IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッドの特許一覧

特許7128311文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品
<>
  • 特許-文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品 図1
  • 特許-文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品 図2
  • 特許-文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品 図3
  • 特許-文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-22
(45)【発行日】2022-08-30
(54)【発明の名称】文書種別の推奨方法、装置、電子機器、可読記憶媒体及びコンピュータプログラム製品
(51)【国際特許分類】
   G06F 16/906 20190101AFI20220823BHJP
【FI】
G06F16/906
【請求項の数】 11
(21)【出願番号】P 2021045562
(22)【出願日】2021-03-19
(65)【公開番号】P2021099885
(43)【公開日】2021-07-01
【審査請求日】2021-03-19
(31)【優先権主張番号】202010945727.2
(32)【優先日】2020-09-10
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】514322098
【氏名又は名称】ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド
【氏名又は名称原語表記】Beijing Baidu Netcom Science Technology Co., Ltd.
【住所又は居所原語表記】2/F Baidu Campus, No.10, Shangdi 10th Street, Haidian District, Beijing 100085, China
(74)【代理人】
【識別番号】110002468
【氏名又は名称】特許業務法人後藤特許事務所
(72)【発明者】
【氏名】劉 曦環
(72)【発明者】
【氏名】邵 世臣
(72)【発明者】
【氏名】李 永恒
【審査官】甲斐 哲雄
(56)【参考文献】
【文献】特開2013-242718(JP,A)
【文献】米国特許第9357178(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 16/00-16/958
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
電気機器によって実行される文書種別の推奨方法であって、
分類対象の文書を取得することと、
前記分類対象の文書に対応する目的文書内容分類を決定することと、
予め構築された文書分類モデルを利用し、前記目的文書内容分類を用いて、前記分類対象の文書の、文書特徴パラメータが予め設定された要求を満たす目的文書種別を取得することと、
ここで、前記文書分類モデルは、文書内容分類及び文書特徴パラメータを含む第1の対象と文書種別とのマッピング関係を表し、
前記目的文書種別を推奨することと、
を含む、文書種別の推奨方法。
【請求項2】
文書履歴統計データを取得することと、
前記文書履歴統計データを利用して、文書と文書内容分類とのマッピング関係を確立することと、
前記文書履歴統計データにおける各文書の文書特徴パラメータと文書種別と、及び、前記文書と文書内容分類とのマッピング関係とに基づいて、前記文書分類モデルを構築することと、
をさらに含む、請求項1に記載の推奨方法。
【請求項3】
前記文書特徴パラメータは、
累計ダウンロード数と、累計収益との少なくとも1つを含む、請求項1に記載の推奨方法。
【請求項4】
前記文書特徴パラメータが累計ダウンロード数と累計収益とを含む場合に、前記予め設定された要求は、累計ダウンロード数と累計収益との重み付け和が最大であることであり、
または、
前記文書特徴パラメータが累計ダウンロード数を含む場合に、前記予め設定された要求は、累計ダウンロード数が最も多いことであり、
