IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フェリシテックス・セラピューティクス,インコーポレイテッドの特許一覧

特許7123806静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ
<図1>
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図1
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図2
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図3
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図4
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図5
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図6
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図7
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図8
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図9
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図10
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図11
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図12
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図13
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図14
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図15
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図16
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図17
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図18
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図19
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図20
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図21
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図22
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図23
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図24
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図25
  • 特許-静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ 図26
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-15
(45)【発行日】2022-08-23
(54)【発明の名称】静止細胞標的化およびEGFR阻害剤を用いた新生物の処置のための組み合わせ
(51)【国際特許分類】
   A61K 31/519 20060101AFI20220816BHJP
   A61K 31/517 20060101ALI20220816BHJP
   A61K 31/506 20060101ALI20220816BHJP
   A61K 45/00 20060101ALI20220816BHJP
   A61P 35/02 20060101ALI20220816BHJP
   A61P 35/04 20060101ALI20220816BHJP
   A61P 43/00 20060101ALI20220816BHJP
   A61P 11/00 20060101ALI20220816BHJP
【FI】
A61K31/519
A61K31/517
A61K31/506
A61K45/00
A61P35/02
A61P35/04
A61P43/00 111
A61P43/00 121
A61P11/00
【請求項の数】 14
(21)【出願番号】P 2018554361
(86)(22)【出願日】2017-04-14
(65)【公表番号】
(43)【公表日】2019-04-25
(86)【国際出願番号】 US2017027719
(87)【国際公開番号】W WO2017181075
(87)【国際公開日】2017-10-19
【審査請求日】2020-04-14
(31)【優先権主張番号】62/323,537
(32)【優先日】2016-04-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515097373
【氏名又は名称】フェリシテックス・セラピューティクス,インコーポレイテッド
(74)【代理人】
【識別番号】100101890
【弁理士】
【氏名又は名称】押野 宏
(74)【代理人】
【識別番号】100098268
【弁理士】
【氏名又は名称】永田 豊
(72)【発明者】
【氏名】ビレンチク・マリア
(72)【発明者】
【氏名】フリッド・マイケル
(72)【発明者】
【氏名】クズネツォワ・アレクサンドラ
(72)【発明者】
【氏名】ガンキン・ユーリー
(72)【発明者】
【氏名】デューイ・マーク
【審査官】鶴見 秀紀
(56)【参考文献】
【文献】特表2015-534584(JP,A)
【文献】国際公開第2016/038610(WO,A1)
【文献】特表2018-529639(JP,A)
【文献】特表2017-508763(JP,A)
【文献】国際公開第2013/026806(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61K 31/00-31/80
A61K 45/00
A61P 35/00
A61P 35/02
A61P 35/04
A61P 43/00
A61P 11/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
静止細胞標的化を用いて新生物を処置する組成物において、
二重特異性チロシンリン酸化調節キナーゼ1(DYRK1)阻害剤と、
上皮成長因子受容体チロシンキナーゼ阻害剤(EGFR TKI)と、を含み、
前記組成物は、前記DYRK1阻害剤および前記EGFR TKIを、別々の成分として含み、
前記DYRK1阻害剤は、式I:
【化1】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
、非置換のC1~ アルキルであり、
は、2~4つのハロで置換された、フェニルであり、
前記EGFR TKIは、エルロチニブ、アファチニブ、オシメルチニブ、ロシレチニブ、およびダコミチニブのリストから選択されている、組成物。
【請求項2】
請求項1に記載の組成物において、
前記組成物は、前記DYRK1阻害剤および前記EGFR TKIが順次または同時に投与されるように構成されている、組成物。
【請求項3】
請求項1または2に記載の組成物において、
前記DYRK1阻害剤は、生化学アッセイにおいて100nM以下のIC50で、二重特異性チロシンリン酸化調節キナーゼ1A(DYRK1A)キナーゼ活性および/または二重特異性チロシンリン酸化調節キナーゼ1B(DYRK1B)キナーゼ活性を阻害する、組成物。
【請求項4】
請求項1から3のいずれか一項に記載の組成物において、
前記組成物は、前記DYRK1阻害剤がない場合に見られるであろう静止癌細胞の割合を、少なくとも10%だけ減少させる、組成物。
【請求項5】
請求項1から4のいずれか一項に記載の組成物において、
前記組成物中の前記EGFR TKIのEC50値は、細胞ベースのアッセイで決定される場合に、前記EGFR TKI単独の場合と比べて、少なくとも20%低い、組成物。
【請求項6】
請求項1から5のいずれか一項に記載の組成物において、
前記DYRK1阻害剤および前記EGFR TKIを含む前記組成物は、FACSアッセイによりサブ-G細胞の割合によって決定される場合に、前記DYRK1阻害剤又は前記EGFR TKIのいずれか単独の場合と比較して、細胞集団におけるアポトーシス活性の少なくとも2倍の増加を引き起こす、組成物。
【請求項7】
請求項1から6のいずれか一項に記載の組成物において、
前記新生物は、非小細胞肺癌、膵癌、および結腸癌から選択される原発性または転移性の癌である、組成物。
【請求項8】
請求項1から6のいずれか一項に記載の組成物において、
前記新生物は、原発性または転移性の非小細胞肺癌である、組成物。
【請求項9】
請求項1から8のいずれか一項に記載の組成物において、
式Iの前記DYRK1阻害剤は、
【化2】
ならびに、その薬学的に許容可能な塩及び溶媒和物、から選択されている、組成物。
【請求項10】
請求項1から8のいずれか一項に記載の組成物において、
式Iの前記DYRK1阻害剤は、
【化3】
ならびに、その薬学的に許容可能な塩及び溶媒和物、から選択されている、組成物。
【請求項11】
請求項1から8のいずれか一項に記載の組成物において、
式Iの前記DYRK1阻害剤は、
【化4】
から選択されている、組成物。
【請求項12】
請求項1からのいずれか一項に記載の組成物において、
式Iの前記DYRK1阻害剤は、
【化5】
から選択されている、組成物。
【請求項13】
請求項1から12のいずれか一項に記載の組成物において、
前記DYRK1阻害剤は、DYRK1Aに対して選択的である、組成物。
【請求項14】
請求項1から12のいずれか一項に記載の組成物において、
前記DYRK1阻害剤は、DYRK1Bに対して選択的である、組成物。
【発明の詳細な説明】
【開示の内容】
【0001】
〔背景〕
癌細胞静止、事実上睡眠状態にある細胞は、処置に対する癌細胞の耐性の、また疾患再発の経路を与えるための、主要なメカニズムとして近年認識されている。この静止は、代わりに細胞休眠とも呼ばれるが、細胞周期のG期での停止によるものである。典型的には、細胞は、図1に示すように、ギャップ期1(G)から細胞周期に入る。合成期(S)および短い有糸分裂前インターバル(G)の後、細胞は、有糸分裂(M)により分裂し、その後Gに戻る。しかしながら、Gの代わりに、細胞は、G期として示される細胞休眠または静止に入る場合がある。癌細胞は、老化と呼ばれる、最終分化を受ける前の不可逆状態に入るか、または、可逆性で真に静止したG状態に入ることができ、このG状態から、細胞は、静止繊維芽細胞のように、循環を再開し得る(Coller HA, Sang L, and Roberts JM (2006) A new description of cellular quiescence, PLoS Biology 4, e83)。
【0002】
細胞集団は当然、いつでも静止状態にあってよく、また細胞分裂周期に入る信号を受け取るまでの予測できない期間にわたり静止したままであってよい。一例では、腫瘍内の集団において静止状態にある癌細胞の割合は、栄養素の欠乏、低酸素、高濃度の活性酸素種等といった、環境因子によって増大し得る。細胞はまた、薬理学的静止に見られるように、原薬の作用によって静止状態へと誘導され得る。
【0003】
静止細胞のエネルギーおよび栄養素の必要性は、分裂細胞と比べて少ない。現在の癌療法は図2に示すように分裂細胞を標的としているので、癌細胞は、そのような処置が癌細胞に影響を及ぼすには細胞分裂周期になければならない。したがって、静止癌細胞は、露出したDNAを損傷すること、DNA複製もしくは修復を妨げること、有糸分裂を妨げること、または他のメカニズムによって1つ以上の(one of more)細胞増殖プロセスに影響を及ぼす処置に耐性を示す。
【0004】
