IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サンアプロ株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-18
(45)【発行日】2022-08-26
(54)【発明の名称】硬化性組成物及びそれを用いた光学素子
(51)【国際特許分類】
   C08G 59/68 20060101AFI20220819BHJP
   C08G 65/18 20060101ALI20220819BHJP
   C08F 2/50 20060101ALI20220819BHJP
   G02B 1/04 20060101ALI20220819BHJP
【FI】
C08G59/68
C08G65/18
C08F2/50
G02B1/04
【請求項の数】 5
(21)【出願番号】P 2017217035
(22)【出願日】2017-11-10
(65)【公開番号】P2019085533
(43)【公開日】2019-06-06
【審査請求日】2020-09-29
(73)【特許権者】
【識別番号】000106139
【氏名又は名称】サンアプロ株式会社
(74)【代理人】
【識別番号】100118061
【弁理士】
【氏名又は名称】林 博史
(72)【発明者】
【氏名】高嶋 祐作
(72)【発明者】
【氏名】福長 祝也
【審査官】佐藤 のぞみ
(56)【参考文献】
【文献】特開2013-043864(JP,A)
【文献】特開2013-014545(JP,A)
【文献】国際公開第2017/038379(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 59/00-59/72
C08L 63/00-63/10
C08G 65/00-65/48
C08F 2/00-2/60
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
[4-(フェニルチオ)フェニル]ジフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ガレート又は[4-(4-ビフェニリルチオ)フェニル](4-ビフェニリル)フェニルスルホニウム テトラキス(ペンタフルオロフェニル)ガレートであるオニウムガレート塩と、[4-(フェニルチオ)フェニル]ジフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェートであるオニウムフォスフェート塩を含む酸発生剤とカチオン重合性化合物とを含有してなる、エネルギー線硬化性組成物。
【請求項2】
エネルギー線硬化性組成物中に含まれるオニウムガレート塩の含有量が、オニウムフォスフェート塩の含有量の0.1~3倍である請求項に記載のエネルギー線硬化性組成物。
【請求項3】
請求項1又は2に記載のエネルギー線硬化性組成物を硬化した硬化物。
【請求項4】
請求項に記載の硬化物を構成要素として含有する光学素子。
【請求項5】
請求項に記載の光学素子を備えた光学装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、硬化性、耐熱性、及び耐熱黄変性に優れた硬化物を形成するエネルギー線硬化性組成物、それを用いた硬化物、及びそれを用いた光学素子に関する。
【背景技術】
【0002】
従来、熱あるいは光、電子線などの活性エネルギー線照射によってエポキシ化合物などのカチオン重合性化合物を硬化させるカチオン重合開始剤として、ヨードニウムやスルホニウム塩等のオニウム塩が知られている(特許文献1~10)。
また、これらのオニウム塩は、熱あるいは活性エネルギー線照射によって酸を発生するので酸発生剤とも称され、レジストや感光性材料にも使用されている(特許文献11~13)。
【0003】
ところで、これらの明細書に記載されているカチオン重合開始剤(酸発生剤)は、アニオンとして、BF4 -、PF6 -、AsF6 -、SbF6 -を含有するが、カチオン重合性化合物の硬化性能や酸触媒による架橋反応性能はアニオンの種類で異なり、BF4 -<PF6 -<AsF6 -<SbF6 -の順に良くなる。しかし、重合や架橋性能の良いAsF6 -、SbF6 -を含有するカチオン重合開始剤(酸発生剤)は、As、Sbの毒性の問題から使用用途が限定され、SbF6 -塩が光造形などの限定された用途で使用されているのみである。そのため、一般的には重合や架橋性能の劣るPF6 -塩が利用されるが、PF6 -塩は、例えば、SbF6 -塩と同程度の硬化速度を得るには、後者の10倍近い量を添加する必要があり、未反応の開始剤(酸発生剤)、開始剤(酸発生剤)を溶解するために必要に応じて使用される溶剤量または開始剤の分解物の残存量が多くなるため、硬化物の物性が損なわれること、また開始剤の分解によって副生するHF量が多くなることから、基材や設備等が腐食されやすいことなどの問題がある。このため毒性金属を含まず、SbF6 -塩に匹敵するカチオン重合開始能を有するカチオン重合開始剤が強く求められていた。
【0004】
近年、携帯電話、スマートフォン等の携帯型電子機器の需要が拡大している。このような電子機器には小型で薄型の撮像ユニットが搭載されており、前記撮像ユニットは、一般に、固体撮像素子(CCD型イメージセンサやCMOS型イメージセンサ等)とレンズ等の光学素子より構成されている。
【0005】
電子機器に搭載される光学素子には、製造の効率化を図る目的から、リフロー方式による半田付けにより実装可能な耐熱性及び耐熱黄変性を有することが求められる。また、近年、環境への配慮から鉛の使用が制限され、鉛フリー半田を使用して半田付けが行われるようになったため、更に高い耐熱性(約270℃)及び耐熱黄変性が求められるようになった。
【0006】
レンズ等の光学素子の材料としては、カチオン硬化性組成物が、ラジカル硬化性組成物に比べ、酸素による硬化阻害が起こらない点、及び硬化時の収縮が小さい点から好ましく使用される。
【0007】
本発明者らは、毒性金属を含まず、SbF6 -塩に匹敵するカチオン重合性能や架橋反応性能を有するカチオン重合開始剤(酸発生剤)として、フッ素化アルキルリン酸オニウム塩系酸発生剤(特許文献14)を提案しているが、このものを使用した硬化物は特に耐熱試験後に透明性が低下する問題があり、上記の光学特性が必要な部材への適用が進んでいなかった。
【先行技術文献】
【特許文献】
【0008】
【文献】特開昭50-151997号公報
【文献】特開昭50-158680号公報
【文献】特開平2-178303号公報
【文献】特開平2-178303号公報
【文献】米国特許4069054号公報
【文献】米国特許4450360号公報
【文献】米国特許4576999号公報
【文献】米国特許4640967号公報
【文献】カナダ国特許1274646号公報
【文献】欧州公開特許203829号公報
【文献】特開2002-193925号公報
【文献】特開2001-354669号公報
【文献】特開2001-294570号公報
【文献】WO2005-116038号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、硬化性に優れ、光照射又は加熱処理を施すことにより、耐熱性及び耐熱黄変性に優れた(すなわち、リフロー方式による半田付け等の高温条件下においても形状を保持することができ、且つ黄変しにくい)硬化物を形成することができるエネルギー線硬化性組成物を提供することにある。
本発明の他の目的は、前記エネルギー線硬化性組成物を硬化して得られる硬化物であって、硬化性、耐熱性、及び耐熱黄変性を兼ね備えた硬化物を提供することにある。
本発明の他の目的は、前記硬化物を構成要素とする光学素子や、該光学素子を備えた光学装置を提供することにある。
【課題を解決するための手段】
【0010】
