(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-23
(45)【発行日】2022-08-31
(54)【発明の名称】水性インキ組成物
(51)【国際特許分類】
C09D 11/18 20060101AFI20220824BHJP
【FI】
C09D11/18
(21)【出願番号】P 2019024159
(22)【出願日】2019-02-14
【審査請求日】2021-11-16
(73)【特許権者】
【識別番号】000003506
【氏名又は名称】第一工業製薬株式会社
(72)【発明者】
【氏名】西浦 聖人
【審査官】澤村 茂実
(56)【参考文献】
【文献】特開2000-129189(JP,A)
【文献】特開2013-108055(JP,A)
【文献】国際公開第2020/080194(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C09D 11/18
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
水と、着色剤と、多糖類および合成高分子の少なくとも一方と、下記一般式(1)で表される環状オリゴ糖とを含有する水性インキ組成物。ただし、一般式(1)中、Rは水素原子又はその置換基を示し、複数のRは同一でも異なってもよく、nは0~3の整数を示す。
【化1】
【請求項2】
ボールペン用水性インキ組成物である、請求項1に記載の水性インキ組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水性インキ組成物に関する。
【背景技術】
【0002】
水性ボールペンの分野では剪断減粘性インキをインキ収容管に直接収容し該インキの後端にインキ逆流防止体を備える構造の、所謂「ゲルボールペン」が多数市場に出回っているが、この種のボールペンに使用されるインキは剪断減粘性付与剤として、キサンタンガム、サクシノグリカン等の多糖類、架橋型アクリル酸重合体、会合型ウレタン等の合成高分子が提案され、実用化されている。しかしながら、これらの剪断減粘性付与剤はいずれもペン先で水分が蒸発した際に、強固な乾燥膜を形成し易いため、耐ドライアップ性を著しく劣化させることがある。
【0003】
従って、前記剪断減粘性水性ボールペンインキにおいては、更に耐ドライアップ性の改良が必要となり、水溶性有機溶剤、尿素及び/又はその誘導体の増量等が試みられてきた(例えば、特許文献1 参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、例えば、グリセリン、エチレングリコール等の多価アルコールに代表される水溶性有機溶剤は十分な耐ドライアップ性を得るためには多量の添加が必要となり、その結果インキ粘度の上昇による高速筆記時のインキ追従性不良や、筆跡の乾燥不良、筆跡の滲み、線ワレ等種々の不具合が発生することがある。また、尿素及び/又は尿素誘導体はある程度の耐ドライアップ性の向上は認められるものの、高温環境下における保管により分解してアンモニアを発生させ、インキのpHを高くし、ペン先での固形分の析出を誘発する等、筆記具の性能劣化を引き起こしてしまうことがある。
【0006】
更に、前記水溶性有機溶剤、尿素及び/又は尿素誘導体等は吸水性能の高さが耐ドライアップ性を発現させているが、これらの従来の耐ドライアップ性付与剤を過剰に添加したインキは高湿度条件下に筆記具が放置された場合、ペン先部分において局部的に水分を吸収する等、インキの安定性に問題を生じることがあった。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の水性インキ組成物は、水と、着色剤と、多糖類および合成高分子の少なくとも一方と、下記一般式(1)で表される環状オリゴ糖とを含有する。ただし、一般式(1)中、Rは水素原子又はその置換基を示し、複数のRは同一でも異なってもよく、nは0~3の整数を示す。
【0008】
【発明の効果】
【0009】
本発明によれば、過剰量の水溶性有機溶剤の添加で発生するインキの粘度上昇や、尿素及び/又は尿素誘導体の添加により高温下で発生する尿素類の分解によるインキへの悪影響等の問題点を解消し、良好なインキ安定性、及び、優れた耐ドライアップ性を備えた水性インキ組成物を提供する。
【図面の簡単な説明】
【0010】
【
図1】一実施形態に係る環状オリゴ糖の合成ステップを示す図である。
【
図2】他の実施形態に係る環状オリゴ糖の合成ステップを示す図である。
【
図3】一実施形態に係る環状オリゴ糖の分子構造を示す分子模型の写真である。
【
図4】シクロデキストリンの分子構造を示す分子模型の写真である。
【
図5】合成例1における完全メチル化セルロース及び部分メチル化セルロースのFT-IRスペクトル図である。
【
図6】合成例1における完全メチル化セルロースの1H-NMRスペクトル図である。
【
図7】合成例1における6量体単離前の粗生成物のMALDI-TOF MSスペクトル図である。
【
図8】合成例1のメチル化環状セロオリゴ糖(6量体)の1H-NMRスペクトル図である。
【
図9】合成例1のメチル化環状セロオリゴ糖(6量体)のNOESYスペクトル図である。
【
図11】合成例1のメチル化環状セロオリゴ糖(6量体)の13C-NMRスペクトル図である。
【
図12】合成例1のメチル化環状セロオリゴ糖(6量体)のMALDI-TOF MSスペクトル図である。
【
図13】合成例1のメチル化環状セロオリゴ糖(6量体)及び完全メチル化α-シクロデキストリンのHPLCによるクロマトグラムである。
【
図14】合成例2における部分アセチル化セロオリゴ糖のMALDI-TOF MSスペクトル図である。
【
図15】合成例2におけるアセチル化環状セロオリゴ糖を含む粗生成物のMALDI-TOF MSスペクトル図である。
【
図16】合成例2における環状セロオリゴ糖を含む粗生成物のMALDI-TOF MSスペクトル図である。
【発明を実施するための形態】
【0011】
[環状セロオリゴ糖]
まず、本実施の形態に係る、上記一般式(1)により示される環状オリゴ糖(環状セロオリゴ糖とも称する)について詳細に説明する。
【0012】