抗癌療法および放射線処置の両方が副作用を生じる。したがって、投与量および処置期間は、毒性により制限され、より低い有効投与量および/またはより短い処置期間が大いに望ましい。しかしながら、投与量を減少させるか、または処置を中止すると、生存静止癌細胞は、細胞周期に再び入った時に癌再発を引き起こす場合があり、そのタイミングは予測できない。さらに、血流中の転移性の癌細胞は、新たな微環境に順応する間、静止期間を経験し得る(Chaffer CL and Weinberg RA (2011) A perspective on cancer cell metastasis, Science 331, 1559-1564)。静止癌細胞はそれらのポリリボソームを分解し、よって、翻訳を阻止し、全RNAおよびタンパク質含量を低下させる。これらの収縮した癌細胞は、毛細血管の孔(約8μm直径)に入ることができ得るが、循環する癌細胞は、通常はるかに大きい(20~30μm)。
【0005】
したがって、新生物内における静止癌細胞集団の存在は、好結果で永続性のある処置に対する障害として認識されている(Jackson RC (1989) The problem of the quiescent cancer cell, Advances in Enzyme Regulation 29, 27-46)。さまざまな癌型に由来する静止癌細胞の、さまざまな抗癌処置に対する耐性のエビデンスが報告されている。
【0006】
しかし、癌細胞静止の重要性の評価の高まりにもかかわらず、この問題は、臨床的に取り組まれていない。
【0007】
〔発明の概要〕
本発明は、特に、特定の新生物状態(neoplastic conditions)に対して有効な他の処置、特にEGFR阻害薬による抗癌処置、と組み合わせた治療薬による静止癌細胞の標的化によって、新生物を処置する組成物および方法を提供する。
【0008】
概して、本発明は、新生物を処置する方法を特徴とし、この方法は、新生物の処置を必要とする被験者に、治療上有効量の、(a)静止癌細胞に対して有効な治療薬、および(b)EGFR阻害剤である第2の薬剤を投与することを含み、これら2つの薬剤は、順次または同時に投与され得る。いくつかの実施形態では、新生物は、in vitroまたはin vivoの癌または癌細胞集団である。いくつかの実施形態では、この処置を受ける被験者は、(例えば転移性または前転移性の)癌と診断されている。いくつかの実施形態では、被験者は、以前に、癌に対する第一選択治療で処置されている。いくつかの実施形態では、被験者は、順次または同時に2つ以上のEGFR阻害剤で処置されるか、または処置されている。
【0009】
いくつかの実施形態では、組み合わせ処置は、生存の増加、重症度の低下、再発の遅れもしくは排除、または一次処置(すなわち、EGFR阻害剤)の副作用の減少など、転帰の改善を生じ得る。いくつかの実施形態では、第2の薬剤は、組み合わせの一環として投与される場合には、その薬剤のみでの処置に比べて、より低い投与量で、および/またはより短い期間にわたり、投与される。例えば、いくつかの実施形態では、EGFR阻害剤のEC50値は、例えば細胞ベースのアッセイで決定される場合に、単一の薬剤としてのEGFR阻害剤での同じ処置と比べて、組み合わせ処置では少なくとも20%低い。いくつかの実施形態では、組み合わせ処置は、例えばFACSアッセイにおけるサブ-G期細胞の割合によって決定される場合に、処置集団のアポトーシス細胞の割合を、いずれかの薬剤単独の場合と比較して少なくとも2倍だけ増やす。
【0010】
一実施形態では、静止癌細胞に対して有効な治療薬はDYRK1阻害剤である。いくつかの実施形態では、DYRK1阻害剤は、例えば生化学アッセイにおいて100nM以下のIC50で、DYRK1キナーゼであるDYRK1AまたはDYRK1B(in vitroまたはin vivo)いずれかの活性を阻害する化合物である。いくつかの実施形態では、DYRK1阻害剤は、このような阻害剤がない場合に見られるであろう静止癌細胞(in vitroまたはin vivo)の割合を、例えば少なくとも10%だけ減少させる。いくつかの実施形態では、DYRK1阻害剤は、DYRK1AおよびDYRK1Bの両方を阻害する。いくつかの実施形態では、DYRK1阻害剤は、DYRK1AまたはDYRK1Bに対して選択的である。
【0011】
一実施形態では、静止癌細胞に対して有効な治療薬はDYRK1阻害剤である。一実施形態では、DYRK1阻害剤は、式I:
【化1】
の化合物、またはその薬学的に許容可能な塩もしくは溶媒和物であり、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る。
【0012】
一実施形態では、式Iの化合物は以下から選択される。
【化2】
【0013】
別の実施形態では、本発明の方法は、(c)被験者に、別の癌療法、例えば放射線療法または他の癌処置を施すこと、をさらに提供する。
【0014】
一実施形態では、本発明の方法は、必要とする被験者に、治療上有効量の(a)式Iの治療薬、(b)EGFR阻害剤、および(c)放射線療法を投与することを含み、各療法は、順次または同時に施される。例えば、いくつかの実施形態では、被験者はまず、放射線療法で処置され、その際、被験者は、式Iの治療薬を単独で、またはEGFR阻害剤と組み合わせて、投与される。いくつかの実施形態では、被験者は、(a)静止癌細胞に対して有効な治療薬、(b)EGFR阻害剤、およびオプションとして(c)放射線療法を同時投与される。いくつかの実施形態では、EGFR阻害剤は、例えば生化学アッセイにおいて100nM以下のIC50で、野生型または突然変異もしくは切断(truncated)EGFRチロシンキナーゼ(in vitroまたはin vivo)の活性を阻害する化合物である。いくつかの実施形態では、EGFR阻害剤は、癌の処置に承認されたすべてのそのような化合物および哺乳動物の被験者(例えばマウス、ラット、イヌ、サル、ヒト)の癌の処置において別様に効力を示す化合物、ならびにin vitroで新生細胞に対して効力を示す化合物を含むがこれらに限定されない、新生物を処置または予防するのに有効なEGFR阻害剤である。多くのそのような化合物が既知である。
【0015】
EGFR阻害剤は、例えば、小分子または抗EGFR抗体であってよい。
【0016】
一実施形態では、EGFR阻害剤は、可逆性EGFRチロシンキナーゼ阻害剤(EGFR TKI)である。さらなる実施形態では、可逆性EGFR TKIは、例えば、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ(sapitinib)、バンデタニブ、バルリチニブ(varlitinib)、テセバチニブ(tesevatinib)、およびチルホスチンAG 1478である。さらに別の実施形態では、可逆性EGFR TKIは、AZD3759またはMTKi-327(JNJ-26483327)である。いくつかの実施形態では、EGFR TKIの可逆性阻害剤はエルロチニブまたはラパチニブではない。
【0017】
別の実施形態では、EGFR阻害剤は、不可逆性EGFR TKIである。さらなる実施形態では、不可逆性EGFR阻害剤は、例えば、アファチニブ、オルムティニブ(HM61713)、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、ロシレチニブ、TAK285、およびWZ4002である。さらに別の実施形態では、不可逆性EGFR TKIは、例えば、アリチニブ(allitinib)(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブである。
【0018】
さらに別の実施形態では、EGFR阻害剤は、EGFRに対する抗体、例えば、セツキシマブ(Erbitux(登録商標))およびパニツムマブ(Vectibix(登録商標))である。
【0019】
別の実施形態では、処置される新生物は、癌、例えば、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、肺癌、リンパ腫、卵巣癌、膵癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、または子宮癌である。さらなる実施形態では、癌は非小細胞肺癌である。さらなる実施形態では、癌は原発性または転移性である。なおさらなる実施形態では、癌は、実施例に示す細胞株種(cell line types)で表される種類のものである。いくつかの実施形態では、癌を有する被験者は、癌のリスクの増加および/または特定のEGFR TKIへの耐性と関連付けられるEGFR遺伝子に突然変異を有する。
【0020】
本明細書に記載する実施形態は、例示的なものであり、追加の組み合わせ成分、投与経路および順序、患者のタイプ(以前に処置を受けていないか、もしくは以前に処置を受けている、共存症状態の有無、年齢など)、または患者の疾患の病期、EGFR阻害剤の種類などに関して制限することは意図していない。
【0021】
〔発明の詳細な説明〕
用語集
本発明では、「アルキル」基は、別段の指示がない限り、1~8個の炭素原子(C1~8アルキル基)、特に1~6個または1~4個の炭素原子を含む、飽和、直鎖、または分枝炭化水素基である。1~6個の炭素原子を有するアルキル基の例は、メチル、エチル、プロピル(例えばn-プロピル、イソ-プロピル)、ブチル(例えばtert-ブチル、sec-ブチル、n-ブチル)、ペンチル(例えばneo-ペンチル)、ヘキシル(例えばn-ヘキシル)、2-メチルブチル、2-メチルペンチル、およびそれらの他の異性体型である。アルキル基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択された少なくとも1つの基で置換されていてよい。
【0022】
本発明では、「アルケニル」基は、(別段の指示がない限り)2~8個の炭素原子を含む、少なくとも1つの二重炭素-炭素結合を含む、直鎖または分枝炭化水素基である。2~6個の炭素原子を含有するアルケニルの例は、ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル、およびそれらの異性体型である。アルケニル基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つの基によって置換されていてよい。
【0023】
本発明では、「アルキニル」基は、2~8個の炭素原子を含む、少なくとも1つの三重炭素-炭素結合を含む直鎖または分枝炭化水素基である。アルキニル基は、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つの基によって置換されていてよい。
【0024】
本発明では、「アリール」基は、5~14個の炭素原子を含む芳香族炭化水素環である。最も好適なアリール基は、単環式または二環式であり、6~14個の炭素原子を含み、例えばフェニル、α-ナフチル、3-ナフチル、アントラセニル(antracenyl)、好ましくはフェニルである。「アリール」基は、少なくとも別のアリール、ヘテロアリール、シクロアルキルまたはヘテロシクロアルキル基に融合されたアリール環を含む、二環(bicycles)または三環(tricycles)、例えばベンゾジオキソラン(benzodioxolane)、ベンゾジオキサン、ジヒドロベンゾフラン(dihydrobenzofurane)、またはベンゾイミダゾールも含む。アリール基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つ(例えば、1つ、2つ、もしくは3つ)の基で置換されていてよい。さらに、アリール基は、付着する炭素原子と合わせると、N、O、およびSから選択される1つ以上のヘテロ原子を含有し得る五~六員環を形成し得る隣接する置換基によって、置換されていてよい。
【0025】
本発明では、「ハロゲン原子」または「ハロ」は、Cl、Br、F、またはI原子である。
【0026】
本発明では、「アルコキシル」基は、式O-アルキルの、酸素原子を通じて分子の残りに結合されたアルキル基である。
【0027】
本発明では、「アミノ」基は、NH、NH-アルキル、またはN(アルキル)基である。
【0028】
本発明では、「ヘテロアリール」基は、環が少なくとも少なくとも1つのヘテロ原子、例えばN、O、またはS原子によって遮られたアリール基、例えばチオフェンまたはピリジンである。ヘテロアリール基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つ(例えば、1つ、2つ、もしくは3つ)の基で置換されていてよい。さらに、ヘテロアリール基は、付着する炭素原子と合わせると、N、O、およびSから選択される1つ以上のヘテロ原子を含有し得る五~六員環を形成し得る隣接する置換基によって、置換されていてよい。
