IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシン精機株式会社の特許一覧 ▶ 国立大学法人 新潟大学の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-23
(45)【発行日】2022-08-31
(54)【発明の名称】円筒状超電導体の検査装置及び検査方法
(51)【国際特許分類】
   G01N 27/87 20060101AFI20220824BHJP
   G01R 33/10 20060101ALI20220824BHJP
   G01R 33/02 20060101ALI20220824BHJP
【FI】
G01N27/87
G01R33/10
G01R33/02 K
【請求項の数】 14
(21)【出願番号】P 2018182165
(22)【出願日】2018-09-27
(65)【公開番号】P2020051917
(43)【公開日】2020-04-02
【審査請求日】2021-07-05
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(73)【特許権者】
【識別番号】304027279
【氏名又は名称】国立大学法人 新潟大学
(74)【代理人】
【識別番号】110000213
【氏名又は名称】弁理士法人プロスペック特許事務所
(72)【発明者】
【氏名】伊藤 佳孝
(72)【発明者】
【氏名】柳 陽介
(72)【発明者】
【氏名】小川 純
【審査官】村田 顕一郎
(56)【参考文献】
【文献】特開平03-084485(JP,A)
【文献】特開平04-168384(JP,A)
【文献】特開2007-078500(JP,A)
【文献】特開昭61-133856(JP,A)
【文献】実開昭57-186863(JP,U)
【文献】特開平01-091054(JP,A)
【文献】特開平03-006477(JP,A)
【文献】特開2017-183480(JP,A)
【文献】国際公開第2017/191823(WO,A1)
【文献】中国特許出願公開第108982950(CN,A)
【文献】伊藤佳孝 他,NMR用超電導バルク磁石の新しい積層構造と内挿超電導円筒による磁場均一性向上,低温工学,Vol.52 No.1,2017年,p.25-32
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/72-27/9093
G01R 33/00-33/26
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
超電導状態にされた円筒状超電導体の円筒周面に対面配置した遮蔽磁場検出センサと、
前記遮蔽磁場検出センサを前記円筒状超電導体の軸方向に沿って移動させることができるように構成された軸方向移動ユニットと、
前記遮蔽磁場検出センサを前記円筒状超電導体の中心軸回りに回転させることができるように構成された回転ユニットと、
異なる2つの磁極を有し、一方の磁極が前記遮蔽磁場検出センサを挟んで円筒状超電導体の円筒周面に対面する位置に配設され、前記遮蔽磁場検出センサとともに移動可能に前記遮蔽磁場検出センサに接続された磁石と、
を備え、
前記遮蔽磁場検出センサが、前記磁石の前記一方の磁極から前記円筒状超電導体に印加される磁場が前記円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、前記軸方向移動ユニット及び前記回転ユニットの駆動によって前記円筒状超電導体の円筒周面に沿って移動しながら検出することにより、前記円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができるように構成された、円筒状超電導体の検査装置。
【請求項2】
請求項1に記載の円筒状超電導体の検査装置において、
前記磁石及び前記遮蔽磁場検出センサは、前記円筒状超電導体の内周空間に配設され、
前記遮蔽磁場検出センサは前記円筒状超電導体の内周面に対面配置し、
前記磁石は前記一方の磁極が前記遮蔽磁場検出センサを挟んで前記円筒状超電導体の内周面に対面する位置に配設される、円筒状超電導体の検査装置。
【請求項3】
請求項2に記載の円筒状超電導体の検査装置において、
前記遮蔽磁場検出センサが第一センサ及び第二センサを有し、
前記磁石は、前記一方の磁極が前記第一センサを挟んで前記円筒状超電導体の内周面に対面配置し、前記磁石の前記他方の磁極が前記第二センサを挟んで前記円筒状超電導体の内周面に対面配置する位置に配設され、
前記第一センサは、前記一方の磁極から前記円筒状超電導体に印加される磁場が前記円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を検出し、前記第二センサは、前記他方の磁極から前記円筒状超電導体に印加される磁場が前記円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を検出する、円筒状超電導体の検査装置。
【請求項4】
請求項1に記載の円筒状超電導体の検査装置において、
前記磁石及び前記遮蔽磁場検出センサは、前記円筒状超電導体の外周空間に配設され、
前記遮蔽磁場検出センサは前記円筒状超電導体の外周面に対面配置し、
前記磁石は、前記一方の磁極が前記遮蔽磁場検出センサを挟んで前記円筒状超電導体の外周面に対面配置する位置に配設される、円筒状超電導体の検査装置。
【請求項5】
超電導状態にされた円筒状超電導体の円筒周面に対面配置した透過磁場検出センサと、
前記透過磁場検出センサを前記円筒状超電導体の軸方向に沿って移動させることができるように構成された軸方向移動ユニットと、
前記透過磁場検出センサを前記円筒状超電導体の中心軸回りに回転させることができるように構成された回転ユニットと、
異なる2つの磁極を有し、一方の磁極が前記円筒状超電導体の円筒周面を挟んで前記透過磁場検出センサと対面する位置に配設され、前記透過磁場検出センサとともに移動可能に前記透過磁場検出センサに接続される磁石と、
を備え、
前記透過磁場検出センサが、前記磁石の前記一方の磁極から前記円筒状超電導体に印加される磁場が前記円筒状超電導体の円筒周面を透過することにより形成される透過磁場を、前記軸方向移動ユニット及び前記回転ユニットの駆動によって前記円筒状超電導体の前記円筒周面に沿って移動しながら検出することにより、前記円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができるように構成された、円筒状超電導体の検査装置。
【請求項6】
請求項5に記載の円筒状超電導体の検査装置において、
前記透過磁場検出センサの背面に、ヨークが設けられている、円筒状超電導体の検査装置。
【請求項7】
請求項5又は6に記載の円筒状超電導体の検査装置において、
前記磁石と前記円筒状超電導体との間に配設され、前記円筒状超電導体の円筒周面を挟んで前記透過磁場検出センサと対向配置するとともに、前記軸方向移動ユニット及び前記回転ユニットの駆動により前記透過磁場検出センサとともに移動可能に構成された遮蔽磁場検出センサを備え、
前記遮蔽磁場検出センサが、前記磁石の前記一方の磁極から前記円筒状超電導体に印加される磁場が前記円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、前記軸方向移動ユニット及び前記回転ユニットの駆動によって前記円筒状超電導体の円筒周面に沿って移動しながら検出することにより、前記円筒状超電導体の円筒周面内における超電導状態の健全性を検査するように構成された、円筒状超電導体の検査装置。
【請求項8】
請求項1乃至7のいずれか1項に記載の円筒状超電導体の検査装置において、
前記磁石の前記一方の磁極に磁場を集束するためのヨークが設けられている、円筒状超電導体の検査装置。
【請求項9】
請求項1乃至8のいずれか1項に記載の円筒状超電導体の検査装置において、
前記磁石が永久磁石である、円筒状超電導体の検査装置。
【請求項10】
請求項1乃至8のいずれか1項に記載の円筒状超電導体の検査装置において、
前記磁石がコイル又は電磁石である、円筒状超電導体の検査装置。
【請求項11】
請求項1乃至10のいずれか1項に記載の円筒状超電導体の検査装置において、
前記円筒状超電導体は、円筒状に形成された円筒基材と、
前記円筒基材の内周面又は外周面に超電導線材が螺旋状に巻回されることにより円筒状に形成された超電導層と、
を備え、
前記遮蔽磁場検出センサ及び/又は透過磁場検出センサが、前記超電導線材の螺旋巻線方向に沿って前記円筒状超電導体の円筒周面を移動するように、前記軸方向移動ユニット及び回転ユニットが制御される、円筒状超電導体の検査装置。
【請求項12】
超電導状態の円筒状超電導体の円筒周面に対面配置した遮蔽磁場検出センサと、異なる2つの磁極を有し、一方の磁極が前記遮蔽磁場検出センサを挟んで前記円筒状超電導体の円筒周面と対面する位置に配設された磁石とを、前記円筒状超電導体の軸方向及び周方向に掃引する掃引工程と、
前記遮蔽磁場検出センサが、前記磁石の前記一方の磁極から前記円筒状超電導体に印加された磁場が前記円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、前記掃引工程にて掃引されながら検出する遮蔽磁場検出工程と、
を含む、円筒状超電導体の検査方法。
【請求項13】
超電導状態の円筒状超電導体の円筒周面に対面配置した透過磁場検出センサと、異なる2つの磁極を有し、一方の磁極が前記円筒状超電導体の円筒周面を挟んで前記透過磁場検出センサに対面する位置に配設された磁石とを、前記円筒状超電導体の軸方向及び周方向に掃引する掃引工程と、
前記透過磁場検出センサが、前記磁石の一方の磁極から前記円筒状超電導体に印加された磁場が前記円筒状超電導体の円筒周面を透過することにより形成される透過磁場を、前記掃引工程にて掃引されながら検出する透過磁場検出工程と、
を含む、円筒状超電導体の検査方法。
【請求項14】
請求項12又は13に記載の円筒状超電導体の検査方法において、
前記円筒状超電導体は、円筒状に形成された円筒基材と、
前記円筒基材の内周面又は外周面に超電導線材が螺旋状に巻回されることにより円筒状に形成された超電導層と、
を備え、
前記掃引工程にて、前記遮蔽磁場検出センサ及び/又は透過磁場検出センサが、前記超電導線材の螺旋巻線方向に沿って前記円筒状超電導体の円筒周面を移動するように、掃引される、円筒状超電導体の検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、円筒状超電導体の検査装置及び検査方法に関する。
【背景技術】
【0002】
バルク(塊)状の超電導体を着磁して磁場を捕捉させた超電導バルク磁石を用いた小型のNMR用超電導マグネットの開発が進められている。例えば、特許文献1は、円筒状の外側超電導体の内側に、円筒状の内側超電導体を同軸配置してなる超電導マグネット(磁場発生装置)を開示する。特許文献1に記載の超電導マグネットによれば、外側超電導体及び内側超電導体の中心軸方向に均一な外部磁場を印加した状態でこれらの超電導体を超電導臨界温度(Tc)以下に冷却し、その後、印加磁場をゼロにする。これにより、超電導体が着磁して、外側超電導体のボア(内周空間)内に均一な磁場空間が形成される。このとき、外側超電導体が保持できなかった印加磁場分布を補償するように内側超電導体の円筒周面内に超電導電流が誘起する。つまり、外側超電導体により形成される磁場の乱れを補償するように内側超電導体が着磁する。このため、ボア内により均一な磁場が形成される。均一な磁場が形成されたボア内に測定試料及び測定用プローブを挿入し、測定用プローブが検出する信号からNMRスペクトルを得ることにより、比較的精度の高い試料の構造解析を行うことができる。
【0003】
特許文献1に記載の円筒状の内側超電導体は、上記したように円筒周面内に超電導電流が流れる。このため、円筒周面内に欠陥が生じているなどによって、円筒周面内の超電導状態の健全性が損なわれている場合、所望の超電導電流を円筒周面内に形成することができない場合が生じ得る。この場合、内側超電導体によって十分に外側超電導体により形成される磁場の乱れを補償することができない。従って、内側超電導体の超電導状態の健全性は良好であることが好ましく、また、内側超電導体の超電導状態の健全性が良好であることを事前に検査する必要がある。
【0004】
しかしながら、従来、このような円筒状の超電導体の超電導状態の健全性を検査することができる検査装置及び検査方法が開発されていない。非特許文献1には、超電導線材の磁場状態の検査方法についての記述があるが、円筒状の超電導体についての検査装置及び検査方法については触れられていないし、実際に非特許文献1に記載の方法を、どのように円筒状の超電導体に適用してよいかが不明である。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2016-6826号公報
【非特許文献】
【0006】
【文献】Applied Physics Letters 90, 032506(2007),"Assessment of the local supercurrent densities in long superconducting coated conductors", M. Zehetmayer, R. Fuger, M. Eistere, F. Hengstberger, and H. W. Weber
【発明の概要】
【0007】
(発明が解決しようとする課題)
本発明は、円筒状超電導体の超電導状態の健全性を検査することができる検査装置及び検査方法を提供することを、目的とする。
【0008】
(課題を解決するための手段)