本発明者等は上記課題を解決するため鋭意検討した結果、一般式(1)で表されるオニウムガレート塩と、下記一般式(2)で表されるオニウムフォスフェート塩を含む酸発生剤とカチオン重合性化合物とを含有してなるエネルギー線硬化性組成物は、硬化性に優れ、光照射又は加熱処理を施すことにより、硬化性、透明性に優れ、リフロー方式による半田付け等の高温条件下においても変形しにくく黄変しにくい特性(=耐熱性及び耐熱黄変性)を有する硬化物を形成することができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
【0011】
すなわち、本発明は、下記一般式(1)で表されるオニウムガレート塩と、下記一般式(2)で表されるオニウムフォスフェート塩を含む酸発生剤とカチオン重合性化合物とを含有してなる、エネルギー線硬化性組成物である。

[ (R5n+1-E] [ (R1)( R2)( R3)( R4)Ga] (1)
[式中、R~Rは、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、
Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、ハロゲン原子が置換した炭素数1~8のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、-NR1011で表されるアミノ基、又はハロゲン原子で置換されていてもよく、
~Rは炭素数1~8のアルキル基又は炭素数6~14のアリール基、
10及びR11は水素原子、炭素数1~8のアルキル基又は炭素数6~14のアリール基であり;
Eは15族~17族(IUPAC表記)の原子価nの元素を表し、
nは1~3の整数であり、
はEに結合している有機基であり、Rの個数はn+1であり、(n+1)個のRはそれぞれ互いに同一であっても異なっても良く、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]

[ (Rn+1-E] [ (Rf)bPF6-b] (2)
[式中Rfは水素原子の80%以上がフッ素原子で置換されたアルキル基を表す。bはその個数を示し、1~5の整数である。b個のRfはそれぞれ同一であっても異なっていてもよい。R、E、nの定義は、一般式(1)の定義と同じである。]
【0012】
本発明は、また前記に記載のエネルギー線硬化性組成物を硬化した硬化物を提供する。
【0013】
本発明は、また前記に記載の硬化物を構成要素として含有する光学素子を提供する。
【0014】
本発明は、また前記に記載の光学素子を備えた光学装置を提供する。
【発明の効果】
【0015】
本発明のエネルギー線硬化性組成物は上記構成を有するため硬化性に優れ、光照射又は加熱処理を施すことにより、硬化性、透明性、耐熱性、及び耐熱黄変性に優れた硬化物を形成することができる。そのため、本発明のエネルギー線硬化性組成物は、光学素子材料(レンズ又はプリズム材料、封止材、光導波路形成材料、接着剤、光ファイバー形成材料、インプリント材料、代替ガラス形成材料等)、レジスト、コーティング剤等として好適に使用することができる。例えば本発明のエネルギー線硬化性組成物を光学素子材料として使用した場合、得られる光学素子は透明性に優れ、リフロー半田付け工程に付しても黄変が抑制されるので、光学特性を高く維持することができる。そのため、光学素子を別工程で実装する必要がなく、他の部品と共に一括してリフロー半田付けにより基板実装することができ、光学素子を搭載した光学装置を優れた作業効率で製造することができる。また、耐熱性が求められる車載用電子機器にも使用することができる。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について詳細に説明する。
本発明のエネルギー線硬化性組成物は、酸発生剤として下記一般式(1)、(2)で表される化合物を含有する。

[ (R5n+1-E] [ (R1)( R2)( R3)( R4)Ga] (1)
[式中、R~Rは、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、
Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、ハロゲン原子が置換した炭素数1~8のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、-NR1011で表されるアミノ基、又はハロゲン原子で置換されていてもよく、
~Rは炭素数1~8のアルキル基又は炭素数6~14のアリール基、
10及びR11は水素原子、炭素数1~8のアルキル基又は炭素数6~14のアリール基であり;
Eは15族~17族(IUPAC表記)の原子価nの元素を表し、
nは1~3の整数であり、
はEに結合している有機基であり、Rの個数はn+1であり、(n+1)個のRはそれぞれ互いに同一であっても異なっても良く、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]

[ (Rn+1-E] [ (Rf)bPF6-b] (2)
[式中Rfは水素原子の80%以上がフッ素原子で置換されたアルキル基を表す。bはその個数を示し、1~5の整数である。b個のRfはそれぞれ同一であっても異なっていてもよい。R、E、nの定義は、一般式(1)の定義と同じである。]
【0017】
一般式(1)中、R~Rにおける、炭素数1~18のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)、シクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)及び架橋環式アルキル基(ノルボルニル、アダマンチル及びピナニル等)が挙げられる。
カチオン重合反応における触媒活性の観点から、ハロゲン原子、ニトロ基、シアノ基で置換されているものが好ましく、中でもフッ素原子で置換されたものがより好ましい。
【0018】
一般式(1)中、R~Rにおける、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基としては、単環式アリール基(フェニル等)、縮合多環式アリール基(ナフチル、アントラセニル、フェナンスレニル、アントラキノリル、フルオレニル及びナフトキノリル等)及び芳香族複素環炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル等単環式複素環;及びインドリル、ベンゾフラニル、イソベンゾフラニル、ベンゾチエニル、イソベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、クマリニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニル等縮合多環式複素環)が挙げられる。
アリール基としては、以上の他に、アリール基中の水素原子の一部が炭素数1~18のアルキル基、ハロゲン原子が置換した炭素数1~8のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、-NR1011で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
【0019】
上記置換基において、炭素数2~18のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロぺニル等)、シクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)及びアリールアルケニル基(スチリル及びシンナミル等)が挙げられる。
【0020】
上記置換基において、炭素数2~18のアルキニル基としては、直鎖又は分岐のアルキニル基(エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-2-プロピニル、1,1-ジメチル-2-プロピニル、1-ぺンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-メチル-2-ブチニル、3-メチル-1-ブチニル、1-デシニル、2-デシニル、8-デシニル、1-ドデシニル、2-ドデシニル及び10-ドデシニル等)及びアリールアルキニル基(フェニルエチニル等)が挙げられる。
【0021】