【0029】
本発明では、「シクロアルキル」は、好ましくは3~14個の炭素原子、さらに好ましくは3~8個の炭素原子を有する1つの環を形成する飽和アルキル基、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、およびシクロオクチルを指す。シクロアルキル基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つ(例えば、1つ、2つ、もしくは3つ)の基によって置換されていてよい。さらに、シクロアルキル基は、付着する炭素原子と合わせると、N、O、およびSから選択される1つ以上のヘテロ原子を含有し得る五~六員環を形成し得る隣接する置換基によって、置換されていてよい。
【0030】
本発明では、「ヘテロシクロアルキル」基は、少なくとも1つのヘテロ原子を含むシクロアルキル基、例えば、ピロリジン、テトラヒドロチオフェン、テトラヒドロフラン、ピペリジン、ピラン、ダイオキシン、モルフォリン、またはピペラジンである。ヘテロシクロアルキル基は、特に4~14個の炭素原子を含み得、例えば、モルホリニル、ピペリジニル、ピロリジニル、テトラヒドロピラニル、ジチオラニル(dithiolanyl)である。ヘテロシクロアルキル基は、非置換であるか、または、ハロゲン原子、シクロアルキル、ヘテロシクロアルキル、アリール、ヘテロアリール、ヒドロキシル、アルコキシル、アルケニル、アルキニル、CN、ニトロ、およびアミノ基から選択される少なくとも1つの基によって置換されていてよい。さらに、ヘテロシクロアルキル基は、付着する炭素原子と合わせると、N、O、およびSから選択される1つ以上のヘテロ原子を含有し得る五~六員環を形成し得る隣接する置換基によって、置換されていてよい。
【0031】
本明細書で使用される「新生物」は、新生組織形成によって生じる異常な組織塊を意味する。「新生組織形成」は、細胞の異常な増殖のプロセスを意味する。本発明のいくつかの実施形態では、新生物は、固形癌、または代わりに造血性癌である。新生組織形成は、良性、前悪性、または悪性であり得る。新生物という用語は、哺乳動物の癌、いくつかの実施形態ではヒト癌、および任意の組織の癌腫、肉腫、芽細胞腫(例えば腺癌、扁平上皮癌、骨肉腫など)、胚細胞性腫瘍、グリア細胞腫、リンパ腫、白血病を包含し、これらは、固形癌およびリンパ癌、腎癌、乳癌、肺癌、頭頸部癌、膀胱癌、結腸癌、卵巣癌、前立腺癌、直腸癌、膵癌、胃癌、脳癌、頭頸部癌、皮膚癌、子宮癌、子宮頸癌、精巣癌、食道癌、甲状腺癌、肝癌、胆道癌、ならびに骨および軟骨組織の癌を含み、これらは、非ホジキンリンパ腫(例えばバーキットリンパ腫、小細胞型リンパ腫、および大細胞型リンパ腫)およびホジキンリンパ腫、白血病、多発性骨髄腫、および骨髄異形成症候群を含む。
【0032】
本明細書で使用される用語「処置する(treat)」、「処置すること(treating)」、または「処置(treatment)」は、医学的状態(例えば癌)を、その医学的状態が臨床的に許容可能な標準に従って改善される範囲で妨げることを意味する。癌の改善は、1)腫瘍増殖率の低下(腫瘍増殖阻害)、2)腫瘍縮小(退縮)、3)部分的かもしくは全体的かに関わらず、寛解、4)転移の減少、5)無増悪生存期間の延長、および6)再発の遅れもしくは排除を含み得る。本発明の特定の実施形態では、処置することは、以下の結果:癌の大きさ(mass)、もしくは体積、または悪性細胞数を部分的もしくは全体的に減らすこと;固形癌もしくは造血性癌に関連する臨床症状もしくは指標を向上もしくは改善すること;固形癌もしくは造血性癌の進行を遅らせるか、阻害するか、もしくは防止すること;または、固形癌もしくは造血性癌の発病もしくは発症を部分的もしくは全体的に遅らせるか、阻害するか、もしくは防止すること、のうちの1つ以上を部分的もしくは実質的に達成することを含む。また、「処置」は、処置なしで予測される生存と比べて、または標準的処置と比べて、長く生存することを意味し得る。
【0033】
処置することは、予防的または防止的処置を含む。「予防的処置」は、対象の疾患の発症、重症度、または進行を防止、阻止、または低減するための、その疾患の臨床症状の出現または再発の前の処置を指す。
【0034】
本明細書で使用される「有効量」は、対象の疾患の望ましい改善に作用するのに治療上または予防的に十分である治療薬、または治療薬の組み合わせの量を指す。有効量の例は、典型的には、1回の投薬につき体重1kg当たり約0.0001mg~体重1kg当たり約500mgの範囲であり、このような投薬は、1回、またはある期間にわたって施される。例としての範囲は、1回の投薬につき体重1kg当たり約0.0001mg~体重1kg当たり約5mgである。他の実施例では、この範囲は、1回の投薬につき約0.0001mg/kg~約5mg/kgであってよい。さらに他の実施例では、有効量は、1回の投薬につき体重1kg当たり約0.01mg~体重1kg当たり50mg、または1回の投薬につき体重1kg当たり0.01mg~体重1kg当たり0.1mg、体重1kg当たり0.5mg、体重1kg当たり1mg、体重1kg当たり2mg、体重1kg当たり3mg、体重1kg当たり4mg、体重1kg当たり5mg、体重1kg当たり6mg、体重1kg当たり10mg、体重1kg当たり20mg、体重1kg当たり25mg、体重1kg当たり30mg、または体重1kg当たり40mgの範囲である。既知の臨床用途の薬剤では、有効投与量の例は、適応症の処置のための規制機関により承認された量である。
【0035】
本明細書で使用される用語「被験者」は、哺乳動物、例えばヒトを指すが、獣医学的処置を必要とする動物、例えば伴侶動物(例えばイヌ、ネコなど)、家畜(例えばウシ、ヒツジ、ブタ、ウマなど)、および実験動物(例えば、ラット、マウス、モルモットなど)も意味し得る。
【0036】
本明細書で使用される用語「治療薬」は、作用機序に関係なく、小分子であるか、もしくはペプチドであるか、もしくは抗体であるか、もしくはオリゴヌクレオチドであるかに関わらず、細胞毒性剤、細胞増殖抑制剤、もしくは標的剤を含む、癌処置に使用されるか、癌処置での使用を企図されるか、または癌処置での使用について研究される、任意の化学分子を意味する。本明細書で使用される用語「治療用物質」または「治療薬」は、医薬品有効成分(API)またはその薬学的に許容される塩もしくは水和物(溶媒和物)、あるいは治療薬を含有するが調合された製剤を指し、APIが非晶質であるか、または結晶質であるかを問わず、またいかなる多形体であるかを問わない。調合は、投与可能な剤形(製剤)を作るために賦形剤および/または送達ビヒクル(delivery vehicle)と組み合わせられた1つの医薬品有効成分(API、原薬)または複数の医薬品有効成分(APIs)の組み合わせを意味する。
【0037】
生物学的原薬、例えばセツキシマブへの言及は、その生物学的製剤、または当業者によって、また規制機関によってバイオシミラーとして製造され、特徴づけられ、定義された、そのバイオシミラーを含有する、任意の製剤を意味する。
【0038】
本発明の治療薬は、概して、(Remington: The Science and Practice of Pharmacy, 21st Edition, Lippincott Williams & Wilkinsに記載されるような)標準的な薬務に関して、薬学的に許容されるキャリアと共に投与される。したがって、本発明のさらなる目的は、本明細書に定義される薬学的組成物、および薬学的に許容されるキャリアに関する。
【0039】
本明細書で使用される用語「阻害剤」は、酵素活性を低下させる任意の組成物を意味する。阻害剤の例は化学分子である。阻害剤の効能の指標は、その「50%阻害濃度」(IC50)である。IC50濃度またはIC50値は、酵素活性の50%が阻害剤により阻害される、阻害剤の濃度である。例えばキナーゼ阻害剤の、IC50値の決定方法は、当業者には既知であり、HotSpot(商標)キナーゼアッセイテクノロジー(ペンシルバニア州マルバーンのReaction Biology Corporation、www.reactionbiology.com)などの直接および間接的な機能アッセイ、またはKINOMEscan(登録商標)(カリフォルニア州フリーモントのDiscoverX Corporation、www.discoverx.com)などの競合結合アッセイを含む。
【0040】
細胞株に対する治療薬の効能の指標は、その「50%効果濃度」(EC50)である。EC50値は、例えば50%の細胞増殖阻害または50%の細胞生存能力低下など、最大半量の反応を生じる、薬品濃度である。例えばキナーゼ阻害剤の、EC50値の決定方法は、当業者には既知である。
【0041】
本明細書で使用される用語「静止」または「静止状態」は、当技術分野の専門家が理解するように、細胞周期のG状態を指す。
【0042】
本明細書で使用される用語「静止癌細胞に対して有効な治療薬」は、細胞集団中の静止癌細胞の割合を減少させるか、または、別の状況では集団中の静止癌細胞の割合の増加を生じるであろう条件下で、そのような増加を完全にもしくは実質的に防止する、分子を指す。
【0043】
「静止新生細胞」は、代わりに(alternately)「静止癌細胞」と呼ばれるが、細胞周期の静止状態すなわちG状態で存在する癌細胞を意味する。本明細書で使用される「静止新生細胞の割合」または「静止癌細胞の割合」は、細胞周期のG状態で存在する癌細胞集団の部分を意味する。静止新生細胞の割合の決定は、細胞周期のステージ内のその構成細胞の分布によって、細胞集団を特徴づけることを含む。G状態の細胞(すなわち、静止新生細胞)の割合は、細胞集団全体に対して定量化される。この割合は、細胞集団全体のパーセンテージ(すなわち(静止細胞の数を細胞集団中の全細胞で割ったもの)に100を掛けたもの)として表すことができる。細胞周期のステージ内のその構成細胞の分布によって、細胞集団を特徴づけることは、当業者に既知の技術により達成され得、フローサイトメトリー法、例えば蛍光活性化細胞分類(FACS)を用いた細胞周期内のDNAおよび/またはRNA含量分布による分析を含み得る。
【0044】
本明細書で使用される用語「EGFR阻害剤」および「EGFRチロシンキナーゼ阻害剤」および「EGFR TK阻害剤」は、等価であり、互換的に使用され得る。EGFR阻害剤の例は、可逆性および不可逆性の小分子阻害剤を含む。例えば、可逆性EGFR阻害剤は、ブリガチニブ、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、MTKi-327(JNJ-26483327)、サピチニブ、バンデタニブ、およびバルリチニブを含み、不可逆性EGFR阻害剤は、アファチニブ、カネルチニブ、ダコミチニブ、ネラチニブ、オシメルチニブ、ペリチニブ、TAK285、ロシレチニブ、WZ4002を含む。
【0045】
〔詳細な説明〕
本発明は、特に、特定の新生物状態に対して有効な他の処置、特にEGFR阻害剤治療薬による抗癌処置、と組み合わせた、治療薬による静止癌細胞の標的化によって、新生物を処置する組成物および方法を提供する。
【0046】
概して、本発明は、新生物を処置する方法を特徴とし、この方法は、新生物の処置を必要とする被験者に、治療上有効量の、(a)静止癌細胞に対して有効な治療薬、および(b)EGFR阻害剤である第2の薬剤を投与することを含み、これら2つの薬剤は、順次または同時に投与され得る。いくつかの実施形態では、新生物は、in vitroまたはin vivoの癌または癌細胞集団である。いくつかの実施形態では、この処置を受ける被験者は、(例えば転移性または前転移性の)癌と診断されている。いくつかの実施形態では、被験者は、以前に、癌に対する第一選択治療で処置されている。いくつかの実施形態では、被験者は、以前に、第二選択治療および/または他の療法で処置されている。いくつかの実施形態では、被験者は、放射線療法で処置されるか、または処置されている。いくつかの実施形態では、被験者は、例えば腫瘍を切除または摘除するために、手術で処置されている。他の実施形態では、被験者の新生物は再発している。いくつかの実施形態では、被験者は、順次または同時に2つ以上のEGFR阻害剤で処置されるか、または処置されている。
【0047】