または、
前記文書特徴パラメータが累計収益を含む場合に、前記予め設定された要求は、累計収益が最も多いことである、請求項3に記載の推奨方法。
【請求項5】
分類対象の文書を取得する第1の取得モジュールと、
前記分類対象の文書に対応する目的文書内容分類を決定する決定モジュールと、
予め構築された文書分類モデルを利用し、前記目的文書内容分類を用いて、前記分類対象の文書の、文書特徴パラメータが予め設定された要求を満たす目的文書種別を取得する取得モジュールと、
ここで、前記文書分類モデルは、文書内容分類及び文書特徴パラメータを含む第1の対象と文書種別とのマッピング関係を表し、
前記目的文書種別を推奨する推奨モジュールと、
を含む、文書種別の推奨装置。
【請求項6】
文書履歴統計データを取得する第2の取得モジュールと、
前記文書履歴統計データを利用して、文書と文書内容分類とのマッピング関係を確立する確立モジュールと、
前記文書履歴統計データにおける各文書の文書特徴パラメータと文書種別と、及び、前記文書と文書内容分類とのマッピング関係とに基づいて、前記文書分類モデルを構築する構築モジュールと、
をさらに含む、請求項5に記載の推奨装置。
【請求項7】
前記文書特徴パラメータは、
累計ダウンロード数と、累計収益との少なくとも1つを含む、請求項5に記載の推奨装置。
【請求項8】
前記文書特徴パラメータが累計ダウンロード数と累計収益とを含む場合に、前記予め設定された要求は、累計ダウンロード数と累計収益との重み付け和が最大であることであり、
または、
前記文書特徴パラメータが累計ダウンロード数を含む場合に、前記予め設定された要求は、累計ダウンロード数が最も多いことであり、
または、
前記文書特徴パラメータが累計収益を含む場合に、前記予め設定された要求は、累計収益が最も多いことである、請求項7に記載の推奨装置。
【請求項9】
少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信接続されるメモリと、を含み、
前記メモリには、前記少なくとも1つのプロセッサに実行可能な命令が記憶され、
前記命令が前記少なくとも1つのプロセッサによって実行されると、請求項1-4のいずれか1項に記載の方法を前記少なくとも1つのプロセッサに実行させる、電子機器。
【請求項10】
請求項1-4のいずれか1項に記載の方法をコンピュータに実行させるためのコンピュータ命令が記憶されている、非一時的なコンピュータ可読記憶媒体。
【請求項11】
コンピュータプログラムを含み、
前記コンピュータプログラムがプロセッサによって実行されると、請求項1-4のいずれか1項に記載の方法が実現される、コンピュータプログラム製品。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、人工知能の分野に関し、特にビッグデータの技術分野に関する。
【背景技術】
【0002】
インターネットユーザ向けに提供されている知識文書記憶プラットフォーム、又はインターネットユーザが知識文書をオンラインで共有するオープンプラットフォームには、主に、共有文書、有料文書、VIP特典文書の3種の文書種別が記憶されている。プラットフォームにアップロードされる文書を分類するとき、通常、文書の投稿者は、文書種別を自ら選択し、即ち、文書をアップロードするとき、文書の投稿者は、文書をどの文書種別に設定するかを自ら判定する。この場合、文書の投稿者の主観的な限定性などの理由により、プラットフォームにアップロードされた文書を効果的な文書種別でユーザに提示できない可能性があるため、ユーザが心理的な期待通りに文書の内容を取得できず、文書の効能を低下させる。
【発明の概要】
【0003】
本開示は、文書種別の推奨方法、装置、機器、記憶媒体及びコンピュータプログラム製品を提供する。
【0004】
本開示の一態様によれば、文書種別の推奨方法は、
分類対象の文書を取得することと、
前記分類対象の文書に対応する目的文書内容分類を決定することと、
予め構築された文書分類モデルを利用し、前記目的文書内容分類を用いて、前記分類対象の文書の、文書特徴パラメータが予め設定された要求を満たす目的文書種別を取得することと、
ここで、前記目的文書種別は、文書内容分類及び文書特徴パラメータを含む第1の対象と文書種別とのマッピング関係を表し、
