(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-15
(45)【発行日】2022-08-23
(54)【発明の名称】工作機械、プログラム及び補正量算出方法
(51)【国際特許分類】
B23Q 15/18 20060101AFI20220816BHJP
G05B 19/404 20060101ALI20220816BHJP
【FI】
B23Q15/18
G05B19/404 K
(21)【出願番号】P 2018194829
(22)【出願日】2018-10-16
【審査請求日】2021-04-02
(73)【特許権者】
【識別番号】000133593
【氏名又は名称】株式会社ツガミ
(74)【代理人】
【識別番号】100095407
【氏名又は名称】木村 満
(72)【発明者】
【氏名】風間 浩明
(72)【発明者】
【氏名】早川 義法
【審査官】木原 裕二
(56)【参考文献】
【文献】特開2012-024869(JP,A)
【文献】特開2013-082022(JP,A)
【文献】特開平07-132438(JP,A)
【文献】米国特許出願公開第2012/0294688(US,A1)
【文献】特開2016-179525(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q 15/18
G05B 19/404
(57)【特許請求の範囲】
【請求項1】
基台に対して所定の軸方向に移動し、主軸に把持されたワークと該ワークを加工するための工具との前記軸方向における相対位置を調整するスライド部と、
前記基台に対して不動である検出部であって、前記検出部が前記スライド部に設けられたドグに接触したこと又は所定の距離だけ接近したことを検出する
前記検出部と、
前記
検出部が検出したことに基づいて検出時における前記スライド部の前記軸方向の位置である軸方向位置を取得し、
少なくとも前記スライド部と異なる箇所に設けられた温度センサが検出した検出温度を取得し、取得した軸方向位置と検出温度との少なくともいずれかに基づいて前記軸方向の熱変位を補正するための補正量を算出する算出手段と、
目標位置に前記補正量を加味した位置に前記スライド部を移動させる駆動制御手段と、
を備え、
前記算出手段は、
各々異なる検出時に取得した複数の軸方向位置に基づいて前記熱変位の量を示す第1の値を算出し、検出温度に基づいて前記熱変位の量の推定値を示す第2の値を算出し、
ワークの加工開始から所定期間内では前記第1の値を用いて前記補正量を算出し、前記所定期間経過後では前記第2の値を用いて前記補正量を算出
し、
前記第1の値は、前記所定期間内で時間的に変化する前記熱変位の量を示す、
工作機械。
【請求項2】
ワークを通すことが可能な中空部と、先端が前記中空部に向く前記工具とを有する工具部をさらに備え、
前記工具部は、前記スライド部とともに前記軸方向に移動可能であり、
前記軸方向はワークの径方向であり、
前記
ドグ及び前記
検出部は、前記軸方向において前記中空部よりも外側に位置する、
請求項1に記載の工作機械。
【請求項3】
基台に対して所定の軸方向に移動し、主軸に把持されたワークと該ワークを加工するための工具との前記軸方向における相対位置を調整するスライド部と、
前記スライド部と共に前記軸方向に移動する移動部と、前記軸方向には移動しない不動部とが接触したこと又は所定の距離だけ接近したことを検出する検出手段と、
前記検出手段が検出したことに基づいて検出時における前記スライド部の前記軸方向の位置である軸方向位置を取得し、所定箇所に設けられた温度センサが検出した検出温度を取得し、取得した軸方向位置と検出温度との少なくともいずれかに基づいて前記軸方向の熱変位を補正するための補正量を算出する算出手段と、
目標位置に前記補正量を加味した位置に前記スライド部を移動させる駆動制御手段と、
を備え、
前記算出手段は、
各々異なる検出時に取得した複数の軸方向位置に基づいて前記熱変位の量を示す第1の値を算出し、検出温度に基づいて前記熱変位の量の推定値を示す第2の値を算出し、
ワークの加工開始から所定期間内では前記第1の値
だけでなく前記第2の値も用いて前記補正量を算出し、前記所定期間経過後では前記第2の値を用いて前記補正量を算出する、
工作機械。
【請求項4】
前記算出手段は、予め用意された互いに異なる長さの複数の期間の中から一の期間を前記所定期間として設定可能である、
請求項1乃至3のいずれか1項に記載の工作機械。
【請求項5】
前記算出手段は、予め定められた条件に応じて前記所定期間を変更可能である、
請求項1乃至4のいずれか1項に記載の工作機械。
【請求項6】
請求項1乃至5のいずれか1項に記載の工作機械における前記軸方向の熱変位に応じた補正量を算出するためのプログラムであって、
コンピュータ
を前記算出手段及び前記駆動制御手段として機能させる、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工作機械、プログラム及び補正量算出方法に関する。
【背景技術】
【0002】
従来の工作機械として、特許文献1には、ワーク(被加工物)と工具との相対位置を調整するために所定の軸方向に移動可能なスライド部を備え、スライド部の移動方向における熱変位補正をタッチスイッチの出力に基づき行う工作機械が開示されている。
【0003】
また、特許文献2には、所定部分に埋設した温度センサの出力に基づき補正対象軸の熱変位補正を行う工作機械が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第5883264号公報
【文献】特許第3136472号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1のようにスライド部に対応して設けられるタッチスイッチを利用した技術では、スライド部と共に移動しない他ユニット(例えば主軸台など)に生じる熱変位を考慮した熱変位補正が困難である。
【0006】
一方、特許文献2のように温度センサを利用した技術では、他ユニットに生じる熱変位を考慮した熱変位補正が可能であるが、
図8に示すように、ワークの加工開始から所定期間(例えば数分間)において生じる急激な熱変位を補正することが困難である。これは、当該所定期間においては、温度センサが埋設された部分に十分に熱が伝わりきらず、補正対象の実際の温度と温度センサの検出温度とにずれが生じてしまうことに起因する。
【0007】
本発明は、上記実状に鑑みてなされたものであり、ワークの加工開始から良好に熱変位補正を行うことができるとともに、スライド部以外の構成に生じる熱変位も考慮した熱変位補正を行うことができる工作機械、プログラム及び補正量算出方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明の第1の観点に係る工作機械は、