本発明は、超電導状態にされた円筒状超電導体(7)の円筒周面に対面配置した遮蔽磁場検出センサ(53)と、遮蔽磁場検出センサを円筒状超電導体の軸方向に沿って移動させることができるように構成された軸方向移動ユニット(20)と、遮蔽磁場検出センサを円筒状超電導体の中心軸回りに回転させることができるように構成された回転ユニット(30)と、異なる2つの磁極(N極、S極)を有し、一方の磁極が遮蔽磁場検出センサを挟んで円筒状超電導体の円筒周面に対面する位置に配設され、遮蔽磁場検出センサとともに移動可能に遮蔽磁場検出センサに接続された磁石(55)と、を備え、遮蔽磁場検出センサが、磁石の一方の磁極から円筒状超電導体に印加される磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、軸方向移動ユニット及び回転ユニットの駆動によって円筒状超電導体の円筒周面に沿って移動しながら検出することにより、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができるように構成された、円筒状超電導体の検査装置(1)を提供する。
【0009】
円筒状超電導体をその超電導臨界温度Tc以下に冷却すると、円筒状超電導体が超電導状態にされる。超電導状態にされた円筒状超電導体の円筒周面に磁石の一方の磁極を近づけて磁場を印加すると、円筒状超電導体の円筒周面では、内部に磁場を侵入させないように超電導電流(遮蔽電流)が誘起する。この遮蔽電流により、印加磁場が円筒状超電導体に入り込まないように遮蔽される。こうして印加磁場が遮蔽されることにより、円筒状超電導体と磁石との間の空間から磁場が排除される。このため、円筒状超電導体と磁石との間に形成される磁場(遮蔽磁場)は弱くなる。ところが、円筒状超電導体の円筒周面に欠陥が存在する場合、その部分で遮蔽電流が十分に誘起されないので、印加磁場が欠陥部分を通じて円筒状超電導体を透過する。このようにして印加磁場が円筒状超電導体を透過した場合、円筒状超電導体と磁石との間に磁場が入り込むために遮蔽磁場は強くなる。また、超電導体の超電導特性の一つである臨界電流密度Jcが局所的に弱い箇所が存在すると、遮蔽電流が小さくなり、これによっても遮蔽磁場が強くなる。従って、円筒状超電導体の円筒周面に沿って遮蔽磁場を検出することにより、円筒状超電導体の円筒周面内における超電導状態の健全性(欠陥の有無、臨界電流密度のばらつきなど)を検査することができる。
【0010】
本発明によれば、遮蔽磁場検出センサが円筒状超電導体の円筒周面に対面配置しており、この遮蔽磁場検出センサを挟んで円筒状超電導体の円筒周面に一方の磁極が対面するように、磁石が配置している。このため、遮蔽磁場検出センサは、磁石からの印加磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を検出する。そして、本発明に係る検査装置では、遮蔽磁場検出センサは、軸方向移動ユニット及び回転ユニットの駆動によって円筒状超電導体の円筒周面に沿って移動しながら遮蔽磁場を検出する。このため、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができる。
【0011】
本発明において、超電導状態の健全性を検査するとは、円筒状超電導体が、円筒周面内に遮蔽電流(超電導電流)を均一に形成することができるか否かを検査するという意味において用いられる。そして、超電導状態の健全性は、円筒状超電導体の円筒周面に沿って遮蔽磁場センサが検出する遮蔽磁場或いは後述する透過磁場の均一性によって評価されるが、本発明の構成においては、遮蔽磁場の大きさ、或いは透過磁場の大きさの変化の有無により表される。具体的には、遮蔽磁場(又は透過磁場)が弱い領域が続けば超電導状態が健全である(すなわち遮蔽電流を均一に形成することができる)と判断でき、遮蔽磁場(又は透過磁場)が強い領域があると、欠陥が存在していたり、或いは臨界電流密度が小さくなっていたりして、超電導状態が不健全である(すなわち遮蔽電流を均一に形成することができない)と判断できる。よって、遮蔽磁場(透過磁場)が円筒状超電導体の円筒周面に沿って一様に弱い(小さい)場合には、その円筒状超電導体の超電導状態は一様に健全であると評価できる。また、遮蔽磁場(透過磁場)が局所的に強い(大きい)領域が存在する場合には、局所的に強い領域を特定することにより、欠陥の有無及び位置、或いは臨界電流密度Jcの場所による差異を検出することができる。
【0012】
また、本発明によれば、円筒状超電導体の遮蔽電流によって弱められた磁場(遮蔽磁場)を検出するため、主として磁石に対向した円筒周面の表面の超電導状態の健全性を効果的に検査することができる。
【0013】
遮蔽磁場検出センサ(具体的には遮蔽磁場検出センサの感磁部)が円筒状超電導体の円筒周面に対面する領域の面積は、磁石が遮蔽磁場検出センサを挟んで円筒状超電導体の円筒周面に対面する領域の面積よりも小さいのが好ましい。これによれば、遮蔽磁場検出センサが検出する遮蔽磁場領域が小さくなることにより、検査精度を向上することができる
【0014】
磁石及び遮蔽磁場検出センサは、一例として、後述する第四実施形態にて示されるように、円筒状超電導体の内周空間に配設される。この場合、遮蔽磁場検出センサは円筒状超電導体の内周面に対面配置し、磁石は一方の磁極が遮蔽磁場検出センサを挟んで円筒状超電導体の内周面に対面する位置に配設される。このように構成することにより、主に円筒状超電導体の内周の表面における超電導状態の健全性を検査することができる。また、円筒状超電導体の内周空間内に遮蔽磁場検出センサ及び磁石が配設されるので、検査装置をコンパクトに構成できる。このため、例えばNMR用の超電導マグネットに組み込まれる円筒状超電導体の健全性を検査するに際し、円筒状超電導体を超電導マグネットに組み込んだ状態で検査することができる。
【0015】
遮蔽磁場検出センサが円筒状超電導体の内周空間に配設される場合、遮蔽磁場検出センサは、後述する第七実施形態にて示されるように、第一センサ(43A)及び第二センサ(43B)を有していてもよい。この場合、磁石は、一方の磁極(例えばN極)が第一センサを挟んで円筒状超電導体の内周面に対面配置し、磁石の他方の磁極(例えばS極)が第二センサを挟んで円筒状超電導体の内周面に対面配置する位置に配設されているとよい。そして、第一センサは、一方の磁極から円筒状超電導体に印加される磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を検出し、第二センサは、他方の磁極から円筒状超電導体に印加される磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を検出するとよい。また、第一センサと第二センサが、円筒状超電導体の周方向に180°異なる位置に配設されるとよい。これによれば、円筒状超電導体の内周面の2箇所を同時に検査することができるので、検査時間を短縮することができる。
【0016】
また、他の一例として、磁石及び遮蔽磁場検出センサは、後述する第一実施形態にて示されるように、円筒状超電導体の外周空間に配設されていてもよい。この場合、遮蔽磁場検出センサは円筒状超電導体の外周面に対面配置し、磁石は、一方の磁極が遮蔽磁場検出センサを挟んで円筒状超電導体の外周面に対面配置する位置に配設される。これによれば、主に円筒状超電導体の外周の表面における超電導状態の健全性を検査することができる。
【0017】
また、本発明は、超電導状態にされた円筒状超電導体(7)の円筒周面に対面配置した透過磁場検出センサ(43)と、透過磁場検出センサを円筒状超電導体の軸方向に沿って移動させることができるように構成された軸方向移動ユニット(20)と、透過磁場検出センサを円筒状超電導体の中心軸回りに回転させることができるように構成された回転ユニット(30)と、異なる2つの磁極(N極、S極)を有し、一方の磁極が円筒状超電導体の円筒周面を挟んで透過磁場検出センサと対面する位置に配設され、透過磁場検出センサとともに移動可能に透過磁場検出センサに接続される磁石(55)と、を備え、透過磁場検出センサが、磁石の一方の磁極から円筒状超電導体に印加される磁場が円筒状超電導体の円筒周面を透過することにより形成される透過磁場を、軸方向移動ユニット及び回転ユニットの駆動によって円筒状超電導体の円筒周面に沿って移動しながら検出することにより、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができるように構成された、円筒状超電導体の検査装置(1)を提供する。
【0018】
上記したように、超電導状態にされた円筒状超電導体の円筒周面に磁石の一方の磁極を近づけて磁場を印加すると、遮蔽電流により印加磁場が円筒状超電導体の円筒周面に遮蔽される。ただし、印加磁場を強くしていくと、印加磁場の一部が円筒状超電導体の円筒周面を透過する。しかしながら、こうして透過することにより形成される磁場(透過磁場)は、円筒状超電導体の超電導状態が健全である場合には、弱い。ところが、円筒状超電導体の円筒周面に欠陥が存在する場合、その部分で遮蔽電流が十分に誘起されないので、印加磁場が欠陥部分を通じて円筒状超電導体を透過する。このようにして印加磁場が円筒状超電導体を透過した場合、透過磁場は強くなる。また、超電導体の超電導特性の一つである臨界電流密度Jcが局所的に弱い箇所が存在すると、遮蔽電流が小さくなり、これによっても透過磁場が強くなる。従って、円筒状超電導体の円筒周面に沿って透過磁場を検出することにより、円筒状超電導体の円筒周面内における超電導状態の健全性(欠陥の有無、臨界電流密度Jcのばらつきなど)を検査することができる。
【0019】
本発明によれば、透過磁場検出センサが円筒状超電導体の円筒周面に対面配置しており、また、一方の磁極が円筒状超電導体の円筒周面を挟んで透過磁場検出センサと対面する位置に、磁石が配設されている。つまり、円筒状超電導体の円筒周面を挟んで透過磁場検出センサと磁石が対面配置している。このため、透過磁場検出センサは、磁石からの印加磁場が円筒状超電導体の円筒周面を透過することにより形成される透過磁場を検出する。そして、本発明に係る検査装置では、透過磁場検出センサは、軸方向移動ユニット及び回転ユニットの駆動によって円筒状超電導体の円筒周面に沿って移動しながら透過磁場を検出する。このため、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができる。また、円筒状超電導体の円筒周面を透過する磁場を検出することにより、円筒状超電導体の厚み方向の全体に亘っての超電導状態の健全性を検査することができる。
【0020】
透過磁場検出センサ(具体的には透過磁場検出センサの感磁部)が円筒状超電導体の円筒周面に対面する領域の面積は、磁石が円筒状超電導体の円筒周面に対面する領域の面積よりも小さいのが好ましい。これによれば、透過磁場検出センサが検出する透過磁場領域が小さくなることにより、検査精度を向上することができる。
【0021】
透過磁場検出センサは、一例として、後述する第一実施形態にて示されるように、円筒状超電導体の内周空間に配設される。この場合、透過磁場検出センサは円筒状超電導体の内周面に対面配置し、磁石は、一方の磁極が円筒状超電導体の円筒周面を挟んで透過磁場検出センサと対面するように円筒状超電導体の外周面に対面して配設される。このように構成することにより、主に円筒状超電導体の内周の表面における超電導状態の健全性を検査することができる。
【0022】
また、他の一例として、透過磁場検出センサは、後述する変形例2にて示されるように、円筒状超電導体の外周空間に配設されていてもよい。この場合、透過磁場検出センサは円筒状超電導体の外周面に対面配置し、磁石は、一方の磁極が円筒状超電導体の円筒周面を挟んで透過磁場検出センサと対面するように円筒状超電導体の内周面に対面して配設される。これによれば、主に円筒状超電導体の外周の表面における超電導状態の健全性を検査することができる。
【0023】
また、透過磁場検出センサの背面に、ヨーク(46)が設けられていてもよい。これによれば、透過磁場がヨークに集中することにより、透過磁場検出センサの検出感度が向上する。
【0024】
また、本発明の検査装置は、透過磁場検出センサに加え、磁石と円筒状超電導体との間に配設され、円筒状超電導体の円筒周面を挟んで透過磁場検出センサと対向配置するとともに、軸方向移動ユニット及び回転ユニットの駆動により透過磁場検出センサとともに移動可能に構成された遮蔽磁場検出センサ(53)を備えていてもよい。そして、遮蔽磁場検出センサが、磁石の一方の磁極から円筒状超電導体に印加される磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、軸方向移動ユニット及び回転ユニットの駆動によって円筒状超電導体の円筒周面に沿って移動しながら検出することにより、円筒状超電導体の円筒周面内における超電導状態の健全性を検査するように構成してもよい。これによれば、透過磁場と遮蔽磁場を同時に検出することができ、検査精度がより向上する。
【0025】
また、本発明に係る検査装置に用いられる磁石は、永久磁石であってもよい。永久磁石を用いることにより、電源等の付帯設備を必要とせずに印加磁場を形成することができる。このため検査装置の構造を簡便化することができる。
【0026】
また、本発明に係る検査装置に用いられる磁石は、コイル又は電磁石であってもよい。コイル又は電磁石を用いることにより、それに通電する電流の大きさや向きを変更して、円筒状超電導体への印加磁場の大きさや向きを変更することができる。このため、印加磁場を調整して、最適な検査条件を設定することができる。
【0027】
また、円筒状超電導体は、円筒状に形成された円筒基材(71)と、円筒基材の内周面又は外周面に超電導線材が螺旋状に巻回されることにより円筒状に形成された超電導層(72,73)と、を備えるものであってもよい。この場合、遮蔽磁場検出センサ及び/又は透過磁場検出センサが、超電導線材の螺旋巻線方向に沿って円筒状超電導体の円筒周面を移動するように、軸方向移動ユニット及び回転ユニットが制御されるとよい。
【0028】
超電導線材が螺旋巻きされてなる円筒状超電導体の円筒周面の超電導状態の健全性を検査するにあたり、例えば、まず、軸方向移動ユニットを駆動させて円筒状超電導体を軸方向に沿って検査し、次いで、回転ユニットを駆動させて所定角度だけ検査領域を回転させる。その後、軸方向移動ユニットを駆動させて円筒状超電導体を軸方向に沿って検査する。これを繰り返すことにより、円筒周面の全体に亘り検査を実施することができる。しかしながら、この場合、不健全な箇所の位置を特定するためには、それぞれの回転角度において軸方向に沿って検査した結果をマッピングする必要が生じる場合がある。これに対し、本発明のように螺旋巻線方向に沿って円筒状超電導体を検査することにより、回転角度と軸方向位置が連続的に変化するので、マッピングすることなくリアルタイムで超電導状態の健全性及び不健全な箇所の特定を行うことができる。