従来、環状オリゴ糖としてシクロデキストリンが知られている。シクロデキストリンは、下記一般式(×)で表されるように(式中のmは1~3の整数)、グルコースがα-1,4グルコシド結合により連結された環状構造を持つものであり、一般に6個のグルコースが結合したα-シクロデキストリンと、7個のグルコースが結合したβ-シクロデキストリンと、8個のグルコースが結合したγ-シクロデキストリンがある。
【0013】
【0014】
これに対して、本実施形態に係る環状セロオリゴ糖は、上記一般式(1)で表される化合物であり、グルコース又はその誘導体である構成単位がβ-1,4グルコシド結合により連結された環状構造を持つ。式(1)中のnは0~3の整数を示し、そのため、式(1)で表される環状オリゴ糖は、上記構成単位の5量体、6量体、7量体、8量体、又はこれらの2種以上の混合物である。
【0015】
本発明の実施形態に係る環状セロオリゴ糖は、たとえば、後述のように、下記一般式(2)で表されるオリゴ糖の末端のヒドロキシ基同士を結合させて環化させる等により得られる。ただし、式(2)中、Rは水素原子又はその置換基を示し、複数のRは同一でも異なってもよく、kは3~6の整数を示す。
【0016】
【0017】
式(1)中のRが全て水素原子の場合、下記式(3)で表される、化学修飾されていない(即ち、非置換の)環状オリゴ糖である(ここで、式(3)中のnは0~3の整数を示す。)。
【0018】
【0019】
式(3)の環状オリゴ糖は、上記式(×)のシクロデキストリンとはグルコース間の連結構造がβ-1,4結合とα-1,4結合との点で異なるのみであるため、基本的に、シクロデキストリンに適用される公知の化学修飾法を用いて置換基を導入することができる。そのため、式(1)の環状オリゴ糖は、公知のシクロデキストリンの置換基と同様の置換基を持つことができる。
【0020】
式(1)中のRは、上記のように全てが水素原子でもよく、全てが置換基でもよく、水素原子と置換基が共存してもよい。共存する場合、両者の比率は特に限定されない。例えば、ORをグルコース構成単位の1級ヒドロキシ基に相当する基(OR1)と2級ヒドロキシ基に相当する基(OR2)とに区別して、式(1)を下記一般式(1-1)の通りに書き換えたとき、R1の全てが置換基でR2の全てが水素原子でもよく、R1の一部が置換基でR1の残部及びR2の全部が水素原子でもよく、R1の全て及びR2の一部が置換基でR2の残部が水素原子でもよい。また、R2の全てが置換基でR1の全てが水素原子でもよく、R2の一部が置換基でR2の残部及びR1の全部が水素原子でもよく、R2の全部及びR1の一部が置換基でR1の残部が水素原子でもよい。更には、R1とR2の双方で一部が置換基で残部が水素原子でもよい。
【0021】
【0022】
式(1)中のRとして示される置換基は、グルコースのヒドロキシ水素を置換する基であり、グルコースのヒドロキシ水素から1又は複数の反応を経て誘導可能な各種の基が挙げられる。
【0023】
具体的には、Rとして示される置換基(以下、置換基Rという。)としては、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアルケニル基、置換又は無置換のシクロアルケニル基、置換又は無置換のアリール基(例えば、フェニル基、トリル基など)、置換又は無置換のアラルキル基(例えば、ベンジル基、フェネチル基、トリチル基など)、アシル基、シリル基、スルホニル基、糖残基、置換又は非置換のポリオキシアルキレン基などが挙げられる。置換基Rの炭素数としては特に限定されず、例えば1~40でもよく、1~30でもよく、1~20でもよい。
【0024】
置換基Rの例である上記置換アルキル基、置換シクロアルキル基、置換アルケニル基、置換シクロアルケニル基、置換アリール基、置換アラルキル基としては、例えば、ヒドロキシアルキル基のように置換基としてヒドロキシ基を有するもの、スルホアルキル基又はその塩もしくはエステル基のように置換基としてスルホ基又はその誘導体基を有するもの、カルボキシメチル基又はその塩もしくはエステル基のように置換基としてカルボキシ
又はその誘導体基を有するものなどが挙げられる。ここでのエステル基を構成する炭化水素基としては、例えば、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基が挙げられる。
【0025】
置換基Rの例である上記アシル基としては、例えば、アセチル基やベンゾイル基のように-OR中の酸素原子とエステル結合を形成するモノカルボン酸の残基(例えば、R:-CO-Q1)でもよく、また、コハク酸などのジカルボン酸の残基でもよく、ジカルボン酸残基の場合、グルコースとエステル結合していない方のカルボキシ基は酸型でも金属塩でもエステル基を形成してもよい(例えば、R:-CO-Q2-COO-Q3)。ここで、Q1は、水素原子又は炭素数1~10(好ましくは1~6)の有機基を示し、有機基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アラルキル基が挙げられる。Q2は、炭素数1~6の炭化水素基(例えばアルカンジイル基など)を示す。Q3は、水素原子、アルカリ金属又は炭素数1~10(好ましくは1~6)の有機基を示し、有機基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アラルキル基が挙げられる。
【0026】
置換基Rの例である上記シリル基としては、例えば、tert-ブチルジメチルシリル基などのトリアルキルシリル基が挙げられる。また、上記スルホニル基としては、例えば、p-トルエンスルホニル基などのアリールスルホニル基などが挙げられる。更に、糖残基としては、例えば、グルコシル基、マントシル基などが挙げられる。
【0027】
置換基Rの例である上記置換又は非置換のポリオキシアルキレン基としては、ポリオキシエチレン基などの炭素数1~4のオキシアルキレンの繰り返し単位を持つ基が挙げられ、末端のOHは、アミノ基やアジド基、トリチル基などの置換基で置換されていてもよい。なお、オキシアルキレン基の繰り返し数は特に限定されず、例えば2~20でもよい。
【0028】
以上列挙した置換基Rは、式(1)中の複数のRについて、いずれか1種のみが導入されてもよく、2種以上組み合わせて導入されてもよい。
【0029】