基台に対して所定の軸方向に移動し、主軸に把持されたワークと該ワークを加工するための工具との前記軸方向における相対位置を調整するスライド部と、
前記基台に対して不動である検出部であって、前記検出部が前記スライド部に設けられたドグに接触したこと又は所定の距離だけ接近したことを検出する前記検出部と、
前記検出部が検出したことに基づいて検出時における前記スライド部の前記軸方向の位置である軸方向位置を取得し、少なくとも前記スライド部と異なる箇所に設けられた温度センサが検出した検出温度を取得し、取得した軸方向位置と検出温度との少なくともいずれかに基づいて前記軸方向の熱変位を補正するための補正量を算出する算出手段と、
目標位置に前記補正量を加味した位置に前記スライド部を移動させる駆動制御手段と、
を備え、
前記算出手段は、
各々異なる検出時に取得した複数の軸方向位置に基づいて前記熱変位の量を示す第1の値を算出し、検出温度に基づいて前記熱変位の量の推定値を示す第2の値を算出し、
ワークの加工開始から所定期間内では前記第1の値を用いて前記補正量を算出し、前記所定期間経過後では前記第2の値を用いて前記補正量を算出し、
前記第1の値は、前記所定期間内で時間的に変化する前記熱変位の量を示す。
【0009】
前記工作機械は、ワークを通すことが可能な中空部と、先端が前記中空部に向く前記工具とを有する工具部をさらに備え、
前記工具部は、前記スライド部とともに前記軸方向に移動可能であり、
前記軸方向はワークの径方向であり、
前記ドグ及び前記検出部は、前記軸方向において前記中空部よりも外側に位置する、ようにしてもよい。
【0010】
上記目的を達成するため、本発明の第2の観点に係る工作機械は、
基台に対して所定の軸方向に移動し、主軸に把持されたワークと該ワークを加工するための工具との前記軸方向における相対位置を調整するスライド部と、
前記スライド部と共に前記軸方向に移動する移動部と、前記軸方向には移動しない不動部とが接触したこと又は所定の距離だけ接近したことを検出する検出手段と、
前記検出手段が検出したことに基づいて検出時における前記スライド部の前記軸方向の位置である軸方向位置を取得し、所定箇所に設けられた温度センサが検出した検出温度を取得し、取得した軸方向位置と検出温度との少なくともいずれかに基づいて前記軸方向の熱変位を補正するための補正量を算出する算出手段と、
目標位置に前記補正量を加味した位置に前記スライド部を移動させる駆動制御手段と、
を備え、
前記算出手段は、
各々異なる検出時に取得した複数の軸方向位置に基づいて前記熱変位の量を示す第1の値を算出し、検出温度に基づいて前記熱変位の量の推定値を示す第2の値を算出し、
ワークの加工開始から所定期間内では前記第1の値だけでなく前記第2の値も用いて前記補正量を算出し、前記所定期間経過後では前記第2の値を用いて前記補正量を算出する。
【0011】
前記算出手段は、予め用意された互いに異なる長さの複数の期間の中から一の期間を前記所定期間として設定可能である、ようにしてもよい。
【0012】
前記算出手段は、予め定められた条件に応じて前記所定期間を変更可能である、ようにしてもよい。
【0014】
上記目的を達成するため、本発明の第3の観点に係るプログラムは、
前記工作機械における前記軸方向の熱変位に応じた補正量を算出するためのプログラムであって、
コンピュータを前記算出手段及び前記駆動制御手段として機能させる。
【発明の効果】
【0016】
本発明によれば、ワークの加工開始から良好に熱変位補正を行うことができるとともに、スライド部以外の構成に生じる熱変位も考慮した熱変位補正を行うことができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の一実施形態に係る工作機械をX軸方向から見た模式図である。
【
図2】(a)は、主に第1加工機構をZ軸方向から見た図である。(b)は、第2加工機構をZ軸方向から見た図である。
【
図5】工作機械をX軸方向から見た図であり、主に所定の温度センサの設置箇所を説明するための図である。
【
図8】従来の温度センサを利用する技術で生じていた、熱変位補正が困難となる期間を説明するための図である。
【発明を実施するための形態】
【0018】
本発明の一実施形態に係る工作機械について、図面を参照して説明する。
図1に示す工作機械1は、2つの主軸で円柱状の被加工物(ワーク)Wの前面及び背面を加工する多機能旋盤として構成されている。
【0019】
以下では説明の理解を容易にするため、ワークWの中心線に沿う水平方向を「Z軸方向」といい、鉛直方向を「Y軸方向」といい、Y軸及びZ軸方向に垂直な水平方向を「X軸方向」という。また、図中に矢印で示した、X、Y、Zの各軸において矢印の向く方向を+側とする。
【0020】
工作機械1は、主に
図1に示すように、工作機械1全体の台であるベッド2と、第1加工機構M1と、第2加工機構M2と、検出機構200と、温度センサSt(
図4参照)と、制御部300と、を備える。
【0021】
(第1加工機構M1)
第1加工機構M1は、ワークWの前面(+Z軸方向に向く面)及び側面を加工する機構であり、ワーク保持部20と、第1Z軸スライド機構30と、工具移動機構40と、を備える。
【0022】
ワーク保持部20は、主軸21と、主軸21を回転可能に支持する主軸台22と、を備える。主軸台22には、ワーク回転用モータ(図示せず)が内蔵されている。このワーク回転用モータは、主軸21に備えられたチャック21aが把持するワークWを回転させる。
【0023】
第1Z軸スライド機構30は、ワーク保持部20をZ軸方向に移動させるための機構であり、ベッド2上に取り付けられた軸受部31と、軸受部31に軸支されてZ軸方向に延びるボールねじ32と、ボールねじ32を回転させる第1Z軸モータ33と、主軸台22が設置される第1Z軸スライド部34と、を備える。第1Z軸スライド部34は、ボールねじ32と嵌合するナット35を有する。ナット35は、ボールねじ32が回転するとZ軸方向に移動する。
第1Z軸スライド機構30は、第1Z軸モータ33でボールねじ32を回転させることで、ナット35と共に第1Z軸スライド部34を移動させ、ワーク保持部20をZ軸方向に移動させる。したがって、第1加工機構M1では、ワークWをチャック21aで保持して前記ワーク回転用モータによって回転させながら、ワークWをZ軸方向に移動させることができる。
【0024】
工具移動機構40は、ワークWを加工するための工具Tf(
図2(a)参照)をX軸方向及びY軸方向に移動させるための機構であり、ベッド2に固定された固定台41と、固定台41に設けられたX軸移動部44と、X軸移動部44に設けられたY軸移動部50と、を備える。
【0025】