前記目的文書種別を推奨することと、
を含む。
【0005】
本開示の別の態様によれば、文書種別の推奨装置は、
分類対象の文書を取得する第1の取得モジュールと、
前記分類対象の文書に対応する目的文書内容分類を決定する決定モジュールと、
予め構築された文書分類モデルを利用し、前記目的文書内容分類を用いて、前記分類対象の文書の、文書特徴パラメータが予め設定された要求を満たす目的文書種別を取得する取得モジュールと、
ここで、前記目的文書種別は、文書内容分類及び文書特徴パラメータを含む第1の対象と文書種別とのマッピング関係を表し、
前記目的文書種別を推奨する推奨モジュールと、
を含む。
【0006】
本開示の別の態様によれば、電子機器は、
少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信接続されるメモリと、を含み、
前記メモリには、前記少なくとも1つのプロセッサに実行可能な命令が記憶され、
前記命令が前記少なくとも1つのプロセッサによって実行されると、上記方法を前記少なくとも1つのプロセッサに実行させる。
【0007】
本開示の別の態様によれば、非一時的なコンピュータ可読記憶媒体には、上記方法をコンピュータに実行させるためのコンピュータ命令が記憶されている。
【0008】
本開示の別の態様によれば、コンピュータプログラム製品は、
コンピュータプログラムを含み、
前記コンピュータプログラムがプロセッサによって実行されると、上記方法が実現される。
【0009】
本願の技術によれば、現在、プラットフォームにアップロードされた文書を効果的な文書種別でユーザに提示できないという技術的課題を解決し、分類対象の文書の文書種別を効果的な方式で判定・推奨することができるため、プラットフォームにアップロードされた文書をより効果的な文書種別でユーザに提示することができ、ユーザがより心理的な期待通りに文書内容を取得することを幇助することにより、文書のダウンロード数を増加させ、及び/又は文書の投稿者が文書の価値に相当する収益を取得することを幇助し、文書の効能を向上させる。
【0010】
本部分で説明された内容は、本開示の実施例の主要な又は重要な特徴を特定することを意図するものではなく、本開示の範囲を限定するものでもないことを理解されたい。本開示の他の特徴は、以下の明細書により容易に理解される。
【図面の簡単な説明】
【0011】
図面は、本解決手段をよりよく理解するためのものであり、本願を限定するものではない。
【0012】
図1】本願の実施例に係る文書種別の推奨方法の概略図である。
図2】本願の実施例に係る文書分類モデルの構築の概略図である。
図3】本願の実施例に係る文書種別の推奨方法を実現する推奨装置の概略構成図である。
図4】本願の実施例に係る文書種別の推奨方法を実現する電子機器の概略構成図である。
【発明を実施するための最良の形態】
【0013】
以下、図面を参照しながら、本願の例示的な実施例を説明し、理解を容易にするために、本願の実施例の様々な詳細を含み、それらが例示的なものであると見なされるべきである。したがって、本願の範囲及び精神から逸脱することなく、ここで説明された実施例に対して様々な変更及び修正を行うことができることは、当業者によって認識される。同様に、以下の説明では、明確さと簡潔さのために、公知の機能及び構造についての説明は省略される。
【0014】
本願の明細書及び特許請求の範囲における用語「第1」、「第2」などは、類似した対象を区別するためのものであり、必ずしも特定の順序又は優先順位を説明するためのものではない。ここで説明された本願の実施例が、ここでの図示又は説明以外の順序でも実施できるように、このように使用されたデータは、適宜入れ替えてもよいことを理解されたい。また、用語「含む」、「備える」及びそれらのいかなる変形は、非排他的な包含をカバーすることを意図し、例えば、一連のステップ又はユニットを含むプロセス、方法、システム、製品又は機器は、明確に示されたステップ又はユニットに限定されず、明確に示されていないか又はこれらのプロセス、方法、製品又は機器に固有の、他のステップ又はユニットを含んでよい。明細書及び特許請求の範囲における「及び/又は」は、接続される対象の少なくとも1つを表す。
【0015】