【0029】
また、本発明は、超電導状態の円筒状超電導体(7)の円筒周面に対面配置した遮蔽磁場検出センサ(53)と、異なる2つの磁極(N極、S極)を有し、一方の磁極が遮蔽磁場検出センサを挟んで円筒状超電導体の円筒周面と対面する位置に配設された磁石(55)とを、円筒状超電導体の軸方向及び周方向に掃引する掃引工程と、遮蔽磁場検出センサが、磁石の一方の磁極から円筒状超電導体に印加された磁場が円筒状超電導体の円筒周面に遮蔽されることにより形成される遮蔽磁場を、掃引工程にて掃引されながら検出する遮蔽磁場検出工程と、を含む、円筒状超電導体の検査方法を提供する。
【0030】
本発明に係る検査方法によれば、遮蔽磁場検出センサが、円筒状超電導体の円筒周面に沿って掃引されながら遮蔽磁場を検出する。このため、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができる。
【0031】
また、本発明は、超電導状態の円筒状超電導体(7)の円筒周面に対面配置した透過磁場検出センサ(43)と、異なる2つの磁極(N極、S極)を有し、一方の磁極が円筒状超電導体の円筒周面を挟んで透過磁場検出センサに対面する位置に配設された磁石(55)とを、円筒状超電導体の軸方向及び周方向に掃引する掃引工程と、透過磁場検出センサが、磁石の一方の磁極から円筒状超電導体に印加された磁場が円筒状超電導体の円筒周面を透過することにより形成される透過磁場を、掃引工程にて掃引されながら検出する透過磁場検出工程と、を含む、円筒状超電導体の検査方法を提供する。
【0032】
本発明に係る検査方法によれば、透過磁場検出センサが、円筒状超電導体の円筒周面に沿って掃引されながら透過磁場を検出する。このため、円筒状超電導体の円筒周面内における超電導状態の健全性を検査することができる。
【0033】
上記した検査方法において、円筒状超電導体は、円筒状に形成された円筒基材(71)と、円筒基材の内周面又は外周面に超電導線材が螺旋状に巻回されることにより円筒状に形成された超電導層(72,73)と、を備えていてもよい。この場合、掃引工程にて、遮蔽磁場検出センサ及び/又は透過磁場検出センサが、超電導線材の螺旋巻線方向に沿って円筒状超電導体の円筒周面を移動するように、掃引されるとよい。これによれば、リアルタイムで円筒状超電導体の超電導状態の健全性及び不健全な箇所の特定を行うことができる。
【図面の簡単な説明】
【0034】
図1図1は、第一実施形態に係る円筒状超電導体の検査装置を示す部分断面概略図である。
図2図2は、回転ユニット、内側検査ユニット、及び外側検査ユニットの接続構成を示す断面概略図である。
図3図3は、図2のIII-III断面図である。
図4図4は、円筒状超電導体の概略斜視図である。
図5図5は、円筒状超電導体をその軸中心を含む平面で切断した概略断面図である。
図6図6は、螺旋巻きされた内側超電導層と外側超電導層とを別々に示す図である。
図7図7は、内部に円筒状超電導体が配設された容器の概略断面図である。
図8図8は、検査開始時における、容器内の円筒状超電導体と検査装置との配置関係を示す図である。
図9図9は、円筒状超電導体に対する、内側ホール素子、外側ホール素子、外側永久磁石の配置関係を示す概略図である。
図10図10は、外側ホール素子が検出する磁場を示す概念図である。
図11図11は、内側ホール素子が検出する磁場を示す概念図である。
図12図12は、外側ホール素子が検出する遮蔽磁場と円筒状超電導体の欠陥の有無の関係を概念的に示す図である。
図13図13は、内側ホール素子が検出する透過磁場と円筒状超電導体の欠陥の有無の関係を概念的に示す図である。
図14A図14Aは、意図的に欠陥が形成された内側超電導層及び外側超電導層を有する円筒状超電導体を示す。
図14B図14Bは、内側超電導層を構成する超電導線材と外側超電導層を構成する超電導線材とを、それぞれ展開した状態を示す図である。
図15図15は、内側超電導層と外側超電導層とを重ね合わせた円筒体の展開図である。
図16図16は、外側ホール素子にて検出した遮蔽磁場の測定結果を示す図である。
図17図17は、内側ホール素子にて検出した透過磁場の測定結果を示す図である。
図18図18は、図16に示す遮蔽磁場の測定結果を円筒状超電導体の展開図にマッピングして示す図である。
図19図19は、図17に示す透過磁場の測定結果を円筒状超電導体の展開図にマッピングして示す図である。
図20図20は、超電導線材が螺旋巻きされてなる円筒状超電導体の円筒周面の位置を回転角度で表した場合における、回転角度と磁場の強さとの関係を表すグラフである。
図21図21は、変形例2に係る検査装置の回転ユニット、内側検査ユニット、及び外側検査ユニットの接続構成を示す断面概略図である
図22図22は、変形例2に係る検査装置を用いて容器内にセットされた円筒状超電導体を検査する際における、検査装置と円筒状超電導体の配置関係を示す図である。
図23図23は、第二実施形態に係り、2つのホール素子を有する外側ホール素子を螺旋方向に掃引する例を示す概略図である。
図24図24は、外側ホール素子と、円筒状超電導体の内側超電導層及び外側超電導層との配置関係を示す図である。
図25図25は、第三実施形態に係り、冷凍機により冷却された円筒状超電導体を検査装置により検査する状態を示す図である。
図26図26は、冷凍機と、円筒状超電導体と、内側ホール素子と、外側ホール素子及び外側永久磁石との配置関係を表す概略図である。
図27図27は、第四実施形態に係り、NMR装置の超電導マグネットに組み込まれた円筒状超電導体を検査装置により検査する状態を示す図である。
図28図28は、円筒状超電導体が組み込まれた超電導マグネットを示す図である。
図29図29は、第五実施形態に係る検査装置を適用した検査の例を示す図である。
図30図30は、第六実施形態に係る検査装置を適用した検査の例を示す図である。
図31図31は、第七実施形態に係る検査装置を適用した検査の例を示す図である。
図32図32は、第八実施形態に係る検査装置を適用した検査の例を示す図である。
図33図33は、第九実施形態に係る検査装置を適用した検査の例を示す図である。
【発明を実施するための形態】
【0035】
(第1実施形態)
以下、本発明の第1実施形態について説明する。図1は、第1実施形態に係る円筒状超電導体の検査装置(以下、単に検査装置という)1を示す部分断面概略図である。図1に示すように、検査装置1は、手動昇降操作ユニット10と、軸方向移動ユニット20と、回転ユニット30と、内側検査ユニット40と、外側検査ユニット50と、図示しないコントローラとを備える。
【0036】
手動昇降操作ユニット10は、支持ガイド11と、上板12と、ボールネジロッド13と、ボールナット14と、手動ハンドル15とを有し、例えばアルミニウム製のベース板P上に載置される。
【0037】
支持ガイド11は、その下端がベース板Pに固定されるとともに、ベース板Pから上方に延設された長尺状の板状部材である。この支持ガイド11の上端に、上板12が固定される。上板12は、支持ガイド11に固定される固定部分12aと、固定部分12aから図1の左方に延設した延設部分12bを有する。上板12の延設部分12bには、ボールネジロッド13の上端部分が回転可能に支持される。ボールネジロッド13は、上板12から鉛直下方に延設される。ボールネジロッド13の下端は、ベース板Pに設けられている図示しない軸受部材により回転可能に支持される。
【0038】
ボールネジロッド13の外周に雄ネジが形成される。そして、ボールネジロッド13の外周に形成された雄ネジに螺合するように、ボールナット14がボールネジロッド13の外周に軸回り回転不能に取り付けられる。
【0039】
また、上板12の上方に手動ハンドル15が設けられる。手動ハンドル15は、上板12を貫通してボールネジロッド13の上端に接続される。手動ハンドル15は、鉛直軸回りに回転可能であり、回転することによりボールネジロッド13が軸回り回転することができるように構成される。ボールネジロッド13が軸回り回転することにより、ボールネジロッド13に螺合されたボールナット14が上下動する。
【0040】
軸方向移動ユニット20は、ジョイントブロック21と、支持ケース22と、第一電動モータ23と、ボールネジロッド24と、軸方向移動ステージ25とを有する。
【0041】
ジョイントブロック21は、手動昇降操作ユニット10のボールナット14に接続される。このジョイントブロック21に、支持ケース22が接続される。支持ケース22は、下板221と、支持ロッド222とを有する。支持ロッド222は、図1に示すように鉛直方向に延設されており、その下方部分にてジョイントブロック21に接続される。また、支持ロッド222の下端部に下板221が固定される。下板221は、支持ロッド222を固定する固定部分221aと、固定部分221aから図1の左方に延設した延設部分221bを有する。
【0042】
支持ロッド222の上端に第一電動モータ23が固定される。第一電動モータ23は、その出力軸が下方を向くように支持ロッド222に支持される。この第一電動モータ23の出力軸に、ボールネジロッド24の上端が同軸状に接続される。このため第一電動モータ23が駆動すると、ボールネジロッド24が軸回り回転する。ボールネジロッド24の下端は、下板221の延設部分221bに回転可能に支持される。第一電動モータ23の駆動は、コントローラにより制御される。
【0043】
ボールネジロッド24の外周には雄ネジが形成される。また、ボールネジロッド24の外周に軸方向移動ステージ25が軸回り回転不能に取り付けられる。軸方向移動ステージ25は、ボールネジロッド24が貫通する貫通孔を有しており、この貫通孔にはボールネジロッド24の外周に形成された雄ネジに螺合する雌ネジが形成されている。従って、第一電動モータ23の駆動によりボールネジロッド24が回転すると、軸方向移動ステージ25がボールネジロッド24の軸方向すなわち鉛直方向に沿って上下動する。
【0044】
回転ユニット30は、ケース31と、第二電動モータ32と、回転ステージ33とを有する。ケース31は、内部に空間を有する直方体状に形成されていて、その上壁部がL字状ブラケット34を介して軸方向移動ユニット20の軸方向移動ステージ25に接続される。また、ケース31内に第二電動モータ32が配設される。
【0045】
ケース31の下壁に円板状の回転ステージ33が埋設される。回転ステージ33は、ベアリング等の軸受け部材を介して鉛直方向軸回りに回転可能にケース31に取り付けられる。この回転ステージ33は、ケース31内の第二電動モータ32の出力軸に同軸回転可能に接続される。従って、第二電動モータ32が駆動すると、回転ステージ33が鉛直方向軸回りに回転する。第二電動モータ32の駆動は、コントローラにより制御される。
【0046】
回転ユニット30に内側検査ユニット40が接続され、内側検査ユニット40に外側検査ユニット50が接続される。図2は、回転ユニット30、内側検査ユニット40、及び外側検査ユニット50の接続構成を示す断面概略図である。図2に示すように、内側検査ユニット40は、内側ロッド部41と、内側検査板42と、内側ホール素子43と、内側スペーサ44とを有する。
【0047】
内側ロッド部41は鉛直方向に長い円柱状部材である。内側ロッド部41は、その上端部分を構成する拡径した頭部41aと、頭部41aから図2の下方に延設した本体部41bとを有する。また、回転ユニット30の回転ステージ33の下面の外周寄りの部分には、係合部材35がボルトにより接続される。係合部材35は、円板状の回転ステージ33の外周寄りの部分から下方に延設した円筒状の胴部35aと、胴部35aの下方端部から径内方に延びる鍔部35bとを有する。そして、内側ロッド部41の頭部41aの下面が係合部材35の鍔部35bの上面に係合される。この状態で、ボルトによって係合部材35が回転ステージ33に締め付けられることにより、内側ロッド部41の頭部41aが回転ステージ33と係合部材35との間に挟持される。斯かる挟持により内側ロッド部41が回転ユニット30に固定される。この固定状態では、回転ステージ33の中心軸と内側ロッド部41の本体部41bの長手方向中心軸が一致する。従って、回転ステージ33が回転すると、それと一体的に内側ロッド部41が軸回り回転する。
【0048】
また、図2からわかるように、内側ロッド部41の本体部41bの上方部分の一部には、径内方に切り欠かれた接続用切欠き面41cが形成される。さらに、内側ロッド部41の本体部41bの下方部分には、径内方に切り欠かれた内側切欠き面41dが形成される。内側ロッド部41の本体部41bの周方向における接続用切欠き面41cの形成位置と内側切欠き面41dの形成位置は、ほぼ一致する。
【0049】
内側ロッド部41の内側切欠き面41d上に、内側検査板42が面当たりするように配設される。そして、ボルトにより内側検査板42が下側切欠き面41dに固定される。内側検査板42は、内側切欠き面41dに固定された状態で、内側ロッド部41の本体部41bの下端からさらに下方に突き出るように、配設される。また、内側検査板42は、固定状態で内側ロッド部41の本体部41bの径外方を向く取付面42aを有しており、この取付面42aに、絶縁材料で形成された内側スペーサ44を介して内側ホール素子43が取り付けられる。内側ホール素子43は、それを通過する磁束により形成される磁場を検出する磁場センサとして機能する。図2からわかるように、内側スペーサ44及び内側ホール素子43は、内側検査板42の下方部分に取り付けられる。
【0050】
外側検査ユニット50は、外側ロッド部51と、外側検査板52と、外側ホール素子53と、外側スペーサ54と、外側永久磁石55とを有する。
【0051】