本実施形態に係るβ-1,4グルコシド結合を持つ環状オリゴ糖は、上記一般式(2)で表されるオリゴ糖の末端のヒドロキシ基同士を結合させて環化させる工程を経て製造することができる。式(2)中のRは水素原子又はその置換基を示す。式(2)のRで示される置換基としては、上述した式(1)の置換基と同様のものを例示することができ、好ましくは、Rはアルキル基又はアシル基であり、例えば、式(2)中のORは、グルコースのヒドロキシ基をアシル化(より好ましくはアセチル化)したもの(即ち、アシルオキシ基、好ましくはアセチルオキシ基)、グルコースのヒドロキシ基をアルキル化(より好ましくはメチル化)したもの(即ち、アルコキシ基、好ましくはメトキシ基)が挙げられる。
【0030】
一実施形態に係る環状オリゴ糖としてセルロース由来の環状セロオリゴ糖を製造する方法について、
図1に基づき説明する。
【0031】
図1に示す製造方法では、まず、式(4)で表されるセルロースをアセチル化する(ここで、式中のpはセルロースにおけるグルコース2分子分の繰り返し数に相当する数である)。セルロースは、グルコースがβ-1,4グルコシド結合により連結された構造を持ち、隣接するグルコースユニットは互いに裏返しになって一列に並び直鎖状の構造をとっている。そのため、セルロースは強固な分子内、分子間水素結合を有し、水に不溶である。かかるセルロースのヒドロキシ基をアセチル化して水素結合を消失させることで分子鎖に柔軟性を付与する。なお、部分的にアセチル化されたセルロースを出発原料として用いてもよい。
【0032】
アセチル化は、例として、過塩素酸の存在下、セルロースに無水酢酸を反応させることにより行うことができる(例えば、P. Arndt et al., Cellulose,2005, 12, 317.を参照)。アセチル化により、セルロースの各構成単位の3つのヒドロキシ基を全てアセチル化した、式(5)で表される三酢酸セルロース(完全アセチル化セルロース)が得られる。
【0033】
次いで、三酢酸セルロースに対してグルコシド結合の開裂を行うことで、式(6)で表される部分アセチル化セロオリゴ糖を合成する。グルコシド結合の開裂は、三酢酸セルロースに濃硫酸を加えることにより行うことができる(例えば、H. Namazi et al., J. Appl. Polym. Sci., 2008, 110, 4034.、及び、T. Kondo, D. G. Gray, J. Appl. Polym. Sci. 1992, 45, 417を参照)。そして、開裂後に分離精製することで、式(6)に示されるように、5~8個のグルコースユニットを有し、その両末端のグルコースユニットの1位と4位にヒドロキシ基を有し、その他のヒドロキシ基は全てアセチル化された構造をもつ鎖状の部分アセチル化セロオリゴ糖が得られる。式(6)のセロオリゴ糖は、上記式(2)で表されるオリゴ糖において、-ORが-O-Acのものである(ここで、Acはアセチル基)。
【0034】
次いで、式(6)で表される部分アセチル化セロオリゴ糖の両末端のヒドロキシ基同士を結合させて環化させる。環化方法は、特に限定されず、例えば式(6)で表される部分アセチル化セロオリゴ糖の末端の1位ヒドロキシ基をトリクロロアセトイミデート化してから環化反応させてもよい。トリクロロアセトイミデート化は、部分アセチル化セロオリゴ糖にトリクロロアセトニトリルを反応させることで行うことができ、次いで、トリクロロアセトイミデート化した部分アセチル化セロオリゴ糖に、三フッ化ホウ素ジエチルエーテル錯体を加えて反応させることにより、両末端のグルコースユニットがβ-1,4グルコシド結合により連結されて環状になる。
【0035】
なお、トリクロロアセトイミデート化することなく、部分アセチル化セロオリゴ糖に三フッ化ホウ素ジエチルエーテル錯体を加えて反応させることにより、両末端のグルコースユニットをβ-1,4グルコシド結合により連結して環状にしてもよい。
【0036】
これにより、式(7)で表されるアセチル化環状セロオリゴ糖が得られる。式(7)のアセチル化環状セロオリゴ糖は、上記式(1)で表される環状オリゴ糖において、-ORが全て-O-Acのものである。
【0037】
次いで、式(7)で表されるアセチル化環状セロオリゴ糖のアセチルオキシ基を、例えば塩基触媒(水酸化ナトリウム、トリエチルアミンなど)を用いて加水分解することにより、上記の式(3)で表される環状オリゴ糖が得られる。
【0038】
図2は、他の実施形態に係る環状オリゴ糖の合成ステップを示した図である。
図2の例では、セルロースのヒドロキシ基が部分的にメチル化された、式(10)で表される部分メチル化セルロースを出発原料として用いて、式(13)で表されるメチル化環状セロオリゴ糖を合成する。
【0039】
図2に示す製造方法では、まず、部分メチル化セルロースをメチル化して完全メチル化セルロースを合成する。メチル化は、例として、部分メチル化セルロースに水素化ナトリウムとヨードメタンを反応させることにより行うことができる(例えば、J. N. Bemiller, Earle E. Allen, JR., J. Polym. Sci. 1967, 5, 2133.を参照)。これにより、セルロースの各構成単位の3つのヒドロキシ基を全てメチル化した、式(11)で表される完全メチル化セルロースが得られる。
【0040】
次いで、完全メチル化セルロースに対してグルコシド結合の開裂を行うことで、式(12)で表される部分メチル化セロオリゴ糖を合成する。グルコシド結合の開裂は、
図1の場合と同様である。そして、開裂後に分離精製することで、式(12)に示されるように、5~8個のグルコースユニットを有し、その両末端のグルコースユニットの1位と4位にヒドロキシ基を有し、その他のヒドロキシ基は全てメチル化された構造をもつ鎖状の部分メチル化セロオリゴ糖が得られる。式(12)のセロオリゴ糖は、上記式(2)で表されるオリゴ糖において、-ORが-O-Meのものである(ここで、Meはメチル基を示す)。
【0041】
次いで、式(12)で表される部分アセチル化セロオリゴ糖の両末端のヒドロキシ基同士を結合させて環化させる。環化方法は、特に限定されず、例えば、部分メチル化セロオリゴ糖にトリフルオロメタンスルホン酸無水物(Tf2O)と2,6-ジ-tert-ブチルピリジン(DBP)を反応させることにより行うことができる。これにより、両末端のグルコースユニットがβ-1,4グルコシド結合により連結されて環状になり、式(13)で表されるメチル化環状セロオリゴ糖が得られる。このメチル化環状セロオリゴ糖は、上記式(1)で表される環状オリゴ糖において、-ORが全て-O-Meのものである。
