IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本精工株式会社の特許一覧

特許7124448風力発電機の主軸軸受の異常検知システム及び異常検知方法
<>
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図1
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図2
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図3
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図4
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図5
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図6
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図7A
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図7B
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図8A
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図8B
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図9
  • 特許-風力発電機の主軸軸受の異常検知システム及び異常検知方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-16
(45)【発行日】2022-08-24
(54)【発明の名称】風力発電機の主軸軸受の異常検知システム及び異常検知方法
(51)【国際特許分類】
   G01M 13/04 20190101AFI20220817BHJP
【FI】
G01M13/04
【請求項の数】 11
(21)【出願番号】P 2018100942
(22)【出願日】2018-05-25
(65)【公開番号】P2019203861
(43)【公開日】2019-11-28
【審査請求日】2021-05-07
(73)【特許権者】
【識別番号】000004204
【氏名又は名称】日本精工株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】田口 恵一郎
(72)【発明者】
【氏名】坂野 彰秀
(72)【発明者】
【氏名】溝口 大木
【審査官】森口 正治
(56)【参考文献】
【文献】特開2016-089997(JP,A)
【文献】特開昭52-149173(JP,A)
【文献】特開2015-175828(JP,A)
【文献】特開2017-026514(JP,A)
【文献】国際公開第2017/170270(WO,A1)
【文献】米国特許出願公開第2017/0363072(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 13/00-99/00
(57)【特許請求の範囲】
【請求項1】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記検出装置は、
前記風力発電機の回転速度を検出し、
前記診断装置は、
前記回転速度に応じて、前記異常判定処理を行う周波数帯域を設定し、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記風力発電機は、
2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、
前記複数の歯車機構は、
第1の歯車機構と、
第2の歯車機構と、
を含み、
前記第1周波数は、前記第1の歯車機構で発生する振動の周波数の1次成分よりも高く、
前記第2周波数は、前記第2の歯車機構で発生する振動の周波数の1次成分よりも低い
風力発電機の主軸軸受の異常検知システム。
【請求項2】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記風力発電機は、
2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、
前記複数の歯車機構は、
第1の歯車機構と、
第2の歯車機構と、
を含み、
前記第1周波数は、前記第1の歯車機構で発生する振動の周波数の1次成分よりも高く、
前記第2周波数は、前記第2の歯車機構で発生する振動の周波数の1次成分よりも低い
風力発電機の主軸軸受の異常検知システム。
【請求項3】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記検出装置は、
前記風力発電機の回転速度を検出し、
前記診断装置は、
前記回転速度に応じて、前記異常判定処理を行う周波数帯域を設定し、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記風力発電機は、
2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、
前記複数の歯車機構は、
第1の歯車機構と、
第2の歯車機構と、
を含み、
前記第1周波数は、前記第1の歯車機構で発生する振動の周波数のm次成分(mは1以上の自然数)よりも高く、
前記第2周波数は、前記第2の歯車機構で発生する振動の周波数のn次成分(nは1以上の自然数)よりも低い
風力発電機の主軸軸受の異常検知システム。
【請求項4】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記風力発電機は、
2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、
前記複数の歯車機構は、
第1の歯車機構と、
第2の歯車機構と、
を含み、
