IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 川崎重工業株式会社の特許一覧

<>
  • 特許-制御装置、圧力試験装置及び制御方法 図1
  • 特許-制御装置、圧力試験装置及び制御方法 図2
  • 特許-制御装置、圧力試験装置及び制御方法 図3
  • 特許-制御装置、圧力試験装置及び制御方法 図4
  • 特許-制御装置、圧力試験装置及び制御方法 図5
  • 特許-制御装置、圧力試験装置及び制御方法 図6
  • 特許-制御装置、圧力試験装置及び制御方法 図7
  • 特許-制御装置、圧力試験装置及び制御方法 図8
  • 特許-制御装置、圧力試験装置及び制御方法 図9
  • 特許-制御装置、圧力試験装置及び制御方法 図10
  • 特許-制御装置、圧力試験装置及び制御方法 図11
  • 特許-制御装置、圧力試験装置及び制御方法 図12
  • 特許-制御装置、圧力試験装置及び制御方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-24
(45)【発行日】2022-09-01
(54)【発明の名称】制御装置、圧力試験装置及び制御方法
(51)【国際特許分類】
   G05B 13/02 20060101AFI20220825BHJP
【FI】
G05B13/02 A
G05B13/02 L
【請求項の数】 6
(21)【出願番号】P 2017215336
(22)【出願日】2017-11-08
(65)【公開番号】P2019087068
(43)【公開日】2019-06-06
【審査請求日】2020-11-04
(73)【特許権者】
【識別番号】000000974
【氏名又は名称】川崎重工業株式会社
(74)【代理人】
【識別番号】100118784
【弁理士】
【氏名又は名称】桂川 直己
(72)【発明者】
【氏名】正岡 孝一
(72)【発明者】
【氏名】藤本 浩明
(72)【発明者】
【氏名】三井 広明
(72)【発明者】
【氏名】加藤 武久
【審査官】牧 初
(56)【参考文献】
【文献】特開昭61-253505(JP,A)
【文献】特開昭63-284449(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 11/00-13/04
G05D 3/12
G01N 3/12
(57)【特許請求の範囲】
【請求項1】
制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する制御装置であって、
前記制御対象の特性に応じて制御パラメータを適応的に調整する適応制御器と、
信号が入力される学習制御器であって、1周期前に入力された入力信号又は繰返し試行の1試行前に入力された入力信号を用いて、現在の入力信号を補正して出力する学習制御器と、
を備え
前記適応制御器は前記学習制御器に出力を行うことを特徴とする制御装置。
【請求項2】
制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する制御装置であって、
前記制御対象の特性に応じて制御パラメータを適応的に調整する適応制御器を備え、
前記適応制御器は、信号が入力される学習制御器を備え、
前記学習制御器は、1周期前に入力された入力信号又は繰返し試行の1試行前に入力された入力信号を用いて、現在の入力信号を補正して出力することを特徴とする制御装置。
【請求項3】
請求項1又は2に記載の制御装置であって、
前記学習制御器は、前記適応制御器が出力する前記操作量、前記適応制御器に入力される前記目標値と前記制御量との偏差、又は、前記操作量を計算するために前記適応制御器で求められる量を補正することを特徴とする制御装置。
【請求項4】
請求項1から3までの何れか一項に記載の制御装置であって、
前記適応制御器は、
所定の応答を与える規範モデルを適用する規範モデル制御部と、
適応フィードフォワード制御部と、
前記規範モデル制御部の出力と前記制御対象からの前記制御量との偏差を入力する適応フィードバック制御部と、
並列フィードフォワード補償器と、
から構成される単純適応制御器であることを特徴とする制御装置。
【請求項5】
請求項1からまでの何れか一項に記載の制御装置を備えることを特徴とする圧力試験装置。
【請求項6】
制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する制御方法であって、
適応制御器により、前記制御対象の特性に応じて制御パラメータを適応的に調整し、