【0042】
式(1)で表される環状オリゴ糖において、式中のRの置換基は、上記のように、基本的にはシクロデキストリンに適用される公知の化学修飾法を用いて導入することができる。例えば、-ORとしてメトキシ基などのアルコキシ基を導入するには、特開昭61-200101号公報に記載のヒドロキシ基をアルキル化する方法を利用してもよい。また、Rが置換アルキル基の場合としてスルホアルキル基やカルボキシメチルエステル基を、エーテル酸素を介して導入するには、特開平11-60610号公報や特開2013-28744号公報に記載の方法を利用してもよい。また、Rがアシル基の場合としてコハク酸などのジカルボン酸の残基を導入するには、特開平4-81403号公報に記載の方法を利用してもよい。また、Rがスルホニル基の場合としてトシル基をエーテル酸素を介して導入するには、特開2016-69652号公報に記載の方法を利用してもよい。
【0043】
なお、置換基を導入する方法としては、上記のようにアセチル化環状セロオリゴ糖を合成した後、一旦加水分解により式(3)の環状オリゴ糖にしてから置換基を導入することは必ずしも要せず、環化した後、そのまま他の置換基に変換してもよい。
【0044】
本実施形態に係る環状オリゴ糖は、上記のように、地球上で最も多量に存在する有機化合物であって再生可能な非食用植物資源であるセルロースから合成することができるので、資源の有効活用を図ることができる。
【0045】
また、本実施形態に係る環状オリゴ糖とシクロデキストリンとの分子構造を比較した場合、本実施形態に係る環状オリゴ糖は、シクロデキストリンよりも空孔内の疎水性が高い。詳細には、式(×)で表されるシクロデキストリンの分子構造が
図4に示す通りであるのに対し、式(3)で表される環状オリゴ糖の分子構造は
図3に示す通りである。
図3及び
図4において、白色の原子が水素原子、黒色の原子が炭素原子、その間のグレーの原子が酸素原子を示す。
【0046】
図4に示すように、シクロデキストリンでは、グルコースユニット間を連結しているグルコシド酸素が空孔の内側に向いており、そのため、空孔内はエーテル程度の疎水性環境にある。これに対し、
図3に示すように、本実施形態に係る環状オリゴ糖では、グルコシド酸素が外側を向いており、空孔の内側に酸素原子が向いていない。そのため、本実施形態に係る環状オリゴ糖では、空孔内がシクロデキストリンよりも疎水性の高い環境にあり、疎水性の高い物質の取り込みが可能である。これにより、例えば水中において、より高いゲスト包接能とゲスト選択性を持つことが期待できる。
【0047】
本実施形態に係る環状オリゴ糖は、空孔内に疎水性のゲスト分子またはその一部を包接する性質を有しているため、シクロデキストリンと同様、揮発性物質の不揮発化及び徐放、不安定物質の安定化、難溶性物質の可溶化などを目的として、食品、化粧品、トイレタリー製品、医薬品等の用途に用いることができる。
[水性インキ組成物]
【0048】
本実施の形態にて用いられる環状セロオリゴ糖は、インキ中に添加した場合、長期間の保管においても析出することなく安定して存在すると共に、優れた耐ドライアップ性を付与することができるものである。特に、剪断減粘性付与剤として多糖類や合成高分子を用いた場合、より優れた耐ドライアップ性を発揮するものとなる。
【0049】
前記環状セロオリゴ糖は、インキ組成物全量に対して0.1~20.0重量%、好ましくは1.0~10.0重量%の範囲で配合される。0.1重量%より少ないと耐ドライアップ性の効果が得難く、20.0重量%より多いとインキ中の固形分が増加し、インキの粘度が上昇して泣き出しやボテの原因となったり、キャップオフ性能を低下させたりすることがある。
【0050】
前記剪断減粘性付与剤はインキに適当な粘性を与えるものであり、キサンタンガム、サクシノグリカン、カラギーナン等の多糖類、ポリアクリル酸、架橋型ポリアクリル酸、会合性ウレタン等の合成高分子が用いられる。
【0051】
前記多糖類や合成高分子は、剪断減粘性付与剤として優れた効果を有するものであるが、通常、ボールペンの耐ドライアップ性を著しく劣化させるものである。しかしながら、前記環状セロオリゴ糖を併用することで、優れた耐ドライアップ性を維持したまま使用できるものとなる。なお、本開示において「多糖類」とは本実施の形態に係る環状セロオリゴ糖以外の多糖類を示す。
【0052】
前記着色剤は、水性媒体に溶解もしくは分散可能な染料及び顔料が全て使用可能であり、その具体例を以下に例示する。
酸性染料としては、
ニューコクシン(C.I.16255)、
タートラジン(C.I.19140)、
アシッドブルーブラック10B(C.I.20470)、
ギニアグリーン(C.I.42085)、
ブリリアントブルーFCF(C.I.42090)、
アシッドバイオレット6BN(C.I.43525)、
ソルブルブルー(C.I.42755)、
ナフタレングリーン(C.I.44025)、
エオシン(C.I.45380)、
フロキシン(C.I.45410)、
エリスロシン(C.I.45430)、
ニグロシン(C.I.50420)、
アシッドフラビン(C.I.56205)等が用いられる。
【0053】
塩基性染料としては、
クリソイジン(C.I.11270)、
メチルバイオレットFN(C.I.42535)、
クリスタルバイオレット(C.I.42555)、
マラカイトグリーン(C.I.42000)、
ビクトリアブルーFB(C.I.44045)、
ローダミンB(C.I.45170)、
アクリジンオレンジNS(C.I.46005)、
メチレンブルーB(C.I.52015)等が用いられる。
【0054】
直接染料としては、
コンゴーレッド(C.I.22120)、
ダイレクトスカイブルー5B(C.I.24400)、
バイオレットBB(C.I.27905)、
ダイレクトディープブラックEX(C.I.30235)、
カヤラスブラックGコンク(C.I.35225)、
ダイレクトファストブラックG(C.I.35255)、