外側ロッド部51も内側ロッド部41と同様に鉛直方向に長く形成され、水平方向に切断した断面が矩形状を呈する。外側ロッド部51は、その上端部分を構成する頭部51aと、頭部51aから図2の下方に延設した本体部51bとを有する。頭部51aは、本体部51bよりも図2の左方に凸状に突き出るように形成される。そして、頭部51aの左端面が、内側ロッド部41の本体部41bの上方部分に形成されている接続用切欠き面41cに面当たりするように、外側ロッド部51が内側ロッド部41に対して配設される。そして、ボルト等の締結部材を介して、頭部51aが内側ロッド部41の接続用切欠き面41cに固定される。頭部51aが接続用切欠き面41cに固定された状態では、外側ロッド部51の本体部51bは、内側ロッド部41の本体部41bに対して一定の隙間を隔てて平行配置する。なお、図3は、図2のIII-III断面図であり、内側ロッド部41の本体部41bと外側ロッド部51の頭部51aとの接続状態を示す。
【0052】
また、外側ロッド部51の本体部51bの下方部分のうち、内側ロッド部41の本体部41bに形成された内側切欠き面41dに対面する部分に、外側切欠き面51cが形成される。この外側切欠き面51c上に、外側検査板52が面当たりするように配設される。そして、ボルトにより外側検査板52が外側切欠き面51cに固定される。外側検査板52は、外側切欠き面51cに固定された状態で、外側ロッド部51の本体部51bの下端からさらに下方に突き出るように、配設される。また、外側検査板52は、固定状態で内側ロッド部41に取り付けられている内側検査板42の取付面42aに一定の隙間を隔てて対面する取付面52aを有しており、この取付面52aに、絶縁材料で形成された外側スペーサ54を介して外側ホール素子53が取り付けられる。外側ホール素子53は、それを通過する磁束により形成される磁場を検出する磁場センサとして機能する。図2からわかるように、外側スペーサ54及び外側ホール素子53は、外側検査板52の下方部分に取り付けられる。
【0053】
また、外側検査板52の下方部分であって、外側スペーサ54を介して外側ホール素子53に対面する位置に外側永久磁石55が埋設される。本実施形態では、外側永久磁石55として、ネオジム系磁石(NdFeB磁石)を用いた。この外側永久磁石55は、異なる2つの磁極(N極及びS極)を有し、N極が、外側スペーサ54を挟んで外側ホール素子53に対面するように、外側検査板52に埋設される。
【0054】
図2からわかるように、内側検査板42と外側検査板52は、互いに対面するように、配置される。そして、内側検査板42に取り付けられる内側ホール素子43は、外側検査板52に取り付けられる外側ホール素子53に対面配置する。また、内側ロッド部41の本体部41b及びそれに取り付けられている構成要素(内側検査板42、内側ホール素子43、内側スペーサ44)は、検査対象である円筒状超電導体の内周空間に配設することができるように、寸法設定される。また、内側ロッド部41の本体部41b及びそれに取り付けられている構成要素が円筒状超電導体の内周空間に配設されているときに、外側ロッド部51の本体部51b及びそれに取り付けられている構成要素(外側検査板52、外側ホール素子53、外側スペーサ54、外側永久磁石55)が円筒状超電導体の外周側に配設されるように、これらの構成要素が寸法設定される。つまり、内側ロッド部41の本体部41b及びそれに取り付けられる構成要素が円筒状超電導体の内周空間に配設されたとき、内側ロッド部41の本体部41bと外側ロッド部51の本体部51bとの隙間に円筒状超電導体の円筒周面が挟み込まれるように、内側検査ユニット40及び外側検査ユニット50が構成される。
【0055】
また、図2及び図3によく示すように、内側ロッド部41の本体部41bの外周には、径内方に窪んだ複数の溝41eが、軸方向に沿って形成されている。本実施形態では、4本の溝41eが、内側ロッド部41の本体部41bの外周に、周方向に沿って等間隔に形成されている。この溝41e内に、内側ホール素子43に一端が接続された信号線が配策される。なお、外側ホール素子53に一端が接続された信号線は、図2に示すように、外側ロッド部51の本体部51bの表面(具体的には内側ロッド部41の本体部41bに対面する表面)上に配策される。これらの信号線の他端は、図示しないコントローラに電気的に接続される。
【0056】
上記構成の検査装置1においては、軸方向移動ユニット20(第一電動モータ23)が駆動すると、回転ユニット30、内側検査ユニット40及び外側検査ユニット50が一体的に鉛直方向に移動する。つまり、内側検査ユニット40が備える内側ホール素子43、並びに外側検査ユニット50が備える外側ホール素子53及び外側永久磁石55は、軸方向移動ユニット20の駆動により一体的に移動するように、それぞれ接続されていることになる。また、回転ユニット30(第二電動モータ32)が駆動すると、内側ロッド部41の本体部41bの中心軸回りに、内側検査ユニット40及び外側検査ユニット50が一体的に回転する。つまり内側検査ユニット40が備える内側ホール素子43、並びに外側検査ユニット50が備える外側ホール素子53及び外側永久磁石55は、回転ユニット30の駆動により一体的に回転移動するように、それぞれ接続されていることになる。
【0057】
次に、検査対象である円筒状超電導体について説明する。図4は、円筒状超電導体7の概略斜視図である。また、図5は、円筒状超電導体7をその中心軸を含む平面で切断した概略断面図である。図4及び図5に示すように、円筒状超電導体7は、円筒基材71と、内側超電導層72と、外側超電導層73とを有する。
【0058】
円筒基材71は例えば銅等により円筒状に形成される。この円筒基材71の外周面に内側超電導層72が形成される。内側超電導層72は、細長い超電導線材(超電導テープ)を、円筒基材71の外周面に螺旋巻きすることにより円筒状に形成される。超電導線材の螺旋巻きにより円筒状に形成された内側超電導層72の外周に、外側超電導層73が形成される。外側超電導層73も内側超電導層72と同様に、細長い超電導線材(超電導テープ)を、円筒状の内側超電導層72の外周面に螺旋巻きすることにより円筒状に形成される。つまり、円筒状超電導体7は、円筒基材71の外周に、2層の超電導線材からなる円筒状の超電導体が積層されることにより、形成される。
【0059】
図6は、螺旋巻きされた内側超電導層72と外側超電導層73とを別々に示す図であり、図6(a)が内側超電導層72を示し、図6(b)が外側超電導層73を示している。図6(a)からわかるように、内側超電導層72は、超電導線材が螺旋巻きされることにより円筒状に形成され、軸方向に隣接する超電導線材の側縁どうしが隙間なく付き合わされる。このため螺旋巻きされた超電導線材の隣接する側縁と側縁との境界線(以下、螺旋境界)B1が螺旋状に形成される。また、図6(b)からわかるように、外側超電導層73も超電導線材が螺旋巻きされることにより円筒状に形成され、軸方向に隣接する超電導線材の側縁どうしが隙間なく付き合わされる。このため螺旋巻きされた超電導線材の隣接する側縁と側縁との境界線(以下、螺旋境界)B2が螺旋状に形成される。
【0060】
また、図6(a)と図6(b)とを比較してわかるように、内側超電導層72に形成される螺旋境界B1の形成位置と、外側超電導層73に形成される螺旋境界B2の形成位置が、軸方向にずれるように、具体的には螺旋境界B1と螺旋境界B2が軸方向に最も離れるように、別言すれば、螺旋境界B1と螺旋境界B2が軸方向に1/2ピッチずれるように、両者が形成される。このため、外側超電導層73が内側超電導層72に積層された状態では、内側超電導層72内の螺旋境界B1は、外側超電導層73を構成する超電導線材の幅方向における中央位置に位置することになり、外側超電導層73の螺旋境界B2は、内側超電導層72を構成する超電導線材の幅方向における中央位置に位置することになる。
【0061】
内側超電導層72の螺旋境界B1と外側超電導層73の螺旋境界B2が軸方向にずらされている理由は、以下のようである。この円筒状超電導体7は、特許文献1に示された内側超電導体として用いられる。この場合、円筒状超電導体7は、その周面方向に沿って超電導電流ループ(遮蔽電流)を形成することができるように構成される。ここで、内側超電導層72の螺旋境界B1及び外側超電導層73の螺旋境界B2を跨いで超電導電流ループを形成することはできない。そのため、内側超電導層72の螺旋境界B1と外側超電導層73の螺旋境界B2が一致している場合には、これらの螺旋境界B1,B2を跨いで形成されるべき所望の超電導電流ループを形成することができない。この点に関し、内側超電導層72の螺旋境界B1と外側超電導層73の螺旋境界B2が軸方向にずらされていれば、例えば図6(a)に示す超電導電流ループL1のように螺旋境界B1を跨ぐために内側超電導層72に形成できない超電導電流ループが、図6(b)に示すように外側超電導層73に螺旋境界B2を跨ぐことなく形成することができる。同様に、例えば図6(b)に示す超電導電流ループL2のように螺旋境界B2を跨ぐために外側超電導層73に形成できない超電導電流ループが、図6(a)に示すように内側超電導層72に螺旋境界B2を跨ぐことなく形成することができる。このように、円筒状超電導体7の円筒周面に自由に超電導電流ループを形成させることを目的として、内側超電導層72の螺旋境界B1と外側超電導層73の螺旋境界B2が軸方向にずらされている。なお、詳しくは、特許文献1を参照されたい。
【0062】
検査装置1により円筒状超電導体7を検査するにあたり、円筒状超電導体7(具体的には内側超電導層72及び外側超電導層73)が超電導状態にされる。円筒状超電導体7を超電導状態にするためには、円筒状超電導体7を超電導臨界温度Tc以下に冷却する必要がある。この目的のため、本実施形態においては、円筒状超電導体7は、液体窒素が充填された容器内に配設される。
【0063】
図7は、内部に円筒状超電導体7が配設された容器81の概略断面図である。図7に示すように、容器81は、円板形状の底壁82と、底壁82の周縁から上方に立設される円筒状の側壁83とを有し、上面が開口した有底円筒形状を呈する。また、容器81内に支持円板84が装着される。支持円板84の外径は側壁83の内径と同じであり、底壁82の僅かに上方位置にて底壁82と平行に固定される。また、支持円板84の中央に環状溝841が形成され、環状溝841の内側及び外側に、それぞれ内側貫通孔842及び外側貫通孔843が形成される。環状溝841の内径及び外径は、円筒状超電導体7の内径及び外径に一致する。そして、円筒状超電導体7は、その下端部が環状溝841に挿入された状態で、容器81内に配設される。これにより、円筒状超電導体7は、容器81内に容器81と同軸状に配置される。
【0064】
次に、検査装置1を用いた円筒状超電導体7の検査方法について説明する。まず、図1に示すように検査装置1を組み立てる。次いで、組み立てた検査装置1の手動ハンドル15を回転操作して、ジョイントブロック21を最上位置まで移動させる。これにより、手動昇降操作ユニット10に連結された軸方向移動ユニット20が最上位置まで移動する。次に、軸方向移動ユニット20の第一電動モータ23を制御して、軸方向移動ステージ25を最上位置まで移動させる。これにより、軸方向移動ユニット20にL字状ブラケット34を介して連結された回転ユニット30、回転ユニット30に接続された内側検査ユニット40、内側検査ユニット40に接続された外側検査ユニット50が、最上位置まで一体的に移動する。
【0065】
また、図7に示すように、容器81内の支持円板84の環状溝841に、検査対象である円筒状超電導体7の一方端(下方端)を固定する。次に、円筒状超電導体7が固定された容器81を、検査装置1の内側検査ユニット40及び外側検査ユニット50の直下に配置する。その後、手動昇降操作ユニット10の手動ハンドル15を回転操作して、内側検査ユニット40及び外側検査ユニット50を下降させる。このとき、内側検査ユニット40の内側ロッド部41の本体部41bの中心軸が容器81内の円筒状超電導体7の中心軸に一致した状態で、本体部41b及びそれに取り付けられている構成要素(内側検査板42、内側ホール素子43、内側スペーサ44)が円筒状超電導体7の内周空間に進入し、且つ外側検査ユニット50の外側ロッド部51の本体部51b及びそれに取り付けられている構成要素(外側検査板52、外側ホール素子53、外側スペーサ54、外側永久磁石55)が容器81内の円筒状超電導体7の外周に対面するように、検査装置1に対する容器81の位置を手動で調整する。
【0066】
位置調整完了後、第二電動モータ32を制御して、回転ユニット30を予め設定した回転角度0°の回転位置に固定する。次いで、第一電動モータ23を制御して、内側ホール素子43及び外側ホール素子53が円筒状超電導体7の最下端部の周面に対面するように、軸方向移動ユニット20の軸方向位置を設定する。その後、外側永久磁石55の磁場が円筒状超電導体7に捕捉されることを防止するために、第一電動モータ23を制御して、外側永久磁石55が円筒状超電導体7の軸方向外側(上端よりも上側)となるように、一旦、内側検査ユニット40及び外側検査ユニット50を上方に移動させる。次いで、容器81内に液体窒素を充填し、液体窒素の沸騰が収まるまで待つ。液体窒素の沸騰が収まった後に、再度、第一電動モータ23を制御して、内側検査ユニット40及び外側検査ユニット50を先に設定した軸方向位置まで下降させる。そして、検査を開始する。図8は、検査開始時における、容器81内の円筒状超電導体7と検査装置1との配置関係を示す図である。図8に示すように、容器81内の液体窒素に円筒状超電導体7が全没している。このため円筒状超電導体7が超電導臨界温度Tc以下に冷却され、これにより、円筒状超電導体7(内側超電導層72及び外側超電導層73)が超電導状態にされる。また、円筒状超電導体7の内周側に内側検査ユニット40が配設され、円筒状超電導体7の外周側に外側検査ユニット50が配置される。従って、内側検査ユニット40の内側ホール素子43は円筒状超電導体7の内周側に配置され、外側検査ユニット50の外側ホール素子53及び外側永久磁石55は円筒状超電導体7の外周側に配置される。
【0067】
