000は、エネルギーシグネチャーを生成し、このようなエネルギーシグネチャーの計算値を記憶されたエネルギーシグネチャーと比較することができる。装置1000はまた、計算された新しいエネルギーシグネチャーを記憶することができる。電圧検知ハードウェア1024は、電圧波形の位相、周波数、大きさ、および/またはその他の電気的特性を含む電圧を計測することができる。
【0117】
プロセッサー1010は、装置1000の制御論理回路またはコントローラーを表している。プロセッサー1010は、エネルギーの監視を実行するように設定またはプログラムすることができる。プロセッサー1010は、エネルギーシグネチャーを計算し、および/または電流および電圧の示度をエネルギーシグネチャーと比較するための計算を実行するように設定することができる。一実施形態において、プロセッサー1010は、高調波、送電網の状態、もしくはPCCを規制に準拠させるためのその他の条件を補償し、および/または別の制御ノードにおける故障を補償するための支援を提供するために、電流をどのように調節できるかを決定する。プロセッサー1010は、動作を実行し、装置1000よりも下位の送電網ネットワークのセグメントのエネルギー消費量を追跡するためのハードウェアおよび/または制御論理回路を含むことができ、その下位の局所的な送電網ネットワークのセグメントを規制に準拠させるためにどのように補償するべきかを決定する。図示してはいないが、計量装置1000は、電力変換器と連携して動作して監視によって示される必要な無効電力を提供する。
【0118】
装置1000は、装置1000をその他の計量装置または制御ノードと接続し、データセンターまたはその他の集中データ装置と接続することを可能とするための、外部I/O1040を含んでいる。一実施形態において、外部I/O1040は、装置1000を従来の公益事業体の送電網の送電網管理装置に接続することを可能とする。一実施形態において、外部I/O1040は、装置1000が集中データセンターにデータを送信し、集中データセンターからおよび/またはデータを受信することを可能とする。外部I/O1040は、装置1000に関するディスパッチ情報を受信することができる。外部I/O1040は、既知の配線および/または無線通信機構を含む任意の種類の通信インターフェースを含むことができる。一実施形態において、外部I/O1040はプロプライエタリーなおよび/または顧客の通信機構を含み、これには、通信を送受信するハードウェアスタックおよびソフトウェアスタックまたはその他の処理論理回路を含む配線および/または無線通信プラットフォームを含むことができる。
【0119】
送電網インターフェース1050は、装置1000が送電網ネットワークに結合することを可能とするハードウェアを表している。一実施形態において、送電網インターフェース1050は、装置1000が装置1000に関連付けられるPCCでの送電網の状態を決定することを可能とする。一実施形態において、送電網インターフェース1050は、装置1000が局所的なエネルギー源に結合することを可能とするハードウェアを表している。一実施形態において、送電網インターフェース1050および/または装置1000内のその他のインターフェースは、装置1000の下流側の機器からどんな種類(どのくらい)のエネルギー支援を提供することができるかを装置1000が決定することを可能とする。例えば、装置1000は、局所的なエネルギー源によってどのくらいのエネルギーが生成されているかを決定することができる。電力変換器は、PCCにどんな電流波形が現れるかを含め、その動作を調節することにより、PCCにおける送電網とのインターフェースを調節する。
【0120】
一実施形態において、装置1000は、メモリーおよび/またはハードドライブもしくは個体記憶装置などの記憶装置リソースを含んでいる。記憶装置1030は、装置1000のメモリーリソースを表している。一実施形態において、装置1000は、負荷を監視し制御するために使用する複数のシグネチャー1032を記憶する。一実施形態において、各シグネチャー1032は、様々な負荷の下に引き出される電流波形の状態を表す複素電流ベクトルである。一実施形態において、プロセッサー1010は、シグネチャー1032を生成し記憶することができる。一実施形態において、シグネチャー1032は、装置1000上に事前ロードされている。一実施形態において、プロセッサー1010は、シグネチャー1032と比較する合成電流波形情報を計算する。プロセッサー1010は、シグネチャーとの一致に依存して、所与の負荷シナリオ(電力需要)および/または発電シナリオに望ましい電流波形の位相ならびに形状を計算することができる。
【0121】
一実施形態において、プロセッサー1010は、規制準拠情報1034の1つ以上の項目にアクセスする。一実施形態において、規制準拠情報1034は、記憶装置1030に記憶される。一実施形態において、規制準拠情報1034は、外部I/O1040を介して受信される。一実施形態において、プロセッサー1010は、規制準拠情報1034に基づいて所与の電力需要シナリオおよび/または発電シナリオに望ましい電流波形の位相および形状を計算する。このように、規制準拠情報1034は、装置1000がどのように動作するかに作用することができる。一実施形態において、外部I/O1040は、装置1000が関連付けられるコンバーターに結合することを可能とする。プロセッサー1010の行う計算に基づいて、装置は、コンバーターに対して、所望の電流を得るためにどのように動作すべきかを合図することができる。一実施形態において、装置1000はコンバーターに対して単に所望の電流を示し、次に、コンバーターが別途、どのように電流を生成するかを計算することができる。一実施形態において、装置1000は、コンバーター装置への入力としての特定のパラメータを計算し、PCCにおいて所望される電流波形に合わせてコンバーターがその動作を調節する。
【0122】
一実施形態において、計量装置1000は、前述の位置認識に従って、位置認識をすることができる。一実施形態において、プロセッサー1010は、位置認識によってその位置を決定することができる。このように、送電網インターフェース1050に関して計測されまたは受信された状態に基づいて、プロセッサー1010は、位置検出に基づいて必要とされる無効電力を計算することができる。次に、外部I/O1040は、関連付けられたコンバーターに対して、電力を発生させるように合図することができる。装置1000は、PCCにおける制御ノードが負の、即ち、遅れ位相の無効電力支援を与えるようにすることにより、発電機または集中送電網ネットワーク管理装置に向けて上流側に電圧支援を提供すべきであることを検出し決定することができる。装置1000は、PCCにおける制御ノードが正の、即ち、進み位相の無効電力支援を与えるようにすることにより、発電機または集中送電網管理装置から遠ざかる下流側に電圧支援を提供すべきであることを検出し決定することができる。進み支援とは、送電網のAC電圧よりも位相が進んでいる電流波形を指すことは理解されるであろう。同様に、遅れ支援とは、送電網のAC電圧よりも位相が遅れている電流波形を指す。
【0123】
図11は、複素電流ベクトルを説明する異なるエネルギーシグネチャーを監視する処理の実施形態のフロー図である。一実施形態において、異なるエネルギーシグネチャーを監視する処理1100は、計量装置および/または電力変換器の実施形態によって実行される動作を含んでいる。一実施形態において、メーターは、1102で、基本電流の高調波の決定を含め、1つ以上の負荷によって引き出される電流を計測する。一実施形態において、メーターは、電力(Wh)の代わりにエネルギーを計測する。上述のように、高調波は基本電流に対してオフセット角を有することができるので、複素電流ベクトルを生じさせることができる。
【0124】
一実施形態において、メーターは、1104で、負荷または負荷状態に関する負荷に固有のエネルギーシグネチャーを生じさせる。一実施形態において、メーターは、システム内でのエネルギー消費量のその後の解析のためにエネルギーシグネチャーを記憶する。一実施形態において、メーターは、システム内のどんな負荷が存在するかを決定するために、エネルギーシグネチャーを生成して保存されているエネルギーシグネチャーと比較する。一実施形態において、エネルギーシグネチャーは一時的に記憶され、補償電流を動的に生成するために使用される。補償電流は動的に、即ち、計算によって即応的に生成することができ、および/または記憶された情報に基づいて生成することができる。
【0125】
一実施形態において、メーターは、1106で、基本電流および高調波を識別する。一実施形態において、実際問題として、システムはそれが付属する送電網ネットワークの電圧を使用し、個別の高調波および基本電流を別個に具体的に識別する必要なく、単に基準面に対してオフセット角を有する合成電流を計測することができる。一実施形態において、メーターは、合成電流を計測することにより、基本電流および高調波を示すことができる。メーターは、1108で、コンバーターに命令を発し、計測された合成電流ならびに/または別個に計測された場合には基本電流および高調波に合わせて調節するように、コンバーターに送電網ネットワークとのインターフェースを設定させる。一実施形態において、コンバーターは、負荷に対するインターフェースを変化させて負荷に電力がどのように供給されるかを変化させる。一実施形態において、コンバーターは、送電網ネットワークとのインターフェースを変化させて電力がどのように送電網ネットワークに提示され、および/または送電網ネットワークから引き出されるかを変化させる。
【0126】
一実施形態において、メーターは、1110で、ディスパッチ情報を取得することができる。一実施形態において、ディスパッチ情報は、送電網ネットワークにより、集中管理装置またはデータセンターが局所的な制御ノードに情報を送信するなどして取得することができる。一実施形態において、ディスパッチ情報は、メーターによって送電網ネットワークの状態を計測することにより取得することができる。一実施形態において、メーターは、1112で、局所的な負荷の無効電力成分を識別する。無効電力成分は、局所的な負荷が動作のために必要とする無効電力量であることができる。一実施形態において、メーターは、コンバーターを制御し、またはこれに命令して、送電網ネットワークおよび/または負荷とのインターフェースを変化させることにより動作を変更することができる。インターフェースを変化させるステップは、PCCを介しての送電網との電気的インターフェースの周波数、無効電力成分、有効電力成分、および/またはその他の側面を変化させるステップを含むことができる。このように、コンバーターは、1114で、負荷の無効電力成分によって生じる高調波歪みをオフセットさせるように動作を調節することにより、PCCで見たときの高調波に起因する負荷のノイズ寄与度を制御することができる。
【0127】
図12は、共通結合点で監視されるエネルギーシグネチャーに基づいて共通結合点における電力需要を提供する処理の実施形態のフロー図である。一実施形態において、エネルギーシグネチャーの監視に基づいてPCCでの電力需要を提供する処理1200は、計量装置および/または電力変換器の実施形態によって実行される動作を含んでいる。処理1200はエネルギーシグネチャーを監視するステップに言及しているものの、エネルギーシグネチャーとは、PCCでの送電網の運転ならびにPCCの下流側の負荷および機器の需要および発電の監視を指すことができることは理解されるであろう。PCCは、ゲートウェイPCCであることができる。PCCは、送電網ネットワーク内の階層の任意のレベルにあることができる。監視するステップは、PCCにおける特定の電力需要を提供するためにPCCの制御ノードがPCCのインターフェースを変化させる結果を招く任意の決定を含むことができる。特定の一実施形態において、処理1200は、下流側機器が発電機能を含む任意の実施態様を組み入れている。一実施形態において、処理1200は、コンバーターが無効電力消費量を変更することができ、および/または有効電力を負荷の消費する無効電力に変換することができる、任意の実施態様を組み入れている。負荷には、動作の起こるPCCの下流側の送電網ネットワークの階層の他のノードまたはレベルを含むことができる。
【0128】
一実施形態において、メーターまたは制御ノードは、1202で、ディスパッチ情報を取得することができる。一実施形態において、ディスパッチ情報は、送電網ネットワーク自体から、集中管理装置またはデータセンターが局所的な制御ノードに情報を送信するなどして取得することができる。一実施形態において、ディスパッチ情報は、メーターによって送電網ネットワークの状態を計測することにより取得することができる。一実施形態において、メーターは、1204で、局所的な負荷に固有のエネルギーシグネチャーを識別する。エネルギーシグネチャーは、本明細書内で言及するエネルギーシグネチャーの実施形態であることができる。エネルギーシグネチャーを識別するステップは、本明細書内で説明する任意の実施形態によることができる。一実施形態において、メーターは、PCCの下流側に接続されている1つ以上の機器または要素のエネルギーシグネチャーを識別する。メーターが需要家に直接結合している階層のレベルにおけるエネルギーシグネチャーについて個別の負荷を監視できるのと同様に、異なるPCCに接続されている階層のレベルは下流側に結合している様々な制御ノードに関するエネルギーシグネチャーを識別することができる。
【0129】
一実施形態において、メーターは、1206で、エネルギーシグネチャーに基づいて負荷に関する基本電流および高調波を識別する。一実施形態において、識別は基本電流および1つ以上の高調波を別個に識別するステップを含む。一実施形態において、識別は、合成電流を識別するステップを含む。一実施形態において、メーターは、コンバーターを制御し、またはこれに命令して、送電網ネットワークおよび/または負荷とのインターフェースを変化させることにより動作を変更することができる。インターフェースを変化させるステップは、PCCを介しての送電網との電気的インターフェースの周波数、無効電力成分、有効電力成分、および/またはその他の側面を変化させるステップを含むことができる。このように、コンバーターは、1208で、例えばエネルギーシグネチャーに基づいて、負荷の無効電力成分によって生じる高調波歪みをオフセットさせるように動作を調節することにより、PCCで見たときの高調波に起因する負荷のノイズ寄与度を制御することができる。
【0130】
一実施形態において、ディスパッチ情報を取得するステップは、公益事業体の送電網上のノードが電圧支援を必要とすることを示す情報を受け取るステップを含む。一実施形態において、計量装置およびコンバーターを含む制御ノードは、送電網ネットワークに支援を提供する必要を示すディスパッチ情報を取得することができ、メーターは、支援を必要とする送電網ネットワーク上のノードに対するメーターの制御ノードの位置を決定することができる。Translator's note: "provide support the grid network" appears to be an error for "provide support to the grid network" or "provide the grid network with support". "its control nod" appears to be a typo for "its control node". The sentence is translated as such.一実施形態において、制御ノードは、PCCが、電圧支援を必要とする公益事業体の送電網のノードに対して公益事業体の送電網上の下流側にあることを決定する。一実施形態において、制御ノードは、PCCが、電圧支援を必要とする公益事業体の送電網のノードに対して公益事業体の送電網上の上流側にあることを決定する。コンバーターは、送電網に支援を提供するために、正のまたは負の無効電力を提供することができる。Translator's note: "provide support the grid" appears to be an error for "provide support to the grid" or "provide the grid with support". The sentence is translated as such.