いくつかの実施形態では、組み合わせ処置は、生存の増加、重症度の低下、再発の遅れもしくは排除、または一次処置(すなわち、EGFR阻害剤)の副作用の減少など、転帰の改善を生じ得る。いくつかの実施形態では、第2の薬剤は、その薬剤のみでの処置に比べて、組み合わせの一環として投与される場合に、より低い投与量で、および/またはより短い期間にわたり、投与される。例えば、いくつかの実施形態では、EGFR阻害剤のEC50値は、例えば細胞ベースのアッセイで決定される場合に、単一の薬剤としてのEGFR阻害剤での同じ処置と比べて、組み合わせ処置では少なくとも20%、25%、30%、40%、50%低い。いくつかの実施形態では、組み合わせ処置は、例えばFACSアッセイにおけるサブ-G期細胞の割合によって決定される場合に、処置集団中のアポトーシス細胞の割合を、いずれかの薬剤単独の場合と比較して、少なくとも2倍、3倍、4倍、5倍だけ増やす。いくつかの実施形態では、静止癌細胞の割合は、例えば細胞ベースのアッセイで決定される場合に、単一の薬剤としてのEGFR阻害剤での同じ処置と比べて、組み合わせ処置では少なくとも20%、25%、30%、40%、50%以上、減少する。
【0048】
一実施形態では、静止癌細胞に対して有効な治療薬はDYRK1阻害剤である。いくつかの実施形態では、DYRK1阻害剤は、例えば生化学アッセイにおいて<100nM、<90nM、<80nM、<70nM、<60nM、<50nM、<40nM、<30nM、<20nM、<10nM、<5nMであるか、またはそれより低いIC50値で、DYRK1AまたはDYRK1B(in vitroまたはin vivo)いずれかのDYRK1キナーゼの活性を阻害する化合物である。いくつかの実施形態では、DYRK1阻害剤は、このような阻害剤がない場合に見られるであろう腫瘍または集団中の静止癌細胞(in vitroまたはin vivo)の割合を、例えば少なくとも5%、10%、15%、20%、25%、30%、40%、50%だけ、またはこれより多く減少させる。
【0049】
いくつかの実施形態では、DYRK1阻害剤は、DYRK1AおよびDYRK1Bの両方を阻害する。いくつかの実施形態では、DYRK1阻害剤は、DYRK1BのIC50とDYRK1AのIC50との比率が1000、100、50、25、10:1で、DYRK1Aに対して選択的である。いくつかの実施形態では、DYRK1阻害剤は、DYRK1AのIC50とDYRK1BのIC50との比率が1000、100、50、25、10:1で、DYRK1Bに対して選択的である。いくつかの実施形態では、DYRK1阻害剤は、IC50値の比率によって決定される場合に、DYRK2および/またはDYRK3および/またはDYRK4と比べて、少なくとも4倍、5倍、10倍、20倍、50倍、100倍だけDYRK1に対して選択的である。いくつかの実施形態では、DYRK1阻害剤は、IC50値の比率によって決定される場合に、例えばCDK2などのサイクリン依存性キナーゼ(CDK)と比べて、少なくとも4倍、5倍、10倍、20倍、50倍、100倍、500倍、1000倍だけDYRK1に対して選択的である。
【0050】
既知のDYRK1阻害剤の例は、AZ191、DYRKi、ハルミン、ID-8、leucettine L41、NCGC00185981、INDY、ProINDY、TC-S 7004、およびTG003を含む。少なくとも1つの既知のDYRK1阻害剤であるTC-S 7004(US20120184562)が、in vitroの静止癌細胞に対して有効であることが報告されている(Ewton DZ, Hu J, Vilenchik M, Deng X, Luk KC, Polonskaia A, Hoffman AF, Zipf K, Boylan JF, and Friedman EA. (2011) Inactivation of MIRK/DYRK1B kinase targets quiescent pancreatic cancer cells. Molecular Cancer Therapeutics 10: 2104-2114)。
【化3】
【0051】
一実施形態では、DYRK1阻害剤は、式I:
【化4】
の化合物、またはその薬学的に許容可能な塩もしくは溶媒和物であり、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る。
【0052】
一実施形態では、式Iの化合物は以下から選択される。
【化5】
【0053】
別の実施形態では、本発明の方法は、(c)被験者に、別の癌療法、例えば放射線療法または他の癌処置を施すこと、をさらに提供する。
【0054】
一実施形態では、本発明の方法は、必要とする被験者に、治療上有効量の(a)式Iの治療薬、(b)EGFR阻害剤、および(c)放射線療法を投与することを含み、各療法は、順次または同時に施される。例えば、いくつかの実施形態では、被験者はまず、放射線療法で処置され、その際、被験者は、式Iの治療薬を単独で、またはEGFR阻害剤と組み合わせて、投与される。いくつかの実施形態では、被験者は、(a)静止癌細胞に対して有効な治療薬、(b)EGFR阻害剤、およびオプションとして(c)放射線療法を同時投与される。いくつかの実施形態では、EGFR阻害剤は、例えば生化学アッセイにおいて<100nM、<90nM、<80nM、<70nM、<60nM、<50nM、<40nM、<30nM、<20nM、<10nM、<5nM、またはそれより低いIC50で、野生型または突然変異もしくは切断EGFRチロシンキナーゼ(in vitroまたはin vivo)の活性を阻害する化合物である。いくつかの実施形態では、EGFR阻害剤は、HER2/c-neu(ErbB-2)、Her 3(ErbB-3)、およびHer 4(ErbB-4)と比べて、EGFRに対して4倍、5倍、10倍、20倍、50倍、100倍、1000倍選択的である。いくつかの実施形態では、EGFR阻害剤はまた、生化学アッセイにおいて<100nM、<90nM、<80nM、<70nM、<60nM、<50nM、<40nM、<30nM、<20nM、<10nM、<5nM、またはそれより低いIC50値で、HER2/c-neu(ErbB-2)、Her 3(ErbB-3)、およびHer 4(ErbB-4)のうちの1つ以上を阻害する。いくつかの実施形態では、EGFR阻害剤はまた、生化学アッセイにおいて<100nM、<90nM、<80nM、<70nM、<60nM、<50nM、<40nM、<30nM、<20nM、<10nM、<5nM、またはそれより低いIC50値で、ヒストンデアセチラーゼ(HDAC)、例えばクラスI、クラスII、クラスIII、および/またはクラスIVのHDACのうちの1つ以上を阻害する。いくつかの実施形態では、EGFR阻害剤は、野生型EGFRと比べて、突然変異EGFR、例えばT790M突然変異を含むEGFRに対して選択的である。いくつかの実施形態では、EGFR阻害剤は、癌の処置に承認されたすべてのそのような化合物、癌の処置のための臨床試験における化合物、哺乳動物の被験者(例えばマウス、ラット、イヌ、サル、ヒト)の癌の処置において別様に効力を示す化合物、およびin vitroで新生細胞に対して効力を示す化合物を含むがこれらに限定されない、新生物を処置または予防するのに有効なEGFR阻害剤である。多くのそのような化合物が既知である。
【0055】
EGFR阻害剤は、例えば、小分子または抗EGFR抗体であってよい。
【0056】
一実施形態では、EGFR阻害剤は、可逆性EGFRチロシンキナーゼ阻害剤(EGFR TKI)である。さらなる実施形態では、可逆性EGFR TKIは、例えば、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、バンデタニブ、バルリチニブ、テセバチニブ、およびチルホスチンAG 1478である。さらに別の実施形態では、可逆性EGFR TKIは、AZD3759またはMTKi-327(JNJ-26483327)である。いくつかの実施形態では、可逆性EGFR TKIはエルロチニブまたはラパチニブではない。
【0057】
別の実施形態では、EGFR阻害剤は、不可逆性EGFR TKIである。さらなる実施形態では、不可逆性EGFR阻害剤は、例えば、アファチニブ、オルムティニブ(HM61713)、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、ロシレチニブ、TAK285、およびWZ4002である。さらに別の実施形態では、不可逆性EGFR TKIは、例えば、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブである。
【0058】
さらに別の実施形態では、EGFR阻害剤は、EGFRに対する抗体、例えば、セツキシマブ(Erbitux(登録商標))およびパニツムマブ(Vectibix(登録商標))である。
【0059】
別の実施形態では、処置される新生物は、癌、例えば、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、非小細胞肺癌、小細胞肺癌、リンパ腫、卵巣癌、膵癌、前立腺癌、直腸癌、肉腫、皮膚癌(例えば、黒色腫)、精巣癌、甲状腺癌、または子宮癌である。さらなる実施形態では、癌は非小細胞肺癌、膵癌、および頭頸部癌である。さらなる実施形態では、癌は原発性または転移性である。なおさらなる実施形態では、癌は、実施例に示す細胞株種で表される種類のものである。いくつかの実施形態では、癌を有する被験者は、癌のリスクの増加および/または特定のEGFR TKIへの耐性と関連付けられるEGFR遺伝子に突然変異を有する。
【0060】
本明細書に記載する実施形態は、例示的なものであり、追加の組み合わせ成分、投与経路および順序、患者のタイプ(以前に処置を受けていないか、もしくは以前に処置を受けている、共存症状態の有無、年齢、性別など)、または患者の疾患の病期、EGFR阻害剤の種類などに関して制限することは意図していない。
【0061】
EGFR阻害剤は、当技術分野で既知である(Lee CC, et al. (2014) Small-molecule EGFR tyrosine kinase inhibitors for the treatment of cancer, Expert Opinion on Investigational Drugs 23, 1333-1348)。これらの薬品は、癌がEGFRを活性化する突然変異または他のEGFR異常(過剰発現など)を含む患者、最も重要なことには非小細胞肺癌(NSCLC)ならびに膵癌、乳癌、および頭頸部癌の患者を処置するのに使用される。臨床上使用されるEGFR阻害剤は、特に無増悪生存期間の点で、患者に大きな利益を与える。しかしながら、癌がEGFR阻害剤による最初の処置に反応する大部分の患者は、1~2年の短期間で再発を経験する。さらに、それらの患者の癌は、最初に有効であった処置に対して耐性ができている。EGFRタンパク質における突然変異は、この耐性の一部を証明し、突然変異EGFR、特にT790M突然変異を標的とした新しいEGFR阻害剤が、利用可能となっている。
【0062】
近年、可逆性EGFR阻害剤であるエルロチニブまたはラパチニブへのPC9ヒト非小細胞肺癌細胞の曝露によって、薬理学的静止、すなわちGにある細胞の割合の著しい増加を生じることが発見された(Tyson DR, Garbett SP, Frick PL, et al. (2012) Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data, Nature Methods 9, 923-928)。In vitroでは、EGFR TK阻害剤に過敏なPC9細胞のエルロチニブでの処置に対する抗増殖反応は、主に、細胞がアポトーシスではなく静止状態になることによるものである。
【0063】
アニリノキナゾリンまたはアニリノピリミジン足場のいずれに基づくかに関わらず、不可逆性阻害剤を含む、第2および第3世代EGFR TKIへの異なる癌細胞株の曝露は、Gの割合の大きな増加をもたらしたことが分かった。したがって、Gにある細胞(静止細胞)の増加は、EGFRチロシンキナーゼ阻害剤の一般的な性質であり、これまでに報告されたいくつかの特定の例に限られるものではなく、これは予測および予期されていないことであった。EGFR TKIへの曝露時のGにある細胞の集団の増加は、血清飢餓で誘発されるものより顕著であり、予期しない観察結果であった。したがって、EGFR TKIは、薬理学的静止を誘発する。この細胞静止作用は、一時的な癌の寛解に続く再発の、EGFR阻害剤に関する臨床的観察を少なくとも部分的に説明することができる。
【0064】
