(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-19
(45)【発行日】2022-08-29
(54)【発明の名称】透過電子顕微鏡および対物絞りの調整方法
(51)【国際特許分類】
H01J 37/09 20060101AFI20220822BHJP
H01J 37/26 20060101ALI20220822BHJP
【FI】
H01J37/09 A
H01J37/26
(21)【出願番号】P 2020121321
(22)【出願日】2020-07-15
【審査請求日】2021-08-25
(73)【特許権者】
【識別番号】000004271
【氏名又は名称】日本電子株式会社
(74)【代理人】
【識別番号】100090387
【氏名又は名称】布施 行夫
(74)【代理人】
【識別番号】100090398
【氏名又は名称】大渕 美千栄
(72)【発明者】
【氏名】櫻井 仁嗣
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開2005-310699(JP,A)
【文献】特開2006-216834(JP,A)
【文献】特開平04-139898(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37
(57)【特許請求の範囲】
【請求項1】
対物レンズと、
前記対物レンズの後焦点面に配置された対物絞りと、
前記対物絞りを移動させる絞り移動機構と、
前記絞り移動機構を制御する制御部と、
を含み、
前記制御部は、
前記対物絞りの画像を取得する処理と、
前記対物絞りの画像に基づいて、前記対物絞りの位置を求める処理と、
前記対物絞りの位置に基づいて、目的の位置と前記対物絞りの位置とのずれ量を求める処理と、
前記ずれ量に基づいて、前記絞り移動機構を動作させる処理と、
を行い、
前記対物絞りの位置を求める処理は、
前記対物絞りの画像を、設定された閾値を用いて2値化して、2値化画像を取得する処理と、
前記2値化画像から前記対物絞りの絞り孔の面積を求める処理と、
前記面積が所定の範囲内に含まれるか否かを判定する処理と、
前記面積が前記所定の範囲内に含まれないと判定した場合、前記閾値を変更する処理と、
前記面積が前記所定の範囲内に含まれると判定した場合、前記2値化画像に基づいて、前記対物絞りの位置を求める処理と、
を行
い、
前記対物絞りの画像を取得する処理では、前記対物絞りが挿入された状態で前記対物レンズの後焦点面の電子回折図形を撮影する、透過電子顕微鏡。
【請求項2】
請求項1において、
前記閾値を変更する処理では、
前記面積が前記所定の範囲の下限値よりも小さい場合、前記閾値を減少させ、
前記面積が前記所定の範囲の上限値よりも大きい場合、前記閾値を増加させる、透過電子顕微鏡。
【請求項3】
請求項1または2において、
前記制御部は、前記閾値を変更する処理の後に、変更した前記閾値を用いて、前記2値化画像を取得する処理を行う、透過電子顕微鏡。
【請求項4】
請求項
1ないし3のいずれか1項において、
前記目的の位置は、前記電子回折図形の透過波の位置である、透過電子顕微鏡。
【請求項5】
対物レンズの後焦点面に配置された対物絞りを含む透過電子顕微鏡における対物絞りの調整方法であって、
前記対物絞りの画像を取得する工程と、
前記対物絞りの画像に基づいて、前記対物絞りの位置を求める工程と、
前記対物絞りの位置に基づいて、目的の位置と前記対物絞りの位置とのずれ量を求める工程と、
前記ずれ量に基づいて、絞り移動機構を動作させる工程と、
を含み、
前記対物絞りの位置を求める工程は、
前記対物絞りの画像を、設定された閾値を用いて2値化して、2値化画像を取得する工程と、
前記2値化画像から前記対物絞りの絞り孔の面積を求める工程と、
前記面積が所定の範囲内に含まれるか否かを判定する工程と、
前記面積が前記所定の範囲内に含まれないと判定した場合、前記閾値を変更する工程と、