図9は、円筒状超電導体7に対する、内側ホール素子43、外側ホール素子53、外側永久磁石55の配置関係を示す概略図である。図8及び図9に示すように、内側ホール素子43が円筒状超電導体7の内周面(円筒周面)に対面配置する。なお、上述したように、円筒状超電導体7の最内周は円筒基材71により構成されているため、内側ホール素子43は、円筒基材71を介して、円筒状超電導体7の内側超電導層72に対面することになる。本実施形態に係る内側ホール素子43は、本発明の透過磁場検出センサに相当する。
【0068】
また、外側ホール素子53は、円筒状超電導体7の外周面(円筒周面)、具体的には円筒状超電導体7の外側超電導層73に対面配置する。本実施形態に係る外側ホール素子53は、本発明の遮蔽磁場検出センサに相当する。
【0069】
また、外側永久磁石55は、図9に示すようにそのN極が外側ホール素子53を挟んで円筒状超電導体7の外周面(円筒周面)に対面する位置に配設される。この外側永久磁石55は、内側ホール素子43に対しては、N極側が円筒状超電導体7の円筒周面を挟んで内側ホール素子43と対面する位置に配設されていることになる。本実施形態に係る外側永久磁石55が、本発明の磁石に相当する。
【0070】
また、図9に示すように、内側ホール素子43は、感磁部43a(アクティブエリア)を有し、外側ホール素子53は感磁部53a(アクティブエリア)を有する。内側ホール素子43は、その感磁部43aに印加される磁場を検出し、外側ホール素子53は、その感磁部53aに印加される磁場を検出する。これらの感磁部43a,53aが円筒状超電導体7の円筒周面に対面する部分の面積、すなわちアクティブエリアの面積は、外側永久磁石のN極面が円筒状超電導体7に対面する面積よりも小さい。
【0071】
この検査では、まず、第一電動モータ23を制御して、軸方向移動ユニット20を上方移動させる。軸方向移動ユニット20を上方移動させると、軸方向移動ユニット20に連結した回転ユニット30、回転ユニット30に連結した内側検査ユニット40、及び、内側検査ユニット40に連結した外側検査ユニット50が、一体的に、図8に示した位置から上方移動する。これにより、内側検査ユニット40の内側ホール素子43が円筒状超電導体7の内周面に沿って軸方向に対面位置を変化させながら上方移動(掃引)し、外側検査ユニット50の外側ホール素子53が円筒状超電導体7の外周面に沿って軸方向に対面位置を変化させながら上方移動(掃引)する。このとき、内側ホール素子43は、円筒状超電導体7の内周面との間の径方向距離を一定に維持しながら上方移動し、外側ホール素子53は、円筒状超電導体7の外周面との間の径方向距離を一定に維持しながら上方移動する。また、外側永久磁石55は、内側ホール素子43及び外側ホール素子53との相対的位置関係を維持しながらこれらのホール素子とともに円筒状超電導体7の外周面に沿って軸方向移動する(掃引工程)。
【0072】
また、内側ホール素子43は、円筒状超電導体7の内周面に沿って軸方向移動しながら磁場の大きさを検出し、外側ホール素子53は、円筒状超電導体7の外周面に沿って軸方向移動しながら磁場の大きさを検出する。
【0073】
図10は、外側ホール素子53が検出する磁場を示す概念図である。図10に示すように外側ホール素子53は、超電導状態にされた円筒状超電導体7の外周面に対面配置している。また、外側永久磁石55が、そのN極が外側ホール素子53を挟んで円筒状超電導体7の外周面に対面する位置に配設されている。従って、外側永久磁石55は、そのN極から円筒状超電導体7に磁場を印加する。ここで円筒状超電導体7は超電導状態であるので、内部に印加磁場を侵入させないように超電導電流(遮蔽電流)が円筒状超電導体7内に誘起される。この遮蔽電流により、印加磁場が円筒状超電導体に入り込まないように遮蔽される。こうして印加磁場が遮蔽されることにより、円筒状超電導体7と外側永久磁石55との間に遮蔽磁場が形成される。したがって、円筒状超電導体7と外側永久磁石55との間に位置する外側ホール素子53は、遮蔽磁場の大きさを検出する。
【0074】
図11は、内側ホール素子43が検出する磁場を示す概念図である。図11に示すように、内側ホール素子43は、超電導状態にされた円筒状超電導体7の内周面に対面配置している。また、外側永久磁石55は、内側ホール素子43に対しては、そのN極が円筒状超電導体7の円筒周面を挟んで内側ホール素子43に対面する位置に配設されている。つまり、円筒状超電導体7を挟んで内側ホール素子43と外側永久磁石55が対向配置している。ここで、上記したように、外側永久磁石55のN極側から円筒状超電導体7に印加される磁場は、円筒状超電導体7により遮蔽されるが、印加磁場が大きくなると、印加磁場の一部が円筒状超電導体7の円筒周面を透過して円筒状超電導体7の内周側に至る。こうして円筒状超電導体7の円筒周面を透過した磁場により、円筒状超電導体7の内周側に透過磁場が形成される。従って、円筒状超電導体7の内周面に対面配置した内側ホール素子43は、透過磁場の大きさを検出する。
【0075】
このように、外側ホール素子53は、軸方向移動ユニット20の駆動により円筒状超電導体7の軸方向に沿って移動しながら遮蔽磁場を検出し(遮蔽磁場検出工程)、内側ホール素子43は、軸方向移動ユニット20の駆動により円筒状超電導体7の軸方向に沿って移動しながら透過磁場を検出する(透過磁場検出工程)。
【0076】
回転角度0°である場合に円筒状超電導体7の軸方向に沿った内側ホール素子43と外側ホール素子53の移動(掃引)が終了すると、内側ホール素子43及び外側ホール素子53が円筒状超電導体7の最上端部の円筒周面に対面した状態にされる。次に、第二電動モータ32を制御して、回転ユニット30を上記回転角度0°から所定の角度、例えば30°だけ回転した回転位置に回転させる。これにより、内側ホール素子43及び外側ホール素子53が、円筒状超電導体7の中心軸回りに回転して、内側ホール素子43が円筒状超電導体7の内周面に対面する位置、及び、外側ホール素子53が円筒状超電導体7の外周面に対面する位置が、周方向に変化する。ここで、内側検査ユニット40の中心軸線と円筒状超電導体7の中心軸線は一致しているので、回転前の内側ホール素子43と円筒状超電導体7の内周面との間の距離は回転後の内側ホール素子43と円筒状超電導体7の内周面との間の距離は等しく、回転前の外側ホール素子53と円筒状超電導体7の外周面と回転後の外側ホール素子53と円筒状超電導体7の外周面との間の距離は等しい。次いで、第一電動モータ23を制御して、軸方向移動ユニット20を下方移動させる。軸方向移動ユニット20を下方移動させると、軸方向移動ユニット20に連結した回転ユニット30、回転ユニット30に連結した内側検査ユニット40、及び、内側検査ユニット40に連結した外側検査ユニット50が、一体的に、下方移動する。これにより、内側検査ユニット40の内側ホール素子43が円筒状超電導体7の内周面に沿って軸方向に対面位置を変化させながら下方移動(掃引)し、外側検査ユニット50の外側ホール素子53が円筒状超電導体7の外周面に沿って軸方向に対面位置を変化させながら下方移動(掃引)する。また、外側永久磁石55は、外側ホール素子53とともに円筒状超電導体7の外周面に沿って軸方向移動する。このとき、内側ホール素子43は円筒状超電導体7の軸方向に沿って下方移動しながら透過磁場を検出し、外側ホール素子53は円筒状超電導体7の軸方向に沿って下方移動しながら遮蔽磁場を検出する。
【0077】
上記したような、円筒状超電導体7の軸方向に沿った内側ホール素子43の移動及び回転、並びに、円筒状超電導体7の軸方向に沿った外側ホール素子53及び外側永久磁石55の移動及び回転を繰り返し実行し、内側ホール素子43及び外側ホール素子53が円筒状超電導体7の周方向に一周した時点で検査を終了する。これにより、円筒状超電導体7の円筒周面の全域に亘る透過磁場及び遮蔽磁場が検出される。なお、検査時に、円筒状超電導体7の内周空間内を、内側検査ユニット40の内側ロッド部41の本体部41b及びそれに接続される構成要素が上下動するが、これに伴い、容器81内の支持円板84に形成された内側貫通孔842及び外側貫通孔843を通じて、液体窒素が円筒状超電導体7の内周空間に流出入する。斯かる液体窒素の流出入により、円筒状超電導体7の内周空間内の圧力変動が抑制される。
【0078】
図12は、外側ホール素子53が検出する遮蔽磁場と円筒状超電導体7の欠陥の有無の関係を概念的に示す図である。図12(a)に示すように、円筒状超電導体7のうち、外側ホール素子53に対面する斜線で示す領域が、検査領域Rである。検査領域Rに欠陥が存在しない場合、検査領域Rでは外側永久磁石55のN極側から印加される磁場を遮蔽しようとして、必要な大きさの遮蔽電流が誘起される。このため、遮蔽電流により、印加磁場が円筒状超電導体7に入り込まないように遮蔽される。よって、外側永久磁石55のN極から生じる磁束は、検査領域Rと外側永久磁石55との間に位置する外側ホール素子53から反れるように曲がり、外側ホール素子53の感磁部53aを通過する磁束は少ない。つまり、検査領域Rに欠陥が存在しない場合、外側永久磁石55と円筒状超電導体7との間の空間から磁場が排除されるので、その間の空間に位置する外側ホール素子53にて検出される遮蔽磁場は弱い。
【0079】
一方、図12(b)に示すように、検査領域R内に欠陥Dが存在する場合、検査領域Rでは印加磁場を遮蔽するために必要な大きさの遮蔽電流が誘起されず、その結果、印加磁場を十分に排除できずに、外側永久磁石55のN極側から生じる磁束の一部が検査領域R内の欠陥Dを透過するように進む。そのような磁束が、検査領域Rと外側永久磁石55との間に位置する外側ホール素子53の感磁部53aを通過するので、外側ホール素子53にて検出される遮蔽磁場は、欠陥Dが検査領域Rに存在しない場合と比較して強い。つまり、円筒状超電導体7の円筒周面のうち外側ホール素子53に対面する領域に欠陥等が存在する場合には、欠陥が存在しない場合と比較して、外側ホール素子53にて検出される遮蔽磁場が強くなる。
【0080】
このように、検査領域R内の欠陥の有無によって、外側ホール素子53に検出される遮蔽磁場の大きさが変化する。具体的には、欠陥Dが存在する場合、外側ホール素子53で検出される遮蔽磁場が強くなる。よって、円筒状超電導体7の円筒周面に沿って外側ホール素子53を掃引しながら(外側ホール素子53が移動しながら)外側ホール素子53にて遮蔽磁場を検出することにより、欠陥等の有無に影響される円筒状超電導体7の超電導状態の健全性を検査することができる。
【0081】
図13は、内側ホール素子43が検出する透過磁場と円筒状超電導体7の欠陥の有無の関係を概念的に示す図である。図13(a)に示すように、円筒状超電導体7のうち、内側ホール素子43に対面する斜線で示す領域が、検査領域Rである。検査領域Rに欠陥が存在しない場合、検査領域Rでは外側永久磁石55のN極側から印加される磁場を遮蔽しようとする遮蔽電流が誘起される。このため、外側永久磁石55のN極から生じる磁束は検査領域Rを挟んで外側永久磁石55とは反対側に位置する内側ホール素子43に検出される可能性は低い。なお、上記したように、外側永久磁石55からの印加磁場を強くした場合、一部の磁束が検査領域Rを透過するが、こうして透過することにより円筒状超電導体7の内周側に形成される透過磁場は弱い。つまり、検査領域Rに欠陥が存在しない場合、内側ホール素子43にて検出される透過磁場は弱い。
【0082】
一方、図13(b)に示すように、検査領域R内に欠陥Dが存在する場合、外側永久磁石55のN極側から発生する磁束の一部が欠陥Dを透過して内側ホール素子43の感磁部43aを通過する可能性が高い。従って、検査領域Rに欠陥等が存在する場合には、欠陥が存在しない場合と比較して、内側ホール素子43にて検出される透過磁場は強くなる。
【0083】
このように、検査領域R内の欠陥の有無によって、内側ホール素子43に検出される透過磁場の大きさが変化する。具体的には、欠陥Dが存在する場合、内側ホール素子43にて検出される透過磁場が強くなる。よって、円筒状超電導体7の円筒周面に沿って内側ホール素子43を掃引しながら(内側ホール素子43が移動しながら)内側ホール素子43にて透過磁場を検出することにより、欠陥等の有無により影響される円筒状超電導体7の健全性を検査することができる。
【0084】
また、本実施形態においては、永久磁石(外側永久磁石55)を用いて印加磁場を発生させているので、印加磁場を発生させるための電源装置等の付帯設備を必要としない。このため、検査装置1の構造を簡便化することができる。
【0085】
<欠陥の検出の確認実験>
本実施形態に係る検査装置1を用いて、円筒状超電導体7の内側超電導層72及び外側超電導層73に意図的に形成された欠陥を検出することができるか否か、すなわち円筒状超電導体7の超電導状態の健全性を検査することができるか否かについての確認実験を実施した。図14Aは、意図的に欠陥が形成された内側超電導層72及び外側超電導層73を有する円筒状超電導体7を示す。図14A(a)は、円筒状超電導体7の上面図であり、図14A(b)は図14A(a)のA方向矢視図であり、図14A(c)は図14A(a)のB方向矢視図である。なお、図14A(b)及び図14A(c)は、それぞれ反対方向から見た円筒状超電導体7の側面図であり、これらの図中、内側超電導層72の螺旋境界B1が破線で示され、外側超電導層73の螺旋境界B2が実線で示される。以下の説明においては、図14A(c)を用いて外側超電導層73に形成された欠陥について説明し、図14A(b)を用いて内側超電導層72に形成された欠陥について説明する。
【0086】
図14A(c)に示すように、外側超電導層73は、両側端が実線で表される超電導線材SCoutを、上端側の巻き始めの位置S2から、上から見て(図14A(a)に示す方向から見て)反時計回りに、下方に向けて約12ターン螺旋巻きすることにより円筒状に形成される。そして、上側から4ターン目の終わりの位置及び8ターン目の終わりの位置にそれぞれ欠陥Doutが形成される。ここで、外側超電導層73の周方向位置を、巻き始めの位置S2を回転角度0°として1ターン分の螺旋巻きにより回転角度が0°から360°まで変化する回転角度で表す場合、外側超電導層73に形成される欠陥Doutの位置は、上から4ターン目の終わりであり回転角度が0°の位置、及び、上から8ターン目の終わりであり回転角度が0°の位置である。
