(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-18
(45)【発行日】2022-08-26
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/12 20060101AFI20220819BHJP
H01L 29/78 20060101ALI20220819BHJP
H01L 29/739 20060101ALI20220819BHJP
H01L 21/336 20060101ALI20220819BHJP
C23C 16/40 20060101ALI20220819BHJP
C30B 25/02 20060101ALI20220819BHJP
C30B 29/16 20060101ALI20220819BHJP
H01L 21/365 20060101ALI20220819BHJP
H01L 21/368 20060101ALI20220819BHJP
H01L 29/06 20060101ALI20220819BHJP
H01L 21/338 20060101ALI20220819BHJP
H01L 29/778 20060101ALI20220819BHJP
H01L 29/812 20060101ALI20220819BHJP
H01L 29/872 20060101ALI20220819BHJP
【FI】
H01L29/78 652T
H01L29/78 653A
H01L29/78 654C
H01L29/78 655A
H01L29/78 658E
C23C16/40
C30B25/02 Z
C30B29/16
H01L21/365
H01L21/368 Z
H01L29/06 301G
H01L29/06 301V
H01L29/80 H
H01L29/86 301D
H01L29/86 301E
H01L29/86 301F
(21)【出願番号】P 2020036316
(22)【出願日】2020-03-03
(62)【分割の表示】P 2018204424の分割
【原出願日】2015-07-21
【審査請求日】2020-04-01
【審判番号】
【審判請求日】2021-10-12
(31)【優先権主張番号】P 2014149313
(32)【優先日】2014-07-22
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2015125189
(32)【優先日】2015-06-22
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】511187214
【氏名又は名称】株式会社FLOSFIA
(72)【発明者】
【氏名】人羅 俊実
(72)【発明者】
【氏名】織田 真也
(72)【発明者】
【氏名】高塚 章夫
【合議体】
【審判長】河本 充雄
【審判官】恩田 春香
【審判官】鈴木 聡一郎
(56)【参考文献】
【文献】国際公開第2013/035843(WO,A1)
【文献】国際公開第2013/035845(WO,A1)
【文献】特許第5536920(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L29/12
H01L29/78
C30B29/16
H01L21/20
H01L21/205
(57)【特許請求の範囲】
【請求項1】
コランダム構造を有する酸化物半導体を主成分として含む結晶性半導体膜からなる半導体層と電極とを少なくとも備える半導体装置であって、前記結晶性半導体膜の膜厚が1μm以上であり、
前記結晶性半導体膜に含まれる金属元素中のガリウムの原子比が0.5以上であり、さらに、前記半導体層が、トレンチ溝からなるトレンチ構造を有し、前記半導体装置がトランジスタであることを特徴とする半導体装置。
【請求項2】
前記半導体層が、複数のトレンチ溝からなるトレンチ構造を有する請求項1記載の半導体装置。
【請求項3】
前記電極が、少なくとも前記トレンチ溝内に形成されている請求項1または2に記載の半導体装置。
【請求項4】
前記電極が、絶縁膜を介して少なくとも前記トレンチ溝内に形成されている請求項1~3のいずれかに記載の半導体装置。
【請求項5】
前記結晶性半導体膜に含まれる金属元素中のガリウムの原子比が0.8以上である請求項1~4のいずれかに記載の半導体装置。
【請求項6】
縦型デバイスである請求項1~5のいずれかに記載の半導体装置。
【請求項7】
パワーデバイスである請求項1~6のいずれかに記載の半導体装置。
【請求項8】
金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)または絶縁ゲート型バイポーラトランジスタ(IGBT)である請求項1~7のいずれかに記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置に有用な結晶性半導体膜および板状体ならびに前記結晶性半導体膜もしくは前記板状体を用いた半導体装置に関する。
【背景技術】
【0002】
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga2O3)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。当該酸化ガリウムは、非特許文献1によれば、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶とすることにより、バンドギャップを制御することが可能であり、中でも、InX’AlY’GaZ’O3(0≦X’≦2、0≦Y’≦2、0≦Z’≦2、X’+Y’+Z’=1.5~2.5)で表されるInAlGaO系半導体は、極めて魅力的な材料である。
【0003】
特許文献1には、ドーパント(4価の錫)を添加した結晶性の高い導電性α-Ga2O3薄膜が記載されている。しかしながら、特許文献1記載の薄膜では、十分な耐圧性を維持することができず、また、炭素不純物が多く含まれており、導電性も含め、半導体特性もまだまだ満足のいくものではなく、半導体装置に用いることがまだまだ困難であった。
【0004】
特許文献2には、α-Al2O3基板上に、p型のα-(Alx’’Ga1-x’’)2O3単結晶膜を形成したGa2O3系半導体素子が記載されている。しかしながら、特許文献2記載の半導体素子では、α-Al2O3が絶縁体であったり、結晶の品質にも問題があったりして、半導体素子に適用するには制約が多く、また、MBE法では、p型半導体を得るのに、イオン注入と高温での熱処理が必要であり、そのため、p型のα-Al2O3そのものが実現困難であり、実際には、特許文献2記載の半導体素子自体が実現困難であった。
【0005】
また、非特許文献2には、α-Ga2O3薄膜がMBE法によってサファイア上に成膜できることが記載されている。しかしながら、450℃以下の温度で膜厚100nmまで結晶成長するが、膜厚がそれ以上になると結晶の品質が悪くなり、さらに、膜厚1μm以上の膜は得ることができない旨記載されている。
そのため、膜厚が1μm以上であり、結晶の品質も劣化していないα-Ga2O3薄膜が待ち望まれていた。
【0006】
特許文献3には、ガリウム又はインジウムの臭化物又はヨウ化物を用いて、ミストCVD法により、酸化物結晶薄膜を製造する方法が記載されている。
特許文献4~6には、コランダム型結晶構造を有する下地基板上に、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とが積層された多層構造体が記載されている。
なお、特許文献3~6はいずれも本出願人による特許または特許出願に関する公報であるが、出願時には、膜厚1μm以上の結晶薄膜を得ることはできていなかった。また、特許文献3~6記載の方法で得られた膜は、いずれも実際には、基板から剥離できるものではなかった。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2013-28480号公報
【文献】特開2013-58637号公報
【文献】特許第5397794号
【文献】特許第5343224号
【文献】特許第5397795号
【文献】特開2014-72533号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、半導体特性、特に、リーク電流が抑制され、耐圧性および放熱性に優れている半導体膜および板状体ならびに半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記目的を達成すべく鋭意検討した結果、コランダム構造を有する酸化物半導体を主成分として含む結晶性半導体膜であって、膜厚が1μm以上である結晶性半導体膜の創製に成功した。