【0131】
図13は、共通結合点において有効・無効電力消費量を調節する処理の実施形態のフロー図である。一実施形態において、PCCから送電網に支援を提供する処理1300は、計量装置および/または電力変換器の実施形態によって実行される動作を含んでいる。Translator's note: "providing support the grid from the PCC" appears to be an error for "providing support to the grid from the PCC". The sentence is translated as such.一実施形態において、処理1300は、局所的な負荷が引き出す電力に適用することができる。一実施形態において、処理1300は、PCCの下流側の任意のものが引き出す電力に適用することができ、これには複数の負荷および/もしくは複数のノードまたはその他の機器を含むことができる。
【0132】
一実施形態において、メーターは、1302で、送電網ネットワークがPCCで供給するエネルギーを計測する。送電網ネットワークは、公益事業体の送電網または本明細書内で説明するその他任意の送電網ネットワークであることができる。一実施形態において、メーターは、送電網ネットワークのコントローラーから計量装置で受信する制御情報に応じて、負荷の無効電力成分を計測する。コントローラーは、公益事業体の送電網の集中送電網管理装置を含むことができ、および/または送電網ネットワークのデータセンターを含むことができる。一実施形態において、メーターは、1304で、計測値に基づいて、負荷が送電網ネットワークから無効電力を引き出すことを決定する。一実施形態において、負荷が無効電力を引き出すことを決定するステップは、負荷の固有のエネルギーシグネチャーを識別するステップを含む。一実施形態において、負荷が無効電力を引き出すことを決定するステップに加えて、メーターは、進み無効電力または遅れ無効電力のように、負荷が使用する無効電力の種類を決定することができる。
【0133】
一実施形態において、メーターは、1306で、コンバーターを制御して送電網ネットワークから有効電力を引き出すためのインターフェースを変更させる。コンバーターは、1308で、送電網ネットワークから引き出した有効電力を負荷が消費するための無効電力に局所的に変えることができる。コンバーターは、有効電力を負荷が必要とする種類の(例えば、進みまたは遅れ)無効電力に変換することができる。一実施形態において、コンバーターは、送電網ネットワークから幾分かの有効電力および幾分かの無効電力を引き出す。一実施形態において、コンバーターは、送電網ネットワークから有効電力のみを引き出し、有効電力を無効電力に変換することによって負荷の必要とするすべての無効電力を供給する。
【0134】
処理1300で説明する例は、送電網ネットワークから有効電力を引き出すステップおよび無効電力を供給するステップについて具体的に言及しているものの、仮に送電網から無効電力を引き出すことが好ましい場合に有利な条件が存在するならば、コンバーターは、送電網から無効電力を引き出して負荷に合った無効電力および/または有効電力に変換することができることは理解されるであろう。一般的に、メーターは、負荷の無効電力および有効電力の需要を計測することができる。コンバーターは、計測値に応じて動作してPCCにおいて利用可能な電力を引き出し、PCCの下流側で必要などのような電力であれ提供することができる。
【0135】
図14は、送電網の飽和に対処するステップを含むことのできる、送電網に動的支援を提供する処理の実施形態のフロー図である。一実施形態において、送電網ネットワークの動的制御を提供する処理1400は、計量装置および/または電力変換器の実施形態によって実行される動作を含んでいる。一実施形態において、送電網のセグメントは、1402で、電力出力を発生させる。一実施形態において、電力出力は、顧客の施設にある局所的なエネルギー源によってもたらされる。一実施形態において、電力出力は、電力を供給するが近隣地域内の需要家のピーク需要を満たすだけの十分な容量を有しない近隣地域の電源によってもたらされる。
【0136】
一実施形態において、制御ノードは、1404で、飽和状態が存在することを決定する。一実施形態において、送電網のセグメントまたは近隣地域が近隣地域のピーク有効電力需要の閾値割合を超える局所的なエネルギー源の有効電力の発電容量を有するとき、飽和状態が存在する。一実施形態において、制御ノードは、集中送電網管理装置またはデータセンターからディスパッチ情報を受け取って飽和状態を示す。一実施形態において、制御ノードは、送電網ネットワーク内に分散しているその他の制御ノードが共有する情報を受け取る。送電網ネットワークが公益事業体の送電網との接続を含む場合、飽和閾値を、公益事業体が決定する特定の割合に設定することができる。割合は、例えば、10、15、20、もしくは25パーセント、またはその他何らかの割合であることができる。送電網によっては、50パーセント以上の割合に対応することができる。
【0137】
一実施形態において、制御ノードは、送電網および/もしくは負荷における無効電力需要に関する条件、送電網ネットワークのノードにおける故障状態、送電網セグメントの別の送電網セグメントとの接続、送電網の支援を要求するディスパッチ情報、またはその他の理由などの、送電網に動的制御を提供するための別の理由を決定する。コンバーターは、1406で、局所的な電源からの有効電力を低減するために、近隣地域から見たときの電力の出力を調節することができる。通常、局所的なエネルギー源は、送電網の電圧をほぼ公益事業体の力率と整合させることにより、有効電力を発電するように設計されている。常に公益事業体の力率で送電網に接続する代わりに、コンバーターは、無効電力を発生させるための位相オフセットを決定することができる。一実施形態において、コンバーターは、複素電流ベクトルに基づいて電力を出力して、無効電力のみならず、PCCにおける高調波歪みを補償するためのオフセット角を有する電力をも供給する。
【0138】
一実施形態において、顧客の施設または近隣地域は、本明細書内で説明する任意のエネルギー貯蔵装置であることのできるエネルギー貯蔵装置を含むことができる。一実施形態において、局所的な貯蔵装置がある場合、1408での「はい」分岐は、1410で、電力の一部または全部を局所的なエネルギー貯蔵装置に適用するように分流させることができる。電力をエネルギー貯蔵装置に分流することにより、さもなければ送電網ネットワークに流出するであろうところの、局所的な電力源によって発電された全体的な有効電力を低減することができる。1408での「いいえ」分岐において局所的な貯蔵装置がない場合、一実施形態において、コンバーターは、1412で、VARまたは無効電力に対する調節により、送電網で検出される飽和状態またはその他の電気的状態が改善されるかを決定することができる。
【0139】
一実施形態において、1414での「いいえ」分岐で、メーターおよび/またはコンバーターは、無効電力出力を調節することにより送電網の状態が改善しないであろうことを決定する。一実施形態において、局所的な貯蔵装置が存在せず、VARの制御により送電網の状態が改善せず、有効電力を送電網に流出させるべきではない場合、制御ノードは、1418で、送電網ネットワークによる発電を切断することができ、したがって、電力が送電網ネットワーク上に流れ込むことを防止することができる。一実施形態において、メーターおよび/またはコンバーターは、1414「はい」分岐で、無効電力出力を調節することにより送電網の状態が改善されることを決定し、コンバーターは、1416で、送電網ネットワークとのインターフェースを変更するためにその挙動を変更することができ、これには、送電網ネットワークへの無効電力の出力を変化させるステップを含むことができる。一実施形態において、挙動の変更には、PCCの下流側の有効電力対無効電力の比の任意の調節を含むことができる。
【0140】
図15は、ハードウェア波形制御装置に結合されたソフトウェアフィードバック制御サブシステムを用いて高調波歪みを制御するシステムの実施形態のブロック図である。システム1500は、電源1504、負荷1506、および出力を生成し電源と負荷との間のインターフェースを制御するコンバーター1502を含んでいる。一実施形態において、コンバーター1502は、2010年2月18日付で出願され、「POWER TRANSFER MANAGEMENT FOR LOCAL POWER SOURCES OF A GRID-TIED LOAD」と題された米国特許出願第12/708,514号に記載されているものによる。一実施形態において、電力変換は、2007年8月31日付で出願され、「MULTI-SOURCE,MULTI-LOAD SYSTEMS WITH A POWER EXTRACTOR」と題された米国特許出願第11/849,242号によることができる。システム1500は、本明細書内で説明する任意の実施形態に係る制御ノード用のコンバーターを含むシステムの一例であることができる。
【0141】
電力経路1510は、コンバーター1502によって制御される、電源1504から負荷1506までの電力の経路を表している。コンバーター1502は、電源1504から入力電力を受け取り、それを別の形態(例えばDCからAC)に変換するための入力電力変換器1520を含んでいる。入力電力変換器1520は、変換すべき電力信号を受信するためのハードウェア構成要素を含んでおり、適切な電力用構成要素を含むことができる。一実施形態において、入力電力変換器1520は、動的インピーダンス整合を実施し、これにより、入力電子回路が電源1504からの最大電力を転送することができる。動的インピーダンス整合は、常に最大電力点を追跡するステップならびに入力電力カプラー(例えば、変圧器)を駆動して電力勾配を可能な限り平坦(例えば、ゼロ勾配)に維持するステップを含む。入力電力変換器1520は、コントローラー1530から制御信号または情報を受け取ると共に、コンバーターの状態を示す入力を提供することができる。一実施形態において、動的インピーダンス整合は、変圧器またはインダクターを介して入力電力の高周波スイッチングを行うことでコンバーター1502内の内部ノードを変化させるステップを含む。このとき、内部ノードは、別の変圧器またはインダクターを介した出力の高周波スイッチングのエネルギー貯蔵器の機能を果たし、必要な任意の電力を負荷が引き出すことを可能とすることができる。このように、入力電力変換器1520は、入力から出力への規制のないエネルギー転送を提供することができる。
【0142】
入力フィードフォワード1512は、電源電力に関する情報(例えば、最大電力値、必要に応じて周波数、または入力電力変換器のハードウェアを制御するためのその他の情報)をコントローラー1530に提供する。コントローラー1530は、入力電力に関する入力情報に基づいて入力電力変換器1520を制御する。コントローラー1530は、コンバーター1502に埋め込むことのできる任意の種類のプロセッサーコントローラーを表している。コントローラー1530は、任意の種類のマイクロコントローラー、デジタル信号プロセッサー(digital signal processor:DSP)、論理アレイまたはその他の制御論理回路であることができ、またはこれを含むことができる。さらに、コントローラー1530は、コードまたはランタイム動作中に生成もしくは取得された値もしくは事前計算された値を記憶するための適切なメモリーまたは記憶構成要素(例えば、ランダムアクセスメモリー、リードオンリーメモリー(read only memory:ROM)、レジスター、および/もしくはフラッシュメモリー)を含むことができる。
【0143】
コントローラー1530は、プログラマブル波形発生器1540を駆動して所望の出力波形を発生させることができる。発生器1540もまた電力経路1510上にあり、入力電力変換器1520から入力電力を受け取って出力する。電力を転送することができるものの、その電力は、必ずしも受け取られた時と同じ波形では出力されない。例えば、DC信号を正弦波信号として出力することができる。その他の電力変換も、同様に達成することができる。一実施形態において、発生器1540は、出力波形を発生させるパルス波変調器(pulse wave modulator:PWM)を含んでいる。発生器1540は、コントローラー1530から制御信号および情報を受け取り、コントローラー1530に状態もしくは動作の情報またはフィードバックを提供することができる。出力波形は、電流または電圧のいずれかであることができる。一実施形態において、出力は、高調波を含まない出力を可能とするための、負荷電圧波形に対して位相オフセットおよびオフセット角を有する電流である。
【0144】