固定台41は、X軸方向に延びるレール部Rx1と、Z軸方向に貫通する空洞部41Hに取付けられた中空のフランジ43aと、フランジ43aの内面に取付けられたガイドブッシュ43bと、を備える。ガイドブッシュ43bは、ワークWの保持や移動を補助する。また、固定台41は、
図3に示すように、第1X軸スライド機構10を備える。
【0026】
第1X軸スライド機構10は、X軸移動部44をX軸方向に移動させるための機構であり、固定台41に取り付けられた軸受部11と、軸受部11に軸支されてX軸方向に延びるボールねじ12と、ボールねじ12を回転させる第1X軸モータ13と、を備える。ボールねじ12と嵌合するナット15は、ボールねじ12が回転するとX軸方向に移動する。第1X軸スライド機構10は、第1X軸モータ13でボールねじ12を回転させることで、ナット15が設けられた後述の第1X軸スライド部45をX軸方向に移動させる。
【0027】
X軸移動部44は、第1X軸スライド機構10によってレール部Rx1上をX軸方向に移動する部分であり、第1X軸スライド部45と、ガイド溝部Gx1、軸受部46と、ボールねじ47、及びY軸モータ48と、を備える。
【0028】
第1X軸スライド部45は、略平板状の形態を有する。ボールねじ47は、
図1に示すように、この第1X軸スライド部45の内部に収納されている。ガイド溝部Gx1は、X軸方向に延び、当該略平板状の一方の面に設けられている。ガイド溝部Gx1は、固定台41のレール部Rx1と係合する。当該略平板状の他方の面には、
図3に示すように、Y軸方向に延びるガイド溝部Gy1が設けられている。ガイド溝部Gy1は、Y軸移動部50のY軸方向への移動を案内する。第1X軸スライド部45には、主軸21に把持されたワークWが貫通しうる中空部45Hが形成されている。軸受部46は、ボールねじ47を回転可能に軸支し、このように軸支されたボールねじ47は、Y軸方向に延びるように配置され、Y軸モータ48によって回転される。
【0029】
Y軸移動部50は、ガイド溝部Gy1に沿ってY軸方向に移動する部分であり、Y軸スライド部51と、Y軸スライド部51に設けられた工具保持部52及びナット53と、を備える。なお、Y軸移動部50は、X軸移動部44に設けられているため、第1X軸スライド機構10によってX軸移動部44がX軸方向に移動すると、Y軸移動部50もX軸方向に移動する。
【0030】
Y軸スライド部51は、略平板状の形態を有する。当該略平板状の主面(Y軸と平行な面)には、主軸21に把持されたワークWが貫通しうる中空部51Hが形成されている。
工具保持部52は、Y軸スライド部51の主面上に設けられている。工具保持部52は、
図2(a)に示すように、中空部51Hの左右の端に沿うようにして配設される。工具保持部52は、複数のバイト、ドリル等から構成される工具Tfを保持する。工具Tfは、例えば、
図2(a)に示すように、X軸方向且つ中空部51Hの中央部に向く9本のバイトと、-Z軸方向に向く4本のドリル(
図2で点線で示した)と、から構成されている。工具Tfを構成するバイトは、ワークWを切断する切断用バイトを含む。また、工具Tfを構成するドリルによって、ワークWの正面を加工することができる。
Y軸スライド部51の工具保持部52が設けられた面の裏面には、Y軸方向に沿って延びるレール部Ry1が設けられている。レール部Ry1は、第1X軸スライド部45に設けられたガイド溝部Gy1内を摺動可能である。
第1加工機構M1は、Y軸モータ48でボールねじ47を回転させ、これにより、ボールねじ47と嵌合するナット53を移動させることで、Y軸移動部50をY軸方向に移動させる。
【0031】
上記構成により、工具移動機構40のX軸移動部44はX軸方向に、Y軸移動部50はY軸方向に移動可能となっている。それに伴い、工具TfもX軸及びY軸方向に移動可能となっている。
【0032】
(第2加工機構M2)
第2加工機構M2は、ワークWの背面(-Z軸方向に向く面)及び側面を加工する機構であり、ワーク保持部70と、第2Z軸スライド機構80と、第2X軸スライド機構90と、工具台100と、を備える。
【0033】
ワーク保持部70は、主軸71と、主軸71を回転可能に支持する主軸台72と、を備える。主軸台72には、ワーク回転用モータ(図示せず)が内蔵されている。このワーク回転用モータは、主軸71に備えられたチャック71aが把持するワークWを回転させる。主軸台72は、第2X軸スライド機構90の後述する第2X軸スライド部91上に設置されている。
【0034】
第2Z軸スライド機構80は、ワーク保持部70をZ軸方向に移動させるための機構であり、ベッド2上に固定された固定台60に設けられた軸受部81及び軸受部61と、軸受部81及び軸受部61に軸支されてZ軸方向に延びるボールねじ82と、ボールねじ82を回転させる第2Z軸モータ83と、第2X軸スライド機構90が設置される第2Z軸スライド部84と、
図3に示すように、固定台60の上に設けられたレール部Rz2と、を備える。なお、軸受部81はボールねじ82の第2Z軸モータ83側を受け、軸受部61はボールねじ82の先端部を受ける。
第2Z軸スライド部84は、ボールねじ82と嵌合するナット85及びZ軸方向に延びるガイド溝部Gz2(
図2(b)参照)を有する。ナット85は、ボールねじ82が回転するとZ軸方向に移動する。ガイド溝部Gz2は、レール部Rz2と係合する。
第2Z軸スライド機構80は、第2Z軸モータ83でボールねじ82を回転させることで、ナット85と共に第2Z軸スライド部84を移動させる。これにより、ワーク保持部70は、Z軸方向に延びたレール部Rz2上を移動することができる。
【0035】
第2X軸スライド機構90は、ワーク保持部70をX軸方向に移動させるための機構であり、
図2(b)等に示すように、第2X軸スライド部91と、第2Z軸スライド部84上に設けられた軸受部92と、軸受部92に軸支されてX軸方向に延びるボールねじ93と、ボールねじ93を回転させる第2X軸モータ94と、を備える。
第2X軸スライド部91上には、主軸台72が設置されている。第2X軸スライド部91は、そのY軸方向下方に、ボールねじ93と嵌合するナット95(
図3参照)及びX軸方向に延びるガイド溝部Gx2(
図1、
図3参照)を有する。ナット95は、ボールねじ93が回転するとX軸方向に移動する。ガイド溝部Gx2は、
図1に示すようにレール部Rx2と係合する。
第2X軸スライド機構90は、第2X軸モータ94でボールねじ93を回転させることで、ナット95と共に第2X軸スライド部91を移動させる。これにより、ワーク保持部70は、X軸方向に延びたレール部Rx2上を移動することができる。なお、第2X軸スライド機構90は、第2Z軸スライド機構80上に配置されているため、第2Z軸スライド機構80によって第2Z軸スライド部84がZ軸方向に移動することで第2X軸スライド部91もZ軸方向に移動する。