1周期前の入力又は繰返し試行の1試行前の入力に基づく補正が行われる学習制御器により、前記適応制御器が出力する前記操作量、前記適応制御器に入力される前記目標値と前記制御量との偏差、又は、前記操作量を計算するために前記適応制御器で求められる量を補正することを特徴とする制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、適応制御と学習制御とを用いた制御装置に関する。
【背景技術】
【0002】
従来から、周期的な目標信号に対して1周期前の制御偏差、又は、繰返し試行において1試行前の制御偏差を用いて操作量を補正し、この制御を繰り返すことにより、制御偏差を減少させていく学習制御が知られている。
【0003】
学習制御においては、制御対象の数学モデルを用いず、操作量と制御偏差のみを用いて学習を行うことができるため、制御対象の特性が厳密にわからなくてもある程度の制御性能が得られる。しかし、制御対象の特性が大きく変動するような場合は、学習速度が遅くなり、学習後の制御性能も良くないことがある。
【0004】
このような学習速度の低下を防ぐために、制御対象の特性変動に応じて、学習制御に用いられる制御パラメータを適応的に調整する方法が提案されている。特許文献1は、この方法が適用された反復学習制御回路を備える位置制御装置を開示する。
【0005】
この特許文献1の位置制御装置は、制御対象の位置を検出する検出部の出力と目標値との偏差が入力される第1フィルタと、所定の帯域を遮断する線形時不変の第2フィルタと、を含み、制御対象に制御入力をフィードフォワードする反復学習制御回路を備える。この位置制御装置において、前記第1フィルタの特性は、制御対象のパラメータ変動に応じて変更される。
【先行技術文献】
【特許文献】
【0006】
【文献】特許第5279299号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、特許文献1は、制御対象の特性変動に応じて第1フィルタの制御パラメータを適応的に調整することで、学習速度の低下を防ぐ効果を得ることができるものの、学習後の制御性能を向上させることができず、この点で改善の余地があった。
【0008】
本発明は以上の事情に鑑みてされたものであり、その目的は、制御対象の特性が変動する場合でも、制御パラメータを自動調整できるとともに、高い学習性能(学習速度及び学習後の制御性能)を維持できるようにすることにある。
【課題を解決するための手段】
【0009】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
【0010】
本発明の第1の観点によれば、以下の構成の制御装置が提供される。即ち、この制御装置は、制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する。前記制御装置は、適応制御器と、学習制御器と、を備える。前記適応制御器は、前記制御対象の特性に応じて制御パラメータを適応的に調整する。前記学習制御器には信号が入力される。前記学習制御器は、1周期前に入力された入力信号又は繰返し試行の1試行前に入力された入力信号を用いて、現在の入力信号を補正して出力する。前記適応制御器は前記学習制御器に出力を行う。
本発明の第2の観点によれば、以下の構成の制御装置が提供される。即ち、この制御装置は、制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する。前記制御装置は、適応制御器を備える。前記適応制御器は、前記制御対象の特性に応じて制御パラメータを適応的に調整する。前記適応制御器は、学習制御器を備える。前記学習制御器には信号が入力される。前記学習制御器は、1周期前に入力された入力信号又は繰返し試行の1試行前に入力された入力信号を用いて、現在の入力信号を補正して出力する。
【0011】
これにより、制御対象の特性変動に応じて適応制御器の制御パラメータが適応的に調整されるので、制御対象の特性が変動した場合でも、制御系の安定性及び応答性に対する影響を抑制できる。従って、制御対象の特性変動に影響されず、学習制御器の学習速度及び学習後の制御性能を良好に維持することができる。
【0012】