上記置換基において、ハロゲン原子が置換した炭素数1~8のアルキル基としては、直鎖アルキル基(トリフルオロメチル、トリクロロメチル、ペンタフルオロエチル、2,2,2-トリクロロエチル、2,2,2-トリフルオロエチル、1,1-ジフルオロエチル、ヘプタフルオロ-n-プロピル、1,1-ジフルオロ-n-プロピル、3,3,3-トリフルオロ-n-プロピル、ノナフルオロ-n-ブチル、3,3,4,4,4-ペンタフルオロ-n-ブチル、パーフルオロ-n-ペンチル、パーフルオロ-n-オクチル、等)、分岐アルキル基(ヘキサフルオロイソプロピル、ヘキサクロロイソプロピル、ヘキサフルオロイソブチル、ノナフルオロ-tert-ブチル等)、シクロアルキル基(ペンタフルオロシクロプロピル、ノナフルオロシクロブチル、パーフルオロシクロペンチル及びパーフルオロシクロヘキシル等)及び架橋環式アルキル基(パーフルオロアダマンチル等)が挙げられる。
【0022】
上記置換基において、-ORで表されるアルコキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基、-NR1011で表されるアミノ基の、R~R11としては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
【0023】
上記置換基において、-ORで表されるアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアリールチオ基、-NR1011で表されるアミノ基の、R~R11としては炭素数6~14のアリール基が挙げられ、具体的には上記の炭素数6~14のアリール基が挙げられる。
【0024】
-ORで表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-ORで表されるアリールオキシ基としては、フェノキシ、ナフトキシ等が挙げられる。
CO-で表されるアシル基としては、アセチル、プロパノイル、ブタノイル、ピバロイル及びベンゾイル等が挙げられる。
COO-で表されるアシロキシ基としては、アセトキシ、ブタノイルオキシ及びベンゾイルオキシ等が挙げられる。
-SRで表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
-SRで表されるアリールチオ基としては、フェニルチオ、ナフチルチオ等が挙げられる。
-NR1011で表されるアミノ基としては、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、ジプロピルアミノ、ジプロピルアミノ及びピペリジノ等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
【0025】
これら置換基において、カチオン重合反応における触媒活性の観点から、ハロゲン原子が置換した炭素数1~8のアルキル基、ハロゲン原子、ニトロ基、シアノ基が好ましく、フッ素原子が置換した炭素数1~8のアルキル基およびフッ素原子がより好ましい。
【0026】
一般式(1)で表されるオニウムガレート塩のR、R、R、Rがパーフルオロアルキル基又はフッ素原子で置換されたフェニル基であることが好ましく、ペンタフルオロフェニル基又はビス(トリフルオロメチル)フェニル基であることがより好ましい。
特に好ましくは、一般式(1)で表されるオニウムガレート塩の[ (R)( R)( R)( R)Ga]で表されるガレートアニオンが[Ga(C4]又は、[Ga((CF4]である。
【0027】
式(1)、(2)中のRはEに結合している有機基を表し、同一であっても異なってもよい。Rとしては、炭素数6~14のアリール基、炭素数1~18のアルキル基、炭素数2~18のアルケニル基および炭素数2~18のアルキニル基が挙げられ、アリール基はさらに炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、-NR1011で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
【0028】
上記有機基の炭素数6~14のアリール基、炭素数1~18のアルキル基、炭素数2~18のアルケニル基および炭素数2~18のアルキニル基としては、一般式(1)中のR~Rで説明したものと同じものが挙げられる。
【0029】
また2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Aを含む環構造を形成しても良い。
【0030】
式(1)、(2)中のEは、15族~17族(IUPAC表記)の原子価nの元素を表し、有機基Rと結合してオニウムイオン[E]を形成する。15族~17族の元素のうち好ましいのは、O(酸素)、N(窒素)、P(リン)、S(硫黄)またはI(ヨウ素)であり、対応するオニウムイオンとしてはオキソニウム、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムである。中でも、安定で取り扱いが容易な、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムが好ましく、カチオン重合性能や架橋反応性能に優れるスルホニウム、ヨードニウムがさらに好ましい。
nは元素Eの原子価を表し、1~3の整数である。
【0031】
オキソニウムイオンの具体例としては、トリメチルオキソニウム、ジエチルメチルオキソニウム、トリエチルオキソニウム、テトラメチレンメチルオキソニウムなどのオキソニウム;4-メチルピリリニウム、2,4,6-トリメチルピリリニウム、2,6-ジ-tert-ブチルピリリニウム、2,6-ジフェニルピリリニウムなどのピリリニウム;2,4-ジメチルクロメニウム、1,3-ジメチルイソクロメニウムなどのクロメニウムおよびイソクロメニウムが挙げられる。
【0032】
アンモニウムイオンの具体例としては、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどのテトラアルキルアンモニウム;N,N-ジメチルピロリジニウム、N-エチル-N-メチルピロリジニウム、N,N-ジエチルピロリジニウムなどのピロリジニウム;N,N'-ジメチルイミダゾリニウム、N,N'-ジエチルイミダゾリニウム、N-エチル-N'-メチルイミダゾリニウム、1,3,4-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウムなどのイミダゾリニウム;N,N'-ジメチルテトラヒドロピリミジニウムなどのテトラヒドロピリミジニウム;N,N'-ジメチルモルホリニウムなどのモルホリニウム;N,N'-ジエチルピペリジニウムなどのピペリジニウム;N-メチルピリジニウム、N-ベンジルピリジニウム、N-フェナシルピリジウムなどのピリジニウム;N,N'-ジメチルイミダゾリウム、などのイミダゾリウム;N-メチルキノリウム、N-ベンジルキノリウム、N-フェナシルキノリウムなどのキノリウム;N-メチルイソキノリウムなどのイソキノリウム;ベンジルベンゾチアゾニウム、フェナシルベンゾチアゾニウムなどのチアゾニウム;ベンジルアクリジウム、フェナシルアクリジウムなどのアクリジウムが挙げられる。
【0033】
ホスホニウムイオンの具体例としては、テトラフェニルホスホニウム、テトラ-p-トリルホスホニウム、テトラキス(2-メトキシフェニル)ホスホニウム、テトラキス(3-メトキシフェニル)ホスホニウム、テトラキス(4-メトキシフェニル)ホスホニウムなどのテトラアリールホスホニウム;トリフェニルベンジルホスホニウム、トリフェニルフェナシルホスホニウム、トリフェニルメチルホスホニウム、トリフェニルブチルホスホニウムなどのトリアリールホスホニウム;トリエチルベンジルホスホニウム、トリブチルベンジルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、テトラヘキシルホスホニウム、トリエチルフェナシルホスホニウム、トリブチルフェナシルホスホニウムなどのテトラアルキルホスホニウムなどが挙げられる。
【0034】