人工知能(ArtificialIntelligence、AI)は、人間の知能をシミュレーション、延長及び拡張するための理論、方法、技術、及び応用システムを研究、開発する、1つの新たな技術科学である。人工知能は、非常に幅広い科学であり、機械学習、コンピュータビジョン、ビッグデータ技術などの様々な分野で構成されている。アルゴリズム、データ、演算能力は、人工知能の3つの要素である。ビッグデータは、人工知能において、コンピュータなどの電子機器が、画像認識、文書種別分類などの、従来に人間の知能を必要としたタスクを完了することを幇助することができる。
【0016】
本願が解決しようとする「現在、プラットフォームにアップロードされた文書を効果的な文書種別でユーザに提示できない」という技術的課題も、ビッグデータ技術に基づくものである。
【0017】
図1を参照すると、図1は、本願の実施例に係る、電子機器に適用される文書種別の推奨方法のフローチャートであり、図1に示すように、該方法は、以下のステップ101~104を含む。
【0018】
ステップ101では、分類対象の文書を取得する。
【0019】
ここで、上記分類対象の文書は、好ましくは、ライブラリーにアップロードされる文書である。本願の実施例の適用可能なシーンは、文書の投稿者又はライブラリー作成者がライブラリーに文書をアップロードして分類するシーンを含むが、これに限定されない。
【0020】
ステップ102では、分類対象の文書に対応する目的文書内容分類を決定する。
【0021】
なお、分類対象の文書に対応する目的文書内容分類は、1種であってもよく、複数種であってもよい。好ましくは、該目的文書内容分類は、word、PDF、txt、cajなどの少なくとも1つを含んでよい。
【0022】
ステップ103では、予め構築された文書分類モデルを利用し、該目的文書内容分類を用いて、分類対象の文書の目的文書種別を取得する。
【0023】
ここで、該文書分類モデルは、第1の対象と文書種別とのマッピング関係を表す。該第1の対象は、文書内容分類と文書特徴パラメータとを含む。該目的文書種別における文書特徴パラメータは、予め設定された要求を満たす。
【0024】
理解できるように、該予め設定された要求は、実際の需要に応じて予め設定されてよい。例えば、該予め設定された要求は、全ての分類対象の文書に対して同様の要求を設定するように一律に設定されてもよく、対応する分類対象の文書に対して個別に設定されてもよい。
【0025】
ステップ104では、目的文書種別を推奨する。
【0026】
目的文書種別を推奨した後に、分類対象の文書の文書種別を該目的文書種別として設定することにより、文書種別分類の正確性を高めることができる。
【0027】
本願の実施例に係る推奨方法では、予め構築された文書分類モデルにより、分類対象の文書の文書種別を効果的な方式で判定・推奨することができるため、プラットフォームにアップロードされた文書を効果的な文書種別でユーザに提示できないという課題を解決し、プラットフォームにアップロードされた文書をより効果的な文書種別でユーザに提示することができ、ユーザがより心理的な期待通りに文書内容を取得することを幇助することにより、文書のダウンロード数を増加させ、及び/又は文書の投稿者が文書の価値に相当する収益を取得することを幇助し、文書の効能を向上させる。
【0028】
本願の実施例では、好ましくは、上記文書種別は、主に共有文書、有料文書、VIP特典文書の3種を有する。この3種の文書種別の相違点は、ユーザが共有文書をダウンロードするとき、ライブラリーポイント又はダウンロードクーポンを使用し、対応する文書の投稿者が対応する数のポイント又はダウンロードクーポンを取得することができ、ユーザが有料文書をダウンロードするとき、文書の投稿者が設定した価格に対応するデジタル通貨を支払い、文書の投稿者が対応する割合の通貨収入を取得し、ユーザがVIP特典文書をダウンロードするとき、ライブラリーVIPを登録する必要があり、文書の投稿者が、ユーザがVIPを登録するときに支払った金額のデジタル通貨収益の一定の割合を取得することである。
【0029】
好ましくは、上記文書特徴パラメータは、累計ダウンロード数と、累計収益との少なくとも1つを含んでよい。該累計収益は、文書収益の和として理解されてよい。このように、推奨された目的文書種別により、文書のダウンロード数を増加させ、及び/又は文書の投稿者が文書の価値に相当する収益を取得することを幇助することができる。