前記第1周波数は、前記第1の歯車機構で発生する振動の周波数のm次成分(mは1以上の自然数)よりも高く、
前記第2周波数は、前記第2の歯車機構で発生する振動の周波数のn次成分(nは1以上の自然数)よりも低い
風力発電機の主軸軸受の異常検知システム。
【請求項5】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記検出装置は、
前記風力発電機の回転速度を検出し、
前記診断装置は、
前記回転速度に応じて、前記異常判定処理を行う周波数帯域を設定し、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記第3周波数は、前記風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数よりも高い
風力発電機の主軸軸受の異常検知システム。
【請求項6】
風力発電機の主軸軸受の振動を検出する検出装置と、
前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、
を備え、
前記診断装置は、
第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定し、
前記第3周波数は、前記風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数よりも高い
風力発電機の主軸軸受の異常検知システム。
【請求項7】
前記第3周波数は、前記風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数よりも高い
請求項に記載の風力発電機の主軸軸受の異常検知システム。
【請求項8】
前記第3周波数は、前記風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数よりも高い
請求項に記載の風力発電機の主軸軸受の異常検知システム。
【請求項9】
前記診断装置は、
前記周波数帯域に制限された振動の実効値又はパーシャルオーバーオール値に基づき、前記異常判定処理における一次判定処理を行う
請求項1からの何れか一項に記載の風力発電機の主軸軸受の異常検知システム。
【請求項10】
前記診断装置は、
前記一次判定処理において異常が検出された場合に、前記周波数帯域に制限された振動の解析処理を行い、当該解析処理の結果に基づき、前記異常判定処理における二次判定処理を行う
請求項に記載の風力発電機の主軸軸受の異常検知システム。
【請求項11】
風力発電機の主軸軸受の振動の情報を判定する周波数帯域を設定するステップと、
当該設定した周波数帯域に制限された振動の実効値又はパーシャルオーバーオール値に基づき、前記主軸軸受の一次判定処理を行うステップと、
前記一次判定処理において異常が検出された場合に、前記周波数帯域に制限された振動の解析処理を行い、当該解析処理の結果に基づき、前記主軸軸受の二次判定処理を行うステップと、
前記一次判定処理又は前記二次判定処理の結果を出力するステップと、
を有する
風力発電機の主軸軸受の異常検知方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、風力発電機の主軸軸受の異常検知システム及び異常検知方法に関する。
【背景技術】
【0002】
近年、地球温暖化の原因となる炭酸ガスを発生させないクリーンエネルギソースとして、風力発電が急速に普及しつつある。
【0003】
風力発電機では、風の力によるロータの回転運動を発電機の動力源とし、ロータが取り付けられる主軸を回転可能に支持する主軸軸受や発電機軸受が重要な構成部品となっている。風力発電機による電力の安定供給のためには、このような各種軸受の異常を早期検知する必要がある。例えば、高速フーリエ変換(FFT:Fast Fourier Transform)処理を用いて軸受の振動解析を行い、軸受の損傷位置によって特徴的に現れる周波数の振動のピーク成分を検出することにより、軸受の異常を検出可能とされている。例えば、FFT処理を用いた軸受の異常診断手法として、振動波形の実効値及びエンベロープ波形の交流成分の実効値に基づき、転がり軸受の異常を診断する技術が開示されている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2011-154020号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
風力発電機の主軸軸受の損傷を検知する場合、増速機のギアの噛み合い周波数等の外乱が混入することによって振動解析に支障をきたし、正確に異常を検知できない場合がある。また、主軸軸受に負荷される荷重が大きく、損傷時の衝撃振動が風力発電機の構造系を励振させ得る。上記従来技術では、ハイパスフィルタを用いて低周波成分を遮断し、さらに、周波数分析を行った結果を併用することで、異常診断結果の信頼性を高めているが、例えば、風力発電機の主軸軸受の損傷に起因する振動周波数と、複数の外乱要素による振動周波数とが近接しているような場合には、風力発電機の主軸軸受の損傷の検知精度が低下する可能性がある。
【0006】
本発明は、上記の課題に鑑みてなされたものであって、風力発電機の主軸軸受の損傷の検知精度を高めることができる風力発電機の主軸軸受の異常検知システム及び異常検知方法を提供すること、を目的としている。
【課題を解決するための手段】
【0007】
上記の目的を達成するため、本発明の一態様に係る風力発電機の主軸軸受の異常検知システムは、風力発電機の主軸軸受の振動を検出する検出装置と、前記検出装置によって検出された振動の情報を判定する周波数帯域を設定し、当該設定された周波数帯域に制限された振動の情報に基づき、前記主軸軸受の異常判定処理を行う診断装置と、を備える。
【0008】
これにより、風力発電機の主軸軸受の損傷に起因する振動周波数以外の外乱要素による振動の周波数成分を抑制することができ、風力発電機の主軸軸受の損傷の検知精度を高めることができる。