スルホニウムイオンの具体例としては、トリフェニルスルホニウム、トリ-p-トリルスルホニウム、トリ-o-トリルスルホニウム、トリス(4-メトキシフェニル)スルホニウム、1-ナフチルジフェニルスルホニウム、2-ナフチルジフェニルスルホニウム、トリス(4-フルオロフェニル)スルホニウム、トリ-1-ナフチルスルホニウム、トリ-2-ナフチルスルホニウム、トリス(4-ヒドロキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジフェニルスルホニウム、4-(p-トリルチオ)フェニルジ-p-トリルスルホニウム、4-(4-メトキシフェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジ-p-トリルスルホニウム、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウム、[4-(2-チオキサントニルチオ)フェニル]ジフェニルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メチルフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メトキシフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルジフェニルスルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-(9-オキソ-9H-チオキサンテン-2-イル)チオフェニル-9-オキソ-9H-チオキサンテン-2-イル フェニルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジフェニルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジ-p-トリルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアアンスレニウム、5-フェニルチアアンスレニウム、5-トリルチアアンスレニウム、5-(4-エトキシフェニル)チアアンスレニウム、5-(2,4,6-トリメチルフェニル)チアアンスレニウムなどのトリアリールスルホニウム;ジフェニルフェナシルスルホニウム、ジフェニル4-ニトロフェナシルスルホニウム、ジフェニルベンジルスルホニウム、ジフェニルメチルスルホニウムなどのジアリールスルホニウム;フェニルメチルベンジルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、4-メトキシフェニルメチルベンジルスルホニウム、4-アセトカルボニルオキシフェニルメチルベンジルスルホニウム、4-ヒドロキシフェニル(2-ナフチルメチル)メチルスルホニウム、2-ナフチルメチルベンジルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、フェニルメチルフェナシルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム、4-メトキシフェニルメチルフェナシルスルホニウム、4-アセトカルボニルオキシフェニルメチルフェナシルスルホニウム、2-ナフチルメチルフェナシルスルホニウム、2-ナフチルオクタデシルフェナシルスルホニウム、9-アントラセニルメチルフェナシルスルホニウムなどのモノアリールスルホニウム;ジメチルフェナシルスルホニウム、フェナシルテトラヒドロチオフェニウム、ジメチルベンジルスルホニウム、ベンジルテトラヒドロチオフェニウム、オクタデシルメチルフェナシルスルホニウムなどのトリアルキルスルホニウムなどが挙げられる。
【0035】
ヨードニウムイオンの具体例としては、ジフェニルヨードニウム、ジ-p-トリルヨードニウム、ビス(4-ドデシルフェニル)ヨードニウム、ビス(4-メトキシフェニル)ヨードニウム、(4-オクチルオキシフェニル)フェニルヨードニウム、ビス(4-デシルオキシ)フェニルヨードニウム、4-(2-ヒドロキシテトラデシルオキシ)フェニルフェニルヨードニウム、4-イソプロピルフェニル(p-トリル)ヨードニウムおよび4-イソブチルフェニル(p-トリル)ヨードニウムなどのヨードニウムイオンが挙げられる。
【0036】
一般式(1)で表される酸発生剤のアニオン構造としては、たとえば、以下化学式(A-1)~(A-5)で表されるものが好ましく例示できる。
【0037】
【化1】
【0038】
式(2)で表されるアニオンにおいて、Rfはフッ素原子で置換されたアルキル基を表し、好ましい炭素数は1~4である。アルキル基の具体例としてはメチル、エチル、プロピル、ブチル、ペンチル、オクチルなどの直鎖アルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチルなどの分岐アルキル基;さらにシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどのシクロアルキル基などが挙げられ、アルキル基の水素原子がフッ素原子に置換された割合は、通常、80%以上、好ましくは90%以上、さらに好ましくは100%である。フッ素原子の置換率が80%未満では、本発明のフッ素化アルキルフルオロリン酸オニウム塩系酸発生剤の重合および架橋性能が低下する。
【0039】
特に好ましいRfは、炭素数が1~4、かつフッ素原子の置換率が100%の直鎖または分岐アルキル基であり、具体例としては、CF、CFCF、(CFCF、CFCFCF、CFCFCFCF、(CFCFCF、CFCF(CF)CF、(CFCが挙げられる。
【0040】
式(1)においてRfの個数bは、1~5の整数であり、好ましくは2~4であり、特に好ましくは2~3である。b個のRfはそれぞれ同一であっても異なっていてもよい。
【0041】
好ましいフッ素化アルキルフルオロリン酸アニオンの具体例としては[(CFCFPF]-、[(CFCFCFPF]-、[((CFCF)PF]-、[((CFCF)PF]-、[((CFCFCFPF]-および[((CFCFCFPF]-が挙げられる。
【0042】
エネルギー線硬化性組成物中に含まれる一般式(1)で表されるオニウムガレート塩の含有量は耐熱透明性の観点から、一般式(2)で表されるオニウムフォスフェート塩の含有量の0.05倍以上が好ましく、さらに好ましくは0.1~3倍である。
【0043】
本発明で規定されるオニウムガレート塩の不純物量の分析方法としては、H-NMR、13C-NMR、19F-NMR、高速液体クロマトグラフ(HPLC)を使用する。H-NMR、13C-NMR、19F-NMRの測定条件は以下の通りである。機器:AL-300(日本電子製)、溶媒:ジメチルスルホキシド。HPLCの測定条件は次の通りである。機器:型名(L-2130)、メーカー(日立)、カラム:(Ph-3)メーカー(GL Sciences Inc)、移動層:メタノール:水:過塩素酸ナトリウム一水和物=600:68:20:の溶液、検出器:UV(210nm)、注入量10μl、カラム温度40℃。
【0044】
式(1)、(2)で表されるオニウム塩(酸発生剤)は、カチオン重合性化合物への溶解を容易にするため、あらかじめ重合や架橋反応を阻害しない溶剤に溶かしておいてもよい。
【0045】
溶剤としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートなどのカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノンなどのケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール及びジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体;ジオキサンのような環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。
【0046】
溶剤を使用する場合、溶剤の使用割合は、本発明の式(1)、(2)で表されるオニウム塩(酸発生剤)100重量部に対して、15~1000重量部が好ましく、さらに好ましくは30~500重量部である。使用する溶媒は、単独で使用してもよく、または2種以上を併用してもよい。