また、本発明者らは、さらに検討を重ねて、コランダム構造を有する酸化物半導体を主成分として含む板状体の製造にも成功した。
また、本発明者らは、前記結晶性半導体膜または前記板状体を用いて半導体装置を製造し、得られた半導体装置が、リーク電流が抑制されており、耐圧性および放熱性に優れていることを見出し、上記した各種知見を得た後、さらに検討を重ねて、本発明を完成させるに至った。
【発明の効果】
【0010】
本発明の結晶性半導体膜および板状体は半導体特性に優れており、本発明の半導体装置は、リーク電流が抑制され、耐圧性や放熱性に優れている。
【図面の簡単な説明】
【0011】
【
図1】本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。
【
図2】本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。
【
図3】本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。
【
図4】本発明の金属半導体電界効果トランジスタ(MESFET)の好適な一例を模式的に示す図である。
【
図5】本発明の高電子移動度トランジスタ(HEMT)の好適な一例を模式的に示す図である。
【
図6】本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。
【
図7】
図6の金属酸化膜半導体電界効果トランジスタ(MOSFET)の製造工程の一部を説明するための模式図である。
【
図8】本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例を模式的に示す図である。
【
図9】本発明の静電誘導トランジスタ(SIT)の好適な一例を模式的に示す図である。
【
図10】本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。
【
図11】本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。
【
図12】本発明の高電子移動度トランジスタ(HEMT)の好適な一例を模式的に示す図である。
【
図13】本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。
【
図14】本発明の接合電界効果トランジスタ(JFET)の好適な一例を模式的に示す図である。
【
図15】本発明の絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を模式的に示す図である。
【
図16】本発明の発光素子(LED)の好適な一例を模式的に示す図である。
【
図17】本発明の発光素子(LED)の好適な一例を模式的に示す図である。
【
図18】実施例で用いたミストCVD装置の構成図である。
【
図19】実施例で用いたサセプタを説明する図である。
【
図20】実施例で用いたサセプタと供給管との断面積の関係を示す図である。
【
図21】本発明の実施例での液中ドーパント含有率と、膜中ゲルマニウム含有量との関係を示すグラフである。
【
図22】実施例におけるショットキーバリアダイオード(SBD)の構造を説明する図である。
【
図23】実施例において、ゲルマニウムをドーピングした半導体層のSIMS分析の結果を示す図である。
【
図24】実施例において、ケイ素をドーピングした半導体層のSIMS分析の結果を示す図である。
【
図25】実施例で得られた自立膜のX線回折像を示す図である。
【
図26】実施例におけるショットキーバリアダイオード(SBD)の構造を説明する図である。
【
図27】実施例で得られたSBDの電流電圧特性を示す図である。
【
図28】実施例で作製されたMESFETの構造を示す図である。
【
図29】実施例で作製されたMESFETのDC特性を示す図である。なお、縦軸はドレイン電流(A)を示し、横軸はドレイン電圧(V)を示す。
【
図30】実施例で用いたミストCVD装置の概略構成図である。
【
図31】実施例における順方向の電流電圧特性の評価結果を示す図である。
【
図32】実施例における逆方向の電流電圧特性の評価結果を示す図である。
【
図33】実施例におけるXRDの結果を示す図である。
【発明を実施するための形態】
【0012】
本発明の結晶性半導体膜は、コランダム構造を有する酸化物半導体を主成分として含む結晶性半導体膜であって、膜厚が1μm以上であれば特に限定されないが、本発明においては、前記膜厚が、2μm以上であるのが好ましく、3μm以上であるのがより好ましく、5μm以上であるのが最も好ましい。また、本発明においては、前記膜厚が、7.6μm以上であるのも好ましく、膜厚が7.6μm以上になると、結晶性半導体膜が自立できるようになる。また、本発明においては、膜厚が10μm以上であるのがより好ましく、膜厚が10μm以上の主成分が同じである多層膜(例えばn-型半導体層とn+型半導体層との積層体)であるのが、半導体特性がより向上するので最も好ましい。また、前記結晶性半導体膜の形状等は特に限定されず、四角形状であっても、円形状であっても、多角形状であってもよい。前記結晶性半導体膜の表面積は、特に限定されず、本発明においては、3mm角以上(9mm2以上)であるのが好ましく、5mm角以上(25mm2以上)であるのがより好ましく、直径50mm以上であるのが最も好ましい。本発明では、特定の条件下でミストCVD法を用いることによって、従来ではなしえなかった3mm角以上の前記結晶性半導体膜を容易に得ることができる。
【0013】
前記結晶性半導体膜は、単結晶膜であってもよく、多結晶膜であってもよいが、本発明においては、前記結晶性半導体膜が、多結晶が含まれていてもよい単結晶膜であるのが好ましい。前記酸化物半導体は、コランダム構造を有する酸化物半導体であれば特に限定されない。前記酸化物半導体としては、例えば、Al、Ga、In、Fe、Cr、V、Ti、Rh、NiおよびCo等から選ばれる1種または2種以上の金属を含む金属酸化物半導体などが挙げられる。本発明においては、前記酸化物半導体が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を主成分として含有するのが好ましく、少なくともインジウムまたは/およびガリウムを主成分として含んでいるのがより好ましく、少なくともガリウムを主成分として含んでいるのが最も好ましい。なお、本発明において、「主成分」とは、前記のコランダム構造を有する酸化物半導体が、原子比で、前記結晶性半導体膜の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
【0014】
また、本発明においては、前記酸化物半導体が、α型InXAlYGaZO3(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5であり、0<X又は0<Zである。)であるのが好ましい。前記酸化物半導体がα型InXAlYGaZO3である場合の好ましい組成は、本発明の目的を阻害しない限り、特に限定されないが、前記結晶性半導体膜に含まれる金属元素中のガリウム、インジウムおよびアルミニウムの合計の原子比が0.5以上であることが好ましく、0.8以上であることがより好ましい。また、前記酸化物半導体がガリウムを含む場合の好ましい組成は、前記結晶性半導体膜に含まれる金属元素中のガリウムの原子比が0.5以上であることが好ましく、0.8以上であるのがより好ましい。
【0015】
前記結晶性半導体膜中には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm3~1×1022/cm3であってもよいし、また、ドーパントの濃度を例えば約1×1017/cm3以下の低濃度にして、例えばn型ドーパントの場合には、n-型半導体等とすることができる。また、さらに、本発明によれば、ドーパントを約1×1020/cm3以上の高濃度で含有させて、例えばn型ドーパントの場合にはn+型半導体等とすることもできる。本発明においては、n型ドーパントが、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブであるのが好ましく、n-型半導体層を形成する場合、前記結晶性半導体膜中のゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの濃度を、約1×1013~5×1017/cm3にすることが好ましく、約1×1015~1×1017/cm3にすることがより好ましい。また、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブをn型ドーパントとしてn+型半導体層を形成する場合には、前記結晶性半導体膜中のゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの濃度を、約1×1020/cm3~1×1023/cm3にすることが好ましく、約1×1020/cm3~1×1021/cm3にすることがより好ましい。以上のようにして、前記結晶性半導体膜に、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブを含ませることで、スズをドーパントとして用いたときよりも、電気特性に優れた結晶性半導体膜とすることができる。