【0030】
好ましくは、文書特徴パラメータが累計ダウンロード数と累計収益とを含む場合に、対応する予め設定された要求は、累計ダウンロード数と累計収益との重み付け和が最大であることであってよい。なお、累計ダウンロード数と累計収益とは、異なる変数パラメータであるため、累計ダウンロード数と累計収益との重み付け和を計算するとき、まず、累計ダウンロード数と累計収益とを正規化し、かつ正規化された数値に基づいて重み付け和を求めることができる。また、累計ダウンロード数と累計収益との重み付けの値を予め決定するとき、文書分類モデルを構築した後に、異なる重み付けの値を用いてモデル推論を行うときに出力された文書種別の結果を比較し、より多くのダウンロード数が得られるか否か、及び/又はより高い収益をもたらすか否かを検出し、かつより多くのダウンロード数が得られる場合、及び/又はより高い収益をもたらす場合に対応する重み付けの値を、累計ダウンロード数と累計収益との重み付けの値として決定することができる。
【0031】
または、文書特徴パラメータが累計ダウンロード数を含む場合に、対応する予め設定された要求は、累計ダウンロード数が最も多いことであってよい。
【0032】
または、文書特徴パラメータが累計収益を含む場合に、対応する予め設定された要求は、累計収益が最も多いことであってよい。
【0033】
本願の実施例では、上記文書分類モデルは、機械学習及び自然言語処理に基づいて、文書履歴統計データを利用して構築されてよい。図2に示すように、上記文書分類モデルの構築プロセスは、以下のステップ21~23を含んでよい。
【0034】
ステップ21では、文書履歴統計データを取得する。該文書履歴統計データは、ライブラリー内の、アップロードされた履歴文書データをクリーニングして統計することによって取得されてよい。
【0035】
ステップ22では、該文書履歴統計データを利用して、文書と文書内容分類とのマッピング関係を確立する。
【0036】
好ましくは、本実施例では、意味分析方法により、文書と文書内容分類とのマッピング関係を確立することができる。そのプロセスは、以下のとおりである。まず、文書履歴統計データに対して意味抽出と分析を行うことにより、履歴文書の内容分類を取得し、該内容分類の取得方法は、文書のタイトル、ユーザが設定した文書内容分類及び文書タグ、自動的に抽出された文書要約及びキーワードなどの情報を分析し、かつ共通性マイニングを行うことを含むが、これらに限定されず、次に、文書と文書内容分類とのマッピング関係を確立する。
【0037】
なお、該文書と文書内容分類とのマッピング関係は、多対多のマッピング関係であってよい。例えば、図2に示すように、文書1は内容分類1に対応し、文書2は内容分類2に対応し、文書3は内容分類Nに対応し、……、文書Mは内容分類2に対応する。
【0038】
ステップ23では、該文書履歴統計データにおける各文書の文書特徴パラメータと文書種別と、及び、該文書と文書内容分類とのマッピング関係とに基づいて、文書内容分類及び文書特徴パラメータと、文書種別とのマッピング関係を構築し、即ち文書分類モデルを構築する。
【0039】
つまり、ステップ22における文書と文書内容分類とのマッピング関係に基づいて、文書特徴パラメータを影響因子として追加し、文書種別を出力パラメータとする文書分類モデルを構築することができる。即ち、履歴文書を内容分類により個々の異なる集合に分類し、各内容分類の集合に、文書特徴パラメータを影響因子である中間変数として追加し、文書種別とのマッピング関係を確立して、文書分類モデルを構築する。このように、文書履歴統計データを利用して文書分類モデルの構築を実現することができる。
【0040】
例えば、文書特徴パラメータが累計ダウンロード数と累計収益とを含む場合を例とすると、確立された文書分類モデルは、図2に示すようになる。このとき、内容分類1における全ての文書種別が1である文書の履歴累計ダウンロード数がaであり、対応する累計収益がbであり、内容分類1における全ての文書種別が2である文書の履歴累計ダウンロード数がcであり、対応する累計収益がdであり、かつa>c、b>dであれば、内容分類1における文書は、文書種別1に設定されると見なされ、よりユーザの期待に沿ったものとなる。
【0041】