【0047】
本発明のエネルギー線硬化性組成物(以下硬化性組成物という)は、上記酸発生剤とカチオン重合性化合物とを含んでなる。
【0048】
硬化性組成物の構成成分であるカチオン重合性化合物としては、環状エーテル(エポキシド及びオキセタン等)、エチレン性不飽和化合物(ビニルエーテル及びスチレン等)、ビシクロオルトエステル、スピロオルトカーボネート及びスピロオルトエステル等が挙げられる{(たとえば、活性エネルギー線硬化性組成物中のカチオン重合性化合物成分として、特開平11-060996号、特開平09-302269号、特開2003-026993号、特開2002-206017号、特開平11-349895号、特開平10-212343号、特開2000-119306号、特開平10-67812号、特開2000-186071号、特開平08-85775号、特開平08-134405号、特開2008-20838、特開2008-20839、特開2008-20841、特開2008-26660、特開2008-26644、特開2007-277327、フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)、技術情報協会編「UV硬化における硬化不良・阻害原因とその対策」(2003年、技術情報協会)、色材、68、(5)、286-293(1995)、ファインケミカル、29、(19)、5-14(2000)等が挙げられる。これらは熱硬化性組成物中のカチオン重合性化合物成分として使用しても差し支えない。}。
【0049】
エポキシドとしては、公知のもの等が使用でき、芳香族エポキシド、脂環式エポキシド、複素環式エポキシド及び脂肪族エポキシドが含まれる。
【0050】
芳香族エポキシドとしては、少なくとも1個の芳香環を有する1価又は多価のフェノール(フェノール、ビスフェノールA、フェノールノボラック及びこれらのこれらのアルキレンオキシド付加体した化合物)のグリシジルエーテル等が挙げられる。
【0051】
脂環式エポキシドとしては、少なくとも1個のシクロヘキセンやシクロペンテン環を有する化合物を酸化剤でエポキシ化することによって得られる化合物(3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン等)が挙げられる。
【0052】
複素環式エポキシドとしては、例えば、分子内にエポキシ基以外の複素環[例えば、テトラヒドロフラン環、テトラヒドロピラン環、モルホリン環、クロマン環、イソクロマン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、アジリジン環、ピロリジン環、ピペリジン環、ピペラジン環、インドリン環、2,6-ジオキサビシクロ[3.3.0]オクタン環、1,3,5-トリアザシクロヘキサン環、1,3,5-トリアザシクロヘキサ-2,4,6-トリオン環(イソシアヌル環)、ジヒドロイミダゾ[4,5-d]イミダゾール-2,5-ジオン環(グリコールウリル環)等の非芳香族性複素環;チオフェン環、ピロール環、フラン環、ピリジン環等の芳香族性複素環等]と、エポキシ基とを有する化合物が挙げられ、例えばモノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、ジアリルモノグリシジルイソシアヌレート、1,3-ジアリル-5-(2-メチルエポキシプロピル)イソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-グリシジルイソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-(2-メチルエポキシプロピル)イソシアヌレート、トリグリシジルイソシアヌレート、トリス(2-メチルエポキシプロピル)イソシアヌレート、1,3,4,6-テトラグリシジルグリコールウリル、1,3,4,6-テトラキス(2-メチルエポキシプロピル)グリコールウリル、1-アリル-3,4,6-トリグリシジルグリコールウリル、1-アリル-3,4,6-トリス(2-メチルエポキシプロピル)グリコールウリル、1-(2-メチルプロペニル)-3,4,6-トリグリシジルグリコールウリル、1-(2-メチルプロペニル)-3,4,6-トリス(2-メチルエポキシプロピル)グリコールウリル、1,4-ジアリル-3,6-ジグリシジルグリコールウリル、1,4-ジアリル-3,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,4-ビス(2-メチルプロペニル)-3,6-ジグリシジルグリコールウリル、1,4-ビス(2-メチルプロペニル)-3,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3-ジアリル-4,6-ジグリシジルグリコールウリル、1,3-ジアリル-4,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3-ビス(2-メチルプロペニル)-4,6-ジグリシジルグリコールウリル、1,3-ビス(2-メチルプロペニル)-4,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,6-ジアリル-3,4-ジグリシジルグリコールウリル、1,6-ジアリル-3,4-ビス(2-メチルエポキシプロピル)グリコールウリル、1,6-ビス(2-メチルプロペニル)-3,4-ジグリシジルグリコールウリル、1,6-ビス(2-メチルプロペニル)-3,4-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3,4-トリアリル-6-グリシジルグリコールウリル、1,3,4-トリアリル-6-(2-メチルエポキシプロピル)グリコールウリル、1,3,4-トリス(2-メチルプロペニル)-6-グリシジルグリコールウリル、1,3,4-トリス(2-メチルプロペニル)-6-(2-メチルエポキシプロピル)グリコールウリル等が挙げられる。
【0053】
脂肪族エポキシドとしては、脂肪族多価アルコール又はこのアルキレンオキシド付加体のポリグリシジルエーテル(1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等)、脂肪族多塩基酸のポリグリシジルエステル(ジグリシジルテトラヒドロフタレート等)、長鎖不飽和化合物のエポキシ化物(エポキシ化大豆油及びエポキシ化ポリブタジエン等)が挙げられる。
【0054】
オキセタンとしては、公知のもの等が使用でき、例えば、3-エチル-3-ヒドロキシメチルオキセタン、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、オキセタニルシルセスキオキセタン及びフェノールノボラックオキセタン等が挙げられる。
【0055】
エチレン性不飽和化合物としては、公知のカチオン重合性単量体等が使用でき、脂肪族モノビニルエーテル、芳香族モノビニルエーテル、多官能ビニルエーテル、スチレン及びカチオン重合性窒素含有モノマーが含まれる。
【0056】
脂肪族モノビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル及びシクロヘキシルビニルエーテル等が挙げられる。
【0057】
芳香族モノビニルエーテルとしては、2-フェノキシエチルビニルエーテル、フェニルビニルエーテル及びp-メトキシフェニルビニルエーテル等が挙げられる。
【0058】
多官能ビニルエーテルとしては、ブタンジオール-1,4-ジビニルエーテル及びトリエチレングリコールジビニルエーテル等が挙げられる。
【0059】
スチレンとしては、スチレン、α-メチルスチレン、p-メトキシスチレン及びp-tert-ブトキシスチレン等が挙げられる。
【0060】
カチオン重合性窒素含有モノマーとしては、N-ビニルカルバゾール及びN-ビニルピロリドン等が挙げられる。
【0061】
ビシクロオルトエステルとしては、1-フェニル-4-エチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン及び1-エチル-4-ヒドロキシメチル-2,6,7-トリオキサビシクロ-[2.2.2]オクタン等が挙げられる。