フタロシアニンブルー(C.I.74180)等が用いられる。
【0055】
前記顔料としては、カーボンブラック、群青などの無機顔料や銅フタロシアニンブルー、ベンジジンイエロー等の有機顔料の他、既に界面活性剤や水溶性樹脂を用いて微細に安定的に水媒体中に分散された水分散顔料製品等が用いられ、例えば、界面活性剤を用いた水分散顔料としては、
C.I.Pigment Blue 15:3B〔商品名:Sandye Super Blue GLL、顔料分24%、山陽色素(株)製〕、
C.I. Pigment Red 146〔商品名:Sandye Super Pink FBL、顔料分21.5%、山陽色素(株)製〕、
C.I.Pigment Yellow 81〔商品名:TC YellowFG、顔料分約30%、大日精化工業(株)製〕、
C.I.Pigment Red220/166〔商品名:TC Red FG、顔料分約35%、大日精化工業(株)製〕等を挙げることができる。
【0056】
また、水溶性樹脂を用いた水分散顔料としては、
C.I.Pigment Black 7〔商品名:WA color Black A250、顔料分15%、大日精化工業(株)製〕、
C.I.Pigment Green 7〔商品名:WA-S color Green、顔料分8%、大日精化工業(株)製〕、
C.I.Pigment Violet 23〔商品名:マイクロピグモ WMVT-5、顔料分20%、オリエント化学工業(株)製〕、
C.I.Pigment Yellow 83〔商品名:エマコールNSイエロー4618、顔料分30%、山陽色素(株)製〕が挙げられる。
【0057】
蛍光顔料としては、各種蛍光染料を樹脂マトリックス中に固溶体化した合成樹脂微細粒子状の蛍光顔料が使用できる。その他、パール顔料、金属粉顔料、蓄光性顔料、二酸化チタン、シリカ、炭酸カルシウム等の白色顔料、熱変色性組成物を内包したカプセル顔料、香料や香料を内包したカプセル顔料等を例示できる。
【0058】
前記金属光沢顔料としては、アルミニウムや真鍮等の金属光沢顔料、芯物質として天然雲母、合成雲母、ガラス片、アルミナ、透明性フィルム片の表面を酸化チタン等の金属酸化物で被覆した金属光沢顔料(パール顔料)、透明又は着色透明フィルムに金属蒸着膜を形成した金属光沢顔料、透明性樹脂層を複数積層した虹彩性フィルムを細かく裁断した虹彩性を有する金属光沢顔料が例示できる。
【0059】
更に、アルミニウムや真鍮等の金属光沢顔料を用いる場合、前記金属光沢顔料の表面を透明性樹脂や着色透明性樹脂で被覆した顔料が好適に用いられ、インキ組成物中での安定性に優れる。
【0060】
前記透明性樹脂で被覆した金属光沢顔料として、具体的には、偏平状金属粉の両面を透明又は着色透明性の樹脂フィルムで被覆したものを例示できる。
【0061】
前記着色剤は一種又は二種以上を適宜混合して使用することができ、インキ組成物全量に対して1~25重量%、好ましくは2~15重量%の範囲で用いられる。
【0062】
また、着色剤として顔料を用いた場合、必要に応じて顔料分散剤を添加できる。前記顔料分散剤としてはアニオン、ノニオン等の界面活性剤、ポリアクリル酸、スチレンアクリル酸等のアニオン性高分子、PVP、PVA等の非イオン性高分子等が用いられる。
【0063】
更に、必要に応じて水溶性有機溶剤を添加することができる。
前記水溶性有機溶剤としては、例えば、エタノール、プロパノール、ブタノール、グリセリン、ソルビトール、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、エチレングリコール、ジエチレングリコール、チオジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ブチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、スルフォラン、2-ピロリドン、N-メチル-2-ピロリドン等が挙げられる。前記水溶性有機溶剤は1種又は2種以上を併用することもでき、インキ組成物全量に対して3~30重量%の範囲で用いられる。
【0064】
上記成分以外に、必要に応じて炭酸ナトリウム、燐酸ナトリウム、酢酸ソーダ等の無機塩類、水溶性のアミン化合物等の有機塩基性化合物等のpH調整剤、ベンゾトリアゾール及びその誘導体、トリルトリアゾール、ジシクロヘキシルアンモニウムナイトライト、ジイソプロピルアンモニウムナイトライト、チオ硫酸ナトリウム、サポニン等の防錆剤、石炭酸、1,2-ベンズチアゾリン-3-オンのナトリウム塩、安息香酸ナトリウム、デヒドロ酢酸ナトリウム、ソルビン酸カリウム、パラオキシ安息香酸プロピル、2,3,5,6-テトラクロロ-4-(メチルスルフォニル)ピリジン等の防腐剤或いは防黴剤、金属石鹸、ポリアルキレングリコール、脂肪酸エステル、エチレンオキサイド付加型カチオン活性剤、燐酸系活性剤、チオカルバミン酸塩、ジメチルジチオカルバミン酸塩等の潤滑剤、尿素、ピロリン酸ナトリウム等の湿潤剤、消泡剤、分散剤、インキの浸透性を向上させるフッ素系界面活性剤やノニオン系の界面活性剤を使用してもよい。
【0065】
本実施形態の水性インキ組成物は、たとえば、ボールペンに充填して使用される。前記ボールペンとしては、ボールを先端部に装着したボールペンチップが先端に連接し、内部にインキ組成物を充填し、更にインキの後端に逆流防止用のインキ逆流防止体が密接配置されるインキ収容管を軸筒内に備えたボールペンや、前記インキ収容管を直接軸筒として用いたものや、筆記部が外気に晒された状態で軸筒内に収納されており、ノック式、回転式、スライド式等の出没機構を有するボールペン等が例示できる。
【0066】
本実施形態の水性インキ組成物は、たとえば、水媒体中に着色剤、環状セロオリゴ糖を添加し、更に添加剤が配合される場合には適宜添加剤を投入した後、剪断減粘付与剤を加えて攪拌することにより調製される。
【実施例】
【0067】
以下、実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において「%」は特に断らない限り「質量%」を意味する。
【0068】
[環状セロオリゴ糖]
以下、本実施例で使用する環状セロオリゴ糖の合成等について示す。分析及び測定方法は以下の通りである。
【0069】
(赤外吸収スペクトル(FT-IR))