【0009】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記検出装置は、前記風力発電機の回転速度を検出し、前記診断装置は、前記回転速度に応じて、前記異常判定処理を行う周波数帯域を設定することが好ましい。
【0010】
これにより、風力発電機の回転速度に依らず、風力発電機の主軸軸受の振動解析処理を行う際の周波数帯域を適切に設定することができる。
【0011】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記診断装置は、第1周波数より高く、かつ当該第1周波数よりも高い第2周波数未満の周波数帯域を通過域とする第1周波数帯域、及び、前記第1周波数帯域を含まず、かつ第3周波数よりも高い周波数帯域を通過域とする第2周波数帯域の何れか一方又は両方を、前記異常判定処理を行う周波数帯域として設定することが好ましい。
【0012】
これにより、第1周波数帯域及び第2周波数帯域の何れか一方又は両方を除く周波数帯域に含まれる振動の周波数成分を抑制することができる。
【0013】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記風力発電機は、2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、前記複数の歯車機構は、第1の歯車機構と、第2の歯車機構と、を含み、前記第1周波数は、前記第1の歯車機構で発生する振動の周波数の1次成分よりも高く、前記第2周波数は、前記第2の歯車機構で発生する振動の周波数の1次成分よりも低いことが好ましい。
【0014】
これにより、第1の歯車機構で発生する振動の周波数の1次成分、及び、第2の歯車機構で発生する振動の周波数の1次成分が抑制される。
【0015】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記風力発電機は、2つの回転軸に設けられたギア同士が噛み合って構成される複数の歯車機構を有し、前記複数の歯車機構は、第1の歯車機構と、第2の歯車機構と、を含み、前記第1周波数は、前記第1の歯車機構で発生する振動の周波数のm次成分(mは1以上の自然数)よりも高く、前記第2周波数は、前記第2の歯車機構で発生する振動の周波数のn次成分(nは1以上の自然数)よりも低いことが好ましい。
【0016】
これにより、第1の歯車機構で発生する振動の周波数のm次成分までの周波数、及び、第2の歯車機構で発生する振動の周波数のn次成分以上が抑制される。
【0017】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数よりも高いことが好ましい。
【0018】
これにより、風力発電機のブレードから伝播する衝撃振動によって励振される振動の周波数成分が抑制される。
【0019】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記診断装置は、前記周波数帯域に制限された振動の実効値又はパーシャルオーバーオール値に基づき、前記異常判定処理における一次判定処理を行うことが好ましい。
【0020】
これにより、振動解析を行う前に、主軸軸受に異常がないことを判定することができる。
【0021】
風力発電機の主軸軸受の異常検知システムの望ましい態様として、前記診断装置は、前記一次判定処理において異常が検出された場合に、前記周波数帯域に制限された振動の解析処理を行い、当該解析結果に基づき、前記異常判定処理における二次判定処理を行うことが好ましい。
【0022】
これにより、適切に主軸軸受の損傷を判定することができる。
【0023】
本発明の一態様に係る風力発電機の主軸軸受の異常検知方法は、風力発電機の主軸軸受の振動の情報を判定する周波数帯域を設定するステップと、当該設定した前記周波数帯域に制限された振動の実効値又はパーシャルオーバーオール値に基づき、前記主軸軸受の一次判定処理を行うステップと、前記一次判定処理において異常が検出された場合に、前記周波数帯域に制限された振動の解析処理を行い、当該解析処理の結果に基づき、前記主軸軸受の二次判定処理を行うステップと、前記一次判定処理又は前記二次判定処理の結果を出力するステップと、を有する。
【0024】
これにより、風力発電機の主軸軸受の損傷に起因する振動周波数以外の外乱要素による振動周波数による影響を抑制することができ、風力発電機の主軸軸受の損傷の検知精度を高めることができる。
【発明の効果】
【0025】
本発明によれば、風力発電機の主軸軸受の損傷の検知精度を高めることができる風力発電機の主軸軸受の異常検知システム及び異常検知方法を提供することができる。
【図面の簡単な説明】
【0026】
図1図1は、実施形態に係る風力発電機の主軸軸受の異常検知システムが適用される風力発電システムの全体構成の一例を示す概略構成図である。
図2図2は、風力発電機の概略構造図である。
図3図3は、増速機の構造の一例を示す概略図である。
図4図4は、実施形態に係る風力発電機の主軸軸受の異常診断システムにおける診断装置の一例を示す図である。
図5図5は、異常判定処理の一例を示す概略図である。
図6図6は、風力発電機の回転速度と異常判定処理における周波数帯域との関係を示すイメージ図である。
図7A図7Aは、帯域制限処理の有無による振動解析処理結果の実効値演算処理結果を示す図である。
図7B図7Bは、図7Aの(b)及び(c)を実効値方向に拡大した図である。
図8A図8Aは、風力発電機の発電量が比較的小さい場合の帯域制限処理の有無による振動解析処理結果の実効値演算処理結果を示す図である。
図8B図8Bは、図8Aの(b)及び(c)を実効値方向に拡大した図である。
図9図9は、実施形態に係る風力発電機の主軸軸受の異常検知システムにおける周波数分析結果の一例を示す図である。
図10図10は、実施形態に係る異常判定処理手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0027】
以下、発明を実施するための形態(以下、実施形態という)につき図面を参照しつつ詳細に説明する。なお、下記の実施形態により本開示が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