【0062】
スピロオルトカーボネートとしては、1,5,7,11-テトラオキサスピロ[5.5]ウンデカン及び3,9-ジベンジル-1,5,7,11-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
【0063】
スピロオルトエステルとしては、1,4,6-トリオキサスピロ[4.4]ノナン、2-メチル-1,4,6-トリオキサスピロ[4.4]ノナン及び1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。
【0064】
さらに、1分子中に少なくとも1個のカチオン重合性基を有するポリオルガノシロキサンを使用することができる(特開2001-348482号公報、特開2000-281965号公報、特開平7-242828号公報、特開2008-195931号公報、Journal of Polym. Sci.、Part A、Polym.Chem.、Vol.28,497(1990)等に記載のもの)。
これらのポリオルガノシロキサンは、直鎖状、分岐鎖状、環状のいずれでもよく、これらの混合物であってもよい。
【0065】
これらのカチオン重合性化合物のうち、エポキシド、オキセタン及びビニルエーテルが好ましく、さらに好ましくはエポキシド及びオキセタン、特に好ましくは脂環式エポキシド及びオキセタンである。また、これらのカチオン重合性化合物は単独で使用してもよく、または2種以上を併用してもよい。
【0066】
硬化性組成物中の本発明の式(1)、(2)で表されるオニウム塩(酸発生剤)の含有量は、カチオン重合性化合物100重量部に対し、0.05~20重量部が好ましく、さらに好ましくは0.1~10重量部である。この範囲であると、カチオン重合性化合物の重合がさらに十分となり、硬化体の物性がさらに良好となる。なお、この含有量は、カチオン重合性化合物の性質や活性エネルギー線の種類と照射量(活性エネルギー線を使用する場合)、加熱温度、硬化時間、湿度、塗膜の厚み等のさまざまな要因を考慮することによって決定され、上記範囲に限定されない。
【0067】
本発明の硬化性組成物には、必要に応じて、公知の添加剤(増感剤、顔料、充填剤、導電性粒子、帯電防止剤、難燃剤、消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤、着色防止剤、溶剤、非反応性の樹脂及びラジカル重合性化合物等)を含有させることができる。
【0068】
増感剤としては、公知(特開平11-279212号及び特開平09-183960号等)の増感剤等が使用でき、ベンゾキノン{1,4-ベンゾキノン、1,2-ベンゾキノン等};ナフトキノン{1,4-ナフトキノン、1,2-ナフトキノン等};アントラキノン{2-メチルアントラキノン、2-エチルアントラキノン、等}、アントラセン{アントラセン、9,10-ジブトキシアントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジプロポキシアントラセン等};ピレン;1,2-ベンズアントラセン;ペリレン;テトラセン;コロネン;チオキサントン{チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン及び2,4-ジエチルチオキサントン等};フェノチアジン{フェノチアジン、N-メチルフェノチアジン、N-エチルフェノチアジン、N-フェニルフェノチアジン等};キサントン;ナフタレン{1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジヒドロキシナフタレン、及び4-メトキシ-1-ナフトール等};ケトン{ジメトキシアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン及び4-ベンゾイル-4’-メチルジフェニルスルフィド等};カルバゾール{N-フェニルカルバゾール、N-エチルカルバゾール、ポリ-N-ビニルカルバゾール及びN-グリシジルカルバゾール等};クリセン{1,4-ジメトキシクリセン及び1,4-ジ-α-メチルベンジルオキシクリセン等};フェナントレン{9-ヒドロキシフェナントレン、9-メトキシフェナントレン、9-ヒドロキシ-10-メトキシフェナントレン及び9-ヒドロキシ-10-エトキシフェナントレン等}等が挙げられる。
【0069】
増感剤を含有する場合、増感剤の含有量は、酸発生剤100部に対して、1~300重量部が好ましく、さらに好ましくは5~200重量部である。
【0070】
顔料としては、公知の顔料等が使用でき、無機顔料(酸化チタン、酸化鉄及びカーボンブラック等)及び有機顔料(アゾ顔料、シアニン顔料、フタロシアニン顔料及びキナクリドン顔料等)等が挙げられる。
【0071】
顔料を含有する場合、顔料の含有量は、酸発生剤100部に対して、0.5~400000重量部が好ましく、さらに好ましくは10~150000重量部である。
【0072】
充填剤としては、公知の充填剤等が使用でき、溶融シリカ、結晶シリカ、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、酸化ジルコニウム、炭酸マグネシウム、マイカ、タルク、ケイ酸カルシウム及びケイ酸リチウムアルミニウム等が挙げられる。
【0073】
充填剤を含有する場合、充填剤の含有量は、酸発生剤100部に対して、50~600000重量部が好ましく、さらに好ましくは300~200000重量部である。
【0074】
導電性粒子としては、公知の導電性粒子が使用でき、Ni、Ag、Au、Cu、Pd、Pb、Sn、Fe、Ni、Al等の金属粒子、この金属粒子にさらに金属メッキをしたメッキ金属粒子、樹脂粒子に金属メッキしたメッキ樹脂粒子、カーボン等の導電性を有する物質の粒子が使用できる。
【0075】
導電性粒子を含有する場合、導電性粒子の含有量は、酸発生剤100部に対して、50~30000重量部が好ましく、さらに好ましくは100~20000重量部である。
【0076】
帯電防止剤としては、公知の帯電防止剤等が使用でき、非イオン型帯電防止剤、アニオン型帯電防止剤、カチオン型帯電防止剤、両性型帯電防止剤及び高分子型帯電防止剤が挙げられる。
【0077】
帯電防止剤を含有する場合、帯電防止剤の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.6~5000重量部である。
【0078】
難燃剤としては、公知の難燃剤等が使用でき、無機難燃剤{三酸化アンチモン、五酸化アンチモン、酸化錫、水酸化錫、酸化モリブデン、ホウ酸亜鉛、メタホウ酸バリウム、赤燐、水酸化アルミニウム、水酸化マグネシウム及びアルミン酸カルシウム等};臭素難燃剤{テトラブロモ無水フタル酸、ヘキサブロモベンゼン及びデカブロモビフェニルエーテル等};及びリン酸エステル難燃剤{トリス(トリブロモフェニル)ホスフェート等}等が挙げられる。
【0079】
難燃剤を含有する場合、難燃剤の含有量は、酸発生剤100部に対して、0.5~40000重量部が好ましく、さらに好ましくは5~10000重量部である。
【0080】
消泡剤としては、公知の消泡剤等が使用でき、アルコール消泡剤、金属石鹸消泡剤、リン酸エステル消泡剤、脂肪酸エステル消泡剤、ポリエーテル消泡剤、シリコーン消泡剤及び鉱物油消泡剤等が挙げられる。
【0081】
流動調整剤としては、公知の流動性調整剤等が使用でき、水素添加ヒマシ油、酸化ポリエチレン、有機ベントナイト、コロイド状シリカ、アマイドワックス、金属石鹸及びアクリル酸エステルポリマー等が挙げられる。
光安定剤としては、公知の光安定剤等が使用でき、紫外線吸収型安定剤{ベンゾトリアゾール、ベンゾフェノン、サリチレート、シアノアクリレート及びこれらの誘導体等};ラジカル補足型安定剤{ヒンダードアミン等};及び消光型安定剤{ニッケル錯体等}等が挙げられる。
酸化防止剤としては、公知の酸化防止剤等が使用でき、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。