【0016】
前記結晶性半導体膜は、下地基板上に直接形成してもよく、別の層を介して形成してもよい。別の層としては、別の組成のコランダム構造結晶薄膜、コランダム構造以外の結晶薄膜、又はアモルファス薄膜などが挙げられる。構造としては、単層構造であってもよく、複数層構造であってもよい。また、同一の層内に2相以上の結晶相が混じっていてもよい。複数層構造の場合、結晶性半導体膜は、例えば、絶縁性薄膜と導電性薄膜が積層されて構成されるが、本発明においては、これに限定されるものではない。なお、絶縁性薄膜と導電性薄膜とが積層されて複数層構造が構成される場合、絶縁性薄膜と導電性薄膜の組成は、同じであっても互いに異なっていてもよい。絶縁性薄膜と導電性薄膜の厚さの比は、特に限定されないが、例えば、(導電性薄膜の厚さ)/(絶縁性薄膜の厚さ)の比が0.001~100であるのが好ましく、0.1~5がさらに好ましい。このさらに好ましい比は、具体的には例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2,3、4、5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0017】
本発明においては、例えば、
図19や
図20に示されるサセプタや異常粒抑制剤等を用いたミストCVD法により、下地基板上に、そのまま又は他の層を介して、前記結晶性半導体膜を積層することができる。
【0018】
<下地基板>
下地基板は、上記の結晶性半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記下地基板が、絶縁体基板であるのが好ましく、表面に金属膜を有する基板であるのも好ましい。本発明においては、前記下地基板が、コランダム構造を有する結晶物を主成分として含む基板、またはβ-ガリア構造を有する結晶物を主成分として含む基板であるのも好ましい。コランダム構造を有する結晶物を主成分として含む基板は、基板中の組成比で、コランダム構造を有する結晶物を50%以上含むものであれば、特に限定されないが、本発明においては、70%以上含むものであるのが好ましく、90%以上であるのがより好ましい。コランダム構造を有する結晶を主成分とする基板としては、例えば、サファイア基板(例:c面サファイア基板)や、α型酸化ガリウム基板などが挙げられる。β-ガリア構造を有する結晶物を主成分とする基板は、基板中の組成比で、β-ガリア構造を有する結晶物を50%以上含むものであれば、特に限定されないが、本発明においては、70%以上含むものであるのが好ましく、90%以上であるのがより好ましい。β-ガリア構造を有する結晶物を主成分とする基板としては、例えばβ-Ga2O3基板、又はGa2O3とAl2O3とを含みAl2O3が0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。その他の下地基板の例としては、六方晶構造を有する基板(例:SiC基板、ZnO基板、GaN基板)などが挙げられる。六方晶構造を有する基板上には、直接または別の層(例:緩衝層等)を介して、前記結晶性半導体膜を形成するのが好ましい。下地基板の厚さは、本発明においては特に限定されないが、好ましくは、50~2000μmであり、より好ましくは200~800μmである。
【0019】
前記下地基板が、表面に金属膜を有する基板である場合には、前記金属膜は、基板表面の一部または全部に設けられていてもよく、メッシュ状やドット状の金属膜が設けられていてもよい。また、前記金属膜の厚さは、特に限定されないが、好ましくは、10~1000nmであり、より好ましくは10~500nmである。前記金属膜の構成材料としては、例えば、白金(Pt)、金(Au)、パラジウム(Pd)、銀(Ag)、クロム(Cr)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、マンガン(Mn)、モリブデン(Mo)、アルミニウム(Al)もしくはハフニウム(Hf)等の金属またはこれらの合金などが挙げられる。なお、前記金属は、一軸に配向しているのが好ましい。一軸に配向している金属は、膜厚方向及び膜面内方向、もしくは膜厚方向などの一定の方向に単一の結晶方位をもつ金属であればそれでよく、一軸に優先配向している金属も含む。本発明においては、膜厚方向に一軸に配向しているのが好ましい。配向については、一軸に配向しているのか否かをX線回折法により確認することができる。例えば、一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比が、ランダムに配向した同一結晶粉末の一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と比較して、大きい場合(好ましくは倍以上大きい場合、より好ましくは一桁以上大きい場合)に、一軸に配向していると判断することができる。
【0020】
本発明においては、前記下地基板が、サファイア基板(例:c面サファイア基板)、α型酸化ガリウム基板、β-Ga2O3基板もしくはGa2O3とAl2O3とを含み、Al2O3が0wt%より多くかつ60wt%以下である混晶体基板または表面に金属膜が形成されているこれらの基板であるのが好ましい。このような好ましい下地基板を用いることで、前記結晶性半導体膜の不純物のカーボン含有率、キャリア濃度および半値幅が、他の下地基板を用いた場合に比べてさらに低減することができる。
【0021】
前記ミストCVD法は、例えば超音波振動子により、原料を霧化してミストを発生させる工程(1)と、キャリアガスを供給する工程(2)と、前記ミストをキャリアガスによってサセプタに保持されている前記下地基板へ搬送して成膜する工程(3)とを含む成膜方法であれば特に限定されない。前記ミスト法としては、より具体的には例えば、ミスト・エピタキシー法やミストCVD法などが挙げられる。
【0022】
前記工程(1)は、原料を霧化してミストを発生させれば特に限定されない。工程(1)には、原料を霧化してミストを発生させるミスト発生器を用いることができる。前記ミスト発生器は、原料を霧化してミストを発生させることができれば特に限定されず、公知のものであってもよいが、本発明においては、超音波により、原料を霧化してミストを発生させるのが好ましい。なお、原料については、後述する。
【0023】
前記工程(2)は、キャリアガスを供給すれば特に限定されない。前記キャリアガスは、原料を霧化して発生したミストを基板上に搬送できるガス状のものであれば特に限定されない。前記キャリアガスとしては、特に限定されないが、例えば、酸素ガス、窒素ガス、アルゴンガス、フォーミングガスなどが挙げられる。
【0024】
前記工程(3)は、前記ミストをキャリアガスによってサセプタに保持されている前記下地基板へ搬送して成膜できれば特に限定されない。工程(3)には、ミストをキャリアガスによって前記基板へ搬送して、供給管内にて成膜できる管状炉を好適に用いることができる。
【0025】
本発明においては、工程(3)において、供給管内で成膜する場合、前記サセプタとして、例えば
図19や
図20に示されるサセプタを用いて、前記結晶性半導体膜を形成するのが好ましい。
【0026】
図19は、サセプタの一態様を示している。
図19に示されるサセプタ51は、ミスト加速部52、基板保持部53および支持部54を備えている。支持部54は棒状であり、途中で角度を変えて、支持部54の供給管55との接触角を約90°にするように構成されている。このような構成とすることにより、サセプタ51の安定性が向上するが、本発明においては、支持部54の形状については、特に限定されず、適宜、種々の形状を用いることができる。
【0027】
図19(a)は、ミストの上流から下流方向に向けて、基板に至るまでの供給管内の断面を示しており、供給管の基板側表面の外周形状が、略半円状であり、前記供給管の内周に沿って略同一となるような形状であることが分かる。
図19(b)は、ミストの上流を左に、下流を右にしたときの、供給管、基板およびサセプタの断面を示している。ミストはその性質上、供給管では沈降しやすいが、サセプタ51では、ミスト加速部52が傾斜して設けられており、沈降したミストを加速上昇させて基板に搬送できるように構成されている。