【0028】
図1は、実施形態に係る風力発電機の主軸軸受の異常検知システムが適用される風力発電システムの全体構成の一例を示す概略構成図である。
【0029】
図1に示す風力発電システム1は、例えば数十に及ぶ複数の風力発電機100が広大な敷地や洋上に設置された集合型風力発電所に設けられる。風力発電システム1は、各風力発電機100に設けられた検出装置10と、例えば集合型風力発電所内又は外部の管理施設に設けられた診断装置20とを備える。
【0030】
図2は、風力発電機の概略構造図である。風力発電機100は、検出装置10と、ロータ30と、増速機50と、発電機60と、を備える。検出装置10、増速機50、及び発電機60は、ナセル70に格納されている。ロータ30、主軸40、増速機50、カップリング43、発電機60は、タワー80によって支持された土台(フレーム)90に載置された主軸軸受ハウジング42に格納された主軸軸受41によって支持される。なお、増速機50には自身の回転を防ぐためトルクアーム53が土台(フレーム)90に載置されるが、自身の重量は主軸軸受41が受ける。
【0031】
ロータ30は、ハブ31と、ハブ31に複数枚設けられたブレード32とを備える。ハブ31は、主軸40を介して増速機50と接続され、主軸軸受41によって回転可能に支持される。主軸40は、ブレード32が風力を受けることによってロータ30が回転した際に発生する回転トルクを増速機50に伝達する。
【0032】
増速機50は、主軸40と発電機60との間に設けられている。増速機50は、主軸40の回転速度を増速し、出力軸61を介して、増速された回転トルクを発電機60に出力する。
【0033】
発電機60は、出力軸61を介して増速機50から受ける回転トルクによって発電する。発電機60は、例えば、誘導発電機又は同期発電機によって構成される。
【0034】
検出装置10は、データ収集部11、振動センサ12、回転速度センサ13、及び発電量センサ14を備える。
【0035】
振動センサ12は、例えば、加速度センサ、速度センサ、変位センサ等であり、風力発電機100において発生する振動を検出する。図2では、振動センサ12を主軸軸受ハウジング42に唯一設けた構成を例示している。振動センサ12の数や取り付け位置によって本開示が限定されるものではない。
【0036】
回転速度センサ13は、例えば、ロータリーエンコーダやレゾルバ等の回転センサであり、例えば、主軸40や出力軸61の回転数(回転速度)を検出する。図2では、出力軸61の回転数(回転速度)を検出する回転速度センサ13を唯一設けた構成を例示している。回転速度センサ13の数や種類、取り付け位置等によって本開示が限定されるものではない。
【0037】
発電量センサ14は、発電量センサ14は、例えば、発電機60の3相の出力ケーブルのうち、何れか1本の出力ケーブルに設けられたロゴスキーコイル等の電流センサであり、この電流センサによって検出された電流から風力発電機100の発電量を算出する。なお、風力発電機100の発電量は、例えば、図1に示す風力発電システム1を監視対象とした遠隔制御監視システム(SCADA:Supervisory Control And Data Acquisition)から、光回線等のネットワークを介して取得することが可能である。風力発電機100の発電量を求める手法によって、本開示が限定されるものではない。また、発電量センサ14の取り付け位置によって本開示が限定されるものではない。
【0038】
データ収集部11は、振動センサ12によって検出された振動、回転速度センサ13によって検出された回転速度、及び発電量センサ14によって検出された発電量を収集する。検出装置10は、ネットワーク200を介して、データ収集部11によって収集された振動、回転速度、及び発電量を診断装置20に出力する(図1参照)。ネットワーク200は、例えばインターネット回線であっても良いし、LAN(Local Area Network)であっても良い。さらには、集合型風力発電所内の各風力発電機100がLANで接続され、診断装置20が設けられた外部の管理施設のLANとの間でVPN(Virtual Private Network)を構築した態様であっても良い。
【0039】
図3は、増速機の構造の一例を示す概略図である。図3に示すように、増速機50は、筐体501と、この筐体501内に収納した、遊星歯車装置502及び二次増速装置503とを備える。
【0040】
筐体501には、入力軸51が入力軸軸受52を介して回転自在に支持されている。また、筐体501の内側には、この入力軸51に対して同心に配置した低速軸505と、この低速軸505に対して平行に配置した中間軸506及び出力軸61とが、それぞれ軸受(符号省略)を介して回転自在に支持されている。
【0041】
遊星歯車装置502は、入力軸51の回転を増速して、低速軸505に伝達する役割を果たす。
【0042】
遊星歯車装置502は、太陽歯車508と、リング歯車509と、複数個の円筒状の遊星歯車510を備える。太陽歯車508は、低速軸505の一端部(図3の左端部)外周面に設けられている。リング歯車509は、筐体501の内周面に設けられ、太陽歯車508の周囲に同心に配置されている。複数個の遊星歯車510は、太陽歯車508とリング歯車509との間に円周方向に関して等間隔に配置されている。そして、遊星歯車510の外周面に設けた歯をそれぞれ、太陽歯車508の外周面に設けた歯と、リング歯車509の内周面に設けた歯とに噛合させて、歯車機構が構成されている。また、遊星歯車510は、それぞれ、太陽歯車508及びリング歯車509と平行な円柱状の遊星軸511の周囲に、複列に配置した1対ずつの円筒ころ軸受512を介して、回転自在に支持されている。また、遊星軸511の基端部(図3の左端部)は、それぞれ、入力軸51の一端部(図3の右端部)に一体に設けられたキャリア513に支持固定されている。
【0043】
二次増速装置503は、低速軸505の回転をさらに増速して、出力軸61に伝達する役割を果たす。
【0044】