また、文書分類モデルを実際にビジネスプロセスに適用するとき、文書分類モデルを使用する前後、即ち同じ内容分類の文書に対して文書分類モデルを使用する場合と使用しない場合、文書のダウンロード数及び文書収益に向上効果があるか否かを検証することができる。その後、検証結果に基づいて、モデルパラメータ数及び重み付けを調整し、ユーザに提示された文書分類モデルがポジティブで、効果的であることを保証し、文書の投稿者に、より高い収益をもたらすことができる。
【0042】
図3を参照すると、図3は、本願の実施例に係る文書種別の推奨装置の概略構成図であり、図3に示すように、該文書種別の推奨装置30は、
分類対象の文書を取得する第1の取得モジュール31と、
上記分類対象の文書に対応する目的文書内容分類を決定する決定モジュール32と、
予め構築された文書分類モデルを利用し、上記目的文書内容分類を用いて、上記分類対象の文書の、文書特徴パラメータが予め設定された要求を満たす目的文書種別を取得する取得モジュール33と、
ここで、前記目的文書種別は、文書内容分類及び文書特徴パラメータを含む第1の対象と文書種別とのマッピング関係を表し、
上記目的文書種別を推奨する推奨モジュール34と、を含む。
【0043】
好ましくは、該文書種別の推奨装置30は、
文書履歴統計データを取得する第2の取得モジュールと、
上記文書履歴統計データを利用して、文書と文書内容分類とのマッピング関係を確立する確立モジュールと、
上記文書履歴統計データにおける各文書の文書特徴パラメータと文書種別と、及び、上記文書と文書内容分類とのマッピング関係とに基づいて、上記文書分類モデルを構築する構築モジュールと、をさらに含む。
【0044】
好ましくは、上記文書特徴パラメータは、
累計ダウンロード数と、累計収益との少なくとも1つを含む。
【0045】
好ましくは、上記文書特徴パラメータが累計ダウンロード数と累計収益とを含む場合に、上記予め設定された要求は、累計ダウンロード数と累計収益との重み付け和が最大であることであり、
または、上記文書特徴パラメータが累計ダウンロード数を含む場合に、上記予め設定された要求は、累計ダウンロード数が最も多いことであり、
または、上記文書特徴パラメータが累計収益を含む場合に、上記予め設定された要求は、累計収益が最も多いことである。
【0046】
理解できるように、本願の実施例に係る文書種別の推奨装置30は、上記図1に示す方法の実施例において実現された各プロセスを実現し、かつ同じ有益な効果を達成することができ、重複を避けるために、ここでは説明を省略する。
【0047】
本願の実施例によれば、本願は、電子機器及び可読記憶媒体をさらに提供する。
【0048】
図4に示すように、本願の実施例に係る文書種別の推奨方法の電子機器のブロック図である。電子機器は、ラップトップコンピュータ、デスクトップコンピュータ、ワークステーション、パーソナルデジタルアシスタント、サーバ、ブレードサーバ、メインフレームコンピュータ、及びその他の適切なコンピュータなどの、様々な形態のデジタルコンピュータを表すことを意図する。電子機器は、パーソナルデジタルアシスタント、携帯電話、スマートフォン、ウェアラブル機器及びその他の類似の計算装置などの、様々な形態のモバイル装置を表すこともできる。本明細書で示されたコンポーネント、それらの接続及び関係、並びにそれらの機能は、単なる例に過ぎず、本明細書で説明及び/又は要求された本願の実現を限定することを意図しない。
【0049】
図4に示すように、該電子機器は、1つ以上のプロセッサ401と、メモリ402と、各コンポーネントを接続し、高速インタフェース及び低速インタフェースを含むインタフェースとを含む。各コンポーネントは、異なるバスを用いて互いに接続され、かつ共通マザーボード上に取り付けられてもよく、必要に応じて他の方式で取り付けられてもよい。プロセッサは、電子機器内で実行された、外部入力/出力装置(例えば、インタフェースに結合された表示機器)にGUIのグラフィック情報を表示するようにメモリ内又はメモリに記憶されている命令を含む命令を処理することができる。他の実施形態では、必要があれば、複数のプロセッサ及び/又は複数のバスを、複数のメモリと共に使用してよい。同様に、複数の電子機器を接続することができ、各機器は、必要な動作の一部を提供する(例えば、サーバアレイ、1組のブレードサーバ、又はマルチプロセッサシステムとする)。図4では、1つのプロセッサ401を例とする。