密着性付与剤としては、公知の密着性付与剤等が使用でき、カップリング剤、シランカップリング剤及びチタンカップリング剤等が挙げられる。
イオン補足剤としては、公知のイオン補足剤等が使用でき、有機アルミニウム(アルコキシアルミニウム及びフェノキシアルミニウム等)等が挙げられる。
着色防止剤としては、公知の着色防止剤が使用でき、一般的には酸化防止剤が有効であり、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。
【0082】
消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤又は、着色防止剤を含有する場合、各々の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.5~5000重量部である。
【0083】
溶剤としては、カチオン重合性化合物の溶解やエネルギー線硬化性組成物の粘度調整のために使用できれば制限はなく、上記酸発生剤の溶剤として挙げたものが使用できる。
【0084】
溶剤を含有する場合、溶剤の含有量は、酸発生剤100部に対して、50~2000000重量部が好ましく、さらに好ましくは200~500000重量部である。
【0085】
非反応性の樹脂としては、ポリエステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリブタジエン、ポリカーボナート、ポリスチレン、ポリビニルエーテル、ポリビニルブチラール、ポリブテン、スチレンブタジエンブロックコポリマー水添物、(メタ)アクリル酸エステルの共重合体及びポリウレタン等が挙げられる。これらの樹脂の数平均分子量は、1000~500000が好ましく、さらに好ましくは5000~100000である(数平均分子量はGPC等の一般的な方法によって測定された値である。)。
【0086】
非反応性の樹脂を含有する場合、非反応性の樹脂の含有量は、酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
【0087】
非反応性の樹脂を含有させる場合、非反応性の樹脂をカチオン重合性化合物等と溶解しやすくするため、あらかじめ溶剤に溶かしておくことが望ましい。
【0088】
ラジカル重合性化合物としては、公知{フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)、技術情報協会編「UV硬化における硬化不良・阻害原因とその対策」(2003年、技術情報協会)}のラジカル重合性化合物等が使用でき、単官能モノマー、2官能モノマー、多官能モノマー、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びウレタン(メタ)アクリレートが含まれる。
【0089】
ラジカル重合性化合物を含有する場合、ラジカル重合性化合物の含有量は、酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
【0090】
ラジカル重合性化合物を含有する場合、これらをラジカル重合によって高分子量化するために、熱又は光によって重合を開始するラジカル重合開始剤を使用することが好ましい。
【0091】
ラジカル重合開始剤としては、公知のラジカル重合開始剤等が使用でき、熱ラジカル重合開始剤(有機過酸化物、アゾ化合物等)及び光ラジカル重合開始剤(アセトフェノン系開始剤、ベンゾフェノン系開始剤、ミヒラーケトン系開始剤、ベンゾイン系開始剤、チオキサントン系開始剤、アシルホスフィン系開始剤等)が含まれる。
【0092】
ラジカル重合開始剤を含有する場合、ラジカル重合開始剤の含有量は、ラジカル重合性化合物100部に対して、0.01~20重量部が好ましく、さらに好ましくは0.1~10重量部である。
【0093】
本発明のエネルギー線硬化性組成物は、カチオン重合性化合物、酸発生剤及び必要により添加剤を、室温(20~30℃程度)又は必要により加熱(40~90℃程度)下で、均一に混合溶解するか、またはさらに、3本ロール等で混練して調製することができる。
【0094】
本発明のエネルギー線硬化性組成物は、エネルギー線を照射することにより硬化させて、硬化体を得ることができる。
エネルギー線としては、本発明の酸発生剤の分解を誘発するエネルギーを有する限りいかなるものでもよいが、低圧、中圧、高圧若しくは超高圧の水銀灯、メタルハライドランプ、LEDランプ、キセノンランプ、カーボンアークランプ、蛍光灯、半導体固体レーザ、アルゴンレーザ、He-Cdレーザ、KrFエキシマレーザ、ArFエキシマレーザ又はFレーザ等から得られる紫外~可視光領域(波長:約100~約800nm)のエネルギー線が好ましい。なお、エネルギー線には、電子線又はX線等の高エネルギーを有する放射線を用いることもできる。
【0095】
エネルギー線の照射時間は、エネルギー線の強度やエネルギー線硬化性組成物に対するエネルギー線の透過性に影響を受けるが、常温(20~30℃程度)で、0.1秒~10秒程度で十分である。しかしエネルギー線の透過性が低い場合やエネルギー線硬化性組成物の膜厚が厚い場合等にはそれ以上の時間をかけるのが好ましいことがある。エネルギー線照射後0.1秒~数分後には、ほとんどのエネルギー線硬化性組成物はカチオン重合により硬化するが、必要であればエネルギー線の照射後、室温(20~30℃程度)~250℃で数秒~数時間加熱しアフターキュアーすることも可能である。
【0096】
また、本発明のエネルギー線硬化性組成物を硬化して得られる硬化物は耐熱性に優れ、5%重量減少温度は、例えば260℃以上、好ましくは280℃以上、特に好ましくは300℃以上である。尚、5%重量減少温度は示差熱-熱重量同時測定(TG-DTA)により求められる。そのため、リフロー方式による半田付け等の高温条件下においても形状を保持することができる。
【0097】
更に、本発明のエネルギー線硬化性組成物を硬化して得られる硬化物は透明性に優れ、耐熱試験に付す前の硬化物の黄色度(YI)は、例えば1.5以下である。また、本発明の硬化性組成物を硬化して得られる硬化物はリフロー方式による半田付け等の高温条件下においても黄変を抑制して透明性を保持することができ、耐熱試験に付した後の硬化物の黄色度(YI)は、例えば1.5以下である。尚、黄色度の測定方法は実施例に記載の通りである。
【0098】
本発明のエネルギー線硬化性組成物は上記特性を兼ね備えるため、光学素子材料(レンズ又はプリズム材料、封止材、光導波路形成材料、接着剤、光ファイバー形成材料、インプリント材料、代替ガラス形成材料等)、レジスト、コーティング剤等として好適に使用することができる。
【0099】
(光学素子)
本発明の光学素子は、上記硬化性組成物を硬化して得られる硬化物を構成要素として含有する光学素子である。そのため、本発明の光学素子は優れた硬化性と耐熱性と耐熱黄変性を兼ね備える。
【0100】
本発明の光学素子には、例えば、レンズ、プリズム、LED、有機EL素子、半導体レーザー、トランジスタ、太陽電池、CCDイメージセンサ、光導波路、光ファイバー、代替ガラス(例えば、ディスプレイ用基板、ハードディスク基板、偏光フィルム)等が含まれる。
【0101】
本発明の光学素子は耐熱性に優れる。そのため、基板実装の際にリフロー処理により他の部品と共に一括して実装が可能である。また、耐熱性が求められる車載用電子機器にも使用することができる。
【0102】
(光学装置)
本発明の光学装置は上記光学素子を備えた光学装置であり、例えば、上記光学素子をリフロー半田付けにより基板実装することにより製造することができる。本発明の光学装置としては、例えば、携帯電話、スマートフォン、タブレットPC(personal computer)等の携帯型電子機器;近赤外センサ、ミリ波レーダー、LEDスポット照明装置、近赤外LED照明装置、ミラーモニター、メーターパネル、ヘッドマウントディスプレイ(投影型)用コンバイナ、ヘッドアップディスプレイ用コンバイナ等の車載用電子機器等を挙げることができる。本発明の光学装置は、光学素子を別工程で実装する必要がなく、リフロー処理により他の部品と共に一括して実装が可能であるため、効率よく、且つ低コストで製造することができる。