コンバーター1502は、出力波形の発生に、特定のタイミング、位相調整、またはその他の周波数情報を組入れることができる。このようなタイミング、位相調整、またはその他の周波数情報は、「入力同期データ」と呼ぶことができる。一実施形態において、このような入力同期データはリアルタイムの負荷情報に由来し、その場合は「負荷同期入力」と呼ぶことができる。負荷同期入力または入力同期データは、上述の同期信号を決定するために必要な情報を示す。このような情報は、コンバーター1502内で出力同期信号1514として示されている。出力が予期される(例えば、送電網と接続されている)システムにおいて、特定の電圧、タイミング、またはその他の情報(例えば、60Hzで120V)を期待することができ、初期の推定値をシステム内にプログラムし、または同システムによって始動時に作ることができる。負荷同期データに基づいて、初期の推定値を調節することができる。
【0145】
コントローラー1530はまた、電力経路1510からの出力フィードバック1516を計測して発生器1540によって発生した実際の出力を決定する。実際の出力は理想基準値と比較され、所望の出力が発生しているかが決定される。一実施形態において、出力フィードバック1516は、コントローラー1530による出力計測を表す抽象概念であって、それ自体は別個の構成要素を含んでいない。一実施形態において、出力フィードバック1516は、理想基準信号と比較するためのサンプリング機構またはその他のデータ選択機構を含んでいる。理想基準信号は、所望の出力波形の理想化された表現であることができる。出力は、負荷または送電網自体の標的波形ではなく理想化された波形に収束する。出力フィードバック1516がコントローラー1530とは別個の構成要素を含んでいる場合、それはコントローラー1530によって駆動され、コントローラー1530から比較データを受け取り、誤差またはフィードバック情報を提供することができる。一実施形態において、出力フィードバック1516は、少なくとも出力線とインターフェースするためのフィードバック制御処理に必要なハードウェア構成要素を含んでいると理解される。さらに、出力フィードバック1516は、計測、計算、および/または処理を実行するためのその他のハードウェアを含むことができる。
【0146】
出力同期信号1514および出力フィードバック1516は共に、フィードバックループとみなすことができる。出力同期信号1514および出力フィードバック1516は同じものではなく、異なる目的を果たすことが理解されるであろう。出力同期信号1514は、基準波形テーブル1532に記憶されているどの理想基準信号に似ているべきかを示す。出力フィードバック1516は、実際の出力が基準信号とはどのように異なるかを示す。更新テーブル1534は、出力フィードバック1516に呼応して発生したデータを表す。一実施形態において、出力同期信号1514は電力経路1510の出力に関する電圧情報に基づいている一方、出力フィードバック1516は電力経路1510の出力で発生する出力電流に基づいている。
【0147】
出力同期信号1514に基づいて(または出力同期信号の初期の推定値に基づいて)、コンバーター1502は、発生器1540によって発生することが望まれる出力波形の理想形を表す基準波形テーブル1532を記憶し、および/または生成する。基準波形テーブル1532は、出力波形がどのように見える「べきか」を反映するテーブルまたはその他の点(もしくは設定値)の集合であることができる。基準波形は、任意の周期波形であることができる。一実施形態において、基準波形は、振幅および位置を有する一連の点として表される。このように、基準波形に収束するステップは、出力波形発生器を駆動してサンプリングされた出力点を基準波形を表す設定値に一致させるステップを含むことができる。基準波形テーブル1532は、あるいは基準波形ソースと呼ぶこともできる。
【0148】
出力フィードバック1516に基づいて、コンバーター1502は更新テーブル1534を生成する。更新テーブル1534は、基準波形テーブル1532の波形により綿密に一致する出力を提供するためには発生器1540の動作をどのように修正するべきかを示すエントリーまたは点を含んでいる。更新テーブル1534はテーブルとして示されているものの、特定の間隔で修正される(例えば、計測誤差データを反映するために各エントリーが必要に応じて更新される)記憶されたテーブルであることができ、または更新間隔毎に新たに生成することができる。更新テーブル1534は、あるいは更新データソースと呼ぶこともできる。
「更新」は、旧い値の修正であることができ、値の置換であることができ、またはコントローラー1530がアクセスするメモリー内の異なる場所に記憶させることもできる。一実施形態において、更新テーブル1534の各値は、点集合のうちの各々について「増加」「減少」、または変化なしを示す。このような値は、発生器1540の出力を制御して出力信号を所望の理想波形に収束させるハードウェアに適用される。
【0149】
一観点からは、コンバーター1502は、5つの機能または構成要素を有するとみなすことができる。これらの機能は、特定のブロック図によってシステム1500内に描写されているものの、これらの機能のうちの1つ以上を実施するために、異なる構成および様々な異なる構成要素を使用できることが理解されるであろう。制約としてではなく論述を目的として、これらの機能を、「機能1」、「機能2」、等々といった参照に従って記述する。このような取り決めは説明する機能または構成要素の内容を参照するための単なる簡略表記であり、順番または重要性に関して必ずしも何かを示すものではないことが理解されるであろう。
【0150】
機能1は、特定のタイミング、位相調整、またはその他の周波数情報を組み入れる手段を含むことができる。この手段は、上記に言及した出力同期信号1514に基づく入力同期データまたは、負荷同期入力を発生させこれを受け取るハードウェアおよび/またはソフトウェアを含む。機能2は基準波形テーブル1532を含み、これには出力波形1508の理想形を表すデータのテーブルまたはソフトウェア内の等式を含めることができる。機能3はコントローラー1530を含み、これは発生器1540によって発生した実際の出力波形を基準波形テーブル1532によって代表される理想的なテーブル形式の表現と比較するソフトウェアアルゴリズムであることができ、またはこれを含むことができる。機能4は、更新テーブル1534によって代表される更新データを計算し、ないしは別の方法で選択および生成する、コントローラー1530内のアルゴリズムを含む。機能5は、更新テーブル1534からの更新データを使用して所望の形状、比率、タイミング、および位相の出力波形1508を発生させる発生器1540を含む。
【0151】
機能1に関して、特定のタイミング、位相調整、またはその他の周波数情報が、コントローラー1530内の比較アルゴリズムおよび更新アルゴリズムに同期情報を提供する。情報は、テーブル、等式、ハードウェアがリアルタイムで監視する信号のサンプリング、またはその他のソースによってもたらされる。
【0152】
機能2に関して、基準波形を表すデータは、テーブル内であれば、任意の長さおよび任意の形式であることができ、整数または非整数であることができる。このようなテーブルは、ランタイムで動的に生成することもでき、またはコンパイル時にハードコーディングすることもできる。表示される波形の理想形は、正弦波または非正弦波であることができる。波形は、時間領域内で等間隔もしくは不等間隔な、時間軸の順方向もしくは逆方向の、またはこれらの任意の組み合わせのデータ値によって表すことができる。あるいは、波形は、周波数領域内で任意の方法で体系化されたデータ値によって表すことができる。データは、圧縮してもしなくてもよい。データは計算されたデータの設定値ではなく等式によって表すことができ、または部分的に等式で部分的にテーブルで表すこともできる。一実施形態において、テーブル内に記憶されている設定値は、等式の計算結果である。データは、ランタイムの処理中に変更して理想波形の形を異なる理想波形に変えることができる。ランタイムで変更され場合、基準波形テーブル1532内の値を修正するかまたは異なる値で置換することができる。データは、入力波形と全く同一の位相に揃えることもでき、または位相をシフトさせることもできる。
【0153】
機能3に関して、コントローラー1530は、任意の従来型のまたは標準的な比較アルゴリズムを含むことができる。制御アルゴリズムは、ハードウェアによってサンプリングされ、標準的なまたは非標準的なサンプリング技法によってソフトウェアデータ値に変換された出力波形を表すデータ値を比較する。一実施形態において、コントローラーは、テーブルの理想設定値または等式計算結果を同期情報と点毎に比較し、誤差データを点毎に生成する。一実施形態において、コントローラーは、点毎の代わりに、複数の点を一度に処理することができる。
【0154】
機能4に関して、コントローラー1530は、任意の標準的なまたは非標準的な技法を使用して新しいデータを作成または生成する選択アルゴリズムを含む。一実施形態において、選択アルゴリズムは、計算を実行するステップを伴う。あるいは、選択アルゴリズムは、処理または計算を実行せずに、単にデータを選択することができる。選択アルゴリズムは、設定値のテーブル内のデータ値を置換し、または別の記憶エリアを使用することを選んでテーブル内のデータ値をそのままにしておくことができる。選択アルゴリズムは、その選択処理の一環として、データを時間領域から周波数領域に変換することができ、その逆もまたできる。アルゴリズムは、適用されたときに出力波形を補正するデータ値を識別する点において、誤差更新機構(例えば、アルゴリズム)を提供する。このように、データ値の適用後の出力波形は、好ましい理想波形により近くなる。
【0155】
機能5に関して、更新テーブル1534によって代表される新しいデータ値は、標準的な処理によって発生器1540内のハードウェアに適用されて出力波形の生成を駆動する。一実施形態において、新しデータ値は、PWM機構または別個のデータ値をアナログ出力形式に変換するその他任意の機構により適用される。
【0156】
図16は、局所電源から送電網に連結している負荷へと力率調節を伴って電力を転送するシステムの実施形態のブロック図である。システム1600は、エネルギー源、負荷、および送電網に結合している、送電網に連結しているコンバーターを図示している。システム1600のコンバーター1620は、本明細書内で説明する任意の実施形態によることのできる制御ノード用のコンバーターを表している。システム1600は、準安定的なエネルギー源1610、コンバーター1620、負荷1602、および公益事業体の送電網1630を含む電力システムを表している。負荷1602は、送電網1630に連結している需要家を表している。送電網1630は、本明細書内で説明する送電網ネットワークの任意の実施形態であることができる。準安定的なエネルギー源1610(例えば、太陽電池/アレイ、風力発電機、またはその他の時変電源もしくはグリーン電源)およびコンバーター1620は、PCCと同じ側にあり負荷に電力を供給するので、負荷1602に対して局所的である。一実施形態において、準安定的なエネルギー源1610は、変動性の/不安定なDC電力源を生成する。電源は、時変であってもよく、および/または環境条件によって利用可能な電力が変化してもよい。コンバーター1620は、動的電力抽出器およびインバーター装置を表している。
【0157】
エネルギー源1610は、変動性のまたは不安定な電源である。システム1600はコンバーター1620を含み、このコンバーター1620はDC/ACインバーター1624に結合しているDC/DCコンバーター1622を含み、この双方がコントローラー(CPU)1640に結合し、コントローラー1640によって制御されている。さらに、開閉機器S1626(例えば、リレー)が、インバーターを負荷1602および送電網1630に選択的に接続する。通常運転時には、エネルギー源1610からDC電力が引き出され、コンバーター1620によって抽出され、逆変換され、動的に処理されることにより、高調波歪みおよび変動性が比較的小さく、送電網1630からのAC電圧信号に対して所望の位相の最大AC電流が動的に生成される。発生したAC電流を送電網のAC電圧と同相にすることにより、負荷1602に供給される公益事業体と同じまたはそれに近い力率のAC電力が生成され、即ち、負荷が引き出す全無効電力は送電網1630によってもたらされる。エネルギー源1610が負荷1602の有効電力要求を満たすだけの十分なエネルギーを生成する場合、コンバーターは負荷が送電網1630から引き出すAC電力のみを排他的にまたはほぼ排他的に無効電力のみとすることができる。エネルギー源1610が負荷1602の電力需要を完全に満たすだけの十分なDC電力を生成できない場合、コンバーター1620は、インターフェースを調節して送電網1630から負荷1602に有効電力が流れることを可能とすることができる。
【0158】
一実施形態において、コンバーター1620は、送電網のAC電圧信号に対してある程度まで意図的に位相をずらしてAC電流を発生させることができる。このように、単一のコンバーター1620が、任意の所望の力率で電力を供給して送電網1630上の電力の状態を補償することができる。一実施形態において、複数のコンバーター1620が同一のインターフェースで並列に動作することができ、各々が同一の力率で電力を発生させることができ、または各々を有効電力および無効電力の異なる組み合わせを生成するように動的に設定することができる。
【0159】