状態は、遺伝子発現の特別なプログラムにより維持される。DYRK1AおよびDYRK1BなどのDYRK1キナーゼが、癌細胞の中でG状態(静止状態)にある癌細胞を維持するのに重要となり得るというエビデンスが出現している。
【0065】
DYRK1B/Mirkは、特定の正常組織において生存および分化を媒介するキナーゼのMinibrain/DYRKファミリーのメンバーである。(Kentrup H, Becker W, Heukelbach J, Wilmes A, Schurmann A, Huppertz C, Kainulainen H, and Joost HG (1996) Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII, Journal of Biological Chemistry 271, 3488-3495;Becker W, Weber Y, Wetzel K, Eirmbter K, Tejedor FJ, and Joost HG (1998) Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases, Journal of Biological Chemistry 273, 25893-25902)。DYRK1Bは、骨格筋細胞および精巣において検出可能なレベルで発現する。DYRK1Bのノックアウトは、マウスの発達中の筋肉においても明らかに異常な表現型を引き起こさず、これは、DYRK1Bが正常な発達にとって不可欠の遺伝子ではないことを示唆している。この解釈を裏付けるように、正常な繊維芽細胞は、DYRK1Bキナーゼレベルの20倍枯渇後の生存に全く変化を示さなかった。よって、DYRK1Bは、正常細胞の生存に不可欠な遺伝子であるとは思われないが、DYRK1Bが癌細胞を静止状態に保持することにより生存を媒介すると考えられる特定の悪性癌細胞内でアップレギュレートされるというエビデンスがある。これらの異常な特徴は、DYRK1Bが治療的介入、特に静止癌細胞に直接対抗する抗癌療法にとって魅力的な標的となり得ることを示唆している。
【0066】
開示される組み合わせおよび方法は、個々のそれぞれの成分または既存の単一および組み合わせ処置の使用に比べて、用語集で定義されるような改善のうちの1つ以上を提供し得る。また、開示される組み合わせおよび方法は、治療薬および放射線の投与量および/または投与回数の減少を可能にし、個々の成分または既存の単一および組み合わせ処置を用いて可能となるものに比べて、処置の結果として同じ改善を達成することができる。
【0067】
開示される組み合わせは、EGFR阻害剤での単一療法に比べて処置の有効性の著しい改善を生じるように、相乗的であるか、またはEC50値の著しい低下すらもたらす必要はない。前述のとおり、静止癌細胞は、EGFR阻害剤を含む抗癌治療用物質に本質的に影響を受けにくく、処置後生存しているほんのわずかな静止細胞さえ、再発をもたらし得る。したがって、新生物中の耐性のある静止細胞集団を根絶することにより、EC50値の相乗的な減少をもたらす場合ももたらさない場合もあるが、癌再発率および転移性の新生物の出現において著しい改善をもたらし得る。
【0068】
開示される組み合わせの投与経路およびレジメンは、処置される新生物状態、新生物の進行の程度、被験者の年齢および健康状態、選択される厳密な組み合わせ、ならびに他の要因に応じて大いに変化し得る。投与レジメンは、ある期間につき複数回の投与を含み得、処置は、同時に、または連続するなどして、施される。例えば、静止癌細胞に対して有効な治療薬が、EGFR阻害剤の前に投与され得る。静止癌細胞に対して有効な治療薬は、EGFR阻害剤より6時間、12時間、24時間、48時間、72時間、96時間前に投与され得る。静止癌細胞に対して有効な治療薬は、EGFR阻害剤と同時に(付随して)投与され得る。静止癌細胞に対して有効な治療薬は、EGFR阻害剤の6時間、12時間、24時間、48時間、72時間、96時間後に投与され得る。静止癌細胞に対して有効な治療薬および/またはEGFR阻害剤は、放射線または他の療法の前、後、またはそれに付随して投与され得る。
【0069】
静止癌細胞に対して有効な治療薬は、毎日、2日毎、3日毎、4日毎、週2回(1週間当たり2回)、週1回、2週間に1回、1か月に1回、経口(PO)、静脈内(IV)、腹膜内(IP)、皮下(SC)、腫瘍内(IT)、髄腔内、または他の投与経路によって、投与され得る。
【0070】
組み合わせは、処置を受けたことがない(処置されていない)被験者、または第一選択、第二選択、第三選択、もしくは他の療法、放射線処置による処置を以前に受けたか、もしくは固形腫瘍の外科的切除もしくは摘除を受けている被験者、または、癌が再発した被験者、または、癌が非転移性もしくは転移性である被験者に投与され得る。
【0071】
〔実施例〕
以下の実施例は限定的とすることを意図しない。当業者は、本開示を鑑みて、多くの変更を特定の材料において行うことができ、それらは、開示され、本発明の趣旨および範囲から逸脱せずに依然として同じようなまたは類似の結果を得ることを、認識するであろう。
【0072】
実施例1. 集団内の静止癌細胞の割合の決定
以下の細胞株をATCCから入手し、ATCC推奨に従って培養した:L858RおよびT790M突然変異を含むH1975-非小細胞肺癌細胞株;EGFR TK中にE746-A750欠失を有するHCC827-非小細胞肺癌細胞株;EGFR TK中にE746-A750欠失を有するPC9-非小細胞肺癌細胞株;野生型EGFRを有するA549-非小細胞肺癌細胞株;PANC1-膵癌細胞株;MiaPaCa-2-膵癌細胞株、およびSW620-結腸癌細胞株。これらの株の細胞培養物を、6ウェルプレートに、3×10~6×10細胞/ウェルで播種した;培養された細胞数は、細胞の大きさおよび増殖速度次第であり、約50%コンフルエンシーを目標とした。播種後、細胞は、37℃で、湿気のある5% CO環境においてインキュベートされながら、24時間付着させられ、その後、所望の長さの時間(通常24時間)にわたり化合物で処置されて、同じ条件下でインキュベートされた。次に、細胞を、トリプシン処置で採取し、細胞を浮遊させて貯蔵し、PBS中で洗浄し、氷のように冷たい70%エタノールで一晩固定した。アクリジン・オレンジ(AO)染色では、固定細胞を、氷のように冷たいPBSで一度洗浄し、100μLのPBS中に再懸濁させ、200μLの透過処置溶液(permeabilizing solution)と600μLのAO染色溶液とを添加した。488nmで励起するよう青色レーザーを用いてGuava easyCyte HTフローサイトメーター(EMD Millipore)によって測定を行い、526nmでのAO-DNA複合体および650nmでのAO-RNA複合体の発光をモニタリングした。緩衝液の完全なプロトコルおよび組成が文献に記載されている(Darzynkiewicz Z, Juan G, and Srour EF (2004) Differential Staining of DNA and RNA (2004). Current Protocols in Cytometry, Chapter 7:Unit 7.3)。
【0073】
実施例2. 2D細胞培養における細胞生存率測定のための一般的な手順
生存率分析では、細胞を、96ウェルプレートに2×10~6×10細胞/ウェルで播種した;細胞の大きさおよびおよび増殖速度次第であり、約50%コンフルエンシーを目標とした。細胞は、37℃で、湿気のある5% CO環境においてインキュベートされて、24時間付着させられた。この処置は、1:3連続希釈法において少なくとも6つの異なる濃度の化合物を用いて行った。結果を読み取る前に、細胞を、37℃で5% COインキュベーターにおいて96時間インキュベートした。各処置は3回行った。結果を、CellTiter-Glo(商標)Luminescent Cell Viability Assay(Promega、カタログ番号G7571)によって、SpectraMAX Gemini分光光度計(Molecular Devices)を用いて製造業者の指示に従って、分析した。
【0074】
実施例3. 静止癌細胞に対して有効な分子とエルロチニブとの組み合わせ
HCC827細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したエルロチニブの最高濃度は40nMであり、化合物I-5の濃度は2μMおよび4μMであった。エルロチニブについて観察されたEC50値は、化合物I-5が存在しなかった場合に12.15nM、化合物I-5が2μMの濃度で存在した場合に2.95nM、化合物I-5が4μMの濃度で存在した場合に<0.1nMであった。図3を参照のこと。
【0075】
PC9細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したエルロチニブの最高濃度は40nMであり、化合物I-5の濃度はそれぞれ2μMおよび4μMであった。エルロチニブについて観察されたEC50値は、化合物I-5が存在しなかった場合に17.3nM、化合物I-5が2μMの濃度で存在した場合に9.3nM、化合物I-5が4μMの濃度で存在した場合に3.7nMであった。図4を参照のこと。
【0076】
A549細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したエルロチニブの最高濃度は10μMであり、化合物I-7の濃度はそれぞれ3μMおよび6μMであった。エルロチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に10.4μM、化合物I-7が3μMの濃度で存在した場合に5.9μM、化合物I-7が6μMの濃度で存在した場合に0.4μMであった。図5を参照のこと。
【0077】
PANC1細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したエルロチニブの最高濃度は30μMであり、化合物I-5の濃度はそれぞれ2.5μMおよび5μMであった。エルロチニブについて観察されたEC50値は、化合物I-5が存在しなかった場合に>30μM、化合物I-5が2.5μMの濃度で存在した場合に>30μM、化合物I-5が5μMの濃度で存在した場合に14μMであった。図6を参照のこと。
【0078】
MiaPaCa-2細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したエルロチニブの最高濃度は30μMであり、化合物I-5の濃度はそれぞれ2.5μMおよび5μMであった。エルロチニブについて観察されたEC50値は、化合物I-5が存在しなかった場合に>30μM、化合物I-5が2.5μMの濃度で存在した場合に6.4μM、化合物I-5が5μMの濃度で存在した場合に3.5μMであった。図7を参照のこと。
【0079】
これらの実験では、可逆性EGFR阻害剤であるエルロチニブを化合物I-5と組み合わせると、HCC827、PC9、およびA549非小細胞肺癌細胞株に対するエルロチニブの細胞毒性が著しく増加した(EC50値の低下)ことが証明された。さらに、細胞毒性の著しい増加(より低いEC50値)が、PANC1およびMiaPaCa-2膵癌細胞株に対して観察された。この結果は、EGFRの比較的低い発現を有する、MiaPaCa-2細胞株で特に予想外であった。
【0080】
実施例4. 静止癌細胞に対して有効な分子とアファチニブとの組み合わせ
H1975細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したアファチニブの最高濃度は500nMであり、化合物I-7の濃度は2μMおよび4μMであった。アファチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に89.4nM、化合物I-7が2μMの濃度で存在した場合に25.2nM、化合物I-7が4μMの濃度で存在した場合に8.2nMであった。図8を参照のこと。
【0081】
HCC827細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したアファチニブの最高濃度は50nMであり、化合物I-7の濃度は3μMおよび6μMであった。アファチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に3.8nM、化合物I-7が3μMの濃度で存在した場合に1.6nM、化合物I-7が6μMの濃度で存在した場合に0.2nMであった。図9を参照のこと。
【0082】