前記面積が前記所定の範囲内に含まれると判定した場合、前記2値化画像に基づいて、前記対物絞りの位置を求める工程と、
を含
み、
前記対物絞りの画像を取得する工程では、前記対物絞りが挿入された状態で前記対物レンズの後焦点面の電子回折図形を撮影する、対物絞りの調整方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透過電子顕微鏡および対物絞りの調整方法に関する。
【背景技術】
【0002】
透過電子顕微鏡では、試料に電子線を照射し、試料を透過した電子を結像することによって、透過電子顕微鏡像および電子回折図形を取得できる。
【0003】
透過電子顕微鏡では、対物レンズの後焦点面に対物絞りを挿入して、試料の観察を行う。例えば、透過電子顕微鏡では、対物レンズの後焦点面に形成される電子回折図形中の透過波を対物絞りで選択することによって、明視野像を得ることができる。また、透過電子顕微鏡では、電子回折図形中の任意の回折波を対物絞りで選択することによって、暗視野像を得ることができる。
【0004】
例えば、特許文献1には、対物絞りの調整方法として、レンズの励磁を周期的に変化させたときの電子ビームの拡散状況を検出して、電子ビームの拡散状況が光軸を中心として均等になるように調整する手法が開示されている。特許文献1の絞り装置では、この手法を利用して、絞りの位置を自動で光軸に合わせている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のように、透過電子顕微鏡では、観察の際に、対物絞りを所望の位置に正確に配置することが望まれる。
【課題を解決するための手段】
【0007】
本発明に係る透過電子顕微鏡の一態様は、
対物レンズと、
前記対物レンズの後焦点面に配置された対物絞りと、
前記対物絞りを移動させる絞り移動機構と、
前記絞り移動機構を制御する制御部と、
を含み、
前記制御部は、
前記対物絞りの画像を取得する処理と、
前記対物絞りの画像に基づいて、前記対物絞りの位置を求める処理と、
前記対物絞りの位置に基づいて、目的の位置と前記対物絞りの位置とのずれ量を求める処理と、
前記ずれ量に基づいて、前記絞り移動機構を動作させる処理と、
を行い、
前記対物絞りの位置を求める処理は、
前記対物絞りの画像を、設定された閾値を用いて2値化して、2値化画像を取得する処理と、
前記2値化画像から前記対物絞りの絞り孔の面積を求める処理と、
前記面積が所定の範囲内に含まれるか否かを判定する処理と、
前記面積が前記所定の範囲内に含まれないと判定した場合、前記閾値を変更する処理と、
前記面積が前記所定の範囲内に含まれると判定した場合、前記2値化画像に基づいて、前記対物絞りの位置を求める処理と、
を行い、
前記対物絞りの画像を取得する処理では、前記対物絞りが挿入された状態で前記対物レンズの後焦点面の電子回折図形を撮影する。
【0008】
このような透過電子顕微鏡では、自動で、対物絞りを所望の位置に正確に配置することができる。
【0009】
本発明に係る対物絞りの調整方法の一態様は、
対物レンズの後焦点面に配置された対物絞りを含む透過電子顕微鏡における対物絞りの調整方法であって、
前記対物絞りの画像を取得する工程と、
前記対物絞りの画像に基づいて、前記対物絞りの位置を求める工程と、
前記対物絞りの位置に基づいて、目的の位置と前記対物絞りの位置とのずれ量を求める工程と、
前記ずれ量に基づいて、絞り移動機構を動作させる工程と、
を含み、
前記対物絞りの位置を求める工程は、
前記対物絞りの画像を、設定された閾値を用いて2値化して、2値化画像を取得する工程と、
前記2値化画像から前記対物絞りの絞り孔の面積を求める工程と、
前記面積が所定の範囲内に含まれるか否かを判定する工程と、
前記面積が前記所定の範囲内に含まれないと判定した場合、前記閾値を変更する工程と、
前記面積が前記所定の範囲内に含まれると判定した場合、前記2値化画像に基づいて、前記対物絞りの位置を求める工程と、
を含み、