エネルギー源1610が負荷1602を満足させるだけの十分な電力を発生させる場合、インバーターの電流および送電網の電流は送電網1630に向かって流れる。一般的に、電力は概して送電網に返すことができ、送電網に提供された電力に応じて需要家に適切に補償することができる。一実施形態において、返還シナリオには、本明細書内で説明する任意の実施形態に従って、近隣の需要家に電力を提供することを含むことができる。
【0160】
一実施形態において、電力計1632は、負荷1602によって消費される有効電力を計測するメーターを表している。一実施形態において、VAR計1634は、負荷1602によって消費される無効電力を計測するメーターを表している。一実施形態において、電力計1632およびVAR計1634は、物理的におよび/または機能的に1つのメーターによって統合することができる。メーターは、送電網1630側に置くことができる。一実施形態において、(メーター1632および1634を統合した)メーターは、送電網に接続するようにPCCと共に配置され、コンバーター1620と共に制御ノードの一部である。このようなメーターは、本明細書内で説明する任意の実施形態によることができる。一実施形態において、メーター1632は、通常、電圧および電流を計測し、これらの計測値から電力を計算する。送電網1630から無効電力のみが引き出される場合、電力計1632は負荷1602による電力使用量を一切計測しないことは理解されるであろう。VAR計1634は、負荷における送電網の電力の電流および電圧の位相を計測し、計測値に基づいて計算を実行することなどにより、引き出された無効電力を計測し計算することができる。
【0161】
既述のように、一実施形態において、コンバーター1620から負荷1602に供給される力率は、送電網1630に対して1.0またはその近辺である。このように、コンバーター1620は、力率補正を実行することができる。一実施形態において、コンバーター1620は、高調波歪み補正を提供することができる。一実施形態において、コンバーター1620は、テーブル式高調波歪み補正を提供する。以前の高調波歪み技法は、ハードウェア式の方法または高速フーリエ変換(FFT)を使用する。プロセッサーまたはコントローラー上で実施されるテーブル式の方法はインバーター当たりのコストを低減し、一般的なハードウェアによる実施態様よりもより良く調節でき、システム1500を参照して説明したものによることができる。
【0162】
コンバーター1620のインバーター1624は、所望の力率(公益事業体であれ別のものであれ)に従って出力を発生させる。一実施形態において、インバーター1634は、負荷1602との接続点での運転状態を監視し、エネルギー源および電流負荷の変化に応じてリアルタイムかつ動的にエネルギー源1610からの最大電力を提供する。このように、エネルギー源1610が発生させるエネルギーの量が変化すると、コンバーター1620はそのエネルギー源に基づいてリアルタイムに出力を修正することができる。さらに、負荷1602の抵抗状態によっては(例えば、掃除機などの誘導電動機が作動している場合)、コンバーターは自動的に電力出力を変化させて負荷の需要に追従することができる。このような変化はすべて、状態が変化するにつれてリアルタイムに発生することができる。一実施形態において、コンバーター1620は高調波歪みの全体的な高調波歪み制御を規格が求めるものよりも効率的に提供する出力調節を提供することができ、したがって、変動性で不安定な電源および変化する負荷に対して動的に調節することにより、規格に準拠しシステムの性能を向上させることができる。
【0163】
コンバーター1620の出力電圧および出力電流の位相が(例えば、位相同期ループまたは発電サンプリングおよびフィードバック機構によって)相互に一致し、および送電網の電圧と一致する場合、必要な無効電力はすべて送電網から吸収されることは理解されるであろう。エネルギー源1610がより大きな有効電力を提供するほど、負荷1602では局所的に送電網電圧と送電網電流の位相がより大きくずれる。全有効電力が局所的に提供される場合、負荷1602では局所的に、送電網の電圧と電流は位相が90度ずれ、送電網による有効電力の寄与度は0まで低下する(Preal=(Vmax*Imax/2)cos(Vphase-Iphase)であることを想起されたい)。
【0164】
一実施形態において、電力変換器1620のDC/DCコンバーター1622は、装置を2つの部分に分離する破線によって表しているように、入力部分および出力部分を含んでいる。エネルギー源1610に結合している部分は入力部分と呼ぶことができ、DC/ACインバーター1624に結合している部分は出力部分と呼ぶことができる。一実施形態において、コンバーター1622の動作は入力インピーダンスおよび出力インピーダンスを変化させてエネルギー源1610からインバーター1624にエネルギーを転送することである。一実施形態において、コンバーター1622は、電力抽出器と呼ぶことができる。
【0165】
コンバーター1622は、インピーダンス整合して入力に関するインターフェースを変化させて、電圧または電流を特定の値に固定せずに、エネルギー源1610からのエネルギー転送を最大化することができる。むしろ、入力は電力がエネルギー源1610によって生成される何らかの電圧でフローティング状態となることを可能とすることができ、電流は生成される任意の総電力に基づいて整合する。同様に、出力に関して、コンバーター1622は、インピーダンス整合して出力インターフェースを変化させて、インバーターが動作する任意の電圧で必要な何らかの電力を負荷(この場合はインバーター1624)が引き出すことを可能とする。このように、コンバーター1622の出力は、インバーター1624の電圧と整合するようにフローティング状態となり、総電力と整合する電流を発生させることができる。コンバーター1622は、どれだけのエネルギーが利用可能でインバーター1624の電圧がいくらであるかによって大きさが決定される出力電流波形を発生させることができる。このように、出力は負荷と整合するようにフローティング状態にあり、電流または電圧に固定されない。コンバーター1622内の内部ノードはエネルギー貯蔵器として機能することができ、入力インピーダンス整合により内部ノードの効率的な充電が可能となり、出力インピーダンス整合により負荷が内部ノードからエネルギーを引き出すことが可能となる。入力および出力の双方がインダクターおよび/または変圧器を介して内部ノードと結合して、入力および出力を相互におよび内部ノードから分離している。
【0166】
コントローラー1640は、DC/ACインバーター1624から流出するAC電流、および負荷1602に両端に現れる送電網1630の発生電圧を監視することができる。コントローラー1640は、コンバーター1622のインターフェースの少なくとも1つの電気的パラメータを制御してその動作を制御する。パラメータ1642および/または1644は、コンバーター1620内のコンバーター1622の動作を制御するためのコントローラー1640からの制御を表している。一実施形態において、パラメータ1642および/または1624は、入力および/または出力インピーダンス整合を変化させ、その結果、内部ノードの充電および内部ノードからの引き出しを制御する、電力抽出の切り替え信号のデューティサイクルであることができる。各パラメータの修正は、監視する電流および電圧の品質に依存することができる。コントローラー1640は、さらに、負荷1602が使用するために好適に調節された電力が利用可能な場合、開閉機器S1626を制御して負荷を(コンバーター1622およびインバーター1624によってエネルギー源1610から)生成された電力に結合する。
【0167】
一実施形態において、コンバーター1620は、コンバーター1620の動作を調節して所望の無効電力を発生させるための、力率を制御するテーブル式の方法を提供するテーブル1650を含んでいる。テーブルは、有効電力および無効電力の所望の組み合わせを実現するための、計測されたシステムからの入力状態に基づいて取得したエントリーを含むことができる。送電網と連結しているノードからのフィードバックは、電圧ゼロ交差、電圧振幅、および電流波形の情報を含むことができる。コントローラー1640は、このような情報と共に、テーブル1650を使用してコンバーター1622および/またはインバーター1624の動作を調節する。テーブルは、システムが生じさせようと試みる理想化された出力信号を提供する設定値を含むことができる。出力性能を入力電力の理想化された表現に一致させることにより、従来の方法で単に出力をフィルタリングし調節するように試みるよりもより良いシステム性能が可能となる。
【0168】
一実施形態において、システム1600は、特定のエネルギー源1610を用いずに適用することができる。例えば、コンバーター1620を送電網1630から電力を受け取るように結合させ、負荷1602が必要とする有効電力および無効電力の任意の組み合わせを提供する、負荷1602への出力を発生させることができる。一実施形態において、コンバーター1622は、AC入力を受け取るように調節することができる。一実施形態において、コンバーター1622との接続をAC/DCコンバーターなどのハードウェアで構成して送電網からDC電力を発生させることができる。しかし、このような変換は幾分かの非効率を招くことが理解されるであろう。一実施形態において、コンバーター1622は、送電網の電力と内部ノードとの接続を可能とする入力変圧器で実施することができる。
【0169】
図17は、分散送電網のノードの実施形態のブロック図である。ノード1700は、制御ノードを表しており、本明細書内で説明する任意の実施形態に係る制御ノードの例であることができる。ノード1700は、その動作を可能とする様々なハードウェアの要素を含んでいる。一般的に、ハードウェアは、プロセッサー1710、配電ハードウェア1720、および電力監視ハードウェア1730として説明することができる。これらの要素の各々は、特定の種類および機能性のハードウェアを含むことができ、これらのうちのいくつかは
図17のその他の要素によって表すことができる。
【0170】
プロセッサー1710は、ノード1700内の1つ以上のコントローラーまたはプロセッサーを表している。一実施形態において、ノード1700は、電力計、電力変換器、およびこれら2つの要素とインターフェースし送電網と結合する制御ハードウェアを含んでいる。一実施形態において、各々別個の品目が、計量装置内のコントローラーおよび電力変換器内のコントローラーなどのコントローラーを含んでいる。電力変換器は、電力抽出器用コントローラー、インバーター用コントローラー、およびこれらを管理するための別のコントローラーを含むことができる。このように、コントローラー1710は、複数のコントローラーまたはノード1700が電力を監視し配電することを可能とする制御論理回路の要素を表すことができる。
【0171】
プロセッサー1710は、上述の任意のハードウェアを含むノード1700内のハードウェアの動作を管理および制御する。プロセッサー1710は、ノード1700に最新式送電網インテリジェンス(modern grid intelligence:MGI)を提供するように遂行することができる。一実施形態において、プロセッサー1710は、論理を遂行してノード1710に関して説明する機能のうちの少なくともいくつかを提供する。説明する機能がハードウェアによって提供される範囲において、プロセッサー1710をハードウェアの動作を制御するコントローラーとみなすことができる。一実施形態において、プロセッサー1710は、ノード1700の制御ノードオペレーティングシステムを遂行する。一実施形態において、オペレーティングシステムは、最新式送電網インテリジェンスオペレーティングシステム(Modern Grid Intelligent Operating System:MGIOS)である。MGIOSは、以下のうちの少なくともいくつか含む機能および利益を提供することができる。
【0172】
MGIOSは、計算およびノード1700の動作の全般的な制御を提供することができる。一実施形態において、MGIOSは、ノードがデータを収集し、データをノードの外部に送る決定を下すことを可能とする。一実施形態において、MGIOSは、データを使用してPCCと同じ側に結合している局所的な要素などの局所的なシステムを制御することができる。一実施形態において、MGIOSはまた、公益事業体の管理装置および/または送電網ネットワーク内のその他のノードなどの外部実体による使用に供するためにデータを送る。
【0173】
一実施形態において、MGIOSは、ノード1700のディスパッチの機能性を制御する。ディスパッチするステップは、データ、中でもどのように配電するかを決定するために使用される警報を提供し受け取るステップを含むことができる。一実施形態において、MGIOSは、送電網ネットワークのノードが送電網の運転を制御するノード同士の間で情報を共有することを可能とする自律的なディスパッチを可能とすることができる。自律的なディスパッチとは、ディスパッチ情報を発生させまたは配信するために、集中送電網の事業者が関与する必要がないことを指す。
【0174】