【0087】
また、図14A(b)に示すように、内側超電導層72は、両側端が破線で表される超電導線材SCinを、上端側の巻き始めの位置S1から、上から見て(図14A(a)に示す方向から見て)反時計回りに、下方に向けて約12ターン螺旋巻きすることにより円筒状に形成される。そして、上側から4ターン目の終わりの位置及び8ターン目の終わりの位置にそれぞれ欠陥Dinが形成される。ここで、図14A(a)に示すように、内側超電導層72の巻き始めの位置S1は、外側超電導層73の巻き始めの位置S2と180°ずれている。従って、外側超電導層73についての回転角度を基準にすると(すなわち位置S1の回転角度を0°とすると)、内側超電導層72に形成される欠陥Dinの位置は、上から4ターン目の終わりであり回転角度が180°の位置、及び、上から8ターン目の終わりであり回転角度が180°の位置である。なお、図14Aには、図14A(b)及び図14A(c)に示される各超電導層の軸方向位置(z方向位置)が表される。軸方向位置z≒8mmである位置が、各超電導層の上端位置であり、軸方向位置z≒147mmである位置が、各超電導層の下端位置である。
【0088】
図14Bは、内側超電導層72を構成する超電導線材SCinと外側超電導層73を構成する超電導線材SCoutとを、それぞれ展開した状態を示す図である。図14Bに示すように、内側超電導層72においては、巻き始めの位置S1から4周目(4ターン目)の終わりの位置及び8周目(8ターン目)の終わりの位置に、欠陥Dinが形成されている。また、外側超電導層73においては、巻き始めの位置S2から4周目(4ターン目)の終わりの位置及び8周目(8ターン目)の終わりの位置に、欠陥Doutが形成されている。
【0089】
図15は、内側超電導層72と外側超電導層73とを重ね合わせた円筒体の展開図である。図15において、内側超電導層72の螺旋境界B1が破線で示され、外側超電導層73の螺旋境界B2が実線で示される。内側超電導層72に形成された欠陥Dinは、上側から4ターン目の終わりを構成する部分の対の螺旋境界B1間、及び、上側から8ターン目の終わりを構成する部分の対の螺旋境界B1間に、それぞれ形成される。外側超電導層73に形成された欠陥Doutは、上側から4ターン目の終わりを構成する部分の対の螺旋境界B2間、及び、上側から8ターン目の終わりを構成する部分の対の螺旋境界B2間に、それぞれ形成される。また、図15からわかるように、内側超電導層72の螺旋境界B1は、外側超電導層73の螺旋境界B2に対し、軸方向に1/2ピッチだけずらされている。従って、内側超電導層72に形成された欠陥Dinは、外側超電導層73の螺旋境界B2上に形成されることになり、外側超電導層73に形成された欠陥Doutは、内側超電導層72の螺旋境界B1上に形成されることになる。
【0090】
なお、内側超電導層72及び外側超電導層73を構成する超電導線材として、Gd-Ba-Cu-O系の超電導材料を用いた。また、超電導線材の幅は12mm、厚さは0.12mmである。また、各欠陥Din,Doutは、超電導線材の表側と裏側に許容曲げ半径よりも小さい半径となるようにU字状に超電導線材を屈曲することにより形成されている。
【0091】
上記構成の内側超電導層72及び外側超電導層73を備える円筒状超電導体7を、検査装置1を用いて検査した。ここで、外側永久磁石55の大きさは、φ5mm×高さ15mmの円柱状であり、その一方端面に形成されるN極面を外側超電導層73に対面するように配置した。なお、外側永久磁石55の大きさ、具体的には外側永久磁石55のN極面の径(5mm)は、超電導線材の幅(12mm)よりも小さい。また、外側永久磁石55と外側超電導層73との間の径方向距離は6mm、外側ホール素子53と外側超電導層73との間の径方向距離は3mm、内側ホール素子43と内側超電導層72との間の径方向距離は3mm、となるように、円筒状超電導体7に対して検査装置1の内側検査ユニット40と外側検査ユニット50を配置した。
【0092】
そして、円筒状超電導体7を液体窒素中に浸漬して円筒状超電導体7を超電導状態にさせた後に、内側検査ユニット40と外側検査ユニット50を軸方向に移動して、内側ホール素子43及び外側ホール素子53を円筒状超電導体の円筒周面に沿って軸方向に掃引した。また、回転ステージ33の回転角度を30°ずつ回転させて、それぞれの回転角度において上記した軸方向への各ホール素子の掃引を実行して、各検査領域における透過磁場を内側ホール素子43にて検出し、各検査領域における遮蔽磁場を外側ホール素子53にて検出した。
【0093】
図16は、外側ホール素子53にて検出した遮蔽磁場の測定結果を示し、図17は、内側ホール素子43にて検出した透過磁場の測定結果を示す。図16図17において、縦軸が磁場の強度(任意単位)であり、横軸が、検査領域の軸方向位置である。ここで、z=8mm付近の軸方向位置が、各円筒状の超電導層の上端位置を表し、z=147mm付近の軸方向位置が、各円筒状の超電導層の下端位置を表す。また、図16図17には、それぞれ、12個の測定グラフが示されており、これらのグラフは、回転ステージ33を所定の回転角度で固定した状態で軸方向にホール素子43,53を掃引した場合に検出される磁場強度の変化を表す。また、12個の測定グラフのうち最も上側のグラフは、回転ステージ30の回転角度が360°の場合における磁場強度の変化を表し、以降、下方にいくにつれて、回転角度が360°から30°ずつ減少した場合における磁場強度の変化を表す。ここで、回転ステージ30の回転角度が0°(=360°)の場合に、外側超電導層73を構成する超電導線材の上端の巻き始めの位置S2に、内側ホール素子43及び外側ホール素子53が対面するように、回転ステージ30の回転位置が調整される。ここで、外側超電導層73の周方向位置を回転角度で表した場合に位置S2の回転角度は0°である。つまり、回転ステージ30の回転角度と、外側超電導層73の周方向位置を表す回転角度が一致している。従って、図16及び図17に示す各グラフについての回転角度は、外側超電導層73の回転角度を表す。
【0094】
また、図16及び図17には、内側超電導層72の螺旋境界B1が破線により、外側超電導層73の螺旋境界B2が実線により、示される。図16からわかるように、各超電導層72,73の上端位置(z≒8mm)から4ターン目及び8ターン目において、回転角度360°付近、及び回転角度180°付近の遮蔽磁場が強くなっている。同様に、図17からわかるように、各超電導層72,73の上端位置(z≒8mm)から4ターン目及び8ターン目において、回転角度360°付近、及び回転角度180°付近の透過磁場が強くなっている。遮蔽磁場及び透過磁場が強いこれらの位置は、内側超電導層72及び外側超電導層73に意図的に形成した欠陥の位置に一致する。このことから、本実施形態に係る検査装置1により遮蔽磁場及び/又は透過磁場を検出することにより、円筒状超電導体7の欠陥の有無、すなわち円筒状超電導体7の超電導状態の健全性を検査できることが証明された。
【0095】
図18は、図16に示す遮蔽磁場の測定結果を円筒状超電導体7の展開図にマッピングして示す図であり、図19は、図17に示す透過磁場の測定結果を円筒状超電導体7の展開図にマッピングして示す図である。これらの図に示すように磁場の強さを円筒状超電導体7の展開図にマッピングすることにより、欠陥の存在を明確に把握することができる。
【0096】
また、図18において、斜め横方向に沿って薄く表される線が、外側超電導層73の螺旋境界B2であり、図19において、斜め横方向に薄く表される線が、内側超電導層72の螺旋境界B1である。特に図18からわかるように、回転角度0°及び360°付近に表される外側超電導層73の欠陥Doutは、上下に隣接する対の螺旋境界B2間に形成されており、回転角度180°付近に表される内側超電導層72の欠陥Dinは、螺旋境界B2上に形成されている。上述したように、内側超電導層72の螺旋境界B1は外側超電導層73の螺旋境界B2に対して軸方向に1/2ピッチだけずれるように形成されているので、内側超電導層72の欠陥Dinは、外側から見たときに、外側超電導層73の螺旋境界B2上に位置することになる。
【0097】
すなわち、外側超電導層73の隣接する螺旋境界B2間に欠陥が見られた場合、その欠陥は、外側超電導層73内に形成されていることがわかる。また、外側超電導層73の螺旋境界B2上に欠陥が見られた場合、その欠陥は、内側超電導層72内に形成されていることがわかる。このように、本実施形態によれば、欠陥位置と螺旋境界との関係から、超電導線材の螺旋巻きによって複数の層状に形成された円筒状超電導体のどの層に欠陥が存在しているかをも、判別することが可能となる。
【0098】
図20は、超電導線材が螺旋巻きされてなる円筒状超電導体7(内側超電導層72及び外側超電導層73)の円筒周面の位置を回転角度で表した場合における、回転角度と磁場の強さ(大きさ)との関係を表すグラフである。図20において、縦軸が磁場の強さであり、横軸が、円筒周面の位置を表す回転角度θである。回転角度θは、外側超電導層73の巻き始めの位置S2を-360°とし、1ターン目の部分を回転角度-360°~0°と表現し、2ターン目の部分を回転角度0°~360°と表現し、以降のターン分について回転角度が連続的に増加するように表現される。この場合、内側超電導層72の巻き始めの位置S1の回転角度θは-180°である。図20には、2つのグラフA,Bが示されるが、いずれのグラフも、図18に示すマッピング結果に基づいて作成した。ここで、グラフAは、図18に示される隣接する2つの螺旋境界B2の幅方向における中央位置を螺旋方向に沿って辿ったライン上の磁場の強度を、図15のA0の位置を0°として回転角度θに対応させてプロットすることにより作成した。このグラフAにより、外側超電導層73における欠陥の有無が判別される。また、グラフBは、図18に示される螺旋境界B2上の位置を螺旋方向に沿って辿ったライン上の磁場の強度を、図15のB0の位置を0°として回転角度θに対応させてプロットすることにより作成した。このグラフBにより、内側超電導層72の欠陥の有無が判別される。
【0099】
図20からわかるように、グラフAでは、回転角度θが1080°の位置、及び、回転角度θが2520°の位置にて、磁場が強くなっている。外側超電導層73に意図的に形成した欠陥Doutの回転位置は、図15より位置A0から1080°の位置及び2520°の位置であり、グラフAの結果はこれに一致する。また、グラフBでは、回転角度θが1260°の位置及び2700°の位置(欠陥Doutの回転位置から180°進んだ位置)にて、磁場が強くなっている。内側超電導層72に意図的に形成した欠陥Dinの回転位置は、図15より位置B0から1260°の位置及び2700°の位置であり、グラフBの結果はこれに一致する。このようにして、本実施形態に係る検査装置1を用いることにより、円筒状超電導体7の欠陥の有無を検査することができる。
【0100】
(変形例1)
上記第一実施形態では、回転ユニット30の回転角度が固定された所定の回転位置で、軸方向移動ユニット20を駆動させる。これにより外側ホール素子53及び内側ホール素子43が軸方向に移動しながら(掃引されながら)遮蔽磁場及び透過磁場を検出する。そして、軸方向への移動(掃引)が終了した後に回転角度を変化させ、変化後の回転位置で、再度、外側ホール素子53及び内側ホール素子43が軸方向に移動しながら(掃引されながら)遮蔽磁場及び透過磁場を検出する。つまり、複数の回転位置にて外側ホール素子53及び内側ホール素子43を軸方向に掃引しながら遮蔽磁場及び透過磁場が検出される。しかしながら、軸方向位置を固定した状態で、外側ホール素子53及び内側ホール素子43を回転ユニット30の駆動により回転移動させるとともに、外側ホール素子53及び内側ホール素子43が回転移動しながら遮蔽磁場及び透過磁場を検出してもよい。そして、回転移動が終了した後に軸方向位置を変化させ、変化後の軸方向位置で、再度、外側ホール素子53及び内側ホール素子43が回転移動(掃引)しながら遮蔽磁場及び透過磁場を検出してもよい。つまり、複数の軸方向位置にて、外側ホール素子53及び内側ホール素子43が回転移動しながら(掃引されながら)遮蔽磁場及び透過磁場を検出してもよい。
【0101】
(変形例2)
上記第一実施形態では、内側ホール素子43により透過磁場を検出し、外側ホール素子53により遮蔽磁場を検出した例を示した。しかしながら、内側ホール素子43により遮蔽磁場を検出し、外側ホール素子53により透過磁場を検出することができる。この場合、第一実施形態で示した外側永久磁石55に代えて、超電導円筒体7の内周側に配設される内側永久磁石が用いられる。図21は、変形例2に係る検査装置1の回転ユニット30、内側検査ユニット40、及び外側検査ユニット50の接続構成を示す断面概略図である。図21に示すように、内側永久磁石45が、内側検査ユニット40の内側検査板42の下方部分であって、内側スペーサ44を介して内側ホール素子43に対面する位置に埋設される。内側永久磁石45は、異なる2つの磁極(N極及びS極)を有し、N極が、内側スペーサ44を挟んで内側ホール素子43に対面するように、内側検査板42に埋設される。内側永久磁石45として、ネオジム系磁石(NdFeB磁石)を用いることができる。また、外側永久磁石45は省略される。本例に係る検査装置の構成のうち、上記以外の部分の構成は、上記第一実施形態に係る検査装置の構成と同一である。
【0102】
図22は、本例に係る検査装置1を用いて容器81内にセットされた円筒状超電導体7を検査する際における、検査装置1と円筒状超電導体7との配置関係を示す図である。図22に示すように、円筒状超電導体7の内側検査ユニット40が、円筒状超電導体7の内周空間に配設される。従って、内側検査ユニット40に設けられた内側永久磁石45及び内側ホール素子43も、円筒状超電導体7の内周空間に配設される。そして、内側ホール素子43は円筒状超電導体7の内周面に対面配置する。また、内側永久磁石45は、N極側が内側ホール素子43を挟んで円筒状超電導体7の内周面に対面するように配置される。また、外側ホール素子53は、円筒状超電導体7の外周側に配置するとともに、円筒状超電導体7の外周面に対面配置する。ここで、内側永久磁石45は、外側ホール素子53に対しては、N極が円筒状超電導体7の円筒周面を挟んで外側ホール素子53と対面するように円筒状超電導体7の外周面に対面して配設される。