前記対物絞りの画像を取得する工程では、前記対物絞りが挿入された状態で前記対物レンズの後焦点面の電子回折図形を撮影する。
【0010】
このような対物絞りの調整方法では、対物絞りを所望の位置に正確に配置することができる。
【図面の簡単な説明】
【0011】
【
図1】実施形態に係る透過電子顕微鏡の構成を示す図。
【
図2】対物絞りの位置調整方法の一例を示すフローチャート。
【
図3】対物絞りを挿入していない状態で電子回折図形を撮影した画像。
【
図4】対物絞りを挿入した状態で電子回折図形を撮影した画像。
【
図5】対物絞りが画像の中心に位置している状態を示す図。
【
図6】対物絞りの位置を検出する工程の一例を示すフローチャート。
【発明を実施するための形態】
【0012】
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
【0013】
1. 透過電子顕微鏡
まず、本発明の一実施形態に係る透過電子顕微鏡について図面を参照しながら説明する。
図1は、本実施形態に係る透過電子顕微鏡100の構成を示す図である。
【0014】
透過電子顕微鏡100では、試料2に電子線EBを照射し、試料2を透過した電子を結像することによって、透過電子顕微鏡像(TEM像)および電子回折図形を取得することができる。
【0015】
透過電子顕微鏡100は、
図1に示すように、電子銃10と、照射レンズ系12と、試料ステージ14と、試料ホルダー15と、対物絞り16と、結像レンズ系18と、撮像装置20と、撮像制御装置22と、絞り移動機構30と、電子銃制御装置40と、照射レンズ系制御装置42と、試料ステージ制御装置44と、結像レンズ系制御装置46と、移動機構制御装置48と、制御部50と、表示部52と、記憶部54と、を含む。
【0016】
電子銃10は、電子線EBを放出する。電子銃10は、例えば、陰極から放出された電子を陽極で加速し電子線EBを放出する。
【0017】
照射レンズ系12は、電子銃10から放出された電子線EBを集束して試料2に照射する。照射レンズ系12は、複数(図示の例では3つ)のコンデンサーレンズで構成されている。
【0018】
試料ステージ14は、試料ホルダー15を介して、試料2を保持している。試料ステージ14によって、試料2の位置決めを行うことができる。図示の例では、試料ステージ14は、対物レンズのポールピースに対して水平方向(横)から試料ホルダー15を挿入するサイドエントリー方式の試料ステージである。なお、試料ステージ14は、対物レンズのポールピースの上方から試料2を挿入するトップエントリー方式の試料ステージであってもよい。試料ステージ14は、試料2を水平方向および垂直方向に移動させる試料移動機構を有している。また、試料ステージ14および試料ホルダー15は、試料2を傾斜させる試料傾斜機構を有している。
【0019】
対物絞り16は、対物レンズの後焦点面に配置されている。対物絞り16は、試料2を透過した電子線EBから結像する電子線を選択する。例えば、対物レンズの後焦点面に形成される電子回折図形中の透過波を対物絞り16で選択することによって、明視野像を得ることができる。また、例えば、対物レンズの後焦点面に形成される電子回折図形中の回折波を対物絞り16で選択することによって、暗視野像を得ることができる。対物絞り16は、複数の絞り孔を有している。複数の絞り孔は、互いに異なる絞り径を有している。対物絞り16の絞り孔の形状は、光軸に沿った方向から見て、円である。
【0020】
結像レンズ系18は、試料2を透過した電子線EBでTEM像および電子回折図形を結像する。結像レンズ系18は、例えば、対物レンズ、中間レンズ、および投影レンズを含む。
【0021】
例えば、中間レンズの焦点を対物レンズによって形成される透過電子顕微鏡像(試料像)に合わせることによって、TEM像を撮影できる。また、例えば、中間レンズの焦点を対物レンズによって形成される電子回折図形に合わせることによって、電子回折図形を撮影できる。
【0022】