【0036】
上記構成により、ワーク保持部70に保持されたワークWは、X軸及びZ軸方向に移動可能となっている。
【0037】
工具台100は、先端が+Z軸方向に向くように取り付けられたドリル、タップ、ターニングバイト、ボーリングバイト等の工具Trを保持する。本実施形態では、工具Trは、複数あり、例えば、
図3に示すように、4つの工具TrがX軸方向に所定の間隔を空けて設けられることで、櫛歯状になっている。
工具台100は、
図2(a)に示すように、ベッド2に設けられた支持部材101に支持され、ベッド2に対して不動となっている。工具台100が保持する工具Tr(
図3参照)は、その先端(例えば、軸中心)が、第2加工機構M2のワーク保持部70が保持するワークWの軸中心に位置する高さとなるように配置されている。
【0038】
(検出機構200)
検出機構200は、検出部Sp1~Sp3と、ドグD1~D3とを備える。検出部Sp1,Sp2とドグD1,D2とは、第1加工機構M1に設けられる。検出部Sp3とドグD3とは、第2加工機構M2に設けられる。検出部Sp1~Sp3の各々は、例えばタッチスイッチから構成される。
【0039】
検出部Sp1は、第1加工機構M1の第1X軸スライド機構10におけるX軸方向の熱変位(主に、X軸方向に延びるボールねじ12に起因する熱変位)を測定するために設けられている。ボールねじ12は、第1X軸モータ13によって支持されているため、第1X軸モータ13等の発熱により熱変位が生じると-X軸方向に伸びる。
【0040】
検出部Sp1は、その先端部がドグD1に接触すると、接触したことを示すON信号を制御部300に供給する。ドグD1は、
図3に示すように、第1X軸スライド部45の側面(-X方向に向く面)の一部として構成されている。ドグD1は、第1X軸スライド部45の移動に伴いX軸方向に移動する。検出部Sp1は、
図2及び
図3に示すように、固定台41から迫り出した取付部41aに取り付けられている。このように取り付けられた検出部Sp1は、ベッド2に対して不動であり、X軸方向には移動しない。検出部Sp1とドグD1とは、X軸方向において互いに対向する位置に配設されている。検出部Sp1とドグD1とは、ドグD1が第1X軸スライド部45の移動により-X軸方向に所定量だけ移動すると接触する。
【0041】
特に、
図3に示すように、ドグD1(第1X軸スライド部45と共にX軸方向に移動する移動部)及び検出部Sp1(X軸方向には移動しない不動部)は、X軸方向において中空部51Hよりも外側に位置する。また、ドグD1及び検出部Sp1は、X軸方向においてY軸スライド部51(工具部の一例)と重ならない位置にある。つまり、ドグD1と検出部Sp1とは、ワークWに向く工具Tfから離れた位置にある。このようにすることで、ワークWの加工において発生する切粉がドグD1及び検出部Sp1に付着することを抑制し、検出精度の低下を防止することができる。
【0042】
また、検出部Sp1は、X軸方向において第1X軸スライド部45よりも外側に位置する。このように、信号を出力する検出部Sp1を、第1X軸スライド部45のように可動する部分に設けずに、ベッド2に対して不動となる部分に設けることにより、検出部Sp1に加わる振動を抑制することができ、検出精度の低下を防止することができる。
【0043】
検出部Sp2は、第1加工機構M1のY軸移動部50におけるY軸方向の熱変位(主に、Y軸方向に延びるボールねじ47に起因する熱変位)を測定するために設けられている。ボールねじ47は、Y軸モータ48によって支持されているため、Y軸モータ48等の発熱により熱変位が生じると-Y軸方向に伸びる。
【0044】
検出部Sp2は、その先端部がドグD2に接触すると、接触したことを示すON信号を制御部300に供給する。ドグD2は、
図1に示すように、第1X軸スライド部45に設けられており、Y軸方向には移動しない。検出部Sp2は、
図1に示すように、Y軸スライド部51から-Z方向に迫り出し、第1X軸スライド部45の裏側に至る取付部51aに取り付けられている。このように取り付けられた検出部Sp2は、Y軸スライド部51の移動に伴いY軸方向に移動する。検出部Sp2とドグD2とは、Y軸方向において互いに対向する位置に配設されている。検出部Sp2とドグD2とは、検出部Sp2がY軸スライド部51の移動により-Y軸方向に所定量だけ移動すると接触する。
【0045】
検出部Sp3は、第2加工機構M2の第2Z軸スライド機構80におけるZ軸方向の熱変位(主に、Z軸方向に延びるボールねじ82に起因する熱変位)を測定するために設けられている。ボールねじ82は、第2Z軸モータ83によって支持されているため、第2Z軸モータ83等の発熱により熱変位が生じると-Z軸方向に伸びる。
【0046】
検出部Sp3は、その先端部がドグD3に接触すると、接触したことを示すON信号を制御部300に供給する。ドグD3は、
図3に示すように、固定台60から+X方向に突出して設けられている。ドグD3は、ベッド2に対して不動であり、Z軸方向には移動しない。検出部Sp3は、
図3に示すように、第2Z軸スライド部84から+Z方向に迫り出す取付部84aに取り付けられている。このように取り付けられた検出部Sp3は、第2Z軸スライド部84の移動に伴いZ軸方向に移動する。検出部Sp3とドグD3とは、Z軸方向において互いに対向する位置に配設されている。検出部Sp3とドグD3とは、検出部Sp3が第2Z軸スライド部84の移動により+Z軸方向に所定量だけ移動すると接触する。
【0047】
(温度センサSt)
温度センサStは、例えばサーミスタから構成され、複数設けられている。複数の温度センサStは、それぞれの設置箇所における検出温度を示す信号を制御部300に出力する。温度センサStは、
図4に示すように設置箇所に直接挿入されるか、設置箇所に固定された金属製(例えばステンレス製)のブロックに挿入される態様(埋設態様)で設けられている。なお、例外として、後述する温度センサSt8は、埋設態様で設けられてはいない。
【0048】
以下、複数の温度センサStの各々を設置箇所毎に符号を付し、温度センサSt1~St8とする。温度センサSt1、St4、St7、St8の各設置箇所を
図3に示す。温度センサSt2、St3、St5の各設置箇所を
図5に示す。温度センサSt6の設置箇所を
図2(a)に示す。
【0049】
温度センサSt1~St3は、第1加工機構M1に設けられている。
温度センサSt1は、X軸方向に延びるボールねじ12の周囲温度を検出するものであり、例えば、固定台41における軸受部11の近傍位置に設けられている。
温度センサSt2は、Y軸方向に延びるボールねじ47の周囲温度を検出するものであり、例えば、第1X軸スライド部45における軸受部46の近傍位置に設けられている。