【0050】
メモリ402は、本願に係る非一時的なコンピュータ可読記憶媒体である。上記メモリには、少なくとも1つのプロセッサによって実行されると、本願に係る文書種別の推奨方法を上記少なくとも1つのプロセッサに実行させる命令が記憶されている。本願の非一時的なコンピュータ可読記憶媒体には、本願に係る文書種別の推奨方法をコンピュータに実行させるコンピュータ命令が記憶されている。
【0051】
メモリ402は、非一時的なコンピュータ可読記憶媒体として、非一時的なソフトウェアプログラム、非一時的なコンピュータ実行可能なプログラム及びモジュール、例えば、本願の実施例における文書種別の推奨方法に対応するプログラム命令/モジュール(例えば、図3に示す第1の取得モジュール31、決定モジュール32、取得モジュール33及び推奨モジュール34)を記憶することができる。プロセッサ401は、メモリ402内に記憶されている非一時的なソフトウェアプログラム、命令及びモジュールを実行することにより、サーバの様々な機能アプリケーション及びデータ処理を実行し、すなわち、上記方法の実施例における文書種別の推奨方法を実現する。
【0052】
メモリ402は、オペレーティングシステム、少なくとも1つの機能に必要なアプリケーションプログラムを記憶可能なプログラム記憶領域と、文書種別を推奨する電子機器の使用に応じて作成されたデータなどを記憶可能なデータ記憶領域とを含んでよい。また、メモリ402は、高速ランダムアクセスメモリを含んでもよく、少なくとも1つの磁気ディスクメモリ素子、フラッシュメモリ素子又は他の非一時的な固体メモリ素子などの非一時的なメモリを含んでもよい。いくつかの実施例では、メモリ402は、好ましくは、プロセッサ401に対して遠隔に配置されたメモリを含み、これらのリモートメモリは、ネットワークを介して、文書種別を推奨する電子機器に接続することができる。上記ネットワークの例は、インターネット、イントラネット、ローカルエリアネットワーク、移動通信ネットワーク及びそれらの組み合わせを含むが、これらに限定されない。
【0053】
文書種別の推奨方法に係る電子機器は、入力装置403及び出力装置404をさらに含んでもよい。プロセッサ401、メモリ402、入力装置403及び出力装置404は、バス又は他の方式で接続されてよく、図4では、バスによる接続を例とする。
【0054】
入力装置403は、入力された数字又は文字情報を受信するとともに、文書種別を推奨する電子機器のユーザ設定及び機能制御に関連するキー信号入力を生成することができ、例えば、タッチスクリーン、キーパッド、マウス、トラックパッド、タッチパッド、ポインティングスティック、1つ以上のマウスボタン、トラックボール、ジョイスティックなどの入力装置である。出力装置404は、表示機器、幇助照明装置(例えば、LED)及び触覚フィードバック装置(例えば、振動モータ)などを含んでよい。該表示機器は、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ及びプラズマディスプレイなどを含んでよいが、これらに限定されない。いくつかの実施形態では、表示機器は、タッチスクリーンであってよい。
【0055】
ここで説明されたシステム及び技術の様々な実施形態は、デジタル電子回路システム、集積回路システム、特定用途向けASIC(特定用途向け集積回路)、コンピュータハードウェア、ファームウェア、ソフトウェア、及び/又はそれらの組み合わせにおいて実現することができる。これらの様々な実施形態は、少なくとも1つのプログラマブルプロセッサを含むプログラマブルシステム上で実行及び/又は解釈可能な1つ以上のコンピュータプログラムにおいて実施されるものを含んでよく、該プログラマブルプロセッサは、特定用途向け又は汎用プログラマブルプロセッサであってもよく、記憶システム、少なくとも1つの入力装置及び少なくとも1つの出力装置からデータ及び命令を受信するとともに、データ及び命令を該記憶システム、該少なくとも1つの入力装置及び該少なくとも1つの出力装置に伝送することができる。
【0056】
これらのコンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション又はコードとも呼ばれる)は、プログラマブルプロセッサの機械命令を含み、かつ高レベル手続き言語及び/又はオブジェクト指向プログラミング言語、及び/又はアセンブリ言語/機械言語により実施することができる。本明細書で使用されるように、「機械可読媒体」及び「コンピュータ可読媒体」という用語は、機械命令を機械可読信号として受信する機械可読媒体を含む、プログラマブルプロセッサに機械命令及び/又はデータを供給する任意のコンピュータプログラム製品、機器、及び/又は装置(例えば、磁気ディスク、光ディスク、メモリ、プログラマブルロジック装置(PLD))を意味する。「機械可読信号」という用語は、機械命令及び/又はデータをプログラマブルプロセッサに供給する任意の信号を意味する。
【0057】
ユーザとの対話を供給するために、ここで説明されたシステム及び技術をコンピュータ上で実施でき、該コンピュータは、ユーザに情報を表示する表示装置(例えば、CRT(陰極線管)又はLCD(液晶ディスプレイ)モニタ)と、キーボードと、ポインティング装置(例えば、マウス又はトラックボール)とを有し、ユーザは、該キーボード及び該ポインティング装置により、入力をコンピュータに供給することができる。他の種類の装置は、ユーザとの対話をさらに供給することができ、例えば、ユーザに供給されるフィードバックは、任意の形式の感覚フィードバック(例えば、視覚フィードバック、聴覚フィードバック又は触覚フィードバック)であってよく、また、任意の形式(音響入力、音声入力又は触覚入力を含む)を用いてユーザからの入力を受信することができる。
【0058】
ここで説明されたシステム及び技術は、バックエンドコンポーネントを含むコンピュータシステム(例えば、データサーバ)、又はミドルウェアコンポーネントを含むコンピュータシステム(例えば、アプリケーションサーバ)、又はフロントエンドコンポーネントを含むコンピュータシステム(例えば、グラフィカルユーザインタフェース又はウェブブラウザを有するユーザコンピュータであり、ユーザは、該グラフィカルユーザインタフェース又は該ウェブブラウザを介して、ここで説明されたシステム及び技術の実施形態と対話することができる)、又はこのようなバックエンドコンポーネント、ミドルウェアコンポーネント又はフロントエンドコンポーネントの任意の組み合わせを含むコンピュータシステムにおいて実施することができる。任意の形式又は媒体のデジタルデータ通信(例えば、通信ネットワーク)を介してシステムのコンポーネントを互いに接続することができる。通信ネットワークの例として、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)及びインターネットが挙げられる。
【0059】
コンピュータシステムは、クライアント及びサーバを含んでよい。クライアントとサーバは、一般的に、互いに離れ、かつ、通常通信ネットワークを介して対話する。クライアントとサーバの関係は、対応するコンピュータ上で実行され、かつ互いにクライアント-サーバの関係を有するコンピュータプログラムにより生成される。
【0060】
本願の実施例の技術手段によれば、予め構築された文書分類モデルにより、分類対象の文書の文書種別を効果的な方式で判定・推奨することができるため、プラットフォームにアップロードされた文書を効果的な文書種別でユーザに提示できないという課題を解決し、プラットフォームにアップロードされた文書をより効果的な文書種別でユーザに提示することができ、ユーザがより心理的な期待通りに文書内容を取得することを幇助することにより、文書のダウンロード数を増加させ、及び/又は文書の投稿者が文書の価値に相当する収益を取得することを幇助し、文書の効能を向上させる。
【0061】
なお、上記様々な形式のプローを用いて、ステップを並べ替えたり、追加したり、削除したりすることを理解されたい。例えば、本願に記載された各ステップは、並列的に実行されてもよく、順次実行されてもよく、異なる順序で実行されてもよく、本願に開示された技術手段の所望の結果を達成できる限り、本明細書はここで限定しない。
【0062】
上記具体的な実施形態は、本願の保護範囲を限定するものではない。設計要件及びその他の要因に応じて、様々な修正、組み合わせ、部分組み合わせ及び置換を行うことができることは、当業者に理解されるところである。本願の精神及び原則内に行われる任意の修正、同等置換及び改善などは、いずれも本願の保護範囲に含まれるべきである。
図1
図2
図3
図4