撮像装置20は、結像レンズ系18によって結像された像(TEM像および電子回折図形)を撮影する。撮像装置20は、例えば、CCD(Charge Coupled Device)カメラ等のデジタルカメラである。撮像装置20で撮影された像の画像データは、撮像制御装置22を介して制御部50に出力される。撮像装置20で撮影された像は、画像ファイルとして記憶部54に記憶され、表示部52に表示される。
【0023】
絞り移動機構30は、対物絞り16を位置決めする。絞り移動機構30は、対物絞り1
6を水平方向に移動させる。絞り移動機構30は、例えば、モーターを動作させることで、対物絞り16を移動させる。絞り移動機構30で対物絞り16を移動させることによって、絞り径を変更することもできる。
【0024】
電子銃制御装置40は、電子銃10を制御する。電子銃制御装置40は、例えば、制御部50から出力された制御信号に基づいて電子銃10を動作させる。照射レンズ系制御装置42は、照射レンズ系12を制御する。照射レンズ系制御装置42は、例えば、制御部50から出力された制御信号に基づいて照射レンズ系12を動作させる。
【0025】
試料ステージ制御装置44は、試料ステージ14を制御する。試料ステージ制御装置44は、例えば、制御部50から出力された制御信号に基づいて試料ステージ14を動作させる。結像レンズ系制御装置46は、結像レンズ系18を制御する。結像レンズ系制御装置46は、例えば、制御部50から出力された制御信号に基づいて結像レンズ系18を制御する。移動機構制御装置48は、絞り移動機構30を制御する。移動機構制御装置48は、例えば、制御部50から出力された制御信号に基づいて絞り移動機構30を動作させる。
【0026】
制御部50は、透過電子顕微鏡100を構成する各部を制御する。制御部50の機能は、例えば、各種プロセッサ(CPU(Central Processing Unit)、DSP(digital signal processor)など)で記憶部54に記憶されたプログラムを実行することにより実現することができる。なお、制御部50の機能の少なくとも一部を、ASIC(ゲートアレイ等)などの専用回路により実現してもよい。
【0027】
表示部52は、制御部50によって生成された画像を表示するものであり、その機能は、LCD(liquid crystal display)などにより実現できる。表示部52には、例えば、撮像装置20で撮影された像が表示される。また、表示部52は、例えば、撮像制御装置22、絞り移動機構30、電子銃制御装置40、照射レンズ系制御装置42、試料ステージ制御装置44、結像レンズ系制御装置46、および移動機構制御装置48を制御するためのGUI(Graphical User Interface)が表示される。
【0028】
記憶部54は、制御部50としてコンピュータを機能させるためのプログラムや各種データを記憶している。また、記憶部54は、制御部50のワーク領域としても機能する。記憶部54の機能は、ハードディスク、RAM(Random Access Memory)などにより実現できる。
【0029】
2. 対物絞りの位置調整方法
次に、透過電子顕微鏡100における対物絞り16の調整方法について説明する。以下では、対物絞り16で電子回折図形中の透過波を選択する場合について説明する。なお、透過波は、視野の中心、すなわち、撮像装置20で撮影された画像の中心に位置しているものとする。また、以下の説明において、対物絞り16の位置とは、対物絞り16の絞り孔の中心の位置とする。
【0030】
図2は、透過電子顕微鏡100における対物絞り16の位置調整方法の一例を示すフローチャートである。
【0031】
まず、透過電子顕微鏡100において、結像レンズ系18を電子回折図形を観察できる状態とする。そして、対物絞り16を挿入する(S10)。対物絞り16を挿入した後、任意のカメラ長で電子回折図形を撮像装置20で撮影して、対物絞り16の画像を取得する(S20)。
【0032】