本発明の第の観点によれば、以下の制御方法が提供される。即ち、この制御方法では、制御対象からの制御量を指示された目標値に追従させるように前記制御対象に操作量を出力する。前記制御方法では、適応制御器により、前記制御対象の特性に応じて制御パラメータを適応的に調整する。1周期前の入力又は繰返し試行の1試行前の入力に基づく補正が行われる学習制御器により、前記適応制御器が出力する前記操作量、前記適応制御器に入力される前記目標値と前記制御量との偏差、又は、前記操作量を計算するために前記適応制御器で求められる量を補正する。
【0013】
これにより、制御対象の特性変動に応じて適応制御器の制御パラメータが適応的に調整されるので、制御対象の特性が変動した場合でも、制御系の安定性及び応答性に対する影響を抑制できる。従って、制御対象の特性変動に影響されず、学習制御器の学習速度及び学習後の制御性能を良好に維持することができる。
【発明の効果】
【0014】
本発明によれば、制御対象の特性が変動する場合でも、制御パラメータを自動調整できるとともに、高い学習性能(学習速度及び学習後の制御性能)を維持することができる。
【図面の簡単な説明】
【0015】
図1】本発明の第1実施形態に係る適応学習制御装置の概略構成を示すブロック図。
図2】学習制御器の複数の構成例を示すブロック図。
図3】第1実施形態の適応学習制御装置の構成を示すブロック図。
図4】制御対象の出力及び規範モデル制御部の出力にPFCを付加して動的補償を行う構成を示すブロック図。
図5】第2実施形態の適応学習制御装置の構成を示すブロック図。
図6】第3実施形態の適応学習制御装置の構成を示すブロック図。
図7】第4実施形態の適応学習制御装置の構成を示すブロック図。
図8】一般的な学習制御のシミュレーション結果を示すグラフ。
図9】学習フィルタを適応的に調整する従来技術の構成におけるシミュレーション結果を示すグラフ。
図10】本実施形態の構成におけるシミュレーション結果を示すグラフ。
図11】PI制御系を用いたアナロジーにより従来技術の構成と本発明とを比較して示す図。
図12】適応学習制御装置を備える耐圧試験装置の構成を示す模式図。
図13】変形例の適応学習制御装置の構成を示すブロック図。
【発明を実施するための形態】
【0016】
次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の第1実施形態に係る適応学習制御装置1の概略構成を示すブロック図である。図2は、学習制御器3の複数の構成例を示すブロック図である。
【0017】
図1に示す適応学習制御装置(制御装置)1は、制御対象4からの制御量yを、周期的な波形を有するように予め設定された目標値rに追従させるために用いられる。適応学習制御装置1は、例えば、マイクロコントローラ等のコンピュータから構成することができる。
【0018】
適応学習制御装置1は、適応制御器2と、学習制御器3と、を備える。
【0019】
適応制御器2は、制御対象4からの制御量yを、コンピュータ等から構成される制御装置(例えば、図12に示す後述の上位コントローラ51)から指示される目標値rに追従させる制御を行う。詳細は後述するが、図1の適応制御器2の制御パラメータは、制御対象4の特性変動に応じて適応的に調整することができる。適応制御器2が生成する操作量usは、学習制御器3に出力される。
【0020】
学習制御器3は、1周期前に適応制御器2が出力した操作量us’を用いて、適応制御器2が現在出力する操作量usを補正し、制御対象4への操作量uを出力する。
【0021】
学習制御器3は、求められる応答性及び安定性等に応じて、例えば、図2に示す3種類の構成の学習制御器3a,3b,3cから適宜選択して用いることができる。何れの構成の学習制御器3a,3b,3cも、安定化補償器31と、時間補償器32と、により構成される。
【0022】
安定化補償器31は、例えばローパスフィルタとして構成されている。安定化補償器31は、入力される信号に対して、予め定められた遮断周波数より低い周波数を有する低周波数成分を通過させ、遮断周波数より高い周波数を有する高周波数成分を減衰させることにより当該高周波数成分を遮断する。この安定化補償器31は、例えばFIR(Finite Impulse Response)フィルタとして構成することができる。
【0023】
安定化補償器31により、装置(ハードウェア)が能力的に追従できない目標値rの変化に対して操作量uが増大して発散することを防ぐことができる。
【0024】
時間補償器32は、入力される信号を所定時間だけ遅らせて出力するように構成されている。当該所定時間は、1周期前に入力された信号に相当する信号を用いて学習制御器3が補正を行うことができるように、安定化補償器31による位相遅れ等を考慮して定めることができる。
【0025】