二次増速装置503は、低速軸505の中間部に外嵌固定した大径の入力歯車524を、中間軸506の中間部外周面に設けられた小径の第一中間歯車525に噛合させて、歯車機構が構成される。また、二次増速装置503は、中間軸506の一端部(図3の左端部)に外嵌固定した大径の第二中間歯車526を、出力軸61の一端部(図3の左端部)外周面に設けられた出力歯車527に噛合させて、歯車機構が構成されている。
【0045】
図2に示す主軸軸受41が、本実施形態に係る軸受の異常検知システムにおける異常検知対象である。図2に示す例において、振動センサ12は、主軸軸受41の近傍に設けられている。そして、本実施形態に係る軸受の異常検知システムは、振動センサ12、回転速度センサ13、検出装置10、及び診断装置20を含み、主軸軸受41の損傷を検知する。
【0046】
図4は、実施形態に係る風力発電機の主軸軸受の異常検知システムにおける診断装置の一例を示す図である。図4に示すように、診断装置20は、例えば、PC等の一般的な情報処理端末であり、処理部21、記憶部22、通信部23、入力部24、及び表示部25を備え、各部がバス26を介してデータを送受信可能なように構成される。
【0047】
処理部21は、所定のメモリを介して各部間のデータの受け渡しを行うと共に、診断装置20全体の制御を行う構成部であり、CPU(Central Processing Unit)が所定のメモリに格納されたプログラムを実行することによって実現される。
【0048】
記憶部22は、処理部21からのデータを記憶したり、処理部21が記憶したデータを読み出したりする構成部であり、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の不揮発性記憶装置によって実現される。
【0049】
通信部23は、各風力発電機100の検出装置10と通信を行う構成部であり、例えば、NIC(Network Interface Card)等によって実現される。
【0050】
入力部24は、オペレータがデータや指示を入力する構成部であり、例えば、キーボードやマウス、タッチパネル等によって実現される。
【0051】
表示部25は、処理部21からの指示によりデータを表示する構成部であり、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)等によって実現される。
【0052】
診断装置20は、記憶部22に格納された異常判定処理プログラムによって動作し、この異常判定処理プログラムによって、実施形態に係る異常判定処理が実現される。
【0053】
診断装置20は、振動センサ12によって検出された振動の情報を含む振動検出信号、回転速度センサ13によって検出された回転速度の情報を含む回転速度検出信号、及び、発電量センサ14によって検出された発電量の情報を含む発電量検出信号が入力される。診断装置20は、これら振動検出信号、回転速度検出信号、及び発電量検出信号に基づき、主軸軸受41の異常判定処理を行う。
【0054】
図5は、異常判定処理の一例を示す概略図である。図5に示す異常判定処理は、例えば、図4に示す処理部21において実行される。図6は、風力発電機の回転速度と図5に示す異常判定処理における周波数帯域との関係を示すイメージ図である。図6に示す回転速度と周波数帯域との関係は、例えば、診断装置20の記憶部22に記憶されている。なお、記憶部22に記憶される回転速度と周波数帯域との関係は、数値データであっても良いし、デジタルデータ等の離散値であっても良い。
【0055】
診断装置20には、検出装置10から出力された振動検出信号、回転速度検出信号、及び発電量検出信号が入力される。具体的には、検出装置10から、図4に示す通信部23を介して、処理部21に振動検出信号、回転速度検出信号、及び発電量検出信号が入力される。
【0056】
処理部21は、記憶部22に記憶された、図6に示す回転速度と周波数帯域との関係を示すデータを読み出し、異常判定処理を行う周波数帯域を設定する。具体的に、処理部21は、第1周波数b1より高く、かつ第2周波数b2未満の周波数帯域を通過域とする第1周波数帯域FW1、及び、第3周波数b3より高い周波数帯域を通過域とする第2周波数帯域FW2の何れか一方又は両方を、異常判定処理を行う周波数帯域として設定する。処理部21は、設定された周波数帯域で振動検出信号の帯域制限処理S1を行う。
【0057】
なお、本実施形態において、第3周波数b3は、第2周波数b2よりも高い周波数であるものとする。すなわち、第1周波数b1、第2周波数b2、第3周波数b3の関係は、以下の(1)式で表される。
【0058】
b1<b2<b3・・・(1)
【0059】
第1周波数b1、第2周波数b2、及び第3周波数b3の定義については後述する。
【0060】
続いて、処理部21は、帯域制限処理S1の結果の演算処理S2を行なう。例えば、処理部21は、帯域制限処理S1で設定された第1周波数帯域FW1、及び、帯域制限処理S1で設定された第2周波数帯域FW2の何れか一方又は両方において、周波数成分の実効値演算処理を行なう。
【0061】
続いて、処理部21は、演算処理S2の結果に基づき、主軸軸受41の異常判定処理における一次判定処理S3を行う。一次判定処理S3における異常有無の判定基準は、例えば予め周波数帯域別に設定された実効値の閾値を基準とする。一次判定処理S3により、異常なしと判定した場合は、当該一次判定処理S3の結果を出力する。具体的には、処理部21は、例えば、一次判定処理S3の結果を表示部25に出力する。
【0062】
一次判定処理S3で異常と判定した場合、処理部21は、演算処理S2の結果に基づき、振動解析処理S4を行う。具体的には、処理部21は、帯域制限処理S1で設定された周波数帯域に対して、アナログ値をAD変換したデジタルデータのエンベロープ(包絡線)処理を行い、このエンベロープ処理後のデータを高速フーリエ変換(FFT:Fast Fourier Transform)して振動解析処理S4を行う。
【0063】