【実施例
【0103】
以下、実施例により本発明を更に説明するが、本発明はこれに限定されることは意図するものではない。なお、以下特記しない限り、部は重量部、%は重量%を意味する。
【0104】
<酸発生剤の合成>
(合成例1)リチウムテトラキス(ペンタフルオロフェニル)ガレートの合成
窒素雰囲気下で十分に乾燥させた125mL4つ口フラスコに超脱水ジエチルエーテル360部及びペンタフルオロブロモベンゼン30部仕込み、これをドライアイス/アセトン浴を用いて-78℃に冷却した。2.5mol/Lのn-ブチルリチウムヘキサン溶液70部を10分かけて滴下し、その後、-78℃で30分撹拌した。これに、塩化ガリウム(III)5部を溶解させたジエチルエーテル溶液68部を10分かけて滴下し、-78℃で3時間撹拌した。反応液を徐々に室温に戻しながら攪拌し、室温に戻してから更に5時間撹拌した。析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより、灰白色の生成物を得た。生成物を超脱水ヘキサン50部で4回洗浄した後、一晩真空乾燥させ、リチウムテトラキス(ペンタフルオロフェニル)ガレートを得た。生成物は19F-NMRにて同定した。
【0105】
(合成例2)[4-(フェニルチオ)フェニル]ジフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ガレート(a-1)の合成
ジフェニルスルホキシド(1.6部、8mmol)、ジフェニルスルフィド(1.5部、8mmol)、無水酢酸(2.5部、24mmol)、トリフルオロメタンスルホン酸(1.5部、10mmol)及びアセトニトリル13部を均一混合し、40℃で6時間反応させた。反応溶液を室温まで冷却し、イオン交換水60部中に投入し、ジクロロメタン60部で抽出し、水層のpHが中性になるまでイオン交換水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して、溶媒を留去し、褐色液状の生成物を得た。これに酢酸エチル20部を加え、60℃の水浴中で溶解させた後、ヘキサン60部を加え撹拌した後、5℃まで冷却し30分間静置してから上澄みを除く操作を2回行い、生成物を洗浄した。これをロータリーエバポレーターに移して溶媒を留去することにより、[4-(フェニルチオ)フェニル]ジフェニルスルホニウムトリフラートを得た。
(複分解法)
このトリフレートをジクロロメタン50部に溶かし、等モルのリチウムテトラキス(ペンタフルオロフェニル)ガレート水溶液66部を室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で2回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、(a-1)を得た。
【0106】
(合成例3)[4-(4-ビフェニリルチオ)フェニル](4-ビフェニリル)フェニルスルホニウム テトラキス(ペンタフルオロフェニル)ガレート(a-2)の合成
合成例2のジフェニルスルホキシド(1.6部、8mmol)、ジフェニルスルフィド(1.5部、8mmol)を4-[(フェニル)スルフィニル]ビフェニル(2.2部、8mmol)、4-(フェニルチオ)ビフェニル(2.1部、8mmol)に変更した以外、合成例2と同様にして、(a-2)を得た。
【0107】
〔合成例4〕[4-(フェニルチオ)フェニル]ジフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート(b-1)の合成
ジフェニルスルホキシド1.6部、ジフェニルスルフィド1.5部,無水酢酸2.4部,トリフルオロメタンスルホン酸1.44部及びアセトニトリル13.0部を均一混合し,40℃で6時間反応させた。反応溶液を室温(約25℃)まで冷却し,蒸留水60部中に投入し,ジクロロメタン60部で抽出し,水層のpHが中性になるまで水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して,溶媒を留去し,褐色液状の生成物を得た。これに酢酸エチル20部を加え,60℃の水浴中で溶解させた後,ヘキサン60部を加え撹拌した後,5℃まで冷却し30分間静置してから上澄みを除く操作を2回行い,生成物を洗浄した。これをロータリーエバポレーターに移して溶媒を留去することにより,[4-(フェニルチオ)フェニル]ジフェニルスルホニウム トリフレート(トリフレート=トリフルオロメタンスルホン酸アニオン)を得た。
(複分解法)
このトリフレートをジクロロメタン45部に溶かし,10%トリス(ペンタフルオロエチル)トリフルオロリン酸カリウム水溶液42部中に投入してから,室温(約25℃)で3時間撹拌し,ジクロロメタン層を分液操作にて水で3回洗浄した後,ロータリーエバポレーターに移して溶媒を留去することにより、(b-1)を得た。
【0108】
実施例1~8、比較例1~5
下記表1に記載の各成分を配合組成(単位:重量部)に従って配合し、室温で自転公転ミキサーを用いて撹拌・混合することにより、均一で透明な硬化性組成物を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。
【0109】
[硬化性]
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、高圧水銀ランプを下記条件で使用して光照射を行った。光照射後室温で60分間放置して硬化物を得た。
光照射条件
<高圧水銀ランプ>
照射装置:商品名「LC-8」(浜松ホトニクス(株)製)
照射強度:100mW/cm
積算照射量:3000mJ/cm2
【0110】
得られた硬化物について、その表面のタック性の有無から硬化性を確認した。尚、タック性の有無は触診により判断した。
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した
【0111】
[耐熱性]
縦30mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、離型処理[商品名「オプツールHD1000」(ダイキン(株)製)に浸漬した後、24時間ドラフト内で放置]を施したスライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行って硬化物を得た。得られた硬化物10mgを切り取り、下記条件でTG-DTA(商品名「EXSTAR6300」、(株)日立ハイテクサイエンス製)を使用して5%重量減少温度を測定することにより耐熱性を評価した。
TG-DTA条件
昇温速度:20℃/min
雰囲気:窒素
温度条件:30℃~400℃
【0112】
[透明性]
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行い、光照射後室温で60分間放置して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。
【0113】
[耐熱透明性]
上記[透明性]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性を評価した。
【0114】
【表1】
【0115】
表1中の各成分の化合物名は、次のとおりである。
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、商品名「CELLOXIDE2021P」、(株)ダイセル製
JER828:ビスフェノールA型エポキシ 樹脂、商品名「JER828」、ジャパンエポキシレジン(株)製
【0116】
表1から、本発明によって得られる、エネルギー線硬化性組成物は、カチオン重合開始能に優れ、かつ耐熱透明性に優れることがわかる。
【産業上の利用可能性】
【0117】
本発明のエネルギー線硬化性組成物は膜硬化性に優れ、光照射又は加熱処理を施すことにより、硬化性、透明性、耐熱性、及び耐熱黄変性に優れた硬化物を形成することができる。そのため、光学素子材料、レジスト、コーティング剤等として好適に使用することができる。