【0028】
図20は、供給管55内において、
図19に示されるサセプタおよび基板の領域を基板・サセプタ領域61として、未反応のミストを排出する領域を、排出領域62として示しており、サセプタと基板との総面積と、排出領域の面積との関係が分かるようになっている。本発明では、
図20に示されるように、前記サセプタが占めるサセプタ領域と、前記基板領域と、未反応のミストを排出する排出領域とに分けられる前記供給管内の断面において、前記サセプタ領域と前記基板との総面積が、前記排出領域の面積よりも大きいことが好ましい。このような好ましいサセプタを用いることにより、基板上でミストを加速させることができ、より均質でより厚い結晶性半導体膜を得ることができる。
【0029】
なお、前記結晶性半導体膜形成の際に、ドーパントを用いて、ドーピング処理を行うことができる。また、本発明においては、通常、ドーピング処理を、前記原料に異常粒抑制剤を含めて行う。前記原料に異常粒抑制剤を含めてドーピング処理を行うことで、表面平滑性に優れた結晶性半導体膜を得ることができる。ドーピング量は、本発明の目的を阻害しない限り、特に限定されないが、原料中、モル比で、0.01~10%であるのが好ましく、0.1~5%であるのがより好ましい。
【0030】
前記異常粒抑制剤は、成膜過程で副生する粒子の発生を抑制する効果を有するものをいい、結晶性半導体膜の表面粗さ(Ra)を例えば0.1μm以下とすることができれば特に限定されないが、本発明においては、Br、I、FおよびClから選択される少なくとも1種からなる異常粒抑制剤であるのが好ましい。安定的に膜形成をするために異常粒抑制剤として、BrやIを膜中に導入すると異常粒成長による表面粗さの悪化を抑制することができる。異常粒抑制剤の添加量は、異常粒を抑制できれば特に限定されないが、原料溶液中、体積比で50%以下であることが好ましく、30%以下であることがより好ましく、1~30%の範囲内であることが最も好ましい。このような好ましい範囲で異常粒抑制剤を使用することにより、異常粒抑制剤として機能させることができるので、結晶性半導体膜の異常粒の成長を抑制して表面を平滑にすることができる。
【0031】
結晶性半導体膜の形成方法は、本発明の目的を阻害しない限り、特に限定されないが、例えば、ガリウム化合物及び所望によりインジウム化合物またはアルミニウム化合物等を結晶性半導体膜の組成に合わせて組み合わせた原料を反応させることによって形成可能である。これによって、下地基板上に、下地基板側から結晶性半導体膜を結晶成長させることができる。ガリウム化合物としては、ガリウム金属を出発材料として成膜直前にガリウム化合物に変化させたものであってもよい。ガリウム化合物としては、例えば、ガリウムの有機金属錯体(例:アセチルアセトナート錯体等)やハロゲン化物(例:フッ化、塩化、臭化又はヨウ化物等)などが挙げられるが、本発明においては、ハロゲン化物(例:フッ化、塩化、臭化又はヨウ化物等)を用いることが好ましい。原料化合物にハロゲン化物を用いてミストCVDで成膜することで、前記結晶性半導体膜に炭素を実質的に含まないようにすることができる。
【0032】
より具体的には、結晶性半導体膜は、原料化合物が溶解した原料溶液から生成された原料微粒子を成膜室に供給して、前記サセプタを用いて、前記成膜室内で前記原料化合物を反応させることによって形成することができる。原料溶液の溶媒は、特に限定されないが、水、過酸化水素水または有機溶媒であることが好ましい。本発明においては、通常、ドーパント原料の存在下で、上記原料化合物を反応させる。なお、ドーパント原料は、好ましくは、原料溶液に含められて、原料化合物と共に又は別々に微粒子化される。前記結晶性半導体膜に含まれる炭素が、ドーパントよりも少なくなり、好ましくは、前記結晶性半導体膜に炭素を実質的に含まないようにことができる。なお、本発明の結晶性半導体膜が、ハロゲン(好ましくはBr)を含むのも良好な半導体構造を形成するため好ましい。ドーパント原料としては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブの金属単体又は化合物(例:ハロゲン化物、酸化物等)などが挙げられる。
【0033】
以上のようにして成膜することにより、工業的有利に、膜厚が1μm以上である結晶性半導体膜を得ることができる。なお、本発明においては、成膜時間を適宜調整することにより、膜厚を1μm以上とすることができる。
【0034】
本発明においては、成膜後、アニール処理を行ってもよい。アニール処理の温度は、特に限定されないが、600℃以下が好ましく、550℃以下がより好ましい。このような好ましい温度でアニール処理を行うことにより、より好適に前記結晶性半導体膜のキャリア濃度を調節することができる。アニール処理の処理時間は、本発明の目的を阻害しない限り、特に限定されないが、10秒~10時間であるのが好ましく、10秒~1時間であるのがより好ましい。
【0035】
前記下地基板を前記結晶性半導体膜から剥離することができる。剥離手段は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってもよい。剥離手段としては、例えば、機械的衝撃を加えて剥離する手段、熱を加えて熱応力を利用して剥離する手段、超音波等の振動を加えて剥離する手段、エッチングして剥離する手段などが挙げられる。前記剥離によって、前記結晶性半導体膜を自立膜として得ることができる。
なお、下地基板が、表面に金属膜が形成されている基板である場合には、基板部分のみを剥離してもよく、金属膜が半導体層表面に残っていてもよい。金属膜を半導体層表面に残すことで、半導体表面上の電極形成が容易かつ良好なものとすることができる。
【0036】
また、前記成膜は繰り返し行ってもよく、成膜を繰り返し行うことにより、膜厚をより厚くすることができ、コランダム構造を有する酸化物半導体を主成分として含む板状体を得ることもできる。なお、本発明においては、前記自立膜上に再度、結晶性半導体膜を成膜してもよい。
本発明においては、上記のようにして成膜することにより、厚さが7.6μm以上、好ましくは10μm以上、より好ましくは15μm以上、最も好ましくは50μm以上の板状体を得ることができる。前記板状体は、半導体層として用いることができるだけでなく、基板としても用いることができる。
【0037】
前記結晶性半導体膜または前記板状体は、半導体装置に有用な半導体構造を有しており、本発明においては、前記結晶性半導体膜または前記板状体をそのままで又は所望により更に加工等の処理を施して、半導体構造として半導体装置に用いることができる。また、前記半導体構造を半導体装置に用いる場合には、本発明の半導体構造をそのまま半導体装置に用いてもよいし、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などを形成してもよい。
【0038】
本発明の半導体構造は、様々な半導体装置に有用であり、とりわけ、パワーデバイスに有用である。また、半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明においては、前記半導体構造を横型デバイスにも縦型デバイスにも好適に用いることができるが、中でも、縦型デバイスに用いることが好ましい。前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオードなどが挙げられる。本発明においては、前記半導体装置が、SBD、MOSFET、SIT、JFETまたはIGBTであるのが好ましく、SBD、MOSFETまたはSITであるのがより好ましい。また、本発明においては、前記半導体装置が、p型半導体層を含まないものであってもよい。
【0039】
以下、前記半導体構造の結晶性半導体膜をn型半導体層(n+型半導体やn-型半導体等)に適用した場合の好適な例を、図面を用いて説明するが、本発明は、これらの例に限定されるものではない。なお、以下に例示する半導体装置において、本発明の目的を阻害しない限り、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などが含まれていてもよいし、また、緩衝層(バッファ層)なども適宜省いてもよい。
【0040】
(SBD)
図1は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図1のSBDは、n-型半導体層101a、n+型半導体層101b、ショットキー電極105aおよびオーミック電極105bを備えている。
【0041】