フーリエ変換赤外分光光度計(日本分光(株)製「FT/IR4700ST型」)により測定(ATR法)。
【0070】
(NMR)
日本電子(株)製「JNM-ECS400」により測定。
【0071】
(質量分析)
マトリックス支援レーザー脱離イオン化飛行時間型質量分析計(MALDI-TOF MS)(日本パーセプティブリミテッド製「VoyagerTM RP」)により測定。
【0072】
(HPLC)
カラム:ODS(和光純薬工業株式会社製「Wakosil 5C18 AR」、内径4.6mm、長さ150mm)
移動相:アセトニトリル/水=8/2(体積比)
流速:1.0mL/分
温度:30℃
検出:ELSD(米国SofTA社製「Model400 ELSD」)。
【0073】
(TLC)
展開溶媒:メタノール/クロロホルム=1/40(体積比)。
【0074】
<合成例1.メチル化環状セロオリゴ糖の合成>
まず、本実施の形態にかかる環状セロオリゴ糖の一態様であるメチル化環状セロオリゴ糖の合成ついて説明する。
【0075】
(1-1 部分メチル化セルロースからの完全メチル化セルロースの合成)
J.N. Bemiller, Earle E. Allen, JR., J.Polym. Sci. 1967, 5, 2133.に記載の方法に
従い行った。反応式及び合成方法の詳細は以下の通りである。
【0076】
【0077】
80℃で一晩、真空乾燥を行った部分メチル化セルロース(2.01g、5.03×10-5mol、Sigma-Aldrich製「酢酸セルロース(Mn~30,000)」)を、窒素雰囲気下でDMSO(110mL)に溶解させた。この溶液を水素化ナトリウム(含量:60%、1.81g、4.53×10-2mol)に加え、50℃で16時間撹拌した。ここにヨードメタン(2.95mL、4.74×10-2mol)を30分かけて滴下し、50℃で24時間撹拌した。系中にメタノール(3.85mL)を加えて未反応の水素化ナトリウムを失活させ、得られた溶液を水(350mL)に加え再沈殿させた。生じた固体を遠心分離により分離し、60℃で真空乾燥させて生成物(白色粉末状固体)を得た(収量1.90g、収率95%)。
【0078】
生成物のFT-IRスペクトルを、原料の部分メチル化セルロースのFT-IRスペクトルとともに
図5に示す。原料の部分メチル化セルロースでは、
図5(a)に示されるように3400cm
-1付近にOH伸縮振動に基づく吸収ピークが観測された。これに対し、生成物のFT-IRスペクトルでは、
図5(b)に示されるように、2915、1455、1050cm
-1に吸収ピークが観測されたが、3400cm
-1付近のOH伸縮振動に基づく吸収ピークは消失しており、すべてのヒドロキシ基がメチル化されたことを確認した。
【0079】
生成物の
1H-NMR分析の結果を以下に示すとともに、NMRスペクトルを
図6に示す。
1H-NMR (400MHz, chloroform-d): δ 2.92 (t, 1H), 3.19 (t, 1H),3.27(m,1H),3.37 (s, 3H), 3.52 (s,3H),3.56 (s, 3H), 3.69-3.61 (m, 2H),3.75 (m, 1H), 4.31 (d, 1H)。
【0080】
以上より、生成物が完全メチル化セルロースであることを確認した。
【0081】
(1-2 完全メチル化セルロースからの部分メチル化セロオリゴ糖の合成)
T.Kondo, D. G. Gray, J. Appl. Polym.Sci. 1992, 45, 417に記載の方法を参考にして、完全メチル化セルロースから部分メチル化セロオリゴ糖(5~8グルコースユニット)の合成を行った。反応式及び合成方法の詳細は以下の通りである。
【0082】
【0083】
80℃で真空乾燥を行った完全メチル化セルロース(0.55g、1.2×10-2mmol)を、窒素雰囲気下で脱水ジクロロメタン(30mL)に溶解させた。ここに三フッ化ホウ素ジエチルエーテル錯塩(7.2mL、56mmol、和光純薬工業(株)製、含量:46.0~49.0%(BF3))を添加し、室温で6時間撹拌した。得られた溶液に飽和炭酸水素ナトリウム水溶液(15mL)を加えて反応を終了させた。ジクロロメタン(30mL)で2回抽出し、集めたジクロロメタン溶液を無水硫酸マグネシウムで乾燥後、溶媒留去し褐色粘性液体を得た(粗収量0.52g、粗収率93%)。
【0084】
MALDI-TOF-MS測定より、得られた生成物は2~11グルコースユニットからなる部分メチル化セロオリゴ糖の混合物であることがわかった。これをサイズ排除クロマトグラフィーにかけて5~8グルコースユニットからなる部分メチル化セロオリゴ糖を分離した(収量88mg、収率16%)。
【0085】
サイズ排除クロマトグラフィーは、分離装置として以下のものを用いた。
・装置:日本分析工業(株)製、リサイクル分取HPLC LC-9210 NE×T・カラム:日本分析工業(株)製、JAIGEL-2HR(排除限界分子量5,000)×2本
・流速:9.5mL/分
・溶離液:クロロホルム
・1回あたりの注入量:67mg(クロロホルム1mL)
・検出器:日本分析工業(株)製、RI-700 II NE×T。
【0086】
(1-3 部分メチル化セロオリゴ糖からのメチル化環状セロオリゴ糖の合成)
【0087】
【0088】
窒素雰囲気下、上記1-2で得られた部分メチル化セロオリゴ糖(75mg、5.2×10-5mol)をトルエン(18mL)に溶解させた。ここに、トルエン(3mL)に溶解させたトリフルオロメタンスルホン酸無水物(Tf2O)(15μL、9.0×10-5mol)を滴下し室温で1時間撹拌した。その後、トルエン(3mL)に溶解させた2,6-ジtert-ブチルピリジン(DBP)(185μL、8.4×10-4mol)を滴下し室温で17時間撹拌した。その後、飽和炭酸水素ナトリウム水溶液(50mL)を加えて、トルエン(100mL)で抽出した。トルエン層を無水硫酸マグネシウムで乾燥後、溶媒留去し、得られた粗生成物(白色固体)をサイズ排除クロマトグラフィーにかけ、さらに中圧カラムクロマトグラフィーにかけて精製しメチル化環状セロオリゴ糖(6量体)を得た(収量1mg、収率1.5%、白色固体)。反応式は上記の通りである。
【0089】