図3は、対物絞り16を挿入していない状態で電子回折図形を撮影して得られた画像である。
図4は、対物絞り16を挿入した状態で電子回折図形を撮影して得られた画像である。なお、
図4では、対物絞り16を破線で示している。
【0033】
図4に示す電子回折図形を含む対物絞り16の画像を用いて、当該画像上における対物絞り16の位置(x,y)を検出する(S30)。対物絞り16の位置(x,y)の単位は、例えば、ピクセルである。対物絞り16の位置を検出する工程S30の詳細は後述する。
【0034】
次に、対物絞り16を画像の中心位置に移動させるための移動量を計算する(S40)。例えば、まず、対物絞り16の位置(x,y)と画像の中心位置(cx,cy)との差、すなわち、対物絞り16の位置(x,y)と画像の中心位置(cx,cy)とのずれ量を求める。具体的には、対物絞り16の位置(x,y)と画像の中心位置(cx,cy)とのX方向のずれ量およびY方向のずれ量をそれぞれ求める。X方向のずれ量およびY方向のずれ量は、ベクトル、すなわち、ずれ量およびずれの方向として表すこともできる。
【0035】
次に、対物絞り16の位置(x,y)と画像の中心位置(cx,cy)との差、すなわち、ずれ量に基づいて、対物絞り16を画像の中心位置に移動させるための移動量を計算する。
【0036】
対物絞り16のX方向の移動量mx、および対物絞り16のY方向の移動量myは、次式(1)で求めることができる。
【0037】
【0038】
なお、a,b,c,dは、画像上の位置ずれ量を、実際の対物絞り16の移動量に変換するための係数である。また、X方向は対物絞り16の挿入方向であり、Y方向はX方向に直交する方向である。
【0039】
上記式(1)で算出した対物絞り16のX方向の移動量mxおよびY方向の移動量myだけ絞り移動機構30に対物絞り16を移動させる(S50)。これにより、対物絞り16を画像の中心に配置できる。
【0040】
図5は、対物絞り16が画像の中心に位置している状態を示している。
図5では、対物絞り16を破線で示している。
【0041】
なお、上記では、対物絞り16を画像の中心に移動させる場合について説明したが、対物絞り16を所望の位置に移動させてもよい。この場合、画像の中心位置(cx,cy)の代わりに、所望の位置(dx,dy)を用いることで、対物絞り16を所望の位置に移動できる。
【0042】
次に、対物絞り16の位置を検出する工程S30について説明する。
図6は、対物絞り16の位置を検出する工程S30の一例を示すフローチャートである。
【0043】
まず、
図4に示す対物絞り16の画像を、設定された閾値Bを用いて2値化する(S300)。ここでは、対物絞り16の画像において、輝度の値が閾値Bよりも大きい画素を白、輝度の値が閾値B以下の画素を黒に変換する。これにより、2値化画像を得ることができる。
【0044】
図7は、2値化画像を示す図である。なお、
図7には、白の領域の中心位置を示すマーカーを図示している。
【0045】
図7に示すように、対物絞り16の画像を2値化することによって、対物絞り16の絞り孔の形状を抽出することができれば、対物絞り16の位置を検出できる。例えば、2値化画像から白の領域の中心位置を算出することによって、対物絞り16の位置を検出できる。
【0046】
しかしながら、閾値Bが適当でない場合、2値化画像において白の領域の中心位置を算出しても、対物絞り16の絞り孔の中心からずれてしまう。
【0047】
図8は、閾値Bが適当でない場合の2値化画像を示している。なお、
図8には、算出された白の領域の中心位置を示すマーカーを図示している。
【0048】
図8に示す2値化画像から白の領域の中心位置を算出しても、白の領域の中心位置は、対物絞り16の絞り孔の中心の位置と一致しない。したがって、2値化画像において、対物絞り16の位置を正確に検出するためには、最適な閾値Bを設定する必要がある。
【0049】
あらかじめ設定された閾値Bを用いて、