ショットキー電極およびオーミック電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0042】
ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、ショットキー電極を形成する場合、Moからなる層とAlからなる層を積層させ、Moからなる層およびAlからなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。
【0043】
図1のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層101aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極105bからショットキー電極105aへ電子が流れる。このようにして前記半導体構造を用いたSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。
【0044】
図2は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図2のSBDは、
図1のSBDの構成に加え、さらに絶縁体層104を備えている。より具体的には、n-型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび絶縁体層104を備えている。
【0045】
絶縁体層104の材料としては、例えば、GaO、AlGaO、InAlGaO、AlInZnGaO4、AlN、Hf2O3、SiN、SiON、Al2O3、MgO、GdO、SiO2またはSi3N4などが挙げられるが、本発明においては、コランダム構造を有するものであるのが好ましい。コランダム構造を有する絶縁体を絶縁体層に用いることで、界面における半導体特性の機能を良好に発現させることができる。絶縁体層104は、n-型半導体層101とショットキー電極105aとの間に設けられている。絶縁体層の形成は、例えば、スパッタリング法、真空蒸着法またはCVD法などの公知の手段により行うことができる。
【0046】
ショットキー電極やオーミック電極の形成や材料等については、上記
図1のSBDの場合と同様であり、例えばスパッタリング法、真空蒸着法、圧着法、CVD法等の公知の手段を用いて、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などからなる電極を形成することができる。
【0047】
図2のSBDは、
図1のSBDに比べ、さらに絶縁特性に優れており、より高い電流制御性を有する。
【0048】
図3のSBDは、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。
図3のSBDは、
図1や
図2のSBDの構成とは、トレンチ構造を有しており、半絶縁体層103を備えている点で大きく異なっている。
図3のSBDは、n-型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび半絶縁体層103を備えており、耐圧性を維持したまま、リーク電流を大幅に低減することができ、大幅な低オン抵抗化も可能となる。
【0049】
半絶縁体層103は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えば、マグネシウム(Mg)、ルテニウム(Ru)、鉄(Fe)、ベリリウム(Be)、セシウム(Cs)、ストロンチウム、バリウム等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
【0050】
(MESFET)
図4は、本発明に係る金属半導体電界効果トランジスタ(MESFET)の一例を示している。
図4のMESFETは、n-型半導体層111a、n+型半導体層111b、緩衝層(バッファ層)118、半絶縁体層114、ゲート電極115a、ソース電極115bおよびドレイン電極115cを備えている。
【0051】
ゲート電極、ドレイン電極およびソース電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
【0052】
半絶縁体層114は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えば、マグネシウム(Mg)、ルテニウム(Ru)、鉄(Fe)、ベリリウム(Be)、セシウム(Cs)、ストロンチウム、バリウム等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
【0053】
図4のMESFETでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。
【0054】
(HEMT)
図5は、本発明に係る光電子移動度トランジスタ(HEMT)の一例を示している。
図5のHEMTは、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、半絶縁体層124、緩衝層128、ゲート電極125a、ソース電極125bおよびドレイン電極125cを備えている。
【0055】
ゲート電極、ドレイン電極およびソース電極の材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
【0056】
なお、ゲート電極下のn型半導体層は、少なくともバンドギャップの広い層121aと狭い層121bとで構成されており、半絶縁体層124は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えばルテニウム(Ru)や鉄(Fe)等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
図5のHEMTでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。また、本発明においては、さらにリセス構造とすることで、ノーマリーオフを発現することができる。
【0057】
(MOSFET)
本発明の半導体装置がMOSFETである場合の一例を
図6に示す。
図6のMOSFETは、トレンチ型のMOSFETであり、n-型半導体層131a、n+型半導体層131b及び131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている。
【0058】
ドレイン電極135c上には、例えば厚さ100nm~100μmのn+型半導体層131bが形成されており、前記n+型半導体層131b上には、例えば厚さ100nm~100μmのn-型半導体層131aが形成されている。そして、さらに、前記n-型半導体層131a上には、n+型半導体層131cが形成されており、前記n+型半導体層131c上には、ソース電極135bが形成されている。
【0059】
また、前記n-型半導体層131a及び前記n+型半導体層131c内には、前記n+半導体層131cを貫通し、前記n-型半導体層131aの途中まで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内には、例えば、10nm~1μmの厚みのゲート絶縁膜134を介してゲート電極135aが埋め込み形成されている。
【0060】
図6のMOSFETのオン状態では、前記ソース電極135bと前記ドレイン電極135cとの間に電圧を印可し、前記ゲート電極135aに前記ソース電極135bに対して正の電圧を与えると、前記n-型半導体層131aの側面にチャネル層が形成され、電子が前記n-型半導体層131aに注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n-型半導体層131aが空乏層で満たされた状態になり、ターンオフとなる。
【0061】
図7は、
図6のMOSFETの製造工程の一部を示している。例えば
図7(a)に示すような半導体構造を用いて、n-型半導体層131aおよびn+型半導体層131cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、さらに、反応性イオンエッチング法等により異方性エッチングを行って、
図7(b)に示すように、前記n+型半導体層131c表面から前記n-型半導体層131aの途中にまで達する深さのトレンチ溝を形成する。次いで、
図7(c)に示すように、熱酸化法、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、前記トレンチ溝の側面及び底面に、例えば50nm~1μm厚のゲート絶縁膜134を形成した後、CVD法、真空蒸着法、スパッタリング法等を用いて、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料135aをn-型半導体層の厚み以下に形成する。