続いて、処理部21は、振動解析処理S4に基づき、主軸軸受41の異常判定処理における二次判定処理S5を行なう。異常有無の判定は、例えば、軸受の理論周波数と振動解析結果の特徴周波数の一致度合いをもとに判定するが、本開示が限定されるものではない。
【0064】
続いて、処理部21は、二次判定処理S5の結果を出力する。具体的には、処理部21は、例えば、一次判定処理S3と二次判定処理S5の結果を表示部25に出力する。表示部25に表示させる表示態様としては、例えば、主軸軸受41に異常が生じているか正常であるか、換言すれば、主軸軸受41が損傷しているか否かを示す表示態様であっても良い。また、異常判定処理を行なった際の発電量、周波数帯域、振動解析処理S4の結果等の各種データを表示する表示態様であっても良い。
【0065】
また、例えば、処理部21は、一次判定処理S3と二次判定処理S5の結果、又は異常判定処理を行った際の回転速度、周波数帯域、振動解析処理S4の結果等の各種データを記憶部22に出力して記憶させる。このようにすれば、風力発電機100の管理者が入力部24を操作して記憶部22に記憶された一次判定処理S3と二次判定処理S5の結果や、異常判定処理の際の各種データの経時変化を表示部25に表示させることができる。また、風力発電機100の管理者が入力部24を操作して記憶部22に記憶された一次判定処理S3と二次判定処理S5の結果や、異常判定処理の際の各種データの経時変化を、通信部23を介して出力することができる。これにより、風力発電機100の主軸軸受41の損傷度合や、損傷に至るまでの過程を容易に把握することができる。
【0066】
次に、本実施形態における異常判定処理の概念について説明する。
【0067】
風力発電機100において、主軸軸受41の損傷時における衝撃振動は、主軸軸受41に負荷される荷重が大きく、増速機50の筐体501を含む構造系を励振させ得ると考えられる。
【0068】
一方、振動センサ12が設けられた主軸軸受ハウジング42には、増速機50の内部のギアの噛み合い振動が伝播する。このため、主軸軸受41の損傷に起因する衝撃振動の振動周波数と、増速機50の内部のギアの噛み合い振動等の外乱要素による振動周波数とが近接しているような場合には、主軸軸受41の損傷の検知精度が低下する可能性がある。
【0069】
ここで、増速機50の1段目のギア、すなわち、遊星歯車510の外周面に設けた歯をそれぞれ、太陽歯車508の外周面に設けた歯と、リング歯車509の内周面に設けた歯とを噛合させて構成される歯車機構を、「第1の歯車機構」とする。また、増速機50の2段目のギア、すなわち、低速軸505に設けられた入力歯車524と中間軸506の中間部外周面に設けられた第一中間歯車525とを噛合させて構成される歯車機構を、「第2の歯車機構」とする。本開示の発案者は、第1の歯車機構における噛み合い振動の周波数の1次成分と、第2の歯車機構における噛み合い振動の周波数の1次成分との間の周波数帯域に制限して振動解析処理を行うことで、主軸軸受41の損傷の兆候を捉え易くなることを知見した。
【0070】
本実施形態では、第1の歯車機構における噛み合い振動の周波数の1次成分よりも高い周波数を、図6に示す第1周波数b1としている。第1周波数b1[Hz]は、太陽歯車508の歯数をTs[個]、リング歯車509の歯数をTr[個]、太陽歯車508の回転周波数をfs[Hz]としたとき、以下の(2)式で表される。
【0071】
b1>(Ts×Tr/(Ts+Tr))×fs・・・(2)
【0072】
また、第1周波数b1[Hz]は、遊星歯車510の公転周波数をfc[Hz]としたとき、以下の(3)式で表される。
【0073】
b1>Tr×fc・・・(3)
【0074】
また、本実施形態では、第2の歯車機構における噛み合い振動の周波数の1次成分よりも低い周波数を、図6に示す第2周波数b2としている。第2周波数b2[Hz]は、入力歯車524の歯数をT3[個]、回転数をR3[rps]としたとき、以下の(4)式で表される。
【0075】
b2<T3×R3・・・(4)
【0076】
また、第2周波数b2[Hz]は、第一中間歯車525の歯数をT4[個]、回転数をR4[rps]としたとき、以下の(5)式で表される。
【0077】
b2<T4×R4・・・(5)
【0078】
太陽歯車508の回転数、リング歯車509の回転数、入力歯車524の回転数、及び第一中間歯車525の回転数は、主軸40の回転数、換言すれば、風力発電機100の回転数に比例する。すなわち、第1周波数b1及び第2周波数b2は、図6に示すように、風力発電機100の回転速度aに比例して変化するように設定すれば良い。図5に示す帯域制限処理S1において、後段の振動解析処理S4を行う周波数帯域を、第1周波数b1より高く、かつ第2周波数b2未満の第1周波数帯域FW1に設定する。これにより、第1の歯車機構における噛み合い振動の周波数の1次成分、及び、第2の歯車機構における噛み合い振動の周波数の1次成分を抑制することができる。
【0079】
また、振動センサ12が設けられた主軸軸受ハウジング42には、ブレード32からの衝撃振動が伝播し、この衝撃振動が、主軸軸受41の振動解析に大きく支障をきたす外乱要素のひとつとして挙げられる。このブレード32から伝播する衝撃振動の振動レベル及び発生頻度は、風力発電機100ごとに異なる。また、ブレード32から伝播する衝撃振動は、上述した第1の歯車機構におけるギアの噛み合い振動の周波数成分の1次成分、及び、第2の歯車機構における噛み合い振動の周波数成分の1次成分よりも高い、概ね数kHzの帯域において励振される。
【0080】
本実施形態では、ブレード32から伝播する衝撃振動によって励振される振動の周波数よりも高い周波数を、図6に示す第3周波数b3としている。ブレード32から伝播する衝撃振動によって励振される振動の周波数は、回転速度に依存せず、発生する周波数帯域は略一定である。すなわち、第3周波数b3は、図6に示すように、風力発電機100の回転速度aに依存しない一定の周波数に設定すれば良い。図5に示す帯域制限処理S1において、後段の振動解析処理S4を行う周波数帯域を、第3周波数b3よりも高い第2周波数帯域FW2に設定することで、ブレード32から伝播する衝撃振動によって励振される振動の周波数成分を抑制することができる。