一実施形態において、MGIOSは、制御の機能性を可能とする。制御は、人間、クラウド、および/または自動化された制御論理によって行うことができる。一実施形態において、MGIOSは、ノード1700が、個別のノードとして独立して機能し、および/または送電網ネットワーク内のその他の制御ノードと集合的に機能することを可能とする。各々の独立した動作により、分散ネットワークが集中発電所を必要とせずに、および/または集中送電網管理装置の関与を最小限に抑えて機能することを可能とすることができる。
【0175】
一実施形態において、MGIOSは、自力起動動作を可能とすることができる。自力起動動作とは、ノード1700が送電網のそのセグメントをオフライン状態からオンラインに復帰させることができることである。このような動作は、送電網ネットワークの各ノード1700が送電網ネットワーク内の上流側および下流側の状態を独立して監視することなどにより、集中送電網管理装置から自立して起こることができる。このように、ノード1700は条件が許せば、送電網の事業者が電力をノードへと下流に配電することを制御するのを待つ必要なく、オンラインとなることができる。このように、ノード1700は、送電網との間の電力の流れの送受を制御することにより、そのノードのセグメントをインテリジェントにオンラインに復帰させることができるので、起動時の問題を防止することができる。
【0176】
一実施形態において、MGIは、ノード1700が複数の線間電圧を提供することを可能とする。一実施形態において、プロセッサー1710の制御論理によって実現することのできる送電網インターフェース1780は、複数の異なるトリップ点電圧に合わせて設定することができる。各トリップ点電圧は、異なる制御イベントを提供することができる。各制御イベントは、プロセッサー1710に制御動作を行わせて制御ノードのインターフェースを調節させることができる。インターフェースは、負荷とのインターフェースおよび/または送電網ネットワークとのインターフェースであることができる。
【0177】
一実施形態において、MGIは、送電網ネットワーク内の相互接続を節約することができる。一実施形態において、ノード1700は、逆流を制限することにより、および/または出力を調節して送電網に提示される電力の種類を変えることにより、送電網ネットワーク上への逆流を制御する。一実施形態において、ノード1700は、従来的には集中発電所からの電力の流れを制御する公益事業体の送電網管理装置が行う公益事業体の制御機能を提供する。ノード1700は、送電網制御機能を提供して分散送電網を可能とすることができる。
【0178】
配電ハードウェア1720は、送電線、コネクター、位相同期ループ、誤差補正ループ、変圧器などのインターフェース保護もしくは分離装置、および/または制御ノードがエネルギーを1つの点から別の点へと転送することを可能とし、インターフェースを制御して送電網全体を通じて電力がどのように流れるかを制御することを可能とし、もしくはその他の動作を可能とするその他のハードウェアを含んでいる。一実施形態において、電力変換器は、配電ハードウェア内に含めることができる。電力変換器はスマートインバーターまたはマイクロインバーターであることができ、システム1500および1600に関して説明するものによることができる。
【0179】
電力監視ハードウェア1730は、コネクター、信号線、サンプリングハードウェア、フィードバックループ、計算ハードウェア、ならびに/または制御ノードが1つ以上の送電網の状態および/もしくは負荷の状態を監視することを可能とするその他のハードウェアを含んでいる。送電網の状態は、電圧レベル、位相、周波数、および送電網の運転に関するその他のパラメータであることができ、またはこれらを含むことができる。負荷の状態は、電圧、電流、位相、周波数、および負荷による電力需要に関するその他のパラメータであることができ、またはこれらを含むことができる。
【0180】
一実施形態において、ノード1700は、送電網制御装置1740を含んでいる。送電網制御装置は、送電網ネットワークとのインターフェースを制御するハードウェアおよび論理(例えば、ソフトウェア/ファームウェア論理、設定など)を表している。一実施形態において、送電網インターフェース1780は、送電網ネットワークのインターフェースを表している。送電網制御装置1740は、有効電力制御装置1742および無効電力制御装置1744を含むことができる。有効電力制御装置および無効電力制御装置は、本明細書内で説明する任意の実施形態によることができる。一実施形態において、有効電力制御装置1742は、送電網に有効電力を提供する論理(ハードウェアおよび/またはソフトウェア)を含んでいる。一実施形態において、無効電力制御装置1744は、送電網に無効電力を提供する論理を含んでいる。送電網に電力を提供するステップは、インターフェースを変化させて送電網に流すことが望まれる種類および組み合わせの電力を生じさせるステップを含むことができる。
【0181】
一実施形態において、ノード1700は、局所的な制御装置1750を含んでいる。局所的な制御装置は、負荷または送電網ネットワークに結合しているPCCの下流側の品目とのインターフェースを制御するハードウェアおよび論理(例えば、ソフトウェア/ファームウェア論理、設定など)を表している。局所的な制御装置1750は、有効電力制御装置1752および無効電力制御装置1754を含むことができる。有効電力制御装置および無効電力制御装置は、本明細書内で説明する任意の実施形態によることができる。一実施形態において、有効電力制御装置1752は、負荷に有効電力を提供する論理(ハードウェアおよび/またはソフトウェア)を含んでいる。一実施形態において、無効電力制御装置1754は、負荷に無効電力を提供する論理を含んでいる。負荷に電力を提供するステップは、インターフェースを変化させて局所的なエネルギー源および/または送電網から負荷に流すことが望まれる種類および組み合わせの電力を生じさせるステップを含むことができる。
【0182】
公益事業体の送電網は、使用量だけではなく使用時刻にも基づく料率構造を有することは理解されるであろう。例えば、公益事業体の送電網は、階層的料率を有することができる。一実施形態において、プロセッサー1710は、送電網制御装置1740および/または局所的な制御装置1750を用いてインターフェースをどのように変化させるかに関する計算を行うときに料率構造情報を織り込むことを可能とする料率構造情報を含んでいる。料率構造情報を織り込むステップは、所与の状況下でどのような種類の(有効または無効)電力がより価値を有するかを決定するステップを含むことができる。このように、プロセッサー1710は、エネルギー生成の価値を最大化し、および/またはエネルギー消費のコストを最小化することができる。階層的料率構造が存在する実施態様において、プロセッサー1710は、消費を可能な限り最も低い階層に維持する方法および電力を可能な限り最も高い料率で提供する方法に基づいて、送電網制御装置1740および/または局所的な制御装置1750に指示を出すことができる。一実施形態において、プロセッサー1710は、送電網制御装置1740および/または局所的な制御装置1750の動作を制御するときに、公益事業体または送電網ネットワークの要件を考慮に入れる。例えば、送電網は、電力がどのように提供されおよび/または消費されるべきかに影響を与える削減策またはその他の条件を有することができる。一実施形態において、ノード1700は、負荷が動的にオンラインとなりオフラインとなるときに電力出力を調節することができる。例えば、局所的な制御装置1750は、負荷がオフラインとなるときに出力を低減させることができ、負荷がオンラインとなるときに出力を増加させることができる。
【0183】
計量装置1760は、ノード1700の計量機能を表しており、本明細書内で説明する任意の実施形態に係るメーターを含むことができる。一実施形態において、計量装置1760は、負荷制御計量装置1762を含むことができる。負荷制御装置1762は、負荷の電流需要を監視する論理を含むことができる。一実施形態において、計量装置1760は、シグネチャー管理装置1764を含むことができる。シグネチャー管理装置1764は、負荷に何が起こっているかを監視するためにエネルギーシグネチャーを生成し、記憶し、使用する論理を含んでいる。より具体的には、シグネチャー管理装置1764は、本明細書内で説明する任意の実施形態に係る複素電流ベクトルを含むエネルギーシグネチャーを管理することができる。
【0184】
従来は、送電網に接続するためには正味エネルギー計が必要であった。しかし、より新しい規制により、特定の機能が満たされない限り、送電網との接続が全くできなくなる可能性がある。計量装置1760は、ノード1700がインバーターまたはコンバーターを制御してライン上で識別される特定の負荷および/または特定のエネルギーシグネチャーに応じることを可能とすることができる。ノード1700は、計量装置1760が検出するものに基づいて、エネルギー生成および負荷による消費のリアルタイムの制御を提供することができる。
【0185】
一実施形態において、ノード1700は、データインターフェース1770を含んでいる。一実施形態において、データインターフェース1770は、データセンターまたはデータ管理装置に送信する制御データおよびデータセンターまたはデータ管理装置から受信するデータを制御するためのデータ管理装置1772を含んでいる。データ管理装置1772は、データセンターまたは類似のデータソースに要求することによりデータを収集することができる。一実施形態において、データインターフェース1770は、データセンター、集中送電網管理装置、送電網ネットワーク内のその他のノード、および/またはその他のデータソースとのインターフェースを管理することのできる外部管理装置1774を含んでいる。一実施形態において、データ管理装置1772は、データソースから送られるデータに応じてデータを受け取る。一実施形態において外部管理装置1774は、データソースにデータデータを要求する。要求は、数ある標準通信プロトコルおよび/またはプロプライエタリーなプロトコルのうちのいずれかによることができる。通信のための媒体はノード1700とデータソースとを通信可能に結合する任意の媒体であることができる。一実施形態において、外部管理装置1774は、一定間隔でデータソースと通信する。一実施形態において、外部管理装置1774は、外部データが利用可能となったことの指示を受け取るにせよ、または局所的なデータが送信待ち状態であることをデータ管理装置1772が指示するにせよ、さらなるデータが利用可能となるなどのイベントに応じてデータソースと通信する。データインターフェース1770は、市場用途のためのリアルタイムのデータを可能とすることができる。一実施形態において、データインターフェース1770は、一実施形態においてエネルギーシグネチャーに関する電流を識別するために使用することのできるデータ収集を提供する。
【0186】
一実施形態において、ノード1700は、送電網インターフェース1780を含んでいる。一実施形態において、送電網インターフェース1780は、公益事業体の送電網とインターフェースするための公益事業体インターフェース1782を含んでいる。一実施形態において、送電網インターフェース1780は、分散送電網ネットワークとインターフェースするための仮想インターフェース1784を含んでいる。送電網インターフェースの動作は最新式送電網インテリジェンス((modern grid intelligence:MGI)と呼ぶことができ、プロセッサー1710によるMGIOSの遂行を指す。送電網インターフェース1780は、従来の公益事業体の送電網インフラストラクチャーであれ、および/または分散送電網ネットワークであれ、送電網インフラストラクチャーにノード1700を結合する任意の種類のインターフェースを含むことができる。一実施形態において、送電網インターフェース1780は、ノード1700が電力の方向を知ることを可能とすることができる。一実施形態において、送電網ネットワークは、電力の方向を示す給電線からの信号を提供するなど、ディスパッチ情報を提供する。ノード1700は、送電網ネットワーク内の電力潮流の方向に基づいてその動作を管理することができる。送電網インターフェース1780はまた、電力潮流の方法の変化を動的に監視することができる。
【0187】
一実施形態において、MGIOSは、ノード1700がPCCの下流側に接続されている1つ以上の要素の動作を調節して送電網の運転を縮小することを可能とする。PCCの下流側に結合している空調装置の例について検討する。一実施形態において、MGIOSは送電網ネットワークに高負荷が掛かっていることを検出することができ、送電網の負担を5~10分の間緩和するためにすべての空調装置を減速させるべきことを決定することができる。このように、機器を停止する必要はなく、送電網はどのセグメントへの電力も遮断する必要がない。その代わりに、送電網が自ら復帰することができるように、選択された負荷への電力をある期間低減することができる。このように、MGIOSは、負荷および/または電源を制御することができる。このような操作により、例えば供給を完全に遮断する代わりに電力需要を軽減することにより、ブラウンアウトまたは輪番停電を削減または防止することができる。