温度センサSt3は、固定台41の周囲温度を検出するものであり、例えば、固定台41における空洞部41Hの上方部分に設けられている。
【0050】
温度センサSt4~St6は、第2加工機構M2に設けられている。
温度センサSt4は、X軸方向に延びるボールねじ93の周囲温度を検出するものであり、例えば、第2Z軸スライド部84における軸受部92の近傍位置に設けられている。
温度センサSt5は、Z軸方向に延びるボールねじ82の周囲温度を検出するものであり、例えば、固定台60における軸受部61の近傍位置に設けられている。
温度センサSt6は、工具台100の工具Tr(
図3参照)の周囲温度を検出するものであり、例えば、支持部材101における工具台100の近傍位置に設けられている。
【0051】
温度センサSt7は、ベッド2の周囲温度を検出するものであり、例えば、ベッド2の脚部2aに設けられている。
温度センサSt8は、室温(つまり、工作機械1自体の周囲温度)を検出するものであり、埋設されない態様で工作機械1における所定箇所に設けられている。
【0052】
(制御部300)
制御部300は、工作機械1の各部の動作を制御するものであり、CPU(Central Processing Unit)、CPUによる処理の手順を定義したプログラムを記憶するROM(Read Only Memory)、ユーザによる適当な数値入力等を受けて実行されるプログラム及び必要な情報を一時的に記憶しておくRAM(Random Access Memory)、計時を行うタイマなどを備える。制御部300のROM内には、後述する「基準位置取得処理」及び「熱変位補正処理」を実行するためのプログラムPG(
図1参照)が予め記憶されており、CPUは、これらプログラムを読み出し、実行する。なお、制御部300は、CPUと他の専用回路とが協働して工作機械1の各部の動作を制御するものであってもよい。
【0053】
制御部300は、数値制御(NC(Numerical Control))によって、ワーク保持部20をZ軸方向に、工具保持部52をX軸及びY軸方向に移動させ、ワークWと工具Tfとの相対的な位置関係を適切に設定する。具体的には、第1加工機構M1のワーク回転用モータ、第1Z軸モータ33、第1X軸モータ13、Y軸モータ48を駆動制御することによって、上記関係を実現する。また、制御部300は、数値制御によって、ワーク保持部70をX軸及びZ軸方向に移動させ、ワークWと工具Trとの相対的な位置関係を適切に設定する。具体的には、第2加工機構M2のワーク回転用モータ、第2Z軸モータ83、第2X軸モータ94を駆動制御することによって、上記関係を実現する。
【0054】
次に、上記構成の工作機械1によるワークWの加工について説明する。本実施形態に係る工作機械1においては、まず第1加工機構M1においてワークWの一次加工を行い、次に、第2加工機構M2において一次加工が施されたワークWをさらに加工する(二次加工を行う)。この加工は、制御部300の制御の下で行われる。
【0055】
(ワークの加工について)
(1)一次加工
制御部300は、工具保持部52の複数の工具Tfのうち所定の工具Tfを割り出し、ワークWを加工する。具体的には、Y軸モータ48を駆動し、所望の工具TfがワークWと同じ高さに位置するようにY軸移動部50を移動させる。次に、制御部300は、ワーク回転用モータと第1Z軸モータ33を駆動し、ワークWを回転させながらZ軸方向に移動させ、また、これと同時又は時間差で第1X軸モータ13を駆動し、第1X軸スライド機構10によりX軸移動部44をワークWに向けて移動させる。
このようにして、バイト、ドリル等の工具TfをワークWの前面又は側面に当接させ、第1加工機構M1は、ワークWを一次加工する。
【0056】
(2)二次加工
一次加工を終えると、制御部300は、第2Z軸モータ83及び第2X軸モータ94を駆動し、ワーク保持部70を移動させて、一次加工されたワークWを、チャック71aに把持させる。続いて、制御部300は、ワーク回転用モータと第1X軸モータ13を駆動し、第1X軸スライド部45をワークWに向けて移動させ、工具Tfの切断用バイトにより、ワークWを所望の位置で切断する。なお、
図1等では、このようにワークWが切断された後の状態を示している。
続いて、制御部300は、工具台100の複数の工具Trのうち、所定の工具Trを割り出し、主軸71を回転させながら、第2Z軸スライド機構80及び第2X軸スライド機構90により、把持したワークWの背面又は側面に選択した工具Trに当接させ、さらにワークWを加工する。
このようにして、第2加工機構M2は、ワークWを二次加工する。
【0057】
以上のようにワークWを加工する工作機械1は、所定の工具Tf,Trの位置を割り出す際、測定対象の軸方向の熱変位に応じた「補正量」を加味した位置に割り出す。つまり、所定の工具Tf,TrとワークWとの相対位置を、設定された目標位置とする際には、当該目標位置に補正量を加味した位置とする。
【0058】
ここからは、補正量を算出するための処理について説明する。制御部300は、まず、後述の第1熱変位量を求めるための基準となる基準位置を取得する「基準位置取得処理」を実行し、その後に「熱変位補正処理」を実行する。
【0059】
なお、制御部300は、第1加工機構M1におけるX軸方向の熱変位と、第1加工機構M1におけるY軸方向の熱変位と、第2加工機構M2におけるZ軸方向の熱変位とを補正可能であるが、各方向の熱変位補正の手法は同様である。そのため、以下では、主に第1加工機構M1におけるX軸方向の熱変位について説明する。
【0060】
(基準位置取得処理)
図6のフローチャートを参照して、制御部300が実行する基準位置取得処理を説明する。この処理は、例えば、工作機械1の電源を投入したことを条件に開始される。
【0061】
基準位置取得処理を開始すると、制御部300は、まず、第1X軸スライド部45を検出待機位置に移動させる(ステップS11)。具体的に、制御部300は、第1X軸モータ13を駆動し、第1X軸スライド部45を、ドグD1が検出部Sp1の先端部に近接する検出待機位置まで移動させる。検出待機位置は、ドグD1と検出部Sp1とが移動の反動によって誤って当接しない程度に両者の間に間隔を空けた位置であり、例えば、ドグD1と検出部Sp1先端との間の距離が、数mmになる位置である。
【0062】