【0081】
なお、風力発電機100の発電量が比較的に小さい場合、ロータ30の自重により負荷圏が安定しているため、主軸軸受41の損傷に起因する衝撃振動が安定する。また、増速機50の内部のギアの噛み合い振動等の外乱要素も抑制されるので、風力発電機100の発電量が比較的に小さいときに異常判定処理を行うことで、主軸軸受41の損傷を高精度に検出することができる。
【0082】
このため、例えば、異常判定処理を行う際の判定基準の一つとして、風力発電機100の発電量に対し、所定の発電量閾値Wthを設けても良い。発電量閾値Wthは、例えば、診断装置20の記憶部22に記憶するようにすれば良い。なお、記憶部22に記憶される回転速度と周波数帯域との関係は、数値データであっても良いし、デジタルデータ等の離散値であっても良い。発電量閾値Wthは、風力発電機100の発電量をWとしたとき、以下の(6)式で表される。
【0083】
W≦Wth・・・(6)
【0084】
発電量閾値Wthを、主軸軸受41の損傷を検出することが可能な上限値とし、上記(6)式を満たさない場合には、異常判定処理を行わないようにすることが望ましい。
【0085】
図7Aは、帯域制限処理の有無による振動解析処理結果の実効値演算処理結果を示す図である。
【0086】
図7Aに示す(a)は、帯域制限処理を行わない場合の振動解析処理結果の実効値演算処理結果を示している。
【0087】
図7Aに示す(b)は、図6に示す第1周波数帯域FW1に帯域制限した場合の振動解析処理結果の実効値演算処理結果を示している。
【0088】
図7Aに示す(c)は、図6に示す第2周波数帯域FW2に帯域制限した場合の振動解析処理結果の実効値演算処理結果を示している。
【0089】
図7Aの(a)に示す帯域制限処理を行わない場合の振動解析処理結果の実効値演算処理結果では、実効値の標準偏差を示すエラーバーの幅が大きいため、主軸軸受41の異常判定処理において誤検知を招く恐れがある。一方、図7Aの(b)及び図7Aの(c)に示す振動解析処理結果の実効値演算処理結果では、実効値そのものの差も明確でありながら、実効値の標準偏差を示すエラーバーの幅も小さいため、主軸軸受41の損傷の兆候を示す振動変化を感度良く捉えている。図7Bは、図7Aの(b)及び(c)を実効値方向に拡大した図である。
【0090】
図8Aは、風力発電機の発電量が比較的小さい場合の帯域制限処理の有無による振動解析処理結果の実効値演算処理結果を示す図である。
【0091】
図8Aに示す(a)は、帯域制限処理を行わない場合の振動解析処理結果の実効値演算処理結果を示している。
【0092】
図8Aに示す(b)は、図6に示す第1周波数帯域FW1に帯域制限した場合の振動解析処理結果の実効値演算処理結果を示している。
【0093】
図8Aに示す(c)は、図6に示す第2周波数帯域FW2に帯域制限した場合の振動解析処理結果の実効値演算処理結果を示している。
【0094】
図8Aの(a)、(b)、(c)に示すように、風力発電機100の発電量が比較的小さい場合には、実効値の標準偏差を示すエラーバーの幅が小さく、図7Aに示した例と比べて主軸軸受41の振動変化をより良く捉えていることがわかる。特に、外乱要素による周波数成分を除去した図8Aの(b)及び(c)では、実効値の標準偏差を示すエラーバーの幅だけでなく、実効値そのものの違いがより一層明確に現れている。図8Bは、図8Aの(b)及び(c)を実効値方向に拡大した図である。
【0095】
このように、主軸軸受41の損傷の兆候を捉えるためには、上述した帯域制限処理が有効であり、外乱要素による振動成分を抑制することで、主軸軸受41の損傷の兆候を示す振動変化を感度良く捉えることができる。特に、発電量が比較的小さい場合に、外乱要素による振動成分を抑制して後段の処理を行うことで、より一層感度の高い主軸軸受41の異常判定処理を行うことが出来る。
【0096】
なお、風力発電機100の発電量が大きい場合には、主軸軸受41に負荷されるモーメントによって主軸軸受41の負荷圏の位置が変化し、主軸軸受41の損傷部位が無負荷となる場合がある。この場合には、主軸軸受41の転動体が損傷箇所を通過する際の衝撃振動が発生せず、主軸軸受41の損傷の兆候を示す周波数成分が発生しない場合がある。従って、風力発電機100の発電量Wが上記(6)式で表される所定の発電量閾値Wth以下となる範囲内において、主軸軸受41の異常判定処理を行うことが望ましい。
【0097】
図9は、実施形態に係る風力発電機の主軸軸受の異常検知システムにおける周波数分析結果の一例を示す図である。本実施形態では、上述したように、図6に示す第1周波数帯域FW1及び第2周波数帯域FW2の何れか一方又は両方に帯域制限することで、図9に示すように、主軸軸受41の損傷の兆候を示す周波数成分を捉え易くなる。
【0098】
以上より、本実施形態では、図6に示す第1周波数帯域FW1及び第2周波数帯域FW2の何れか一方又は両方を、異常判定処理を行う周波数帯域として設定する。これにより、風力発電機100の主軸軸受41の異常判定処理を行う際に、主軸軸受41の損傷に起因する衝撃振動の振動周波数以外の外乱要素による振動周波数が抑制され、主軸軸受41の損傷の検知精度が向上する。
【0099】
さらには、風力発電機100の発電量Wが所定の発電量閾値Wth以下である場合に、後段の処理を行うことで、より一層感度の高い主軸軸受41の異常判定処理を行うことが出来る。
【0100】
なお、風力発電機100の主軸軸受41の異常判定処理を行う際の条件は、風力発電機100の発電量に限るものではなく、風力発電機100の運転状態を示す他の条件であっても良い。このような条件としては、例えば、主軸40や出力軸61(発電機60)の回転数が例示される。
【0101】
図10は、実施形態に係る異常判定処理手順の一例を示すフローチャートである。以下、図10に示すフローチャートに従い、実施形態に係る異常判定処理手順について説明する。
【0102】