このように構成された学習制御器3は、図1に示す本実施形態において、1周期前に入力された操作量us’に相当する操作量を用いて、適応制御器2が制御対象4に与える操作量usを補正する処理を繰り返す。これにより、制御量yの波形を目標値rの波形に近づけることができる。
【0026】
適応学習制御装置1は、CPU、ROM及びRAM等を備え、上記のROMには、本発明の制御方法を実現するためのプログラムが記憶されている。このハードウェアとソフトウェアの協働により、適応学習制御装置1を、適応制御器2及び学習制御器3等として動作させることができる。ただし、適応制御器2及び学習制御器3等を、アナログ又はデジタル回路により構成してもよい。
【0027】
知られているように、学習制御器3は、学習制御を付加する前の制御系の特性が優れているほど、学習速度及び学習後の制御性能が良くなる。この点、本実施形態の適応学習制御装置1においては、学習制御器3が、制御対象の特性が変動した場合でも制御性能を維持できる適応制御器2に対して付加されている。これにより、学習制御器3の学習速度及び学習後の制御性能を向上することができる。
【0028】
続いて、適応制御器2の構成について、単純適応制御を用いる場合の例を、図3を参照して詳細に説明する。図3は、第1実施形態の適応学習制御装置1の構成を示すブロック図である。
【0029】
適応制御器2は、図3に示すように、規範モデル制御部20と、第1適応フィードフォワード制御部(適応フィードフォワード制御部)21と、第2適応フィードフォワード制御部(適応フィードフォワード制御部)22と、適応フィードバック制御部23と、並列フィードフォワード補償器(PFC:Parallel Feedforward Compensator)24と、第1減算器25と、第2減算器26と、第1加算器27と、第2加算器28と、を備える。
【0030】
規範モデル制御部20は、所定の(理想的な)応答を生成するように設計された規範モデルGmを適用するように構成されている。この規範モデルGmは、例えば1次遅れ系、2次遅れ系等の伝達関数で表すことができる。規範モデル制御部20は、生成した応答である規範出力ymを、第1減算器25に出力する。また、規範モデル制御部20は、モデルの状態量xmを、第2適応フィードフォワード制御部22に出力する。
【0031】
第1減算器25は、規範モデル制御部20から入力される規範出力ymから、適応制御器2に入力される制御量yを減算する。第1減算器25は、得られた結果である偏差eを、第2減算器26に出力する。
【0032】
第2減算器26は、第1減算器25から入力される偏差eから、PFC24が出力する補償値yfを減算する。第2減算器26は、得られた結果である帰還偏差eaを、適応フィードバック制御部23に出力する。
【0033】
第1適応フィードフォワード制御部21は、入力された目標値rに対し、調整された第1フィードフォワードゲインKrを乗算する。第1適応フィードフォワード制御部21は、得られた乗算結果urを、第1加算器27に出力する。
【0034】
第2適応フィードフォワード制御部22は、規範モデル制御部20から入力された規範モデルGmの状態量xmに対し、調整された第2フィードフォワードゲインKxを乗算する。第2適応フィードフォワード制御部22は、得られた乗算結果uxを、第1加算器27に出力する。
【0035】
適応フィードバック制御部23は、第2減算器26から入力された帰還偏差eaに対し、調整されたフィードバックゲインKeを乗算する。適応フィードバック制御部23は、得られた乗算結果である操作量ueを、第2加算器28に出力するとともに、PFC24に出力する。
【0036】
PFC24は、適応フィードバック制御部23の出力に基づいて疑似的な補償値yfを発生させ、この疑似的な補償値yfを第2減算器26に出力するように構成されている。なお、図3に示す回路は、図4に示す回路、即ち、制御対象4の出力に対してPFCの出力を付加し、かつ、同一の構成のPFCの出力を規範モデル制御部20の出力に付加して動的補償を行う回路と等価である。これにより、実際の制御対象4に応答遅れが発生していても、制御対象4にPFCを付加した拡大制御対象としては応答遅れがないように見せかけることで、制御系の安定性を確保することができる。また、上記の動的補償により、拡大制御対象の出力ではなく、制御対象4の出力を規範モデルGmの出力(規範出力ym)に追従させることができる。
【0037】