続いて、制御部300は、第1X軸モータ13を駆動し、第1X軸スライド部45を-X方向に移動させることで、検出を開始する(ステップS12)。これにより、ドグD1は、徐々に検出部Sp1に近づいていく。ドグD1が検出部Sp1の先端部に接触すると、検出部Sp1は、検出信号(ON信号)を制御部300に供給する。制御部300は、この検出信号を受信することで、検出部Sp1がドグD1に接触したことを検出し、また、検出信号を受信した時点でのX座標を取得し(ステップS13)、RAM等に記憶する。ここで取得するX座標は、予め定められた任意の原点位置(X=0)に対する座標である。原点位置としては、例えば、第1X軸スライド部45が最も-X軸方向に移動した際の所定位置(例えばボールねじ12の先端位置)などであればよい。制御部300は、例えば、検出信号を受信した時点の第1X軸モータ13の回転数(回転数=回転角度/360°)にボールねじ12のリード(ボールねじ12の1回転あたりにナット15がX軸方向に進む距離)を掛けることにより、検出信号を受信した時点のX座標を取得する。制御部300は、取得したX座標を基準位置として記憶する。この基準位置は、後述の第1熱変位量を算出する際に用いられる。ステップS13の処理の実行後、基準位置取得処理は終了する。
【0063】
次に、熱変位補正処理について、
図7のフローチャートを参照して説明する。
【0064】
(熱変位補正処理)
制御部300は、例えば、ワークWの加工開始の指示を示す信号(以下、加工開始指示と言う。)を受け付けたことを条件に、熱変位補正処理を開始する。
【0065】
まず、制御部300は、加工開始指示を受けてから、予め定めた所定期間が経過しているか否かを判別する(ステップS20)。所定期間は、温度センサStのみを利用した場合に良好な熱変位補正が困難となる期間(
図8参照)よりも長い期間(例えば数分間)であり、予めROM内に記憶されている。
【0066】
所定期間が経過していない場合(ステップS20;No)、制御部300は、前述のステップS11と同様に、第1X軸スライド部45を検出待機位置に移動させる(ステップS21)。以降、制御部300は、ステップS21~S23の処理を実行するが、これらの処理は、前述のステップS11~S13と同様である。
【0067】
制御部300は、検出部Sp1から検出信号を受信した時点におけるX座標を取得し(ステップS23)、RAM等に記憶すると、第1熱変位量αを算出する(ステップS24)。具体的には、制御部300は、ステップS23で取得したX座標からステップS13で取得した基準位置としてのX座標を減算した値を第1熱変位量αとして算出する。αが正の値であれば熱変位によってボールねじ12がαだけ伸びていることになる。一方、αが負の値であれば、熱変位によってボールねじ12がαだけ縮んでいることになる。
【0068】
続いて、制御部300は、第1X軸スライド部45を加工待機位置に移動させてから、ワークWの加工を開始する(ステップS25)。加工待機位置は、例えば、検出待機位置と同様の位置などであればよい。
【0069】
ステップS25におけるワークWの加工は、前述の(ワークの加工について)で説明した手順(1)、(2)のように行われる。
所定期間が経過していない場合(ステップS20;No)においては、ステップS24で取得した第1熱変位量αをそのまま補正量とし、当該補正量を加味した位置に第1X軸スライド部45を移動させる。具体的に、制御部300は、予め設定された第1X軸スライド部45の目標座標をX=Aとすれば、当該目標座標に補正量αを加味した補正目標座標(X=A+α)の位置に、第1X軸スライド部45を移動させることで、第1加工機構M1にワークWを加工させる。
【0070】
一方、所定期間が経過している場合(ステップS20;Yes)、制御部300は、温度センサSt1~St8の各出力に基づき、各所の検出温度T1~T8を取得する(ステップS26)。
【0071】
続いて、制御部300は、取得した検出温度T1~T8と、予めROM内に記憶した補正式(数式のデータ)とに基づき、第2熱変位量βを算出する(ステップS27)。例えば、補正式は、予め定められた係数をa~iとして、「β=a・T1+b・T2+c・T3+d・T4+e・T5+f・T6+g・T7+h・T8+i」で表される式である。なお、係数a~iは、重回帰分析により予め決定することができる。制御部300は、取得した検出温度T1~T8を補正式に代入し、第2熱変位量βを算出する。
【0072】
続いて、制御部300は、前記と同様にワークWの加工を開始する(ステップS25)。ただし、所定期間が経過している場合(ステップS20;Yes)においては、ステップS27で取得した第2熱変位量βをそのまま補正量とし、当該補正量を加味した位置に第1X軸スライド部45を移動させる。具体的に、制御部300は、予め設定された第1X軸スライド部45の目標座標をX=Aとすれば、当該目標座標に補正量βを加味した補正目標座標(X=A+β)の位置に、第1X軸スライド部45を移動させることで、第1加工機構M1にワークWを加工させる。
【0073】
制御部300は、1つのワークWの加工を終えると、処理をステップS20に戻す。制御部300は、加工終了の指示を示す信号を受信するまで、上記処理を繰り返し実行する。なお、検出温度T1~T8の取得と、取得した検出温度T1~T8に基づく第2熱変位量βの算出とは、1つのワークWの加工中において所定周期で実行してもよい。また、複数の工具Tfのうち任意の工具を割り出す際にのみ、熱変位処理を実行するようにしてもよい。
【0074】
第1加工機構M1におけるY軸方向の熱変位の補正と、第2加工機構M2におけるZ軸方向の熱変位の補正も同様に行うことができる。
簡潔に説明すれば、第1加工機構M1におけるY軸方向の熱変位を補正する場合、制御部300は、基準位置取得処理において、Y軸移動部50を-Y方向に移動させることで検出部Sp2をドグD2に接触させ、Y座標の基準位置を取得すればよい。そして、熱変位補正処理において、所定期間内であればY軸方向における第1熱変位量を補正量とし、所定期間経過後であれば温度センサStの検出温度に基づいて算出したY軸方向における第2熱変位量を補正量とすればよい。
また、第2加工機構M2におけるZ軸方向の熱変位を補正する場合、制御部300は、基準位置取得処理において、第2Z軸スライド部84を+Z方向に移動させることで検出部Sp3をドグD3に接触させ、Z座標の基準位置を取得すればよい。そして、熱変位補正処理において、所定期間内であればZ軸方向における第1熱変位量を補正量とし、所定期間経過後であれば温度センサStの検出温度に基づいて算出したZ軸方向における第2熱変位量を補正量とすればよい。
なお、第2熱変位量を求める際に用いる補正式の各係数の値は、熱変位の補正対象の軸毎に重回帰分析により予め決定することができる。
【0075】
なお、本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能である。
【0076】