【0188】
ノード1700は動作のために一定量の電力を必要とすることは理解されるであろう。ノード1700が消費する電力は風袋損失と呼ぶことができ、これは、ノードが電力を発生していないときに制御装置がどれだけの電力を消費するかを示す。一実施形態において、ノード1700は、風袋損失を低減するためのスリープ機能を含んでいる。例えば、ソーラーなどの準安定的なエネルギー源を制御するノードは、太陽が出ていないときにはスリープすることができ、太陽が出たときにウェイクアップすることができる。一実施形態において、ノードは、低電力状態を初期設定とし、太陽光検出装置からの信号、イーサネット(登録商標)を介した電力、またはこれをウェイクアップさせるその他何らかの外部信号トリガーに応じてウェイクアップすることができる。一実施形態において、ノードは、夜間のスリープサイクル中にウェイクアップしてアップグレードを実行しまたはその他のアンシラリーサービスを実行することができる。
【0189】
図18は、分散送電網の制御を提供する処理の実施形態のフロー図である。一実施形態において、分散送電網の制御を提供する処理1800は、計量装置および/または電力変換器の実施形態が実行する動作を含んでいる。一実施形態において、制御ノードは計量機能を含み、1802で、送電網ネットワークが供給するエネルギーをPCCにおいて計測する。送電網ネットワークは、本明細書内で説明する任意の送電網ネットワークであることができる。一実施形態において、送電網ネットワークは公益事業体の送電網を含み、または公益事業体の送電網との接続を含んでいる。計測するステップは、本明細書内で説明する任意の実施形態によることができる。一実施形態において、制御ノードは、1804で、PCCの下流側の電力需要を監視する。一実施形態において、下流側の機器には局所的なエネルギー源またはその他の電源が含まれ、制御ノードは、1806で、PCCの下流側での発電を監視する。エネルギー源は顧客の施設上の局所的なエネルギー源であることができ、および/または近隣地域内にある近隣地域電源を含むことができる。
【0190】
一実施形態において、制御ノードは、1808で、PCCのネットワークノードが送電網の規制に準拠しているかを決定する。送電網の規制としては、過電圧状態(過電圧の大きさおよび/もしくは電圧のタイミング)、波形形状、周波数、力率ならびに/またはその他の状態に関する制約を挙げることができる。制御ノードは、コントローラーの中に設定されおよび/または制御ノードのコントローラーによる使用のために記憶された規制制御を含むことができる。規制には、送電網ネットワークが制御ノードに送るパラメータが含まれる場合がある。
【0191】
一実施形態において、1810の「はい」分岐でPCCノードが規制に準拠している場合、制御ノードは、1812で、情報を更新し、監視を継続することができる。1802で、監視を継続するステップが再開される。一実施形態において、情報を更新するステップは、局所的に記憶しおよび/または送電網ネットワークに送信するログまたはレポート情報を作成するステップを含むことができる。一実施形態において、情報を更新するステップは、他のノードによって共有される情報を含むことのできる送電網ネットワークの集中データセンターにデータを送るステップを含むことができる。一実施形態において、制御ノードは、データセンターのデータにアクセスして送電網ネットワーク上の他のノードの状態を決定する。PCCノードにおける規制の準拠は送電網ネットワーク内の他のノードから独立していることができる一方で、一実施形態において、制御ノードは、送電網ネットワーク内の別のノードの規制準拠の欠如に基づいてその動作を調節する決定をすることができる。
【0192】
このように、送電網の規制に自らが準拠していないかまたは別のノードが送電網の規制に準拠していないかに拘わらず、一実施形態において、制御ノードは、1810の「いいえ」分岐で、PCCにおける動作の制御が作用することのできる送電網ネットワーク上に規制準拠の欠如があることを決定する。一実施形態において、制御ノードは、1814で、送電網側からPCCで見たときの送電網とのインターフェースを調節することを決定する。インターフェースを制御するステップは、PCCの送電網ネットワーク側からPCCで見た(例えば、PCC内を振り返って見た)ときのPCCの電気的状態を変化させるステップを含むことができる。ネットワークと接続の仕方がPCCを通る電力の流れ方に影響するので、送電網側から見たときのインターフェースの電気的状態は、PCC内から見えるものとは必ずしも同じではない。インターフェースを制御するステップとは、PCCを通る電力の流れ方を制御するステップを指す。制御するステップは、制御ノードを用いてPCC自体における動作を変更するステップ、および/または下流側の1つ以上の制御ノードの動作を変更して、ネットワークセグメントと送電網ネットワークとの間でPCCを通過する電力潮流の集合的な効果が変化するように、PCC全体の電力潮流を変えるステップを含むことができる。
【0193】
一実施形態において、制御ノードは、規制に準拠するための送電網とのインターフェースの調節の仕方を決定する。既述のように、一実施形態において、規制の準拠は、局所的なPCCノードにおける異なるPCCノードの支援のための動的制御による、送電網ネットワークの異なるノードにおけるものであることができる。このように、制御ノードは、1816で、標的PCCにおける規制準拠のために局所的なインターフェースに対して行うべき調節を計算することができる。一実施形態において、標的PCCは、局所的なPCCノードである。一実施形態において、標的PCCは、上流側のPCCノード(即ち、階層の上流側)である。一実施形態において、標的PCCは、公益事業体の送電網の発電所により近いノードであり、したがって、公益事業体の送電網内の上流側であるとみなすことができる。一実施形態において、標的PCCは、公益事業体の送電網の発電所からより離れたノードであり、したがって、局所的なPCCノード内では下流側ではなくても、公益事業体の送電網内の下流側であるとみなすことができる。下流側および上流側はこのように、送電網内の上流側とは公益事業体の発電所により近いまたはこれからより離れたノードを指す、2つの意味を有する場合がある。PCCに対して下流側および上流側とは、分散送電網の階層内の下位側(下流側)からPCCに結合している任意のものまたは分散送電網の階層の上位側(上流側)にある任意のノードを指すことができる。このように、従来の送電網の感覚での上流側とは発電所により近いことを指し、分散送電網における上流側とは階層型分散制御のより上位のレベルを指す。同様に、従来の送電網の感覚での下流側とは発電所からより離れていることを指し、分散送電網における下流側とは階層型分散制御のより下位のレベルを指す。
【0194】
1818の「無効」分岐で制御ノードがその局所的な無効電力を調節すべき場合、制御ノードは、1820で、電力変換器にトリガーをかけて、その無効電力出力を調節させ、および/または局所的なPCCに作用するように要求することができる。一実施形態において、コンバーターは、局所的なエネルギー源による無効電力の発生量を調節することができる。一実施形態において、コンバーターは、負荷に関連する無効電力の消費量を調節することができる。一実施形態において、無効電力の調節とは、複素電流ベクトルに関する電流波形を調節することを指すことができる。1818の「有効」分岐で制御ノードがその局所的な有効電力を調節すべき場合、制御ノードは、1822で、電力変換器にトリガーをかけて、その有効電力出力を調節させ、または局所的なPCCを調節するように要求することができる。一実施形態において電力変換器は、PCCにおける有効電力および/または無効電力の両方を使用を調節することができる。調節後、制御ノードは、1802で、その動作の監視を再開することができる。
【0195】
一態様において、送電網を制御する方法は、公益事業体の送電網との共通結合点(PCC)における発電量および電力需要を、PCCを境に発電量および電力需要と同じ側かつPCCを境に集中送電網管理装置とは反対側において、制御ノードによって監視するステップと、制御ノードと集中送電網管理装置との間のインターフェースをPCCを介して調節してPCCにおける送電網の規制の準拠を維持するステップとを含む。
【0196】
一態様において、送電網を制御する装置は、需要家ノードの共通結合点(PCC)で送電網に結合する送電網接続装置と、PCCの需要家ノード側においてPCCにおける発電量および電力需要を監視するコントローラーと、装置と集中送電網管理装置との間のインターフェースをPCCを介して調節してPCCの需要家ノード側からPCCにおける送電網の規制の準拠を維持する電力変換器とを含む。
【0197】
一態様において、電力計量装置は、需要家ノードの共通結合点(PCC)で送電網に結合する送電網接続装置と、PCCの需要家ノード側でPCCにおける発電量および電力需要を監視するコントローラーと、電力変換器に接続される入出力部(input/output:I/O)とを含み、コントローラーは、I/Oを介して1つ以上の信号を電力変換器に送信して、電力変換器に、電力計量装置による監視に応じて装置と集中送電網管理装置との間のインターフェースをPCCを介して調節させてPCCの需要家ノード側からPCCにおける送電網の規制の準拠を維持させる。
【0198】
前述の3つの段落の方法、装置、および/または電力計量装置に関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、PCCは、顧客の施設と送電網との接続を備えている。一実施形態において、PCCは、複数の顧客の施設を包含する近隣地域と送電網との接続を備えている。一実施形態において、PCCは、送電網の変圧器を備えている。一実施形態において、PCCは、送電網の下流側に少なくとも1つの追加のPCCを含んでいる。一実施形態において、発電量を監視するステップは、顧客の施設にある再生可能エネルギー源によって発電される電力を監視するステップを含んでいる。一実施形態において、インターフェースを調節するステップは、PCCにおける無効電力の位相オフセットを調節するステップを含んでいる。一実施形態において、無効電力の位相オフセットを調節するステップは、PCCと同じ側にある発電リソースからPCCを介して送電網への無効電力出力の量を変化させるステップを含んでいる。一実施形態において、インターフェースを調節するステップは、PCCと同じ側にある発電リソースからPCCを介して送電網への有効電力出力の量を調節するステップを含んでいる。一実施形態において、監視するステップは、送電網管理装置からディスパッチ情報を受け取るステップを含んでいる。
【0199】
一態様において、送電網制御の方法は、送電網ネットワークによって供給されるエネルギーを負荷が結合している共通結合点(PCC)において計量装置を用いて計測するステップであって、計量装置はPCCを境に負荷と同じ側に位置しているものである、計測するステップと、負荷が送電網ネットワークから無効電力を引き出すことを決定するステップと、PCCを境に負荷および計量装置と同じ側にあるエネルギー変換装置を用いて送電網ネットワークから有効電力を引き出すステップと、エネルギー変換装置を用いて送電網ネットワークからの有効電力をPCCの同じ側の無効電力に変換して負荷に供給するステップとを含んでいる。
【0200】
一態様において、送電網システム内の分散制御ノードは、負荷を送電網ネットワークに結合する送電網接続装置と、送電網ネットワークとの共通結合点(PCC)を境に負荷と同じ側に位置する計量装置であって、この計量装置は送電網ネットワークによって供給されるエネルギーをPCCにおいて計測し、負荷が送電網ネットワークから無効電力を引き出すことを決定するものである計量装置と、計量装置からの指示に応じて送電網ネットワークから有効電力を引き出し、送電網ネットワークからの有効電力をPCCの同じ側の無効電力に変換して負荷に供給するための、PCCを境に負荷および計量装置と同じ側にあるエネルギー変換装置とを含んでいる。
【0201】
一態様において、電力グリッドシステムは、共通結合点(PCC)の同じ側に電気的に結合している複数の負荷と、送電網ネットワークが供給するエネルギーをPCCにおいて計測し、負荷のうちの少なくとも1つが送電網ネットワークから無効電力を引き出すことを決定するための計量装置を含む、PCCにおいて複数の負荷に結合している制御ノードと、計量装置からの指示に応じて送電網ネットワークから有効電力を引き出し、送電網ネットワークからの有効電力をPCCの同じ側の無効電力に変換して少なくとも1つの負荷に供給するためのエネルギー変換装置とを含んでいる。
【0202】