【0062】
そして、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層131c上にソース電極135bを、n+型半導体層131b上にドレイン電極135cを、それぞれ形成することで、パワーMOSFETを製造することができる。なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0063】
このようにして得られたMOSFETは、従来のトレンチ型MOSFETに比べて、さらに耐圧性に優れたものとなる。なお、
図6では、トレンチ型の縦型MOSFETの例を示したが、本発明においては、これに限定されず、種々のMOSFETの形態に適用可能である。例えば、
図6のトレンチ溝の深さをn-型半導体層131aの底面まで達する深さまで掘り下げて、シリーズ抵抗を低減させるようにしてもよい。なお、横型のMOSFETの場合の一例を
図8に示す。
図8のMOSFETは、n-型半導体層131a、第1のn+型半導体層131b、第2のn+型半導体層131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135b、ドレイン電極135c、緩衝層138および半絶縁体層139を備えている。
図8に示すように、n+型半導体層をn-型半導体層に埋め込むことで、他の横型のMOSFETに比べ、より良好に電流を流すことができる。
【0064】
(SIT)
図9は、本発明の半導体装置がSITである場合の一例を示す。
図9のSITは、n-型半導体層141a、n+型半導体層141b及び141c、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている。
【0065】
ドレイン電極145c上には、例えば厚さ100nm~100μmのn+型半導体層141bが形成されており、前記n+型半導体層141b上には、例えば厚さ100nm~100μmのn-型半導体層141aが形成されている。そして、さらに、前記n-型半導体層141a上には、n+型半導体層141cが形成されており、前記n+型半導体層141c上には、ソース電極145bが形成されている。
【0066】
また、前記n-型半導体層141a内には、前記n+半導体層141cを貫通し、前記n-半導体層141aの途中の深さまで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内のn-型半導体層上には、ゲート電極145aが形成されている。
図9のSITのオン状態では、前記ソース電極145bと前記ドレイン電極145cとの間に電圧を印可し、前記ゲート電極145aに前記ソース電極145bに対して正の電圧を与えると、前記n-型半導体層141a内にチャネル層が形成され、電子が前記n-型半導体層141aに注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n-型半導体層141aが空乏層で満たされた状態になり、ターンオフとなる。
【0067】
図9に示されるSITの製造には、公知の手段を用いることができる。例えば、
図7(a)に示される半導体構造を用いて、上記の
図7のMOSFETの製造工程と同様にして、n-型半導体層141aおよびn+型半導体層141cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、例えば、反応性イオンエッチング法等により異方性エッチングを行って、前記n+型半導体層141c表面から前記n-型半導体層141aの途中まで達する深さのトレンチ溝を形成する。次いで、CVD法、真空蒸着法、スパッタリング法等で、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料をn-型半導体層の厚み以下に形成する。そして、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層141c上にソース電極145bを、n+型半導体層141b上にドレイン電極145cを、それぞれ形成することで、
図9に示されるSITを製造することができる。
【0068】
なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
【0069】
上記例では、p型半導体を使用していない例を示したが、本発明においては、これに限定されず、p型半導体を用いてもよい。p型半導体を用いた例を
図10~16に示す。これらの半導体装置は、上記例と同様にして製造することができる。なお、p型半導体は、n型半導体と同じ材料であって、p型ドーパントを含むものであってもよいし、異なるp型半導体であってもよい。
【0070】
図10は、n-型半導体層101a、n+型半導体層101b、p型半導体層102、絶縁体層104、ショットキー電極105aおよびオーミック電極105bを備えているショットキーバリアダイオード(SBD)の好適な一例を示す。
【0071】
図11は、n-型半導体層101a、n+型半導体層101b、p型半導体層102、ショットキー電極105aおよびオーミック電極105bを備えているトレンチ型のショットキーバリアダイオード(SBD)の好適な一例を示す。トレンチ型のSBDによれば、耐圧性を維持したまま、リーク電流を大幅に低減することができ、大幅な低オン抵抗化も可能となる。
【0072】
図12は、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、p型半導体層123、ゲート電極125a、ソース電極125b、ドレイン電極125cおよび基板129を備えている高電子移動度トランジスタ(HEMT)の好適な一例を示す。
【0073】
図13は、n-型半導体層131a、第1のn+型半導体層131b、第2のn+型半導体層131c、p型半導体層132、p+型半導体層132a、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を示す。なお、p+型半導体層132aは、p型半導体層であってもよく、p型半導体層132と同じであってもよい。
【0074】
図14は、n-型半導体層141a、第1のn+型半導体層141b、第2のn+型半導体層141c、p型半導体層142、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている接合電界効果トランジスタ(JFET)の好適な一例を示す。
【0075】
図15は、n型半導体層151、n-型半導体層151a、n+型半導体層151b、p型半導体層152、ゲート絶縁膜154、ゲート電極155a、エミッタ電極155bおよびコレクタ電極155cを備えている絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を示す。
【0076】
(LED)
本発明の半導体装置が発光ダイオード(LED)である場合の一例を
図16に示す。
図16の半導体発光素子は、第2の電極165b上にn型半導体層161を備えており、n型半導体層161上には、発光層163が積層されている。そして、発光層163上には、p型半導体層162が積層されている。p型半導体層162上には、発光層163が発生する光を透過する透光性電極167を備えており、透光性電極167上には、第1の電極165aが積層されている。なお、
図16の半導体発光素子は、電極部分を除いて保護層で覆われていてもよい。
【0077】
透光性電極の材料としては、インジウム(In)またはチタン(Ti)を含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In2O3、ZnO、SnO2、Ga2O3、TiO2、CeO2またはこれらの2以上の混晶またはこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極を形成できる。また、透光性電極を形成した後に、透光性電極の透明化を目的とした熱アニールを施してもよい。
【0078】
図16の半導体発光素子によれば、第1の電極165aを正極、第2の電極165bを負極とし、両者を介してp型半導体層162、発光層163およびn型半導体層161に電流を流すことで、発光層163が発光するようになっている。
【0079】
第1の電極165a及び第2の電極165bの材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。電極の形成法は特に限定されることはなく、印刷方式、スプレー法、コ-ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ-ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。