図4に示す対物絞り16の画像を2値化した後(S300の後)、得られた2値化画像において、白の領域の面積Sを算出する(S302)。すなわち、2値化画像において、絞り孔の面積を算出する。
【0050】
次に、面積Sが、S1≦S≦S2を満たすか否かを判定する(S304)。ここで、面積Sの範囲の下限値S1および上限値S2は、対物絞り16を観察したときのカメラ長(倍率)における対物絞り16の絞り孔の面積に関連するパラメーターである。例えばS1=S0×0.9、S2=S0×1.1に設定する。ここで、S0は、対物絞り16の画像を取得したときのカメラ長における、絞り孔の面積である。S1≦S≦S2を満たすことで、2値化画像において絞り孔が正確に抽出できていると判断できる。
【0051】
なお、下限値S1および上限値S2は、要求される対物絞り16の位置決め精度に応じて、適宜変更可能である。
【0052】
面積SがS1≦S≦S2を満たさない場合(S304のNo)、面積SがS<S1を満たすか否かを判定する(S306)。S<S1を満たす場合(S306のYes)、閾値BをB=B×P1(ただしP1<1)に変更する(S308)。すなわち、面積Sが、設定された範囲の下限値S1よりも小さい場合、閾値Bを減少させる。
【0053】
一方、S<S1を満たさない場合(S306のNo)、すなわち、S>S2の場合、閾値BをB=B×P2(ただしP2>1)に変更する(S310)。すなわち、面積Sが、設定された範囲の上限値S2よりも大きい場合、閾値Bを増加させる。ここで、P1およびP2は、閾値Bの値を変更するためのパラメーターである。例えば、P1=0.9、P2=1.1に設定する。なお、パラメーターP1の値およびパラメーターP2の値は、適宜変更可能である。
【0054】
閾値Bを変更する処理(S306、S308、およびS310)の後、ステップS300に戻って、変更された閾値Bを用いて、
図4に示す対物絞り16の画像を2値化する(S300)。次に、得られた2値化画像において面積Sを算出し(S302)、面積SがS1≦S≦S2を満たすか否かを判定する(S304)。
【0055】
このようにして、S1≦S≦S2を満たすまで、ステップS300、ステップS302、ステップS304、ステップS306、ステップS308、ステップS310の処理が繰り返される。
【0056】
S1≦S<S2を満たした場合(S304のYes)、2値化画像において、2値化画像上における対物絞り16の位置(x,y)を算出する(S312)。具体的には、2値化画像において、白の領域の中心(重心)を計算する。
【0057】
例えば、2値化画像において、i番目のピクセル座標を(xi,yi)、i番目のピクセル座標における輝度をBiとすると、白の領域の重心は次式(2)で算出できる。
【0058】
【0059】
なお、2値化画像のノイズを除去するために、2値化画像に対して、メディアンフィルターなどでフィルター処理を行った後に、白の領域の中心を求めてもよい。
【0060】
また、白の領域の中心を計算する手法は、上記のように白の領域の重心を求める手法に限定されない。例えば、2値化画像において、対物絞り16の絞り孔の輪郭を抽出して、対物絞り16の位置を検出してもよい。白の領域の輪郭を抽出する手法としては、例えば、Pythonの輪郭抽出関数を使用することができる。
【0061】
以上の工程により、対物絞り16の位置を検出できる。
【0062】
3. 処理
透過電子顕微鏡100では、制御部50が上述した対物絞り16の調整方法を行うことによって、自動で、対物絞り16の位置を調整することができる。
【0063】
図9は、制御部50の処理の一例を示すフローチャートである。
【0064】
ユーザーが不図示の入力装置を用いて、対物絞り16を挿入する操作を行うと、制御部50は、当該入力装置からの操作信号を受け付けて、絞り移動機構30が対物絞り16を挿入するように移動機構制御装置48を制御する(S100)。
【0065】
対物絞り16が絞り径の異なる複数の絞り孔を有する場合、制御部50は、ユーザーが指定した絞り径の絞り孔が光軸上に配置されるように、移動機構制御装置48を制御する。これにより、ユーザーが指定した絞り径の絞り孔が光軸近傍に配置される。