以上では、ドグD1が第1X軸スライド部45と共にX軸方向に移動する移動部であり、検出部Sp1がX軸方向には移動しない不動部である例を説明したが、ドグD1と検出部Sp1とは相対的にX軸方向に移動するように配置されればよく、移動部と不動部との関係を逆にしてもよい。つまり、検出部Sp1を第1X軸スライド部45と共にX軸方向に移動する移動部とし、ドグD1をX軸方向には移動しない不動部としてもよい。また、検出部Sp2及びドグD2のY軸方向における相対的移動関係や、検出部Sp3及びドグD3のZ軸方向における相対的移動関係についても、同様である。
【0077】
また、X、Y、Zの各軸方向に対応して、第1加工機構M1の制御軸をX1、Y1、Z1とし、第2加工機構M2の制御軸をX2、Y2、Z2とすると、以上では、X1、Y1、Z2の各軸において熱変位を補正する例を説明したが、これに限られない。X1、Y1、Z1、X2、Y2、Z2の各軸のうち、どの軸を熱変位の補正対象軸とするかは任意である。
【0078】
以上では、複数の温度センサStが温度センサSt1~St8の8つである例を示したが、複数の温度センサStの設置箇所や数は任意である。また、温度センサStは、サーミスタを利用したものに限られず、例えば、赤外線輻射により温度を検出するものや、半導体式温度センサなどであってもよい。
【0079】
また、以上では、予めROM内に記憶した補正式(数式を示すデータ)に基づいて、第2熱変位量を算出する例を説明したが、予めROM内に記憶したテーブルデータを用いて第2熱変位量を算出してもよい。テーブルデータは、温度センサStの設置箇所毎の検出温度に、予め定めた設定値(例えば、設置箇所毎の熱変位を示す値)を対応させて構成することができる。例えば、制御部300は、テーブルデータを参照して各検出温度に対応する設定値を複数取得し、取得した複数の設定値を合算することで第2熱変位量を得ることができる。
【0080】
また、以上では、ワークWの加工開始から所定期間内では第1熱変位量をそのまま熱変位の補正量とし、所定期間経過後では第2熱変位量をそのまま熱変位の補正量とした例を説明したが、これに限られない。例えば、所定期間内で取得した第1熱変位量に係数を掛けたものを熱変位の補正量としてもよいし、所定期間経過後に取得した第2熱変位量に係数を掛けたものを熱変位の補正量としてもよい。
【0081】
また、ワークWの加工開始から所定期間内において第1熱変位量だけでなく第2熱変位量を算出し、当該所定期間内において第1熱変位量と第2熱変位量とに基づいて補正量を算出してもよい。こうした場合、第1熱変位量と第2熱変位量の単純平均や加重平均を求め、求めた値を熱変位の補正量とすることができる。なお、当該所定期間内では、
図8に示すように、温度センサStの出力のみに基づく熱変位補正は困難であるため、加重平均を用いて補正量を求める場合は、温度センサStの出力に基づいて算出される第2熱変位量よりも、検出部Sp1の出力に基づいて算出される第1熱変位量のほうが優先的に作用する演算を行うことが好ましい。また、所定期間経過後において第2熱変位量だけでなく第1熱変位量を算出し、第1熱変位量と第2熱変位量とに基づいて補正量を算出してもよい。
【0082】
また、以上では、検出部Sp1(検出部Sp2、Sp3も同様)がタッチスイッチ(接触センサの一例)から構成される例を示したが、これに限られない。検出部Sp1は、非接触センサであってもよい。非接触センサは、例えば、渦電流式距離測定器であり、自機と対象物であるドグD1(ドグD2、D3も同様)との距離を測定し、計測値を制御部300に供給するものである。具体的には、制御部300は、渦電流式距離測定器が備えるコイルに高周波電流を流し、電磁誘導作用によってドグD1の表面に渦電流を発生させることで、両者の距離に応じて変化するコイルのインピーダンスを取得し、取得したインピーダンス値に基づいて前記距離を測定する。この場合、制御部300は、上記ステップS13及びステップS23において、予め記憶しておいた距離に、測定値が達した時点での座標を取得すればよい。また、接触センサはタッチスイッチに限られず、非接触センサは渦電流式距離測定器に限られない。接触センサ、非接触センサともに、公知の各種センサの中から任意に選択してもよい。
【0083】
以上では、制御部300は、ワーク加工を開始し(ステップS25)、1つのワークWを加工するとステップS20に処理を戻すものとしたが、これに限られない。制御部300は、複数のワークWを加工した後や所定の加工期間経過後に、ステップS20の処理に戻すものとしてもよい。
【0084】
また、以上のステップS20では、所定期間との比較対象となる期間(以下、対象期間Tと言う。)を、加工開始指示を受けた時点からの経過期間として説明したが、これに限られない。例えば、対象期間Tを、工作機械1の加工期間(稼働期間)の合算をTaとし、工作機械1の稼働停止期間の合算をTbとした場合に、T=Ta-γ・Tb(γは係数)で算出できる値としてもよい。なお、係数γは、熱変形に及ぼす影響が稼働停止期間と加工期間とで異なることを考慮した値であり、任意であるが、例えばγ=2とすることができる。つまり、制御部300は、上記式により対象期間Tを算出可能であり、ステップS20を実行する際に、算出した対象期間Tが予め定めた所定期間よりも大きいか否かを判別してもよい。また、所定期間を複数用意する、又は、可変とし、条件に応じて所定期間を変更可能な構成(例えば、1つのワークWの加工毎に熱変位補正処理を実行する場合と、複数のワークWの加工毎に熱変位補正処理を実行する場合とで異なる所定期間を設定可能な構成など)を採用してもよい。
【0085】
また、以上では、工具台100をベッド2に対して不動であるものとしたがこれに限られない。工具台100は、例えば、主軸71に対する工具Trの高さ方向の位置を調整することが可能な、Y軸方向に移動できるものであってもよい。
【0086】
また、以上では、工作機械1を多機能旋盤として説明したが、これに限られない。第1加工機構M1のみに相当する工作機械や、第2加工機構M2のみに相当する工作機械であってもよい。また、工作機械は、フライス盤、ボール盤等であってもよい。
【0087】
また、基準位置取得処理、熱変位補正処理を制御部300のCPUが実行するための動作プログラム(プログラムPG)は、制御部300のROMに予め記憶されているものとして説明したが、このような動作プログラム及び各種データは、工作機械1に含まれるコンピュータに対して、着脱自在の記録媒体により配布・提供されてもよい。さらに、動作プログラム及び各種データは、電気通信ネットワーク等を介して接続された他の機器からダウンロードすることによって配布されるようにしてもよい。
【0088】
そして、各処理の実行形態も、着脱自在の記録媒体を装着することにより実行するものだけではなく、電気通信ネットワーク等を介してダウンロードした動作プログラム及び各種データを内蔵の記憶装置に一旦格納することにより実行可能としてもよいし、電気通信ネットワーク等を介して接続された他の機器側のハードウェア資源を用いて直接実行してもよい。さらには、他の機器と電気通信ネットワーク等を介して各種データの交換を行うことにより各処理を実行してもよい。