【0080】
なお、発光素子の別の態様を
図17に示す。
図17の発光素子では、基板169上にn型半導体層161が積層されており、p型半導体層162、発光層163およびn型半導体層161の一部を切り欠くことによって露出したn型半導体層161の半導体層露出面上の一部に第2の電極165bが積層されている。
【実施例】
【0081】
以下、本発明の実施例を説明する。
【0082】
<実施例1>
1.成膜装置
図18を用いて、本実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22と、キャリアガス供給手段22から送り出されるキャリアガスの流量を調節するための流量調節弁23と、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28を備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
なお、サセプタ21として、
図19に示されるサセプタ51を用いた。なお、サセプタの傾斜角を45°とし、供給管内の基板・サセプタの総面積を、
図19に示される通り、サセプタ領域を徐々に大きくなるようにし、排出領域を徐々に狭くなるようにし、
図20に示される通り、サセプタ領域を排出領域よりも大きくなるように構成した。
【0083】
2.原料溶液の調整
臭化ガリウムと酸化ゲルマニウムをガリウムに対するゲルマニウムの原子比が1:0.05となるように水溶液を調整した。この際、48%臭化水素酸溶液を体積比で10%を含有させた。条件1では、酸化ゲルマニウムの濃度は、5.0×10-3mol/Lとした。
この原料溶液24aをミスト発生源24内に収容した。
【0084】
3.成膜準備
次に、基板20として、1辺が10mmの正方形で厚さ600μmのc面サファイア基板をサセプタ21上に設置させ、ヒーター28を作動させて供給管27内の温度を500℃にまで昇温させた。次に、流量調節弁23を開いてキャリアガス供給手段22からキャリアガスを供給管27内に供給し、供給管27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5L/minに調節した。キャリアガスとしては、酸素ガスを用いた。
【0085】
4.膜形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて、原料微粒子を生成した。
この原料微粒子が、キャリアガスによって供給管27内に導入され、供給管27内で反応して、基板20の成膜面でのCVD反応によって基板20上に膜を形成した。
【0086】
5.評価
得られた膜の相の同定をした。同定は、XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことによって行った。測定は、CuKα線を用いて行った。その結果、得られた膜は、α-Ga2O3であった。また、得られた結晶性半導体膜の膜厚は3.5μmであった。
【0087】
得られた膜の電気特性の評価としてはvan der pauw法により、ホール効果測定を行った。測定環境としては、室温で印加磁場の周波数は50mHzとした。その結果、キャリア密度は、4.33×1018(1/cm2)であり、移動度は19(cm2/V・s)であった。
【0088】
<実施例2>
臭化ガリウムと酸化ゲルマニウムをガリウムに対するゲルマニウムの原子比が1E-7、1E-6、8E-5、4E-4、2E-3、1E-2、2E-1、8E-1となるようにそれぞれ原料溶液を調整した。この際、48%臭化水素酸溶液を体積比で10%を含有させた。実施例1と同様の成膜条件で成膜を行い、SIMSを用いて、入射イオン種は酸素、出力3kV、200nAで不純物濃度の定量分析を行った。その結果を
図21に示す。
図21に示すように、液中ドーパント含有割合と、結晶膜中のドーピング量が相関関係を有し、液中ドーパント含有割合を調整することによって、形成される膜中のドーピング濃度を容易に制御することができることが分かった。
【0089】
<実施例3>
酸化ゲルマニウムの濃度を5.0×10
-3mol/Lに代えて1.0×10
-3mol/Lにしたこと以外は、条件1と同様にして、n+半導体層として、ゲルマニウムをドーピングしたα-Ga
2O
3膜をc面サファイア基板上に成膜し、ついで、膜上に、n-半導体層として、ドーピングしていないα-Ga
2O
3膜を成膜した。n-半導体層の形成については、何もドーピングしなかったこと以外は、上記と同様にして成膜することにより行った。得られた結晶性半導体膜の膜厚は7.6μmであり、成膜時間は180分であった。そして、
図22に示すように、n-半導体層101aの一部をエッチングした後、スパッタリングで、n+半導体層101b上にTiからなるオーミック電極105bを、n-半導体層101a上にPtからなるショットキー電極105aをそれぞれ設けて、SBDを作製した。
得られたSBDにつき、SIMS分析(Cs 3kV 200nA Ap16% Raster400)を行った。結果を
図23に示す。
図23から明らかなように、横軸のスパッタリング時間で1500秒を過ぎたあたりまではゲルマニウムが含まれておらず、また、1500秒を過ぎたあたりから4000秒あたりまではゲルマニウムが均一に含まれており、n+型半導体層およびn-型半導体層が良好に形成されていることが分かる。
【0090】
<実施例4>
臭化ガリウム、オルトケイ酸テトラエチルをそれぞれ物質量比で100:1となるように水溶液を調整した。この際、48%臭化水素酸溶液を体積比で10%を含有させた。臭化ケイ素の濃度は、1.0×10
-3mol/Lとした。成膜温度500℃、キャリアガスは窒素、流量は5L/minの条件で90分間成膜を行った。なお、その他の成膜条件は、実施例1と同様にして成膜した。得られた膜につき、XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことにより、相の同定を行った。なお、測定には、CuKα線を用いた。その結果、得られた膜は、α-Ga
2O
3であった。膜厚は2.5μmであった。
また、得られた膜につき、SIMS分析(Cs 3kV 200nA Ap16% Raster400)を行った。結果を
図24に示す。ケイ素が良好にドーピングされていることがわかる。なお、電気特性等もゲルマニウム含有の実施例1と同等の性能を示した。
【0091】
<実施例5>
実施例3と同様にして、結晶性半導体膜を成膜した。成膜後、超音波振動により、結晶性半導体膜を基板から剥離した。得られた膜につき、XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことにより、相の同定を行った。なお、測定には、CuKα線を用いた。その結果、得られた膜は、α-Ga
2O
3であった。膜厚は7.6μmであり、成膜時間は180分であった。
また、得られた自立膜につき、X線回折装置を用いて、構造評価した。X線回折結果として、X線回折像を
図25に示す。
図25からも明らかなように、基板の回折斑点が存在せず、自立膜であることが分かる。
【0092】
<実施例6>
図26に示すように、実施例5で得られた自立膜171に、ショットキー電極175aとしてタングステンを、オーミック電極175bとしてインジウムをそれぞれ用いて、SBDを作製した。得られたSBDにつき、電流電圧特性を評価した。結果を
図27に示す。
【0093】
<実施例7>
実施例1と同様にして、結晶性半導体膜を長時間成膜した。得られた膜につき、XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことにより、相の同定を行った。なお、測定には、CuKα線を用いた。その結果、得られた膜は、α-Ga2O3であった。また、膜厚は50μmであり、膜厚が50μmになると、もはや膜ではなく板状となる。
【0094】
<実施例8>
実施例1と同様にして、結晶性半導体膜を成膜した。得られた膜につき、XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことにより、相の同定を行った。なお、測定には、CuKα線を用いた。その結果、得られた膜は、α-Ga
2O
3であった。また、膜厚は1.9μmであった。得られた膜をそのまま用いて、
図28に示す通り、MESFETを作製した。
図28のMESFETは、ゲート電極185a、ソース電極185b、ドレイン電極185c、n型半導体層181および基板189を備えている。n型半導体層181はα-Ga
2O