【0066】
次に、制御部50は、結像レンズ系18が電子回折図形を観察できる状態となるように結像レンズ系制御装置46を制御する。そして、制御部50は、撮像制御装置22に撮像装置20で対物絞り16を撮影させる。これにより、制御部50は、電子回折図形を含む対物絞り16の画像を取得する(S102)。
【0067】
次に、制御部50は、設定された閾値Bを用いて取得した対物絞り16の画像を2値化
し、2値化画像を取得する(S104)。
【0068】
次に、制御部50は、2値化画像から白の領域の面積Sを算出する(S106)。そして、制御部50は、面積Sが、設定された面積Sの範囲内か否か、すなわち、S1≦S≦S2を満たすか否かを判定する(S108)。制御部50は、S1=S0×0.9、S2=S0×1.1に設定する。
【0069】
ここで、記憶部54には、ある絞り径Dの絞り孔を、カメラ長Lで撮影したときの絞り孔の面積SAが記憶されている。制御部50は、現在挿入されている対物絞り16の絞り径dとカメラ長lの情報を取得して、絞り径dとカメラ長lから次式を用いて面積S0を算出する。
【0070】
S0=SA×(l/L)2×(d/D)2
【0071】
制御部50は、算出された面積S0を用いて、面積Sの下限値S1=S0×0.9および上限値S2=S0×1.1を設定する。
【0072】
制御部50は、面積SがS1≦S≦S2を満たさない場合(S108のNo)、面積SがS<S1を満たすか否かを判定する(S110)。制御部50は、S<S1を満たすと判定した場合(S110のYes)、閾値BをB=B×P1(P1<1)に設定する(S112)。一方、S<S1を満たさないと判定した場合(S110のNo)、閾値BをB=B×P2(P2>1)に設定する(S114)。
【0073】
制御部50は、閾値Bを変更する処理(S112、S114)の後、ステップS104に戻って、変更された閾値Bを用いて、電子回折図形の画像を2値化し(S104)、面積Sを算出し(S106)、面積SがS1≦S≦S2を満たすか否かを判定する(S108)。制御部50は、S1≦S≦S2を満たすまで、ステップS104、ステップS106、ステップS108、ステップS110、ステップS112、ステップS114の処理を繰り返す。
【0074】
制御部50は、S1≦S≦S2を満たしたと判定した場合(S108のYes)、2値化画像において、対物絞り16の位置(x,y)を算出する(S116)。具体的には、制御部50は、2値化画像において、上記式(2)を用いて、白の領域の中心(重心)を計算する。
【0075】
次に、制御部50は、対物絞り16を画像の中心位置(cx,cy)に移動させるための移動量を計算する(S118)。制御部50は、例えば、上記式(1)を用いて、対物絞り16のX方向の移動量mx、および対物絞り16のY方向の移動量myを算出する。
【0076】
制御部50は、絞り移動機構30が算出した移動量mxおよび移動量myだけ対物絞り16を移動させるように移動機構制御装置48を制御する(S120)。これにより、対物絞り16の絞り孔の中心を、画像の中心に一致させることができる。
【0077】
以上の処理により、対物絞り16の位置の調整を行うことができる。
【0078】
4. 作用効果
透過電子顕微鏡100では、制御部50は、対物絞り16の画像を取得する処理と、対物絞り16の画像に基づいて対物絞り16の位置を求める処理と、対物絞り16の位置に基づいて目的の位置と対物絞り16の位置とのずれ量を求める処理と、当該ずれ量に基づいて絞り移動機構30を動作させる処理と、を行う。また、対物絞り16の位置を求める処理は、対物絞り16の画像を設定された閾値Bを用いて2値化して、2値化画像を取得する処理と、2値化画像から対物絞り16の絞り孔の面積Sを求める処理と、面積Sが所定の範囲内に含まれるか否かを判定する処理と、面積Sが所定の範囲内に含まれないと判定した場合、閾値Bを変更する処理と、面積Sが所定の範囲内に含まれると判定した場合、2値化画像に基づいて対物絞り16の位置を求める処理と、を行う。