【0103】
変形例2に係る検査装置1によれば、内側永久磁石45のN極から円筒状超電導体7にその内周側から印加される磁場が円筒状超電導体7の円筒周面に遮蔽されることにより、円筒状超電導体7の内周側に遮蔽磁場が形成される。こうして形成された遮蔽磁場が、円筒状超電導体7の内周面に対面配置した内側ホール素子43により検出される。そして、内側ホール素子43は、軸方向移動ユニット20及び回転ユニット30の駆動によって円筒状超電導体7の円筒周面(内周面)に沿って移動しながら遮蔽磁場を検出する。つまり、内側ホール素子43が遮蔽磁場検出センサとして用いられる。
【0104】
また、内側永久磁石45のN極から円筒状超電導体7にその内周側から印加される磁場が円筒状超電導体7の円筒周面を透過することにより、円筒状超電導体7の外周側に透過磁場が形成される。こうして形成された透過磁場が、円筒状超電導体7の外周面に対面配置した外側ホール素子53により検出される。そして、外側ホール素子53は、軸方向移動ユニット20及び回転ユニット30の駆動によって円筒状超電導体7の円筒周面(外周面)に沿って移動しながら透過磁場を検出する。つまり、外側ホール素子53が透過磁場検出センサとして用いられる。
【0105】
(第二実施形態)
上記第一実施形態では、軸方向移動ユニット20と回転ユニット30とをそれぞれ別々に駆動させる例について説明した。具体的には、回転ユニット30が停止しているときに軸方向移動ユニット20を駆動させる例について説明した。本実施形態では、軸方向移動ユニット20と回転ユニット30とを同時に駆動させる例について説明する。
【0106】
本実施形態では、回転ユニット30が一方向に回転駆動すると同時に、軸方向移動ユニット20が一方向に軸方向移動するように、両ユニット30,20の駆動がコントローラにより連動制御される。こうして両ユニット30,20が連動制御された場合、内側検査ユニット40及び外側検査ユニット50は、螺旋状に移動する。従って、内側検査ユニット40に取り付けられた内側ホール素子43、並びに、外側検査ユニット50に取り付けられた外側ホール素子53及び外側永久磁石55も、螺旋状に移動する。このように円筒状超電導体7の円筒周面に沿って内側ホール素子43及び外側ホール素子53を螺旋状に移動させることにより、効率的に、円筒状超電導体7の円筒周面の全体に亘り超電導状態の健全性を検査することができる。
【0107】
特に、検査対象である円筒状超電導体7が、上記第一実施形態で示したように、超電導線材を螺旋巻きすることにより円筒状に形成された内側超電導層72及び外側超電導層73を備える場合、その螺旋巻線方向に沿って内側ホール素子43及び外側ホール素子53が移動するように、回転ユニット30及び軸方向移動ユニット20が制御されるとよい。これによれば、超電導線材の長手方向に沿って、検査を行うことができる。
【0108】
また、円筒状超電導体7が、上記した内側超電導層72と外側超電導層73を有する場合、内側ホール素子43及び/又は外側ホール素子53は、それぞれ2つのホール素子により構成されていると良い。
【0109】
図23は、2つのホール素子を有する外側ホール素子531を螺旋方向に掃引する例を示す概略図である。図23に示すように、外側ホール素子531は、第一外側ホール素子532及び第二外側ホール素子533を有する。これらのホール素子532,533は、一体的に移動可能であるように構成される。
【0110】
図24は、外側ホール素子531と、円筒状超電導体7の内側超電導層72及び外側超電導層73との配置関係を示す図である。図24に示すように、第一外側ホール素子532は、内側超電導層72の螺旋境界B1に対面配置し、第二外側ホール素子533は、外側超電導層73の螺旋境界B2に対面配置する。ここで、螺旋境界B1は、外側超電導層73を構成する超電導線材の幅方向における中央に位置し、螺旋境界B2は、内側超電導層72を構成する超電導線材の幅方向における中央に位置している。従って、第一外側ホール素子532は、外側超電導層73を構成する超電導線材の幅方向における中央位置に対面し、第二外側ホール素子533は、内側超電導層72を構成する超電導線材の幅方向における中央位置に対面することになる。また、外側永久磁石55が、外側ホール素子531を挟んで円筒状超電導体7の外周面に対面配置しており、そのN極が外側ホール素子531を挟んで円筒状超電導体7の円筒周面に対面している。
【0111】
上記構成の外側ホール素子531を、螺旋境界B1及びB2に沿って螺旋状に掃引する。このとき、外側永久磁石55のN極から円筒状超電導体7に印加された磁場が外側超電導層73により遮蔽されることにより形成される遮蔽磁場が、第一外側ホール素子532により主に検出される。また、外側永久磁石55のN極から円筒状超電導体7に印加された磁場が内側超電導層72に遮蔽されることにより形成される遮蔽磁場が、第二外側ホール素子533により主に検出される。
【0112】
従って、螺旋状に移動する第一外側ホール素子532により検出される磁場強度を連続的にプロットしていくことによって、図20のグラフAがリアルタイムで作成され、螺旋状に移動する第二外側ホール素子533により検出される磁場強度を連続的にプロットしていくことによって、図20のグラフBがリアルタイムで作成される。このように、リアルタイムで図20に示すグラフを作成することにより、上記第一実施形態にて示したマッピング作業等を行うことなく検査結果を得ることができ、検査手順を簡素化することができる。
【0113】
(第三実施形態)
次に、本発明の第三実施形態について説明する。上記第一実施形態では、液体窒素に円筒状超電導体7を浸漬させて円筒状超電導体7を冷却して超電導状態にした状態で、検査装置1を用いて円筒状超電導体7の超電導状態の健全性を検査する例を示した。本実施形態では、冷凍機を用いて円筒状超電導体を冷却して超電導状態にした状態で、検査装置1を用いて円筒状超電導体の超電導状態の健全性を検査する例を説明する。
【0114】
図25は、冷凍機により冷却された円筒状超電導体7Aを検査装置1により検査する状態を示す図である。図25に示すように、冷凍機6に冷却された円筒状超電導体7Aの内周側に内側検査ユニット40が配設され、円筒状超電導体7Aの外周側に外側検査ユニット50が配設される。この状態で、検査装置1を駆動させることにより、円筒状超電導体7Aが検査される。
【0115】
図26は、冷凍機6と、冷凍機6に冷却される円筒状超電導体7Aと、検査装置1の内側検査ユニット40に取り付けられた内側ホール素子43と、外側検査ユニット50に取り付けられた外側ホール素子53及び外側永久磁石55との配置関係を表す概略図である。図26に示すように、冷凍機6は、冷凍機本体61と、延設部62と、コールドステージ63とを有する。冷凍機本体61の内部で冷凍が生成される。生成された冷凍は、延設部62を介してコールドステージ63に伝達される。このため、冷凍機6が駆動することにより、コールドステージ63が所定の温度、例えば円筒状超電導体7Aの超電導臨界温度Tc以下の温度に冷却される。
【0116】
コールドステージ63は円板状に形成され、一方の端面(上面)が上方を向くように、延設部62の先端(上端)に接続される。このコールドステージ63上に、円筒状超電導体7Aが同軸配置される。本実施形態では、円筒状超電導体7Aは、円筒基材71Aと、シート状の超電導体74とにより構成される。円筒基材71Aは、円筒部及び円筒部の一方端(図26において下端)から径方向に放射状に延設したフランジを有し、フランジがコールドステージ63上に載置される。このため円筒基材の円筒部がコールドステージ63から上方に延設される。また、円筒基材71Aの円筒部の外周面の大部分には、超電導体74が貼付することができるような凹部が形成されている。この凹部にシート状の超電導体74が貼付される。これにより超電導体74が円筒状に形成される。
【0117】
また、冷凍機本体61の上部に、真空断熱容器64が配設される。真空断熱容器64は、第一容器部641と、円板状部材642と、第二容器部643とを有する。第一容器部641は円筒形状を呈し、その下端面が冷凍機本体61の上面に気密的に固定される。そして、冷凍機本体61の上面から上方に立設して冷凍機6の延設部62及びコールドステージ63をその外周側から覆うように第一容器部641が配設される。
【0118】
第一容器部641の上端に円板状部材642が配設される。円板状部材642はコールドステージ63よりも僅かに上方位置にてコールドステージ63と同軸状に配置され、その下面が第一容器部641の上端に気密的に固定される。また、円板状部材642の中央部には、円筒状超電導体7の径よりも僅かに大きい径を有する円孔642aが形成されている。コールドステージ63上の円筒状超電導体7Aは、円板状部材642の円孔642aを突き抜けて上方に延びている。
【0119】
第二容器部643は、外周側円筒部643aと、内周側円筒部643bと、内周底部643cと、リング状上壁部643dとを有する。外周側円筒部643aの外周面の下端部が、円板状部材642の円孔642aの内周面に気密的に固定される。そして、外周側円筒部643aは、円筒状超電導体7Aの円筒基材71Aの円筒部に貼付された超電導体74を外周側から覆うように、円孔642aの内周壁から上方に延設される。従って、外周側円筒部643aは、円筒状超電導体7Aの外周側にその外周面に沿って配設されることになる。
【0120】
外周側円筒部643aの上端に、リング状上壁部643dの外周縁が連設される。リング状上壁部643dは、円筒状超電導体7Aの上端を覆うようにリング状に配設される。このリング状上壁部643dの内周縁に内周側円筒部643bの上端が連設される。内周側円筒部643bは、リング状上壁部643dの内周縁から、円筒状超電導体7Aの円筒基材71Aの円筒部の内周面に対面するように、円筒状超電導体7Aの軸方向に沿って下方に延設される。従って、内周側円筒部643bは、円筒状超電導体7Aの内周側にその内周面に沿って配設されることになる。そして、内周側円筒部643bの下端に内周底部643cが連設される。内周底部643cは、図26に示すようにコールドステージ63よりも僅かに上方であり且つ円筒状超電導体7Aの超電導体74の下端位置よりも僅かに下方に位置する。
【0121】
上記のように真空断熱容器64が配設されることにより、冷凍機本体61の上面部、第一容器部641、円板状部材642、及び第二容器部643に囲まれた断熱空間が形成される。断熱空間のうち第一容器部641と円板状部材642とに囲まれた空間には、冷凍機6の延設部62及びコールドステージ63が配設される。断熱空間のうち第二容器部643の外周側円筒部643aと内周側円筒部643bとに挟まれた空間には、円筒状超電導体7Aが配設される。
【0122】
上記構成の冷凍機6を駆動すると、コールドステージ63が冷却され、さらにコールドステージ63上に載置された円筒状超電導体7Aが冷却される。これにより円筒状超電導体7Aが超電導臨界温度Tc以下に冷却されて、円筒状超電導体7Aが超電導状態にされる。
【0123】
また、図26に示すように、検査装置1が備える内側検査ユニット40の内側ホール素子43が、第二容器部643の内周側円筒部643bを挟んで円筒状超電導体7Aの内周面に対面配置し、検査装置1が備える外側検査ユニット50の外側ホール素子53が、第二容器部643の外周側円筒部643aを挟んで円筒状超電導体7Aの外周面に対面配置する。この状態で、内側ホール素子43及び外側ホール素子53を、円筒状超電導体7Aの円筒周面(内周面及び外周面)に沿って掃引することにより、内側ホール素子43にて透過磁場が検出され、外側ホール素子53にて遮蔽磁場が検出される。こうして円筒状超電導体7Aの超電導状態の健全性が検査される。このように、本実施形態によれば、冷凍機によって冷却される円筒状超電導体を検査することができる。
【0124】
(第四実施形態)
図27は、NMR装置の超電導マグネットに組み込まれた円筒状超電導体7Aを検査装置1Aにより検査する状態を示す図である。また、図28は、円筒状超電導体7Aが組み込まれた超電導マグネット100を示す図である。まず、図28を参照して超電導マグネット100の構成について説明する。図28に示すように、超電導マグネット100は、冷凍機110と磁場発生装置120とを有する。
【0125】
冷凍機110は上記第三実施形態で説明した冷凍機6と同様に、冷凍機本体111と、延設部112と、コールドステージ113を有する。そして、コールドステージ113上に磁場発生装置120が載置される。
【0126】
磁場発生装置120は、内側超電導体121と、外側超電導体122と、試料ホルダ123と、真空断熱容器124と、室温ボア容器125とを有する。
【0127】
内側超電導体121は、本発明の円筒状超電導体に相当する。内側超電導体121は第二実施形態に係る円筒状超電導体7Aと同一構成であり、円筒基材121aと超電導体121bとを有する。円筒基材121aは、円筒部と、円筒部の一方端(下端)から径外方に放射状に延設したフランジを有し、フランジがコールドステージ113の上面にコールドステージ113と同軸状に載置される。また、円筒基材121aの円筒部の外周面の大部分に形成された凹部にシート状の超電導体121bが貼付される。これにより超電導体121bが円筒状に形成される。
【0128】
外側超電導体122は超電導状態で外部磁場を捕捉することによって強磁場を発生する部材である。外側超電導体122は、リング状の超電導バルクを軸方向に沿って複数個積層することにより円筒状に形成される。この円筒状の外側超電導体122の内周に内側超電導体121が同軸状に配設される。
【0129】
円筒状の外側超電導体122は、その下端面が円筒基材121aのフランジ上に載置されるように、内側超電導体121と同軸配置される。そして、この外側超電導体122の外周面及び上端面並びに内側超電導体121の上端面を覆うように、試料ホルダ123がこれらの超電導体に対して配設される。