PC9細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したアファチニブの最高濃度は5nMであり、化合物I-7の濃度は4μMおよび8μMであった。アファチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に2.1nM、化合物I-7が3μMの濃度で存在した場合に1.3nM、化合物I-7が6μMの濃度で存在した場合に0.4nMであった。図10を参照のこと。
【0083】
A549細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したアファチニブの最高濃度は10μMであり、化合物I-7の濃度は4μMおよび8μMであった。アファチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に4.7μM、化合物I-7が3μMの濃度で存在した場合に2.6μM、化合物I-7が6μMの濃度で存在した場合に1.0μMであった。図11を参照のこと。
【0084】
PANC1細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したアファチニブの最高濃度は10μMであり、化合物I-7の濃度は2μMおよび4μMであった。アファチニブについて観察されたEC50値は、化合物I-7が存在しなかった場合に1.9μM、化合物I-7が2μMの濃度で存在した場合に1.8μM、化合物I-7が4μMの濃度で存在した場合に1.5μMであった。図12を参照のこと。
【0085】
この実験では、不可逆性EGFR阻害剤であるアファチニブを化合物I-7と組み合わせると、H1975細胞および他の非小細胞肺癌細胞であるHCC827、PC9、およびA549に対するアファチニブの細胞毒性が著しく増加したこと(より低いEC50値)が証明された。さらに、アファチニブを化合物I-7と組み合わせると、PANC1膵癌細胞に対する細胞毒性が増大したことが証明された。この最後の組み合わせは、相乗的なものではない、あるいは、EC50値の劇的な減少を引き起こさないかもしれないが、単一療法による処置では生存する、新生物中の耐性のある静止細胞集団を根絶することにより、EGFR阻害剤での単一療法と比べて処置の有効性の著しい改善を十分にもたらし得る。
【0086】
実施例5. 静止癌細胞に対して有効な分子とオシメルチニブとの組み合わせ
H1975細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したオシメルチニブの最高濃度は50nMであり、化合物I-7の濃度は2μMおよび4μMであった。観察されたEC50値は、化合物I-7が存在しなかった場合に8.7nM、化合物I-7が2μMの濃度で存在した場合に7.9nM、化合物I-7が4μMの濃度で存在した場合に4.2nMであった。図13を参照のこと。
【0087】
PANC1細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したオシメルチニブの最高濃度は20μMであり、化合物I-7の濃度は2μMおよび4μMであった。観察されたEC50値は、化合物I-7が存在しなかった場合に5.3μM、化合物I-7が2μMの濃度で存在した場合に4.6μM、化合物I-7が4μMの濃度で存在した場合に4.5μMであった。図14を参照のこと。
【0088】
この実験では、不可逆性EGFR阻害剤であるオシメルチニブを化合物I-7と組み合わせると、H1975細胞に対するオシメルチニブの細胞毒性が著しく増加したこと(より低いEC50値)が証明された。さらに、オシメルチニブを化合物I-7と組み合わせると、PANC1膵癌細胞に対する細胞毒性が増大したことが証明された。この最後の組み合わせは、相乗的なものではない、あるいは、EC50値の劇的な減少を引き起こさないかもしれないが、単一療法による処置では生存する、新生物中の耐性のある静止細胞集団を根絶することにより、EGFR阻害剤での単一療法と比べて処置の有効性の著しい改善を十分にもたらし得る。
【0089】
実施例6. オシメルチニブ、および静止癌細胞に対して有効な分子とオシメルチニブとの組み合わせの細胞周期効果および細胞毒性
H1975細胞を、実施例1および2に記載のとおりに培養し、処置し、分析した。異なる濃度のオシメルチニブ、化合物I-7、またはオシメルチニブおよび化合物I-7の両方が存在する場合の結果を図15および図16に示す。
【0090】
これらの実験では、H1975細胞をオシメルチニブに暴露することで細胞周期分布に変化が生じ、大部分の細胞を静止(G)状態に誘発するのに、血清飢餓(FBS-)よりもオシメルチニブが有効であることが証明された。無血清培地(FBS-)および標準的な成長培地(FBS+)でインキュベートされたものである、正常に増殖するH1975細胞の細胞周期分布を比較のため示す。オシメルチニブは、細胞が、オシメルチニブで処置する前にGにある細胞の割合を増やすために正常な成長培地(FBS+)で予めインキュベートされているか、無血清(FBS-)培地で予め飢餓状態にされている(pre-starved)かに関わらず、細胞周期分布に変化をもたらした。さらに、化合物I-7とオシメルチニブとの組み合わせは、サブG集団として証明され生存率測定によって証明されるアポトーシス細胞の著しい増加によって記録されるように、Gにある細胞の割合を減らし、結果として生じる細胞毒性を大いに高めた。この効果は、細胞が成長培地で予めインキュベートされたか、または血清飢餓条件下にあったかに関係なく、観察された。
【0091】
実施例7. 静止癌細胞に対して有効な分子とロシレチニブとの組み合わせ
H1975細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したロシレチニブの最高濃度は500nMであり、化合物I-7の濃度は2μMおよび4μMであった。ロシレチニブの阻害について観察されたEC50値は、化合物I-7が存在しなかった場合に351nM、化合物I-7が2μMの濃度で存在した場合に22.5nM、化合物I-7が4μMの濃度で存在した場合に14.9nMであった。図17を参照のこと。
【0092】
PANC1細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したロシレチニブの最高濃度は20μMであり、化合物I-7の濃度は2μMおよび4μMであった。観察されたEC50値は、化合物I-7が存在しなかった場合に11.4μM、化合物I-7が2μMの濃度で存在した場合に9.9μM、化合物I-7が4μMの濃度で存在した場合に7.1μMであった。図18を参照のこと。
【0093】
この実験では、不可逆性EGFR阻害剤であるロシレチニブを化合物I-7と組み合わせると、H1975細胞に対するロシレチニブの細胞毒性が著しく増加したこと(より低いEC50値)が証明された。さらに、オシメルチニブを化合物I-7と組み合わせると、PANC1膵癌細胞に対する細胞毒性が増加したこと(より低いEC50値)が証明された。この最後の組み合わせは、相乗的なものではない、あるいは、EC50値の劇的な減少を引き起こさないかもしれないが、単一療法による処置では生存する、新生物中の耐性のある静止細胞集団を根絶することにより、EGFR阻害剤での単一療法と比べて処置の有効性の著しい改善を十分にもたらし得る。
【0094】
実施例8. ロシレチニブ、および静止癌細胞に対して有効な分子とロシレチニブとの組み合わせの細胞周期効果および細胞毒性
H1975細胞を、実施例1および2に記載のとおりに培養し、処置し、分析した。異なる濃度のロシレチニブ、化合物I-7、またはロシレチニブおよび化合物I-7の両方が存在する場合の結果を図19に示す。
【0095】
この実施例では、H1975細胞を、血清飢餓(FBS-)条件下で24時間インキュベートし、その後、処置の有無にかかわらず正常な成長培地(FBS+)中に「放出(released)」した。これらの条件下で、ロシレチニブへの曝露は、静止状態(G)にある細胞の割合を著しく増加させた。細胞をロシレチニブと化合物I-7との組み合わせで同時に処置した場合、サブ-Gの割合によって決定されるようなアポトーシス細胞の大幅な増加によって判断されるように、このような静止細胞の割合の増加は観察されず、ロシレチニブの細胞毒性の大幅な増加が観察された。
【0096】
実施例9. EGFR阻害剤でH1975細胞を処置した際のDYRK1Bの誘導
H1975細胞を、実施例1および2で説明したように培養および処置した。ウエスタンブロット分析では、細胞を6ウェルプレートに(細胞の大きさおよび増殖速度に応じて)5×10~9×10細胞/ウェルで播種し、24時間付着させ、その後、化合物で24時間処置し、採取した。免疫ブロット法を、Cell Signaling Technologies Western Blotting protocol(www.cellsignal.com)に記載されるとおりに、従来の技術を用いて実行した。
【0097】
ブロッティングに使用した抗体は、Cell Signaling Technology(CST)からのものであった:DYRK1B(D40D1)Rabbit mAb #5672;EGF Receptor(D38B1)XP(登録商標)Rabbit mAb #4267;Phospho-EGF Receptor(Tyr1068)(D7A5)XP(登録商標)Rabbit mAb #3777;β-Actin(13E5)Rabbit mAb #4970;抗ウサギIgG、HRP結合抗体 #7074。5%BSA(CST #9998)を含むPrimary Antibody Dilution Buffer 1X TBSTを用いた。検出には、SignalFire(商標)ECL Reagent(CST #6883)を使用した。
【0098】
ウエスタンブロット分析により観察されたような、ロシレチニブ、オシメルチニブ、ダコミチニブ、およびアファチニブで24時間処置した後のH1975細胞におけるDYRK1B、ph-Y1068 EGFR、全EGFR、およびβ-アクチンの発現レベルを図20に示す。DYRK1Bタンパク質の発現を、FBSを含有する標準的な成長培地(FBS+)または無血清培地(FBS-)でインキュベートされた未処置細胞と比較した。EGFR阻害剤それぞれによる処置が、EGFRリン酸化を抑制し、血清飢餓により生じたのと同様であるかまたはそれより高いDYRK1Bタンパク質の発現も誘発したことが、証明された。
【0099】
実施例10. 静止癌細胞に対して有効な分子とダコミチニブとの組み合わせ
H1975細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したダコミチニブの最高濃度は500nMであり、化合物I-7の濃度は2μMおよび4μMであった。ダコミチニブ阻害について観察されたEC50値は、化合物I-7が存在しなかった場合に110.3nM、化合物I-7が2μMの濃度で存在した場合に88.6nM、化合物I-7が4μMの濃度で存在した場合に34.8nMであった。図21を参照のこと。
【0100】
PANC1細胞を、実施例1および2で説明したように培養および処置した。このアッセイで使用したダコミチニブの最高濃度は10μMであり、化合物I-7の濃度は2μMおよび4μMであった。観察されたEC50値は、化合物I-7が存在しなかった場合に11.4μM、化合物I-7が2μMの濃度で存在した場合に9.9μM、化合物I-7が4μMの濃度で存在した場合に7.1μMであった。図22を参照のこと。
【0101】
この実験では、不可逆性EGFR阻害剤であるダコミチニブを化合物I-7と組み合わせると、H1975細胞に対するダコミチニブの細胞毒性が著しく増加したこと(より低いEC50値)が証明された。さらに、オシメルチニブを化合物I-7と組み合わせると、PANC1膵癌細胞に対する細胞毒性が増加したことが証明された。この最後の組み合わせは、相乗的なものではない、あるいは、EC50値の劇的な減少を引き起こさないかもしれないが、単一療法による処置では生存する、新生物中の耐性のある静止細胞集団を根絶することにより、EGFR阻害剤での単一療法と比べて処置の有効性の著しい改善を十分にもたらし得る。
【0102】
実施例11. AZ191の細胞周期効果および化合物I-7との比較
SW620細胞を、実施例1に記載のとおりに培養し、処置した。ヨウ化プロピジウム(PI)染色では、フローサイトメトリー用のGuava Cell Cycle試薬(EMD Millipore)に付属の製造業者のプロトコルに従った。535nmで励起するよう緑色レーザーを用いてGuava PCA-96フローサイトメーター(EMD Millipore)によって測定を行い、617nmでの発光をモニタリングした。