3であり、ゲート電極185aは白金(Pt)からなり、ソース電極185bおよびドレイン電極185cは、それぞれチタン(Ti)金(Au)合金から形成されている。作製したMESFETのDC特性を
図29に示す。
図29から明らかな通り、リーク電流がほとんどなく、特に、ゲート電圧-25Vで0.5nA程度という結果を得た。また、ゲート電圧1Vで519μAに至ったので、オン・オフ比も10
6という比較的高い値であった。
【0095】
<実施例9>
9-1.成膜装置
図30を用いて、本実施例で用いたミストCVD装置1を説明する。ミストCVD装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源2bと、キャリアガス(希釈)源2bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、熱反応後のミスト、液滴および排気ガスを排出する排気口11とを備えている。なお、ホットプレート8上には、基板10が設置されている。
【0096】
9-2.原料溶液の作製
臭化ガリウムと酸化ゲルマニウムを水に混合し、ガリウムに対するゲルマニウムの原子比が1:0.01となるように水溶液を調整し、この際、臭化水素酸を体積比で10%を含有させ、これを原料溶液とした。
【0097】
9-3.成膜準備
上記2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、4インチのサファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を550℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
【0098】
9-4.膜形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、550℃にて、成膜室7内でミストが熱反応して、基板10上にn
+層が形成された。また、2層目として、酸化ゲルマニウムを用いていないこと以外は、1層目と同じ原料溶液を用いて、n
+層上に、1層目と同じ条件で、2層目としてn
-層を形成した。なお、成膜時間は4時間30分間であった。
また、
図18のミストCVD装置を用いて、2層目を上記と同条件で再成長させた。成膜時間は120分であった。結晶性半導体膜の膜厚は計11.9μmであり、うち、n
+層の膜厚は、3.8μmであり、n
-層の膜厚は、8.1μmであった。なお、XRD回折装置を用いて、得られた膜の相の同定を行ったところ、得られた膜はいずれもα-Ga
2O
3であった。
【0099】
9-5.電極形成
サファイア基板をα-Ga2O3膜から剥離した後、n-層上にショットキー電極として金を、n+層上にオーミック電極としてTi/Auを、それぞれ蒸着により形成し、SBDを作製した。
【0100】
9-6.評価
また、得られたSBDにつき、電流電圧特性を評価した。順方向での結果を
図31に示し、逆方向での結果を
図32に示す。結果から明らかなとおり、半導体の電気特性に優れており、特に、逆バイアス時の耐圧は300Vを超え、本発明品は、良好なダイオード特性を有していることがわかる。
【0101】
<実施例10>
10-1.成膜装置
実施例9と同様に、
図30に示される成膜装置を用いた。
【0102】
10-2.原料溶液(バッファ層用)の作製
0.05Mの鉄アセチルアセトナート水溶液に、塩酸を体積比で1.5%含有させ、これをバッファ層用原料溶液とした。
【0103】
10-3.成膜準備
上記10-2.で得られたバッファ層用原料溶液4aをミスト発生源4内に収容した。次に、基板10として、サファイア基板をホットプレート8上に設置し、ホットプレート8を作動させてヒーターの温度を550℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
【0104】
10-4.バッファ層の形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、550℃にて、成膜室7内でミストが熱反応して、基板10上にバッファ層が形成された。なお、成膜時間は30分間であった。
【0105】
10-5.原料溶液の作製
0.05Mの臭化ガリウム水溶液を用意し、この際、臭化水素酸を体積比で20%を含有させ、さらに、ガリウムに対してスズが8原子%となるように臭化スズを加え、これを原料溶液とした。
【0106】
10-6.成膜準備
上記10-5.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、バッファ層付きのサファイア基板をホットプレート8上に設置し、ホットプレート8を作動させてヒーターの温度を500℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとしてフォーミングガス(H2:N2=5:95)を用いた。
【0107】
10-7.膜形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、500℃にて、成膜室7内でミストが熱反応して、基板10上にバッファ層が形成された。なお、成膜時間は300分間であった。
【0108】
10-8.剥離膜
濃塩酸でバッファ層を溶かして、上記10-4.で得た膜を基板から剥離した。得られた膜の膜厚は4μmであった。また、X線回折装置を用いて、膜の同定を行ったところ、α-Ga
2O
3であった。XRDの結果を
図33に示す。
図33から明らかなとおり、サファイア基板のピークもバッファ層のピークもなく、α-Ga
2O
3のきれいな剥離膜であることがわかる。また、得られたα-Ga
2O
3膜をレーザーで1mm角に切り出した。切り出す前のα-Ga
2O
3膜の写真を
図34に示し、切り出した後のα-Ga
2O
3膜を
図35に示す。
図34から明らかなように、得られた剥離膜は、5mm角以上の大面積を有していた。また、
図35からも明らかな通り、1mm角の良質なα-Ga
2O
3膜を切り出すことができる。
【産業上の利用可能性】
【0109】
本発明の結晶性半導体膜および板状体は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、半導体特性に優れているため、特に、半導体装置に有用である。
【符号の説明】
【0110】
1 ミストCVD装置
2a キャリアガス源
2b キャリアガス(希釈)源
3a 流量調節弁
3b 流量調節弁
4 ミスト発生源
4a 原料溶液
4b ミスト
5 容器
5a 水
6 超音波振動子
7 成膜室
8 ホットプレート
9 供給管
10 基板
11 排気口
19 ミストCVD装置
20 基板
21 サセプタ
22 キャリアガス供給手段
23 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 成膜室
28 ヒーター
51 サセプタ
52 ミスト加速手段
53 基板保持部
54 支持部
55 供給管
61 基板・サセプタ領域
62 排出領域
101a n-型半導体層
101b n+型半導体層
102 p型半導体層
103 半絶縁体層
104 絶縁体層
105a ショットキー電極
105b オーミック電極
109 基板
111a n-型半導体層
111b n+型半導体層
114 半絶縁体層
115a ゲート電極
115b ソース電極
115c ドレイン電極
118 緩衝層
121a バンドギャップの広いn型半導体層
121b バンドギャップの狭いn型半導体層
121c n+型半導体層
123 p型半導体層
124 半絶縁体層
125a ゲート電極
125b ソース電極
125c ドレイン電極
128 緩衝層
129 基板
131a n-型半導体層
131b 第1のn+型半導体層
131c 第2のn+型半導体層
132 p型半導体層
134 ゲート絶縁膜
135a ゲート電極
135b ソース電極
135c ドレイン電極
138 緩衝層
139 半絶縁体層
141a n-型半導体層
141b 第1のn+型半導体層
141c 第2のn+型半導体層
142 p型半導体層
145a ゲート電極
145b ソース電極
145c ドレイン電極
151 n型半導体層
151a n-型半導体層
151b n+型半導体層
152 p型半導体層
154 ゲート絶縁膜
155a ゲート電極
155b エミッタ電極
155c コレクタ電極
161 n型半導体層
162 p型半導体層
163 発光層
165a 第1の電極
165b 第2の電極
167 透光性電極
169 基板
171 α-Ga2O3層
175a タングステン電極
175b インジウム電極
181 n型半導体層
185a ゲート電極
185b ソース電極
185c ドレイン電極
189 基板