サイズ排除クロマトグラフィーは上記1-2と同様に行った。中圧カラムクロマトグラフィーによる分離条件は以下の通りである。
・カラム:ODS(山善株式会社製「ユニバーサルカラムODS」、内径20mm、長さ84mm)
・移動相:アセトニトリル/水=8/2(体積比)。
【0090】
6量体に精製する前の粗生成物についての質量分析(MALDI-TOF MS)の結果を
図7に示す。
図7に示すように、5~8量体のメチル化環状セロオリゴ糖に相当するピークが見られた。
【0091】
精製後の生成物(6量体)の
1H-NMR分析の結果を以下に示すとともに、NMRスペクトルを
図8に示す。
1H NMR (400 MHz, chloroform-d):5.08 (d, J = 2.3 Hz, 6H),4.33 (dd, J = 2.3, 7.7 Hz, 6H), 4.20 (ddd, J = 2.3, 4.5, 7.3 Hz, 6H), 4.03 (dd,J = 2.3, 6.8 Hz, 6H), 3.96 (dd, J = 6.8, 7.7 Hz, 6H), 3.67 (dd, J = 8.2, 9.9Hz, 6H), 3.50 (dd, J = 4.5, 9.5 Hz, 6H), 3.42 (s, 18H), 3.40 (s, 18H), 3.32 (s,18H) ppm。
【0092】
また、生成物のNOESYスペクトルを
図9に示し、そのうち、グルコースユニットの1位の炭素に結合した水素(H
1)付近の拡大図を
図10に示す。
【0093】
生成物の
13C-NMR分析の結果を以下に示すとともに、NMRスペクトルを
図11に示す。
13C NMR (400 MHz, chloroform-d):105.38, 90.72, 87.34,79.27, 74.20, 72.59, 59.11, 58.86, 57.69 ppm。
【0094】
生成物の質量分析(MALDI-TOF MS)の結果を以下に示すとともに、そのスペクトルを
図12に示す。
MALDI-TOF MS (m/z):1246 [M+Na]
+。
【0095】
生成物のTLCの結果は、Rf値=0.48であった。
【0096】
生成物のHPLCの結果(
図13(a))を、完全メチル化α-シクロデキストリン(α-シクロデキストリンのヒドロキシ基を全てメチル化したもの)の測定結果(
図13(b))とともに
図13に示す。
【0097】
MSスペクトルとHPLCの結果より、本生成物は完全メチル化α-シクロデキストリンと同じ分子量を持つが、それとは異なる化合物であることがわかる。また、
1H-NMRスペクトルと
13C-NMRスペクトルより、本生成物は2位、3位、6位の水酸基がメチル化されたグルコースユニットから構成されている、対称性の高い化合物であると考えられる。さらに、NOESYスペクトル(
図9、
図10)より、グルコースユニットの1位プロトンが2位、3位、5位、6位プロトンとは相関を示すのに対して4位のプロトンとは相間を示さないことから、1位プロトンと4位プロトンは距離が離れており、グルコースユニット間はβ―1,4結合でつながっていると考えられる。このようなことから、メチル化環状セロオリゴ糖の化学構造が式(1)(R=メチル基、n=1)に示したものであると同定できる。
【0098】
以下、このようにして得られたメチル化環状セロオリゴ糖を「環状セロオリゴ糖1」とも称する。
【0099】
<合成例2.環状セロオリゴ糖の合成>
次に、本実施の形態に係る環状セロオリゴ糖の他の態様である環状セロオリゴ糖(式(1)中のR=水素原子)の合成について説明する。
【0100】
(2-1 部分アセチル化セルロースからの完全アセチル化セルロースの合成)
P.Arndt et al., Cellulose, 2005, 12, 317.に記載の方法に従い、完全アセチル化セ
ルロースの合成を行った。反応式及び合成方法の詳細は以下の通りである。
【0101】
【0102】
部分アセチル化セルロース(Sigma-Aldrich製、Mn=30000、アセチル化度=1.48)(4.0g、9.3×10-5mol)を酢酸(80mL)に溶解させ、無水酢酸(26mL、2.7×10-1mol)と過塩素酸(1.6mL、2.8×10-2mol)を加えて室温で2時間撹拌した。反応混合物を水(100mL)中に注ぎ、生じた固体を吸引ろ過により回収した。これを飽和炭酸水素ナトリウム水溶液(500mL)、次に水(500mL)で洗浄し、この洗浄操作をさら1回行った後、固体を70℃で真空乾燥させ、白色粉末状固体を得た(収量3.9g、収率80%)。
【0103】
得られた固体の赤外吸収スペクトルでは、カルボニル基の吸収ピーク(1735cm-1)の存在、及び、原料で見られたヒドロキシ基の吸収ピーク(3400cm-1付近)の消失が確認された。
【0104】
(2-2 完全アセチル化セルロースからの部分アセチル化セロオリゴ糖の合成)
T. Kondo, D. G. Gray, J. Appl. Polym. Sci.1992, 45, 417に記載の方法を参考にして、完全アセチル化セルロースから部分アセチル化セロオリゴ糖の合成を行った。反応式及び合成方法の詳細は以下の通りである。
【0105】
【0106】
上記2-1で合成した完全アセチル化セルロース(0.45g、8.3×10-6mol)を酢酸(9.0mL)中に80℃で溶解させ、無水酢酸(150μL、1.6×10-3mol)、濃硫酸(35μL、6.5×10-4mol)、水(54μL、3.0×10-3mol)を順次加えて80℃で16時間撹拌した。反応溶液を室温まで放冷し、20%酢酸マグネシウム水溶液(70μL)を添加後、反応混合物をジエチルエーテル(100mL)中に注ぎ、生じた固体を吸引ろ過により回収し、水(100mL)で洗浄後真空乾燥した(収量0.16g)。
【0107】
MALDI-TOF-MS測定により、得られた生成物は2~13グルコースユニットからなる部分アセチル化セロオリゴ糖の混合物であることがわかった(
図14参照)。
【0108】
(2-3 部分アセチル化セロオリゴ糖からのアセチル化環状セロオリゴ糖の合成)
【0109】
【0110】