【0130】
試料ホルダ123は、本体部123aと、フランジ部123bと、カバー部123cとを有する。本体部123aは円筒状に形成され、外側超電導体122の外周を覆うように配設される。この本体部123aの下端にフランジ部123bが連設される。フランジ部123bは、本体部123aの下端から径外方に放射状に広がるように形成されており、その下面がコールドステージ113の上面に固定される。また、本体部123aの上端にカバー部123cが連設される。カバー部123cは本体部123aの上端開口を覆うように円形に形成されており、外側超電導体122の上端面、及び内側超電導体121の上端面を覆うように配設される。また、カバー部123cの中心には内側超電導体の内周径とほぼ同じ径の円孔が形成される。
【0131】
真空断熱容器124は、本体部124aと、フランジ部124bと、カバー部124cとを有する。本体部124aはコールドステージ113の外径よりも大きい内径を有し、円筒状に形成される。本体部124aに、冷凍機110の延設部112及びコールドステージ113、内側超電導体121、外側超電導体122、及び試料ホルダ123が覆われる。また、本体部124aの下端にフランジ部124bが連設される。このフランジ部124bが冷凍機110の冷凍機本体111の上面に固定される。また、本体部124aの上端にカバー部124cが連設される。カバー部124cは本体部124aの上端開口を覆うように円板状に形成される。カバー部124cは、試料ホルダ123のカバー部123cよりも僅かに上方に位置する。また、カバー部124cの中心には、試料ホルダ123のカバー部123cに形成された円孔の径よりも小さい径を有する円孔が形成される。
【0132】
室温ボア容器125は、容器部125aと蓋部125bとを有する。容器部125aは有底円筒形状を呈し、底面を下方に向けた状態で、内側超電導体121の内周空間に内側超電導体121及び外側超電導体122と同軸状に配置される。この容器部125aの上端部分は、真空断熱容器124のカバー部124cに形成された円孔から上方に突き抜けており、その上端から径外方に放射状に広がるように形成された蓋部125bが連設される。この蓋部125bは真空断熱容器124のカバー部124cの上面に載置される。
【0133】
真空断熱容器124と室温ボア容器125によって、冷凍機本体111の上方空間が密閉空間にされる。この密閉空間内には、冷凍機110の延設部112及びコールドステージ113、外側超電導体122、内側超電導体121、試料ホルダ123が配設される。この密閉空間は、断熱のために真空状態にされる。なお、室温ボア容器125の容器部125aの内周空間は、室温ボア空間と呼ばれる。
【0134】
上記構成の超電導マグネット100において、冷凍機110を駆動すると、コールドステージ113が冷却され、さらにコールドステージ113上に載置された外側超電導体122及び内側超電導体121が冷却される。これにより外側超電導体122及び内側超電導体121が超電導臨界温度Tc以下に冷却されて、超電導状態にされる。
【0135】
また、図27に示すように、本実施形態に係る検査装置1Aは、図22に示す変形例2に係る検査装置1から外側検査ユニット50を除外したような構成である。つまり、検査装置1Aは、内側ホール素子43及び内側永久磁石45を有する検査ユニット40を備え、外側検査ユニットを備えない。そして、内側検査ユニット40が、超電導マグネット100の室温ボア空間内に挿入される。
【0136】
室温ボア空間内に挿入された内側検査ユニット40の内側ホール素子43は、図28に示すように、室温ボア容器125の容器部125aを挟んで内側超電導体121(円筒状超電導体)の内周面に対面配置する。また、内側永久磁石45は、内側ホール素子43及び室温ボア容器125の容器部125aを挟んで内側超電導体121の内周面に対面配置する。ここで、本実施形態では、内側永久磁石45は、そのN極側が内側ホール素子43を向くように配置される。この状態で、内側ホール素子43を、内側超電導体121の内周面に沿って掃引する。
【0137】
本実施形態においては、内側永久磁石45のN極から内側超電導体121に磁場が印加される。内側超電導体121は超電導状態にされているので、内側永久磁石45からの印加磁場を遮蔽するように遮蔽電流が内側超電導体121内に形成される。これにより印加磁場が遮蔽され、こうして遮蔽された磁場(遮蔽磁場)が、内側超電導体121の内周空間のうち内側永久磁石45と内側超電導体121との間に形成される。従って、内側永久磁石45と内側超電導体121との間の内側ホール素子43が、遮蔽磁場を検出する。このように、本実施形態においては、内側ホール素子43が遮蔽磁場検出センサとして機能する。そして、内側ホール素子43が、内側超電導体121の内周面に沿って掃引されながら(移動しながら)遮蔽磁場を検出することにより、内側超電導体121の超電導状態の健全性が検査される。
【0138】
本実施形態によれば、NMR用の超電導マグネット100に組み込まれた円筒状超電導体である内側超電導体121を、室温ボア容器125越しに直接検査することができる。このため検査用に専用の冷凍機や真空容器を準備することなく、円筒状超電導体を検査することができる。
【0139】
以降は、第三実施形態にて説明した冷凍機6により冷却した円筒状超電導体7Aの超電導状態の健全性を検査するための様々な変形例について述べる。
(第五実施形態)
図29は、第五実施形態に係る検査装置を適用した検査の例を示す図である。図29に示すように、本実施形態においては、内側ホール素子43の背面(内側ホール素子43のうち円筒状超電導体7Aの内周面を向いた面と反対側の面)に、磁性材料からなるヨーク46が設けられている。また、本実施形態において、外側永久磁石55は備えているものの、外側ホール素子は備えていない。それ以外の構成は、上記第一実施形態で示した検査装置1の構成と同一である。
【0140】
内側ホール素子43の背面にヨーク46が設けられているので、外側永久磁石55のN極から発生して円筒状超電導体7Aの例えば欠陥を透過した磁束はヨーク46に集中する。ヨーク46は内側ホール素子43の背面に取り付けられているので、ヨークに集中した磁束は必ず内側ホール素子43を通過することになる。このため内側ホール素子43にて検出される透過磁場が強くなる。つまり、検出感度が向上し、微小な欠陥であってもその欠陥の存在を透過磁場の強さの変化により表すことができる。このため、検査精度をより向上させることができる。
【0141】
(第六実施形態)
図30は、第六実施形態に係る検査装置を適用した検査の例を示す図である。図30に示すように、本実施形態に係る検査装置においては、第五実施形態と同様に、内側ホール素子43の背面にヨーク46が設けられている。また、外側永久磁石55と円筒状超電導体7Aとの間に外側ホール素子53が設けられている。それ以外の構成は、上記第一実施形態で説明した検査装置1の構成と同一である。
【0142】
本実施形態においても第五実施形態と同様に、内側ホール素子43の背面に設けられたヨーク46に円筒状超電導体7Aの欠陥を透過した磁束が集中する。このため、内側ホール素子43及び外側ホール素子53の検出感度が向上し、検査精度を向上することができる。また、第一実施形態と同様に、内側ホール素子43により透過磁場を、外側ホール素子53により遮蔽磁場を、それぞれ同時に検出することができる
【0143】
(第七実施形態)
図31は、第七実施形態に係る検査装置を適用した検査の例を示す図である。この実施形態においては、第四実施形態にて説明した図27に示す検査装置1Aに類似する検査装置が用いられる。従って、本実施形態に係る検査装置は、内側検査ユニット40は備えるものの、外側検査ユニットは備えない。
【0144】
また、本実施形態に係る検査装置においては、内側検査ユニット40が、第一内側ホール素子43A及び第二内側ホール素子43Bを有する。第一内側ホール素子43Aが本発明の第一センサに相当し、第二内側ホール素子43Bが本発明の第二センサに相当する。第一内側ホール素子43Aは、感磁部43a1を有し、内側検査ユニット40が備える内側永久磁石45のN極面と円筒状超電導体7Aとの間に設けられる。第二内側ホール素子43Bは、感磁部43a2を有し、内側永久磁石45のS極面、すなわちN極面とは反対側の極面と円筒状超電導体7Aとの間に設けられる。なお、内側永久磁石45のN極面と第一内側ホール素子43Aとの間に第一内側スペーサ44Aが配設され、内側永久磁石45のS極面と第二内側ホール素子43Bとの間に第二内側スペーサ44Bが配設される。また、内側永久磁石45は、例えば、図31に示すように、N極面及びS極面が内側ロッド部41の外周面から互いに反対方向に露出するように、内側ロッド部41に埋設されることによって、構成することができる。本実施形態に係る検査装置のそれ以外の構成は、上記第四実施形態にて説明した検査装置1Aと同一の構成である。
【0145】
本実施形態によれば、第一内側ホール素子43Aがそれに対面する検査領域における遮蔽磁場を検出し、第二内側ホール素子43Bがそれに対面する検査領域における遮蔽磁場を検出する。つまり、同時に2箇所の検査領域における遮蔽磁場を検出することができる。このため、検査時間の短縮化を図ることができる。なお、本実施形態のように、内側永久磁石45のS極面を円筒状超電導体7Aの円筒周面に対面させた場合であっても、N極面を円筒状超電導体7Aの円筒周面に対面させた場合と同様に、遮蔽磁場及び透過磁場を検出することができる。
【0146】
(第八実施形態)
図32は、第八実施形態に係る検査装置を適用した検査の例を示す。この実施形態においては、外側永久磁石55のN極面に、磁束を集中させるためのヨーク56が取り付けられている。それ以外の構成についは、上記第一実施形態に係る検査装置1と同一の構成である。
【0147】
本実施形態によれば、外側永久磁石55のN極面から発生した磁場がヨーク56に集中することによって円筒状超電導体7Aの検査領域に集中する。このため、欠陥が存在する場合にはより多くの磁束が外側ホール素子53及び内側ホール素子43を通過する。よって、欠陥が存在する場合に遮蔽磁場及び透過磁場の大きさがより強くなり、検出感度及び位置分解能が向上する。その結果、検査精度がより向上する。
【0148】
(第九実施形態)
図33は、第九実施形態に係る検査装置を適用した検査の例を示す。この実施形態においては、外側永久磁石55に代えて、外側コイル57が設けられている。それ以外の構成については、上記第一実施形態に係る検査装置1と同一の構成である。
【0149】
本実施形態によれば、外側コイル57への通電量を制御することにより、外側コイル57から円筒状超電導体7Aに印加する磁場の大きさを調整することができる。このため、外側コイル57への通電量や通電方向を変更することにより、最適な検査条件を設定することができる。また、外側コイル57への通電電流が小さく発生磁場が小さい場合には、円筒状超電導体7Aの表面の欠陥の有無及び臨界電流密度Jcの不均一性の評価、すなわち円筒状超電導体7Aの表面層の健全性の検査を行うことができる。また、通電電流を非常に大きくして、発生磁場を非常に大きくした場合、磁場が次第に円筒状超電導体7Aの表面からその内部に進入するようになる。このため円筒状超電導体7Aの表面のみならず、円筒状超電導体7Aの内部の超電導状態の健全性(欠陥の有無や臨界電流密度Jcの不均一性)をも検査することができる。
【0150】
以上、本発明の様々な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記第一実施形態では、外側ホール素子53により遮蔽磁場を検出し、内側ホール素子43により透過磁場を検出する例を示したが、遮蔽磁場のみ、或は透過磁場のみを、検出するように検査装置を構成してもよい。また、第九実施形態では、外側コイル57を用いる例について説明したが、コイルに代えて電磁石を用いても良い。また、外側検査ユニット50に外側ホール素子53及び外側永久磁石55を取り付けるとともに、内側検査ユニット40に内側ホール素子43及び内側永久磁石55を取り付けても良い。つまり、円筒状超電導体の内周側及び外周側の双方に、磁石を設けても良い。この場合、遮蔽磁場及び透過磁場の状態が複雑になるが、欠陥の有無により遮蔽磁場及び透過磁場が変化することには変わりがないので、このように構成しても、円筒状超電導体の健全性を検査することができる。このように、本発明は、その趣旨を逸脱しない限りにおいて、変形可能である。
【符号の説明】
【0151】
1,1A…検査装置、6…冷凍機、7,7A…円筒状超電導体、71,71A…円筒基材、72…内側超電導層、73…外側超電導層、74…超電導体、10…手動昇降操作ユニット、20…軸方向移動ユニット、25…軸方向移動ステージ、30…回転ユニット、33…回転ステージ、40…内側検査ユニット、41…内側ロッド部、42…内側検査板、43…内側ホール素子(透過磁場検出センサ、遮蔽磁場検出センサ)、43A…第一内側ホール素子(第一センサ)、43B…第二内側ホール素子(第二センサ)、44…内側スペーサ、45…内側永久磁石(磁石)、46…ヨーク、50…外側検査ユニット、51…外側ロッド部、52…外側検査板、53,531…外側ホール素子(遮蔽磁場検出センサ、透過磁場検出センサ)、532…第一外側ホール素子、533…第二外側ホール素子、54…外側スペーサ、55…外側永久磁石(磁石)、56…ヨーク、57…外側コイル(磁石)、81…容器、100…超電導マグネット、110…冷凍機、120…磁場発生装置、121…内側超電導体(円筒状超電導体)、121a…円筒基材、121b…超電導体、122…外側超電導体、123…試料ホルダ、124…真空断熱容器、125…室温ボア容器、B1,B2…螺旋境界、D…欠陥、R…検査領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14A
図14B
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33