【0089】
(1)以上に説明した工作機械1は、基台(ベッドS)に対して所定の軸方向(例えばX軸方向)に移動し、主軸に把持されたワークWと該ワークWを加工するための工具との軸方向における相対位置を調整するスライド部(例えば第1X軸スライド部45)と、スライド部と共に軸方向に移動する移動部(例えばドグD1)と、軸方向には移動しない不動部(例えば検出部Sp1)とが接触したこと又は所定の距離だけ接近したことを検出する検出手段(検出機構200)と、制御部300と、を備える。
制御部300は、算出手段及び駆動制御手段として機能する。算出手段は、検出手段が検出したことに基づいて検出時におけるスライド部の軸方向の位置である軸方向位置を取得し、所定箇所に設けられた温度センサStが検出した検出温度を取得し、取得した軸方向位置と検出温度との少なくともいずれかに基づいて軸方向の熱変位を補正するための補正量を算出する。駆動制御手段は、目標位置に補正量を加味した位置にスライド部を移動させる。
算出手段は、各々異なる検出時に取得した複数の軸方向位置に基づいて熱変位の量を示す第1の値(第1熱変位量)を算出し、検出温度に基づいて熱変位の量の推定値を示す第2の値(第2熱変位量)を算出し、ワークの加工開始から所定期間内では第1の値を用いて補正量を算出し、所定期間経過後では第2の値を用いて補正量を算出する。
【0090】
上記(1)の構成によれば、ワークWの加工開始から良好に熱変位補正を行うことができるとともに、スライド部以外の構成に生じる熱変位も考慮した熱変位補正を行うことができる。なお、スライド部の一例をY軸スライド部51とした場合は、検出部Sp2が移動部の一例となり、ドグD2が不動部の一例となる。また、スライド部の一例を第2Z軸スライド部84とした場合は、検出部Sp3が移動部の一例となり、ドグD3が不動部の一例となる。
【0091】
(2)また、工作機械1は、ワークWを通すことが可能な中空部51Hと、先端が中空部51Hに向く工具Tfとを有する工具部(工具保持部52が設けられたY軸スライド部51)をさらに備える。Y軸移動部50はX軸移動部44に設けられているため、当該工具部は、第1X軸スライド部45(スライド部)とともにX軸方向に移動可能である。また、ドグD1及び検出部Sp1は、X軸方向において中空部51Hよりも外側に位置する。
【0092】
上記(2)の構成によれば、前述のように、ワークWの加工において発生する切粉がドグD1及び検出部Sp1に付着することを抑制し、検出精度の低下を防止することができる。また、X軸方向はワークWの径方向であるため、ワークWの径方向における加工精度を高めることができる。
【0093】
(3)また、ドグD1及び検出部Sp1は、X軸方向において工具部(工具保持部52が設けられたY軸スライド部51)と重ならない位置にある。
【0094】
上記(3)の構成によれば、前述のように、ワークWの加工において発生する切粉がドグD1及び検出部Sp1に付着することを抑制し、検出精度の低下を防止することができる。
【0095】
(4)また、不動部としての検出部Sp1は、X軸方向において第1X軸スライド部45よりも外側に位置する接触センサである。
【0096】
上記(4)の構成によれば、前述のように、検出部Sp1に加わる振動を抑制することができ、検出精度の低下を防止することができる。
【0097】
(5)また、算出手段は、複数の温度センサStの各々から検出温度を取得し、複数の温度センサは、第1X軸スライド部45(スライド部)をX軸方向に移動させるためのボールねじ12の周囲温度を検出する温度センサSt1と、ボールねじ12以外の構成の周囲温度を検出する温度センサSt2~St8とを含む。
【0098】
上記(5)の構成によれば、スライド部と共に移動しない他ユニットに生じる熱変位を考慮した熱変位補正が可能である。
【0099】
(6)また、算出手段は、所定期間内では、第1熱変位量(第1の値)だけでなく第2熱変位量(第2の値)も用いて補正量を算出してもよい。
【0100】
(7)以上に説明したプログラムPGは、工作機械1における所定の軸方向の熱変位に応じた補正量を算出するためのものであって、制御部300(コンピュータの一例)に、検出手段が検出したことに基づいて検出時におけるスライド部の軸方向の位置である軸方向位置を取得する処理と、工作機械1の所定箇所に設けられた温度センサが検出した検出温度を取得する処理と、取得した軸方向位置と検出温度との少なくともいずれかに基づいて熱変位を補正するための補正量を算出する算出処理と、を実行させる。算出処理では、各々異なる検出時に取得した複数の軸方向位置に基づいて熱変位の量を示す第1の値を算出し、検出温度に基づいて熱変位の量の推定値を示す第2の値を算出し、ワークWの加工開始から所定期間内では第1の値を用いて補正量を算出し、所定期間経過後では第2の値を用いて補正量を算出する。
【0101】
(8)以上に説明した工作機械1における所定の軸方向の熱変位に応じた補正量を算出する補正量算出方法は、検出手段が検出したことに基づいて検出時におけるスライド部の軸方向の位置である軸方向位置を取得するステップと、工作機械1の所定箇所に設けられた温度センサが検出した検出温度を取得するステップと、取得した軸方向位置と検出温度との少なくともいずれかに基づいて熱変位を補正するための補正量を算出する算出ステップと、を備える。算出ステップでは、各々異なる検出時に取得した複数の軸方向位置に基づいて熱変位の量を示す第1の値を算出し、検出温度に基づいて熱変位の量の推定値を示す第2の値を算出し、ワークWの加工開始から所定期間内では第1の値を用いて補正量を算出し、所定期間経過後では第2の値を用いて補正量を算出する。
【0102】
上記(7)や(8)の構成によって算出した補正量を用いれば、ワークWの加工開始から良好に熱変位補正を行うことができるとともに、スライド部以外の構成に生じる熱変位も考慮した熱変位補正を行うことができる。
【0103】
以上の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。
【符号の説明】
【0104】
1…工作機械
2…ベッド
M1…第1加工機構
10…第1X軸スライド機構
20…ワーク保持部
30…第1Z軸スライド機構
40…工具移動機構
41…固定台
44…X軸移動部
45…第1X軸スライド部
50…Y軸移動部
M2…第2加工機構
60…固定台
70…ワーク保持部
80…第2Z軸スライド機構
90…第2X軸スライド機構
100…工具台
200…検出機構
Sp1~Sp3…検出部
D1~D3…ドグ
St(St1~St8)…温度センサ
300…制御部