まず、診断装置20の処理部21は、検出装置10から振動検出信号、回転速度検出信号及び発電量検出信号を取得する(ステップS101)。
【0103】
続いて、処理部21は、発電量検出信号から風力発電機100の発電量Wを抽出する(ステップS102)。
【0104】
処理部21は、ステップS102において抽出された風力発電機100の発電量Wが発電量閾値Wth以下(W≦Wth)であるか否かを判定する(ステップS103)。風力発電機100の発電量Wが発電量閾値Wth以下である場合(ステップS103;Yes)、ステップS104に移行する。風力発電機100の発電量Wが発電量閾値Wthよりも大きい場合(ステップS103;No)、ステップS101に戻り、ステップS101,S102の処理を繰り返す。
【0105】
処理部21は、ステップS103において設定した第1条件及び第2条件の何れか一方又は両方の周波数帯域に振動検出信号の帯域制限処理を行う(ステップS104)。
【0106】
続いて、処理部21は、帯域制限処理S1の結果の演算処理S2を行なう(ステップS105)。例えば、処理部21は、帯域制限処理S1で設定された周波数帯域の実効値演算処理を行なう。
【0107】
続いて、処理部21は、演算処理S2の結果に基づき、主軸軸受41の異常判定処理における一次判定処理S3を行う(ステップS106)。一次判定処理S3により、異常なしと判定した場合は(ステップS106;No)、当該一次判定処理S3の結果、主軸軸受41が正常であるものとして、判定処理結果を出力し(ステップS109)、ステップS101の処理に戻る。
【0108】
一次判定処理S3で異常と判定した場合(ステップS106;Yes)、処理部21は、演算処理S2の結果に基づき、振動解析処理S4を行う(ステップS107)。具体的には、処理部21は、帯域制限処理S1で設定された周波数帯域に対して、アナログ値をAD変換したデジタルデータのエンベロープ(包絡線)処理を行い、このエンベロープ処理後のデータを高速フーリエ変換(FFT:Fast Fourier Transform)して振動解析処理S4を行う。
【0109】
続いて、処理部21は、振動解析処理S4に基づき、主軸軸受41の異常判定処理における二次判定処理S5を行う(ステップS108)。二次判定処理S5により、異常なしと判定した場合は(ステップS108;No)、当該二次判定処理S5の結果、主軸軸受41が正常であるものとして、判定処理結果を出力し(ステップS109)、ステップS101の処理に戻る。
【0110】
二次判定処理S5で異常と判定した場合(ステップS108;Yes)、主軸軸受41の異常が検出されたものとして、判定処理結果を出力し(ステップS110)、ステップS101の処理に戻る。
【0111】
上述した異常判定処理を繰り返し実行することで、主軸軸受41の損傷の検知精度を高めることができる。
【0112】
なお、本実施形態では、演算処理S2において実効値演算処理を行なう態様について説明したが、例えば、パーシャルオーバーオール値を演算する態様であっても良い。
【0113】
また、上述した実施形態では、第1周波数を第1の歯車機構で発生する振動の周波数の1次成分よりも高くし、第2周波数を第2の歯車機構で発生する振動の周波数の1次成分よりも低くする態様を示した。他の態様として、第1周波数を第1の歯車機構で発生する振動の周波数のm次成分(mは1以上の自然数)よりも高くし、第2周波数を第2の歯車機構で発生する振動の周波数のn次成分(nは1以上の自然数)よりも低くする態様であっても良い。
【0114】
以上説明したように、実施形態に係る風力発電機の主軸軸受の異常検知システム及び異常検知方法は、検出装置10によって検出された振動の情報を判定する周波数帯域を設定し、当該設定した周波数帯域に制限された振動の情報に基づき、主軸軸受41の異常判定処理を行う。
【0115】
これにより、風力発電機100の主軸軸受41の異常判定処理を行う際に、主軸軸受41の損傷に起因する衝撃振動の振動周波数以外の外乱要素による振動の周波数成分が抑制され、主軸軸受41の損傷の検知精度が向上する。
【0116】
具体的には、第1の歯車機構と第2の歯車機構とを含む構成において、第1の歯車機構で発生する振動の周波数の1次成分よりも高く、第2の歯車機構で発生する振動の周波数の1次成分よりも低い第1周波数帯域を、主軸軸受41の異常判定処理を行う周波数帯域として設定する。これにより、第1の歯車機構で発生する振動の周波数の1次成分、第2の歯車機構で発生する振動の周波数の1次成分が抑制される。
【0117】
また、風力発電機100のブレード32から伝播する衝撃振動によって励振される振動の周波数よりも高い第2周波数帯域を、主軸軸受41の異常判定処理を行う周波数帯域として設定する。これにより、風力発電機100のブレード32から伝播する衝撃振動によって励振される振動の周波数成分が抑制される。
【0118】
このように、本実施形態によれば、風力発電機の主軸軸受の損傷の検知精度を高めることができる風力発電機の主軸軸受の異常検知システム及び異常検知方法が得られる。
【符号の説明】
【0119】
1 風力発電システム
10 検出装置
11 データ収集部
12 振動センサ
13 回転速度センサ
14 発電量センサ
20 診断装置
21 処理部
22 記憶部
23 通信部
24 入力部
25 表示部
26 バス
30 ロータ
31 ハブ
32 ブレード
40 主軸
41 主軸軸受
42 主軸軸受ハウジング
43 カップリング
50 増速機
51 入力軸
52 入力軸軸受
53 トルクアーム
60 発電機
61 出力軸
70 ナセル
80 タワー
90 土台(フレーム)
100 風力発電機
200 ネットワーク
501 筐体
502 遊星歯車装置
503 二次増速装置
505 低速軸
506 中間軸
508 太陽歯車
509 リング歯車
510 遊星歯車
511 遊星軸
512 円筒ころ軸受
513 キャリア
524 入力歯車
525 第一中間歯車
526 第二中間歯車
527 出力歯車
FW1 第1周波数帯域
FW2 第2周波数帯域
図1
図2
図3
図4
図5
図6
図7A
図7B
図8A
図8B
図9
図10