上記2-2で得られた部分アセチル化セロオリゴ糖(500mg、2.0×10-4mol)を脱水ジクロロメタン(27mL)と脱水トルエン(3.0mL)の混合溶液に溶解させた。ここに三フッ化ホウ素ジエチルエーテル錯体(800μL、7.0×10-3mol、和光純薬工業(株)製、含量:46.0~49.0%(BF3))を加え、40℃で15時間撹拌した。その後、飽和炭酸水素ナトリウム水溶液(50mL)を添加し、クロロホルム100mLで抽出後、溶媒を留去して茶黄白色固体(200mg)を得た。これを脱水ピリジン(3.0mL)に溶解させ、無水酢酸(1.5mL,1.5×10-2mol)を加えて室温で24時間撹拌することで遊離した水酸基のアセチル化を行った。飽和食塩水(100mL)とクロロホルム(100mL)で抽出し、クロロホルム層から溶媒を留去して茶黄白色固体(250mg)を得た。シリカゲルカラムクロマトグラフィーを2回行い(1回目の移動層:メタノール/クロロホルム(1/99)、2回目の移動層:メタノール/クロロホルム(1/150))、粗生成物(6mg)を得た。反応式は上記の通りである。
【0111】
得られた粗生成物についてMALDI-TOF-MS測定を行った。その結果を
図15に示す。
図15に示すように、合成例1のメチル化体の場合と同様、5~8量体の環状体に相当するピークが見られた。詳細には、合成例2では、環状化されていない直鎖状の6~8量体に相当するピークとともに、5~8量体のアセチル化環状セロオリゴ糖に相当するピークが見られた。
【0112】
(2-4 アセチル化環状セロオリゴ糖からの環状セロオリゴ糖の合成)
【0113】
【0114】
アセチル化環状セロオリゴ糖(4.0mg)をメタノール(1.2mL)に溶解させ、ここに水(0.8mL)を加えた。さらにトリエチルアミン(0.8mL、5.5×10-3mol)を加え、40℃で24時間撹拌した。溶媒を留去して粗生成物(4mg)を得た。反応式は上記の通りである。
【0115】
得られた粗生成物についてMALDI-TOF-MS測定を行った。その結果を
図16に示す。
図16に示すように、6~8量体の直鎖状セロオリゴ糖に相当するピークとともに、6~8量体の環状セロオリゴ糖に相当するピークが見られた。
【0116】
以下、このようにして得られた環状セロオリゴ糖を「環状セロオリゴ糖2」とも称する。
【0117】
[水性インキ組成物]
以下、環状セロオリゴ糖1および環状セロオリゴ糖2を用いて、次の方法により、水性インキ組成物の評価を行った。以下の配合量を示す数値の単位は質量部である。
【0118】
(実施例1)
下記成分をディスパーにて攪拌分散した後、濾過することで青色インキを得た。
青色顔料分散体 25.0
〔商品名:Sandye Super Blue GLL、山陽色素(株)製;顔料分24%〕
グリセリン 10.0
カーボポール 940 0.4
〔架橋型ポリアクリル酸、B.F.グッドリッチ社製〕
トリエタノールアミン 1.0
プライサーフA-212E 0.5
〔燐酸エステル系活性剤、第一工業製薬(株)製〕
環状セロオリゴ糖1 4.0
水 59.1
合計 100.0
【0119】
(実施例2)
下記成分をディスパーにて攪拌分散した後、濾過することで桃色インキを得た。
桃色蛍光顔料 10.0
〔商品名:FP-10、日本触媒化学工業(株)製〕
NP-10 2.0
〔ノニオン系界面活性剤、日光ケミカルズ(株)製〕
グリセリン 10.0
キサンタンガム 0.3
トリエタノールアミン 1.0
プライサーフA-212E 0.5
〔燐酸エステル系活性剤、第一工業製薬(株)製〕
環状セロオリゴ糖1 5.0
水 71.2
合計 100.0
【0120】
(実施例3)
下記成分をディスパーにて攪拌分散した後、濾過することで青色インキを得た。
青色染料 15.0
〔商品名:ブリリアントブルーFCF-L、ダイワ化成(株)製;C.I.アドブルー9 35%水溶液〕
エチレングリコール 3.0
サクシノグリカン 0.3
トリエタノールアミン 1.0
プライサーフA-212E 0.5
〔燐酸エステル系活性剤、第一工業製薬(株)製〕
環状セロオリゴ糖1 3.0
水 77.2
合計 100.0
【0121】
(実施例4)
実施例1の組成中の環状セロオリゴ糖1を環状セロオリゴ糖2に置き換え、実施例1と同様の方法で青色インキを得た。
【0122】
(比較例1)
実施例1の組成中の環状セロオリゴ糖1を同量の水に置き換え、実施例1と同様の方法で青色インキを得た。
【0123】
(比較例2)
実施例2の組成中の環状セロオリゴ糖1を同量の水に置き換え、実施例2と同様の方法で桃色インキを得た。
【0124】
(試料ボールペンの作成)
前記実施例及び比較例の配合、調製方法で得られたそれぞれのインキを、直径0.7mmの超合金製ボールを抱持するステンレススチール製チップがポリプロピレン製パイプの一端に嵌着されたボールペンレフィルに充填し、更に、インキ後端面に密接するように液状ポリブテン95部と疎水性微粒子シリカ5部とからなるインキ逆流防止体を充填した後、遠心処理を施したボールペンレフィルをボールペン軸筒に組み込み性能試験用試料ボール
ペンとした。
【0125】
(耐ドライアップ試験)
組み立て後、筆記可能であることを確認した試料ボールペンを、キャップをはずした状態で20℃、60%RHの恒温糟内で横置きに2週間及び4週間放置した後、JIS P3201筆記用紙Aに文字を筆記し、カスレ状態等を目視で観察した。評価基準は以下の通りである。
◎:書き始めからカスレが発生せず筆記可能。
○:1文字目は少なくとも一部がカスレたが、2文字目からはカスレなく筆記可能。
×:2文字目も少なくとも一部がカスレた。
【0126】
性能試験(耐ドライアップ試験)の結果を以下の表に示す。
【0127】
【0128】
以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示し
たものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他
の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省
略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更な
どは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均
等の範囲に含まれるものである。