前述の3つの段落の方法、分散制御ノード、および/または送電網システムに関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、送電網ネットワークは、公益事業体の送電網を備えている。一実施形態において、負荷は、PCCに結合している複数の負荷のうちの1つである。一実施形態において、負荷が無効電力を引き出すことを決定するステップは、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷の複素電流ベクトルを含む、負荷に固有のエネルギーシグネチャーを識別するステップをさらに含んでいる。一実施形態において、負荷が無効電力を引き出すことを決定するステップは、負荷が進み無効電力または遅れ無効電力を必要とするか否かを決定するステップをさらに含み、有効電力を無効電力に変換するステップは、この決定するステップに基づいて進み電力または遅れ電力のいずれかを発生させるステップを含んでいる。一実施形態において、送電網ネットワークから有効電力を引き出すステップは、送電網ネットワークから有効電力のみを引き出すステップと、有効電力を無効電力に変換することにより負荷の必要とするすべての無効電力を供給するステップとを含んでいる。一実施形態において、PCCで供給される電力を計測し、負荷が送電網ネットワークから無効電力を引き出すことを決定するステップは、計量装置で受け取る送電網ネットワークのデータセンターからの制御情報に応じて計測し決定するステップを含んでいる。一実施形態において、データセンターから受け取る制御情報に応じて計測し決定するステップは、公益事業体の送電網の集中管理装置のコントローラーから情報を受け取るステップを含んでいる。
【0203】
一態様において、送電網ネットワークとインターフェースする方法は、送電網ネットワークとの共通結合点(PCC)の需要家側に結合している局所的なエネルギー源を用いて局所的な有効電力を発生させるステップと、送電網ネットワークに無効電力を提供することにより調節することのできる送電網ネットワークの状態を識別するステップと、PCCの需要家側にあるエネルギー変換装置を用いて有効電力をPCCの需要家側の無効電力に変換するステップと、無効電力をPCCを介して送電網ネットワークに供給するステップとを含んでいる。
【0204】
一態様において、送電網システム内の需要家ノードは、需要家ノードを共通結合点(PCC)の需要家側の送電網ネットワークに結合させる送電網接続装置と、有効電力を発生させるための、PCCの需要家側に結合している局所的なエネルギー源と、局所的なエネルギー源からの有効電力をPCCの需要家側の無効電力に変換し、無効電力をPCCを介して送電網ネットワークに供給するための、PCCの需要家側に結合しているエネルギー変換装置とを含んでいる。
【0205】
一態様において、送電網システムは、送電網システムの送電網ネットワークとの共通結合点(PCC)の需要家側に結合している、有効電力を発生させる局所的なエネルギー源と、送電網ネットワークに無効電力を提供することにより調節することのできる送電網ネットワークの状態を識別する計量装置を含む、PCCにおいて局所的なエネルギー源に結合している制御ノードと、局所的なエネルギー源からの有効電力をPCCの需要家側の無効電力に変換し、無効電力をPCCを介して送電網ネットワークに供給するためのエネルギー変換装置とを含んでいる。
【0206】
前述の3つの段落の方法、需要家ノード、および/または送電網システムに関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、送電網ネットワークは、公益事業体の送電網を備えている。一実施形態において、局所的なエネルギー源を用いて局所的な有効電力を発生させるステップは、太陽発電システムにおいて有効電力出力を発生させるステップを含んでいる。一実施形態において、局所的なエネルギー源を用いて局所的な有効電力を発生させるステップは、顧客の施設のエネルギー源を用いて有効電力出力を発生させるステップを含んでいる。一実施形態において、状態を識別するステップは、PCCの需要家側の計量装置を用いてPCCにおいて送電網の状態を計測するステップをさらに含んでいる。一実施形態において、状態を識別するステップは、PCCの送電網側からディスパッチ情報を受け取るステップをさらに含んでいる。一実施形態において、ディスパッチ情報を受け取るステップは、送電網ネットワークの分散制御ノードからディスパッチ情報を受け取るステップを含んでいる。一実施形態において、ディスパッチ情報を受け取るステップは、データセンターからディスパッチ情報を受け取るステップを含んでいる。一実施形態において、ディスパッチ情報を受け取るステップは、公益事業体の送電網のコントローラーからディスパッチ情報を受け取るステップを含んでいる。一実施形態において、有効電力をPCCの需要家側の無効電力に変換するステップは、有効電力を進み無効電力に変換するステップを含んでいる。一実施形態において、有効電力をPCCの需要家側の無効電力に変換するステップは、有効電力を遅れ無効電力に変換するステップを含んでいる。
【0207】
一態様において、送電網制御の方法は、送電網ネットワークとの共通結合点(PCC)を境に負荷と同じ側に位置する計量装置を用いて負荷が引き出す高調波を含む電流を計測するステップであって、負荷はPCCの同じ側に電気的に結合している複数の異なる機器のうちの1つを含むものである、計測するステップと、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷の複素電流ベクトルを記録するステップを含む、負荷に固有のエネルギーシグネチャーを生成するステップと、PCCにおいて見たときの高調波に起因する負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減するステップとを含んでいる。
【0208】
一態様において、送電網システム内の分散制御ノードは、負荷を送電網システムに結合させる送電網接続装置であって、負荷は共通結合点(PCC)を境に同じ側に電気的に結合している複数の異なる機器のうちの1つを含むものである、送電網接続装置と、送電網ネットワークとのPCCを境に負荷と同じ側に位置する、負荷が引き出す電流を計測するための計量装置と、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷の複素電流ベクトルを記録するステップを含む、負荷に固有のエネルギーシグネチャーを発生させるコントローラーであって、このコントローラーは、さらに、PCCにおいて見たときの高調波に起因する負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減するものである、コントローラーとを含んでいる。
【0209】
一態様において、送電網システムは、共通結合点(PCC)の同じ側に電気的に結合している複数の負荷と、PCCにおいて複数の負荷に結合している制御ノードであって、この制御ノードは、送電網ネットワークとのPCCを境に負荷と同じ側に位置する計量装置であって、この計量装置は、負荷のうちの少なくとも1つが引き出す電流を計測し、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷の複素電流ベクトルを記録するステップを含む、少なくとも1つの負荷に固有のエネルギーシグネチャーを生成するものである、計量装置を含むものである、制御ノードと、PCCにおいて見たときの高調波に起因する少なくとも1つの負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減するための電力変換器とを含んでいる。
【0210】
前述の3つの段落の方法、分散制御ノード、および/または送電網システムに関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、負荷の高調波によるノイズ寄与度を制御するステップは、PCCを境に負荷と同じ側に結合している局所的なエネルギー源の無効電力出力成分を調節するステップをさらに含んでいる。一実施形態において、負荷の高調波によるノイズ寄与度を制御するステップは、負荷に供給される無効電流成分を調節して負荷に関するエネルギーシグネチャーをオフセットする無効電流を生成するステップをさらに含んでいる。一実施形態において、負荷の高調波によるノイズ寄与度を制御するステップは、負荷の動作電圧の周波数を低下させるステップをさらに含んでいる。一実施形態において、負荷に関する電流引き出し情報をPCCを境に負荷と同じ側にない送電網ネットワーク上の制御装置に送るステップをさらに含んでいる。一実施形態において、負荷に関する電流引き出し情報を制御装置に送るステップは、引き出された電流情報を送電網のコントローラーに送るステップを含んでいる。一実施形態において、負荷に関する電流引き出し情報を制御装置に送るステップは、引き出された電流情報を送電網ネットワークの異なる制御ノードに送るステップを含んでいる。
【0211】
一態様において、送電網ノードにおいて電力を監視する方法は、送電網ネットワークとの共通結合点(PCC)を境に局所的な負荷と同じ側に位置する局所的な制御装置においてディスパッチ情報を取得するステップであって、このディスパッチ情報は、PCCにおける送電網ネットワークの電気的状態を指示するものである、取得するステップと、局所的な負荷に固有のエネルギーシグネチャーを識別するステップであって、このエネルギーシグネチャーは、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷に関する複素電流ベクトルを含むものである、識別するステップと、PCCで見たときの高調波に起因する負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減するステップとを含んでいる。
【0212】
一態様において、送電網システム内の分散制御ノードは、負荷を送電網システムの送電網ネットワークに結合させる送電網接続装置であって、負荷は共通結合点(PCC)の同じ側に電気的に結合している複数の異なる機器のうちの1つを含むものである、送電網接続装置と、PCCにおける送電網ネットワークの電気的状態を指示するディスパッチ情報を取得し、局所的な負荷に固有のエネルギーシグネチャーを識別し、このエネルギーシグネチャーは、基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷に関する複素電流ベクトルを含むものであり、PCCにおいて見たときの高調波に起因する負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減する、コントローラーとを含んでいる。
【0213】
一態様において、送電網システムは、共通結合点(PCC)に電気的に結合している負荷と、PCCを境に負荷と同じ側にある負荷に結合している制御ノードとを含み、この制御ノードは、PCCにおける送電網ネットワークの電気的状態を指示するディスパッチ情報を取得し、局所的な負荷に固有のエネルギーシグネチャーを識別するコントローラーであって、このエネルギーシグネチャーは基本電流の有効電力成分および無効電力成分を識別し、高調波の有効電力成分、無効電力成分、および基本電流に対する角変位を識別する動作に負荷に関する複素電流ベクトルを含むものである、コントローラーと、PCCにおいて見たときの高調波に起因する少なくとも1つの負荷のノイズ寄与度を制御して負荷から送電網ネットワーク上に導入されるノイズを低減する電力変換器とを含んでいる。
【0214】
前述の3つの段落の方法、分散制御ノード、および/または送電網システムに関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、ディスパッチ情報を取得するステップは、送電網上のPCCの異なる側に位置する別の局所的な送電網制御装置から負荷の情報を受け取るステップを含んでいる。一実施形態において、ディスパッチ情報を受け取るステップは、公益事業体のコントローラーから情報を受け取るステップを含んでいる。一実施形態において、ディスパッチ情報を取得するステップは、電圧支援を必要とする送電網ネットワーク上のノードを指示する情報を受け取るステップをさらに含み、PCCが電圧支援を必要とする送電網ネットワークのノードに対して送電網ネットワーク上の下流側にあることを決定するステップと、送電網ネットワークに正の無効電力を提供するステップとをさらに含んでいる。一実施形態において、ディスパッチ情報を取得するステップは、電圧支援を必要とする送電網ネットワーク上のノードを指示する情報を受け取るステップをさらに含み、PCCが電圧支援を必要とする送電網ネットワークのノードに対して送電網ネットワーク上の上流側にあることを決定するステップと、送電網ネットワークに負の無効電力を提供するステップとをさらに含んでいる。一実施形態において、負荷の高調波によるノイズ寄与度を制御するステップは、PCCを境に負荷と同じ側に結合している局所的なエネルギー源の無効電力出力成分を調節するステップをさらに含んでいる。一実施形態において、負荷の高調波によるノイズ寄与度を制御するステップは、負荷に供給される無効電流成分を調節して負荷に関するエネルギーシグネチャーをオフセットする無効電流を生成するステップをさらに含んでいる。
【0215】
一実施形態において、送電網を制御する方法は、送電網のセグメントに接続されている需要家ノードにある局所的なエネルギー源の有効電力の発生容量が送電網のセグメントのピーク有効電力需要の閾値割合を超える場合に、送電網のセグメントが飽和閾値を超えることを決定するステップと、送電網のセグメントと集中送電網管理装置との間のインターフェースを動的に調節して集中送電網管理装置から見たときの送電網のセグメントの有効電力対無効電力の比を調節するステップとを含んでいる。