【0103】
異なる濃度のAZ191が存在した場合の結果を図23に示す。データは、2つの複製物の平均である。
【0104】
SW620細胞を、実施例1で説明したように培養し、処置し、分析した。ヨウ化プロピジウム(PI)染色では、フローサイトメトリー用のGuava Cell Cycle試薬(EMD Millipore)に付属の製造業者のプロトコルに従った。535nmで励起するよう緑色レーザーを用いてGuava PCA-96フローサイトメーター(EMD Millipore)によって測定を行い、617nmでの発光をモニタリングした。
【0105】
異なる濃度の化合物I-7が存在した場合の結果を図24に示す。データは、2つの複製物の平均である。
【0106】
これらの実験では、SW620細胞を、異なる濃度のAZ191または化合物I-7を含有するFBS-培地で24時間インキュベートした。これらの条件下で、AZ191への曝露は、G+G期の細胞の割合に変化が観察されなかったことに基づくと、静止状態(G)にある細胞の割合を減少させなかった。同じ条件下で、同じかまたはより低い濃度の化合物I-7への曝露は、G+G期の細胞の割合が著しく減少したことに基づくと、静止状態(G)にある細胞の割合を著しく減少させた。
【0107】
AZ191は、17nMでDYRK1Bを阻害した(Ashford AL, Oxley D, Kettle J, Hudson K, Guichard S, Cook SJ, Lochhead PA (2014) A novel DYRK1B inhibitor AZ191 demonstrates that DYRK1B acts independently of GSK3beta to phosphorylate cyclin D1 at Thr(286), not Thr(288). Biochemical Journal 457, 43-56)。
【0108】
この実験では、すべてのDYRK1阻害剤が静止癌細胞に対して有効とは限らないことが証明された。
【0109】
実施例12. 3D細胞培養(スフェロイド)における細胞生存率測定の一般的手順
3D培養での生存率分析では、処置の初めに、400~600μMの直径のスフェロイド形成を目的として、細胞を96ウェルULA(超低付着(ultra-low attachment))プレート(Corning #4515)に、細胞の大きさおよび増殖速度に応じて5×10~6×10細胞/ウェルで播種した。細胞は、37℃で、湿気のある5% CO環境において(細胞株に応じて)2~3日間インキュベートされ、緊密なスフェロイド形成を可能にした。この処置では、50μLの培地を各ウェルから除去し、化合物を有する新鮮培地と取り換えた。この処置は、1:3連続希釈法において少なくとも6つの異なる濃度の化合物を用いて実行した。結果を読み取る前に、細胞を、37℃で5% COインキュベーターにおいて4~10日間インキュベートした。処置時間が4日を超えた場合、各ウェルの70μLの培地を、試験化合物を含有する新鮮培地と、3日おきに取り換えた。各処置は、2回行った。結果を、CellTiter-Glo(商標)3D Luminescent Cell Viability Assay(Promega、カタログ番号G9682)によって、SpectraMAX Gemini分光光度計(Molecular Devices)を用いて製造業者の指示に従って、分析した。分析前に、スフェロイドを、50倍の倍率で撮影した。
【0110】
実施例13. 3D細胞培養における静止癌細胞に対して有効な分子とアファチニブとの組み合わせ
H1975スフェロイドを、実施例1および12で説明したように培養および処置した。このアッセイで使用したアファチニブの濃度は100nMであり、化合物I-7の濃度は2.5μMであった。処置時間は7日であった。図25を参照のこと。
【0111】
この実験では、不可逆性EGFR阻害剤であるアファチニブを化合物I-7と組み合わせた療法により、H1975細胞の3D培養(スフェロイド)に対するアファチニブの細胞毒性が著しく増加した(より低いEC50値)ことが証明され;この組み合わせは、スフェロイドを完全に根絶したが、スフェロイドの一部は、アファチニブ単独での処置後も生存していた。
【0112】
実施例14. 3D細胞培養における静止癌細胞に対して有効な分子とオシメルチニブとの組み合わせ
H1975スフェロイドを、実施例1、2、および12で説明したように7日間培養および処置した。このアッセイで使用したオシメルチニブの最高濃度は10nMであり、化合物I-7の濃度は2.5μMであった。標準的な成長培地(FBS+)では、オシメルチニブについて決定されたEC50値は、化合物I-7が存在しなかった場合に0.68nM、化合物I-7が2.5μMの濃度で存在した場合に0.28nMであった。血清飢餓(FBS-)条件下では、オシメルチニブについて決定されたEC50値は、化合物I-7が存在しなかった場合に3.3nM、化合物I-7が2.5μmの濃度で存在した場合に1.0nMであった。図26を参照のこと。
【0113】
この実験では、不可逆性EGFR阻害剤であるオシメルチニブを化合物I-7と組み合わせると、スフェロイドが標準的な培地(FBS+)で培養されるか枯渇培地(FBS-)で培養されるかに関わらず、H1975細胞の3D培養(スフェロイド)に対するオシメルチニブの細胞毒性が著しく増加したこと(EC50の低下)が証明された。意外にも、このEC50の低下率は、FBS+での3D培養よりもFBS-のほうが大きかった。
【0114】
本発明は、例としての実施形態を参照して具体的に図示および説明してきたが、形態および詳細のさまざまな変更が、特許請求の範囲により包含される本発明の範囲を逸脱せずに行われ得ることを、当業者は理解するであろう。
【0115】
〔実施の態様〕
(1) 新生物を有する被験者を処置する方法において、
前記被験者に、順次または同時に、DYRK1阻害剤を投与し、前記被験者にEGFR TKIを投与することを含み、前記DYRK1阻害剤は、式I:
【化6】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る、方法。
(2) 実施態様1に記載の方法において、
前記被験者に有効量の放射線療法を施すことをさらに含む、方法。
(3) 実施態様1に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、小細胞肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
(4) 実施態様1に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
(5) 実施態様1に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
【0116】
(6) 実施態様1に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブから選択される、方法。
(7) 実施態様1に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
(8) 実施態様1に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002のリストから選択される、方法。
(9) 実施態様1に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブから選択される、方法。
(10) 実施態様1に記載の方法において、
前記DYRK1阻害剤は、I-1、I-2、I-3、I-4、I-5、I-6、およびI-7から選択される、方法。
【0117】
(11) 実施態様10に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブから選択される、方法。
(12) 実施態様10に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
(13) 実施態様10に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002から選択される、方法。
(14) 実施態様10に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブから選択される、方法。
(15) 実施態様10に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、小細胞肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
【0118】
(16) 実施態様10に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
(17) 実施態様10に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
(18) 新生物を有する被験者を処置する方法において、
前記被験者に、順次または同時に、
(a)DYRK1阻害剤であって、生化学アッセイにおいて100nM以下のIC50で、DYRK1AまたはDYRK1Bキナーゼ活性を阻害し、このような阻害剤がない場合に見られるであろう静止癌細胞(in vitroまたはin vivo)の割合を、少なくとも10%だけ減少させる、DYRK1阻害剤と、
(b)EGFR TKIと、
を投与することを含む、方法。
(19) 実施態様18に記載の方法において、
前記DYRK1阻害剤は、式I:
【化7】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る、方法。
(20) 実施態様18に記載の方法において、
前記被験者に有効量の放射線療法を施すことをさらに含む、方法。
【0119】
(21) 実施態様18に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、小細胞肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
(22) 実施態様18に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
(23) 実施態様18に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
(24) 実施態様18に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブのリストから選択される、可逆性阻害剤である、方法。
(25) 実施態様18に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
【0120】
(26) 実施態様18に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002のリストから選択される、不可逆性阻害剤である、方法。
(27) 実施態様18に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブのリストから選択される、方法。
(28) 実施態様18に記載の方法において、
前記DYRK1阻害剤は、I-1、I-2、I-3、I-4、I-5、I-6、およびI-7から選択される、方法。
(29) 新生物を有する被験者を処置する方法において、
前記被験者に、順次または同時に、DYRK1阻害剤を投与し、前記被験者にEGFR TKIを投与することを含み、
前記EGFR TKIのEC50値は、細胞ベースのアッセイで決定される場合に、前記EGFR TKI単独での同じ処置と比べて、組み合わせ処置では少なくとも20%低い、方法。
(30) 実施態様29に記載の方法において、
前記DYRK1阻害剤は、式I:
【化8】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る、方法。
【0121】
(31) 実施態様29に記載の方法において、
前記被験者に有効量の放射線療法を施すことをさらに含む、方法。
(32) 実施態様29に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、小細胞肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