【0079】
このように、透過電子顕微鏡100では、2値化画像から対物絞りの位置を正確に検出できるため、対物絞り16を所望の位置に正確に配置することができる。また、透過電子顕微鏡100では、制御部50が、上記の処理を行うため、自動で対物絞り16の位置を調整することができる。
【0080】
透過電子顕微鏡100では、閾値Bを変更する処理において、面積Sが所定の範囲の下限値S1よりも小さい場合、閾値Bを減少させ、面積Sが所定の範囲の上限値S2よりも大きい場合、閾値Bを増加させる。また、透過電子顕微鏡100では、閾値Bを変更する処理の後に、変更された閾値Bを用いて2値化画像を取得する処理を行う。そのため、透過電子顕微鏡100では、2値化画像において対物絞り16の位置を正確に検出できる。
【0081】
透過電子顕微鏡100では、目的の位置は、電子回折図形の透過波の位置である。これにより、透過電子顕微鏡100では、明視野像を取得できる。
【0082】
透過電子顕微鏡100における対物絞り16の調整方法は、対物絞り16の画像を取得する工程と、対物絞り16の画像に基づいて、対物絞り16の位置を求める工程と、対物絞り16の位置に基づいて、目的の位置と対物絞り16の位置とのずれ量を求める工程と、当該ずれ量に基づいて、絞り移動機構30を動作させる工程と、を含む。また、対物絞り16の位置を求める工程は、対物絞り16の画像を、設定された閾値Bを用いて2値化して、2値化画像を取得する工程と、2値化画像から対物絞り16の絞り孔の面積Sを求める工程と、面積Sが所定の範囲内に含まれるか否かを判定する工程と、面積Sが所定の範囲内に含まれないと判定した場合、閾値Bを変更する工程と、面積Sが所定の範囲内に含まれると判定した場合、2値化画像に基づいて、対物絞り16の位置を求める工程と、を含む。
【0083】
そのため、透過電子顕微鏡100における対物絞り16の調整方法によれば、対物絞り16を所望の位置に正確に配置することができる。
【0084】
なお、本発明は上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
【0085】
例えば、上記では、対物絞り16によって、透過波を選択する場合について説明したが、対物絞り16によって、回折波を選択してもよい。この場合、
図9に示す対物絞り16の移動量を計算する処理(S118)において、画像の中心位置(cx、cy)の代わりに選択する回折波の位置(dx、dy)を用いればよい。このように、制御部50は、対物絞り16を所望の位置に配置できる。
【0086】
また、例えば、制御部50は、
図9に示すステップS118の処理で算出した移動量mxおよび移動量myに基づいて、対物絞り16の絞り孔の中心が画像の中心に一致するときの対物絞り16の位置座標を算出し、この位置座標を記憶部54に記憶させてもよい。例えば、あらかじめ、各絞り孔について、この位置座標を記憶部54に記憶させておくことで、対物絞り16を使用する際に、短時間で対物絞り16の位置を調整できる。
【0087】
本発明は、上述した実施形態に限定されるものではなく、 さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に同一の構成とは、例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
【符号の説明】
【0088】
2…試料、10…電子銃、12…照射レンズ系、14…試料ステージ、15…試料ホルダー、16…対物絞り、18…結像レンズ系、20…撮像装置、22…撮像制御装置、30…絞り移動機構、40…電子銃制御装置、42…照射レンズ系制御装置、44…試料ステージ制御装置、46…結像レンズ系制御装置、48…移動機構制御装置、50…制御部、52…表示部、54…記憶部、100…透過電子顕微鏡