【0216】
一態様において、送電網を制御する装置は、送電網のセグメントの共通結合点(PCC)において送電網と結合する送電網接続装置であって、この送電網のセグメントは、複数の需要家ノードおよび需要家ノードにおける複数の局所的なエネルギー源を含むものである、送電網接続装置と、送電網のセグメントの局所的なエネルギー源の有効電力発生容量が送電網のセグメントのピーク有効電力需要の閾値割合を超える場合に、送電網のセグメントが飽和閾値を超えることを決定するためのコントローラーと、送電網のセグメントと集中送電網管理装置との間のインターフェースを動的に調節して集中送電網管理装置から見たときの送電網のセグメントの有効電力対無効電力の比を調節するための電力変換器とを含んでいる。
【0217】
一態様において、電力計量装置は、送電網のセグメントの共通結合点
(PCC)において送電網と結合する送電網接続装置であって、この送電網のセグメントは、複数の需要家ノードおよび需要家ノードにおける複数の局所的なエネルギー源を含むものである、送電網接続装置と、送電網のセグメントの局所的なエネルギー源の有効電力発生容量が送電網のセグメントのピーク有効電力需要の閾値割合を超える場合に、送電網のセグメントが飽和閾値を超えることを決定するためのコントローラーと、電力変換器に接続される入出力部(input/output:I/O)とを含むコントローラーであって、このコントローラーは、I/Oを介して1つ以上の信号を電力変換器に送って、電力変換器に、送電網のセグメントと集中送電網管理装置との間のインターフェースを動的に調節させて集中送電網管理装置から見たときの送電網のセグメントの有効電力対無効電力の比を調節させる。
【0218】
前述の3つの段落の方法、装置、および/または計量装置に関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、送電網のセグメントが飽和閾値を超えることを決定するステップは、集中送電網管理装置からのディスパッチ情報を送電網のセグメントの制御ノードにおいて受け取るステップを含んでいる。一実施形態において、送電網のセグメントが飽和閾値を超えることを決定するステップは、分散制御ノード間で情報を共有するステップを含んでいる。一実施形態において、送電網のセグメントが飽和閾値を超えることを決定するステップは、送電網のセグメントの有効電力発生容量がピーク有効電力需要の10パーセントを超えることを決定するステップを含んでいる。一実施形態において、有効電力対無効電力の比を調節するステップは、送電網のセグメントの有効電力の発生量の少なくとも一部を無効電力の発生量に変換するステップを含んでいる。一実施形態において、有効電力の発生量を無効電力の発生量に変換するステップは、送電網のセグメントの共通結合点(PCC)において有効電力の発生量を変換するステップを含んでいる。一実施形態において、有効電力の発生量を無効電力の発生量に変換するステップは、送電網のセグメント内の分散制御ノードにおいて有効電力を変換して分散制御ノードの共通結合点(PCC)における有効電力対無効電力の比を変化させるステップを含んでいる。一実施形態において、有効電力対無効電力の比を調節するステップは、有効電力の少なくとも一部を送電網のセグメントに対して局所的なエネルギー貯蔵装置に分流するステップを含んでいる。
【0219】
一態様において、送電網システムは、第1の需要家ノードに対して局所的な第1の局所的な電源を有する、共通結合点(PCC)に結合している第1の需要家ノードと、第2の需要家ノードに対して局所的な第2の局所的な電源を有する、PCCに結合している第2の需要家ノードと、PCCと第1の需要家ノードとの間に結合している第1の制御ノードと、PCCと第2の需要家ノードとの間に結合している第2の制御ノードとを含み、第1および第2の制御ノードが、各々対応する需要家ノードの局所的な電力需要に基づいて、および他方の対応する制御ノードからの配電にも基づいて、第1および第2の局所的な電源からの配電を制御する。
【0220】
一態様において、送電網システム内の分散制御ノードは、共通結合点(PCC)と第1の需要家ノードに対して局所的な第1の局所的な電源を有する第1の需要家ノードとの間を結合させ、PCCを介して第2の需要家ノードに対して局所的な第2の局所的な電源を有する第2の需要家ノードに結合する送電網接続装置と、第1の需要家ノードの局所的な電力需要に基づいて、および第2の制御ノードからの配電にも基づいて、第1の局所的な電源からの配電を制御するコントローラーとを含んでいる。
【0221】
一態様において、送電網を制御する方法は、第1の需要家ノードの第1の局所的な電源による発電、第2の需要家ノードの動作、および第1の需要家ノードの電力需要を制御ノードにおいて監視するステップであって、第1および第2の需要家ノードならびに制御ノードは共通結合点(PCC)で相互に結合し、第2の需要家ノードは第2の需要家ノードに対して局所的な第2の局所的な電源を有するものである、監視するステップと、第1の需要家ノードの局所的な電力需要に基づいて、および第2の制御ノードによる配電にも基づいて、第1の局所的な電源による配電を動的に制御するステップとを含んでいる。
【0222】
一態様において、送電網システムは、共通結合点(PCC)を介して送電網のセグメントとして相互に結合している複数の需要家ノードと、相互に結合しかつPCCを介して複数の需要家ノードと結合している送電網セグメントの第1および第2の電源であって、第1または第2の電源のいずれも複数の需要家ノードのピーク需要を満たすだけの十分な発電容量を単独で有しないものである、第1および第2の電源と、第1の電源に結合している少なくとも第1の制御ノードおよび第2の電源に結合している少なくとも第2の制御ノードであって、この第1および第2の制御ノードは、複数の需要家ノードの電力需要に基づいて、およびそれぞれの他方の電源の動作に基づいて、第1および第2の電源から複数の需要家ノードへの配電を制御するものである、少なくとも第1および第2の制御ノードとを含んでいる。
【0223】
一態様において、送電網システム内の分散制御ノードは、共通結合点(PCC)で複数の需要家ノードならびに第1および第2の電源と結合する送電網接続装置であって、第1または第2の電源のいずれも複数の需要家ノードのピーク需要を満たすだけの十分な発電容量を単独では有しないものである、送電網接続装置と、複数の需要家ノードによる電力需要に基づいて、および第2の電源の動作にも基づいて、第1の電源から複数の需要家ノードへの配電を制御するコントローラーとを含んでいる。
【0224】
一態様において、送電網を制御する方法は、第1の電源による発電、第2の電源の動作、および複数の需要家ノードによる電力需要を制御ノードにおいて監視するステップであって、複数の需要家ノード、第1および第2の電源、ならびに制御ノードが共通結合点(PCC)において相互に結合しており、第1または第2の電源のいずれも複数の需要家ノードのピーク需要を満たすだけの十分な発電容量を単独では有しない、監視するステップと、複数の需要家ノードによる電力需要に基づいて、および第2の電源の動作に基づいて、第1の電源から複数の需要家ノードへの配電を動的に制御するステップとを含んでいる。
【0225】
前述の6つの段落の送電網システム、分散制御ノード、および/または方法に関して、以下の実施形態が、適用可能であり例示的であるが限定的ではない実施形態の例を提供する。一実施形態において、各需要家ノードが顧客の施設を備えている。一実施形態において、需要家ノードが複数の顧客の施設を備えている。一実施形態において、単一の顧客の施設が複数の需要家ノードを備えている。一実施形態において、PCCは、さらに、集中管理システムおよび集中電源を有する公益事業体の送電網に結合するものである。一実施形態において、PCCは、さらに、第3の電源に結合するものであり、第1および第2の電源は相互にPCCの同じ側にあり、第3の電源は第1および第2の電源に対してPCCの異なる側にある。一実施形態において、第1の制御ノードおよび第2の制御ノードは、マスター/スレーブとして結合しており、制御ノードのうちの一方はマスターとしてPCC内の配電を制御し、他方の制御ノードはスレーブとしてマスターの指示の下に配電する。一実施形態において、第1および第2の制御ノードは、第1および第2の電源による無効電力の発生の局所的な制御を含め、配電を制御するものである。一実施形態において、制御ノードは、さらに、制御ノードに対して局所的な電力変換器を備えている。一実施形態において、第1および第2の制御ノードに結合しており、PCC内の発電および需要に関する情報を記憶しディスパッチする集中データストアをさらに備えている。一実施形態において、PCCを介して第1および第2の電源に結合しており、第1および/または第2の制御ノードによる制御に応じて第1および/または第2の電源により発生したエネルギーを貯蔵することのできる集中エネルギーストアをさらに備えている。一実施形態において、顧客の施設においてエネルギーを発生させる少なくとも1つの顧客の施設内の電源を顧客ノードにさらに備え、第1および第2の制御ノードは、複数の顧客ノードによる電力需要に基づいて、およびそれぞれの他方の電源の動作に基づいて、および顧客の施設内の電源による発電に基づいて、第1および第2の電源から複数の顧客ノードへの配電を制御するものである。
【0226】
本明細書内で図示するフロー図は、様々な処理アクションのシーケンスの例を提供している。フロー図は、ソフトウェアルーチンまたはファームウェアルーチンならびに物理的動作によって遂行されるべき動作を指示することができる。一実施形態において、フロー図は、ハードウェアおよび/またはソフトウェアで実施することのできる有限状態機械(finite state machine:FSM)の状態を図示することができる。アクションの順序は、特定のシーケンスまたは順序で示されているものの、これらは、特に明記しない限り、変更することができる。このように、図示した実施形態は例としてのみ理解すべきであり、処理は異なる順序で実行することができ、アクションによっては並行して実行することができる。さらに、様々な実施形態において1つ以上のアクションを省略することができ、したがって、すべての実施形態においてすべてのアクションが必要なわけではない。この他の処理フローが可能である。
【0227】
本明細書内に様々な動作または機能が説明されている範囲において、これらは、ソフトウェアコード、命令、設定、および/またはデータとして記述または定義することができる。内容は直接遂行可能(「オブジェクトの」もしくは「遂行可能な」形態)、ソースコードまたは差分コード(「デルタ」コードもしくは「パッチ」コード)であることができる。本明細書内で説明する実施形態のソフトウェアコンテンツは、コンテンツを記憶させた製品または通信インターフェースを介してデータを送る通信インターフェースの動作方法によって提供することができる。機械可読記憶媒体は説明した機能または動作を機械に実行させることができ、記録可能/再生専用媒体(例えば、読み取り専用メモリー(read only memory:ROM)、ランダムアクセスメモリー(random access memory:RAM)、磁気ディスク記憶媒体、光学的記憶媒体、フラッシュメモリー装置など)のような、機械(例えば、コンピューティングデバイス、電子システムなど)によってアクセス可能な形態で情報を記憶する任意の機構を含んでいる。通信インターフェースとしては、メモリーバスインターフェース、プロセッサーバスインターフェース、インターネット接続、ディスクコントローラーなどのような、別の機器と通信する配線式、無線式、光学式などの媒体のいずれかとインターフェースする任意の機構が挙げられる。通信インターフェースは、設定パラメータを提供することによって、および/またはソフトウェアコンテンツを記述するデータ信号を提供するように通信インターフェースを準備するための信号を送信することによって設定することができる。通信インターフェースは、通信インターフェースに送られる1つ以上のコマンドまたは信号を介してアクセスすることができる。
【0228】
本明細書内で説明する様々な構成要素は、説明した動作または機能を実行する手段であることができる。本明細書内で説明する各構成要素は、ソフトウェア、ハードウェア、またはこれらの組み合わせを含んでいる。構成要素は、ソフトウェアモジュール、ハードウェアモジュール、特定の目的向けハードウェア(例えば、特定用途向けハードウェア、特定用途向け集積回路(application specific integrated circuits:ASICs)、デジタル信号プロセッサー(digital signal processors:DSPs)など)、埋め込み型コントローラー、配線式回路などとして実施することができる。
本明細書内で説明したこと以外でも、開示した本発明の実施形態および実施態様の範囲から逸脱せずに、これらに様々な修正を施すことができる。したがって、本明細書内の図示および例は例示的であって、制限的ではないと解釈すべきである。本発明の範囲は、以下の請求項を参照することによってのみ判断すべきである。