(33) 実施態様29に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
(34) 実施態様29に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
(35) 実施態様29に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブから選択される、方法。
【0122】
(36) 実施態様29に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
(37) 実施態様29に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002から選択される、方法。
(38) 実施態様29に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブから選択される、方法。
(39) 実施態様29に記載の方法において、
前記DYRK1阻害剤は、I-1、I-2、I-3、I-4、I-5、I-6、およびI-7から選択される、方法。
(40) 新生物を有する被験者を処置する方法において、
前記被験者に、順次または同時に、DYRK1阻害剤を投与し、前記被験者にEGFR TKIを投与することを含み、この組み合わせ処置は、FACSアッセイによりサブ-G細胞の割合によって決定される場合に、処置集団のアポトーシス細胞の割合を、いずれかの薬剤単独の場合と比較して少なくとも2倍だけ増やす、方法。
【0123】
(41) 実施態様40に記載の方法において、
前記DYRK1阻害剤は、式I:
【化9】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る、方法。
(42) 実施態様40に記載の方法において、
前記被験者に有効量の放射線療法を施すことをさらに含む、方法。
(43) 実施態様40に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、小細胞肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
(44) 実施態様40に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
(45) 実施態様40に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
【0124】
(46) 実施態様40に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブのリストから選択される、方法。
(47) 実施態様40に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
(48) 実施態様40に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002のリストから選択される、方法。
(49) 実施態様40に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブから選択される、方法。
(50) 実施態様40に記載の方法において、
前記DYRK1阻害剤は、I-1、I-2、I-3、I-4、I-5、I-6、およびI-7から選択される、方法。
【0125】
(51) 新生物を有する被験者を処置する方法において、
前記被験者に、順次または同時に、
(a)DYRK1阻害剤であって、生化学アッセイにおいて100nM以下のIC50で、DYRK1AまたはDYRK1Bキナーゼ活性を阻害し、このような阻害剤がない場合に見られるであろう静止癌細胞(in vitroまたはin vivo)の割合を、少なくとも10%だけ減少させる、DYRK1阻害剤と、
(b)EGFR TKIであって、細胞集団(in vitroまたはin vivo)を前記EGFR TKIで処置すると、FACSアッセイにより決定される場合に、静止細胞(細胞周期のG期にある細胞)の割合が、同じ細胞の未処置集団に比べて少なくとも20%だけ増える、EGFR TKIと、
を投与することを含む、方法。
(52) 実施態様51に記載の方法において、
前記DYRK1阻害剤は、式I:
【化10】
またはその薬学的に許容可能な塩もしくは溶媒和物を有し、
式中、
は、置換もしくは非置換のC1~8アルキル、置換もしくは非置換のフェニル、または置換もしくは非置換のベンジルであり、
は、オプションとしてハロ、CN、NO、NHC(O)C1~4アルキル、C1~4アルキル、OH、OC1~4アルキルから独立して選択された最大で4つの基で置換された、フェニルであり、2つの隣接する基およびそれらの介在炭素原子は、N、O、またはSから選択された1つ以上のヘテロ原子を含有する五~六員環を形成し得る、方法。
(53) 実施態様51に記載の方法において、
前記被験者に有効量の放射線療法を施すことをさらに含む、方法。
(54) 実施態様51に記載の方法において、
処置される前記新生物は、胆道癌、脳癌、乳癌、子宮頸癌、結腸癌、胃癌、腎癌、頭頸部癌、白血病、肝癌、肺癌、リンパ腫、卵巣癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、子宮癌、膀胱癌、乳癌、大腸癌、小細胞肺癌、卵巣癌、および前立腺癌から選択される原発性または転移性の癌である、方法。
(55) 実施態様51に記載の方法において、
処置される前記新生物は、原発性または転移性の非小細胞肺癌である、方法。
【0126】
(56) 実施態様51に記載の方法において、
処置される前記新生物は、原発性または転移性の膵癌である、方法。
(57) 実施態様51に記載の方法において、
前記EGFR TKIは、ブリガチニブ、CUDC-101、エルロチニブ、ゲフィチニブ、イコチニブ、ラパチニブ、サピチニブ、テセバチニブ、チルホスチンAG 1478、バンデタニブ、およびバルリチニブから選択される、方法。
(58) 実施態様51に記載の方法において、
前記EGFR TKIは、AZD3759およびMTKi-327(JNJ-26483327)から選択される、方法。
(59) 実施態様51に記載の方法において、
前記EGFR TKIは、アファチニブ、カネルチニブ、CL-387785(EKI-785)、CNX-2006、ダコミチニブ、ナコチニブ(ASP8273)、ネラチニブ、オルムティニブ(HM61713)、オシメルチニブ、PD168393、ペリチニブ、ポジオチニブ、TAK285、ロシレチニブ、およびWZ4002から選択される、方法。
(60) 実施態様51に記載の方法において、
前記EGFR TKIは、アリチニブ(ALS-1306;AST-1306)、AV-412(MP-412)、ナザルチニブ(EGF816)、およびピロチニブから選択される、方法。
【0127】
(61) 実施態様51に記載の方法において、
前記DYRK1阻害剤は、I-1、I-2、I-3、I-4、I-5、I-6、およびI-7から選択される、方法。
【図面の簡単な説明】
【0128】
図1】真核細胞の有糸分裂周期の概略図を示す。
図2】利用可能な抗癌治療薬が作用すると考えられる細胞周期のステージを示すように注釈を付けられた、真核癌細胞の有糸分裂周期の概略図を示す。
図3】HCC827細胞の増殖に対する、エルロチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図4】PC9細胞の増殖に対する、エルロチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図5】A549細胞の増殖に対する、エルロチニブと化合物I-7(0、3、6μM)との組み合わせの効果を示す。
図6】PANC1細胞の増殖に対する、エルロチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図7】MiaPaCa-2細胞の増殖に対する、エルロチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図8】H1975細胞の増殖に対する、アファチニブと化合物I-7(0、2、4μM)との組み合わせの効果を示す。
図9】HCC827細胞の増殖に対する、アファチニブと化合物I-7(0、3、6μM)との組み合わせの効果を示す。
図10】PC9細胞の増殖に対する、アファチニブと化合物I-7(0、3、6μM)との組み合わせの効果を示す。
図11】A549細胞の増殖に対する、アファチニブと化合物I-7(0、3、6μM)との組み合わせの効果を示す。
図12】PANC1細胞の増殖に対する、アファチニブと化合物I-7(0、3、6μM)との組み合わせの効果を示す。
図13】H1975細胞の増殖に対する、オシメルチニブと化合物I-7(0、2、4μM)との組み合わせの効果を示す。
図14】PANC1細胞の増殖に対するオシメルチニブと化合物I-7(0、2、4μM)との組み合わせの効果を示す。
図15】以下で24時間インキュベートされたH1975細胞の細胞周期分布のFACS分析を示す:パネルA:FBS-培地;パネルB:FBS+培地;パネルC:5μMの化合物I-7を含むFBS+培地;パネルD:18nMのオシメルチニブを含むFBS+培地;パネルD:5μMの化合物I-7および18nMのオシメルチニブを含むFBS+培地。
図16】以下でインキュベートされたH1975細胞の細胞周期分布のFACS分析を示す:パネルA:48時間FBS-培地;パネルB:24時間FBS-培地の後で標準的なFBS+培地に24時間放出;パネルC:24時間FBS-培地の後で24時間5μMの化合物I-7を含むFBS-培地に放出;パネルD:24時間FBS-培地の後で24時間18nMのオシメルチニブを含むFBS-培地に放出;パネルE:24時間FBS-培地の後で24時間18nMのオシメルチニブおよび5μMの化合物I-7を含むFBS-培地。
図17】H1975細胞の増殖に対する、ロシレチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図18】PANC1細胞の増殖に対する、ロシレチニブと化合物I-7(0、2、4μM)との組み合わせの効果を示す。
図19】以下でインキュベートされたH1975細胞の細胞周期分布のFACS分析を示す:パネルA:24時間FBS-培地の後で24時間FBS+培地に放出;パネルB:24時間FBS-培地の後24時間5μMの化合物I-7を含むFBS+培地に放出;パネルC:24時間FBS-培地の後で24時間80nMのロシレチニブを含むFBS+培地に放出;パネルD:24時間FBS-培地の後で24時間80nMのロシレチニブおよび5μMの化合物I-7を含むFBS+培地に放出。
図20】ロシレチニブ、オシメルチニブ、ダコミチニブ、およびアファチニブで24時間処置した後の、H1975細胞におけるDYRK1B、リン酸化Y1068-EGFR、全EGFR、およびβ-アクチンの発現レベルを示すウエスタンブロット分析を示す。
図21】H1975細胞の増殖に対する、ダコミチニブと化合物I-5(0、2.5、5μM)との組み合わせの効果を示す。
図22】PANC1細胞の増殖に対する、ダコミチニブと化合物I-7(0、2、4μM)との組み合わせの効果を示す。
図23】SW620細胞の細胞周期分布のDNA含量によるFACS分析を示す。細胞は以下でインキュベートされた:パネルA:24時間FBS-培地;パネルB:24時間2.5μMのAZ191を含むFBS-培地;パネルC:24時間5μMのAZ191を含むFBS-培地;パネルD:24時間10μMのAZ191を含むFBS-培地。
図24】SW620細胞の細胞周期分布のDNA含量によるFACS分析を示す。細胞は以下でインキュベートされた:パネルA:24時間DMSO対照を含むFBS-培地;パネルB:24時間1.25μMの化合物I-7を含むFBS-培地;パネルC:24時間2.5μMの化合物I-7を含むFBS-培地;パネルD:24時間5μMの化合物I-7を含むFBS-培地。
図25】H1975細胞の3D細胞培養(スフェロイド)に対する、アファチニブと化合物I-7(0、2.5μM)との組み合わせの効果を示す。
図26】H1975細胞の3D細胞培養(スフェロイド)に対する、オシメルチニブと化合物I-7(0、2.5μM)との組み合わせの効果を示す。スフェロイドは異なる濃度のオシメルチニブで、以下で処置した:パネルA:FBS+培地;パネルB:FBS-培地。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26