第1適応フィードフォワード制御部21、第2適応フィードフォワード制御部22及び適応フィードバック制御部23のそれぞれのゲインKr,Kx,Keは、制御対象4の出力を規範モデルGmの出力(規範出力ym)に追従させるように、適応的に調整される。この制御ゲインパラメータ(制御パラメータ)Kr,Kx,Keは、単純適応制御において公知である適応調整則、例えば、比例及び積分の適応調整則により下記の式(1)に示すように求めることができる。
【0038】
【数1】
ここで、γPr,γIr,γPx,γIx,γIeは、ゲインの調整スピードを決める設計パラメータである。σは、Keの発散を防ぐためのフィードバックゲインであって、偏差が大きいときに大きく設定される。
【0039】
第1加算器27は、第1適応フィードフォワード制御部21の出力である乗算結果urと、第2適応フィードフォワード制御部22の出力である乗算結果uxと、を加算する。第1加算器27は、得られた加算結果ufを第2加算器28に出力する。
【0040】
第2加算器28は、第1加算器27の出力である加算結果ufと、適応フィードバック制御部23の出力である操作量ueと、を加算する。得られた加算結果は、前述の操作量usとして、学習制御器3に出力される。
【0041】
以上の構成とすることで、適応学習制御装置1において、適応制御器2により制御系の安定性及び追従性能を良好に保証することができる。これにより、制御対象4の特性が変動する場合においても、学習制御器3の学習速度及び学習後の制御性能を良好に維持することができる。
【0042】
次に、第2実施形態を説明する。図5は、第2実施形態の適応学習制御装置1xの構成を示すブロック図である。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
【0043】
図5に示すように、本実施形態の適応学習制御装置1xにおいては、適応制御器2xの内部に学習制御器3が付加されている。具体的には、学習制御器3は、適応制御器2xの適応フィードバック制御部23と第2加算器28との間に設けられている。従って、学習制御器3には、適応フィードバック制御部23が出力する操作量ueが入力される。
【0044】
学習制御器3としては、前述の第1実施形態と同様に、例えば図2に示す3種類の構成から適宜選択して用いることができる。なお、後述の第3実施形態及び第4実施形態においても同様である。
【0045】
図5に示すように、適応制御器2xに含まれる学習制御器3は、1周期前の操作量ue’を用いて、適応フィードバック制御部23が出力する操作量ueに対して補正を行う。補正の対象である操作量ueは、適応制御器2xが出力する操作量uを計算するために適応制御器2xで求められる量である。学習制御器3により得られた補正操作量ulは、第2加算器28に入力される。
【0046】
第2加算器28は、第1加算器27の出力である上記の加算結果ufと、学習制御器3の出力である補正操作量ulと、を加算する。得られた加算結果は、前述の操作量uとして、適応制御器2x(適応学習制御装置1x)から制御対象4に出力される。
【0047】
本実施形態の適応学習制御装置1xも、第1実施形態の適応学習制御装置1と同様の効果を得ることができる。
【0048】
次に、第3実施形態を説明する。図6は、第3実施形態の適応学習制御装置1yの構成を示すブロック図である。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
【0049】
本実施形態は、第1実施形態(図2)に対して変更を加え、第2実施形態と同じように、学習制御器3を適応制御器2の内部に付加したものである。図6に示すように、学習制御器3は、第1減算器25と第2減算器26との間に付加されている。学習制御器3は、規範モデルGmが出力する規範出力ymと、適応制御器2に入力される制御量yと、の偏差eに対して学習し、当該偏差eを補正する。この偏差eは、適応制御器2yが出力する操作量uを計算するために適応制御器2yで求められる量であるということができる。学習制御器3は、第1減算器25が出力する1周期前の偏差e’を用いて、現在の偏差eを補正する。学習制御器3により得られた補正偏差elは、第2減算器26に入力される。上記で説明した以外の構成は、上述の第1実施形態と同様である。
【0050】
次に、第4実施形態を説明する。図7は、第4実施形態の適応学習制御装置1zの構成を示すブロック図である。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
【0051】
本実施形態は、第1実施形態(図2)に対して変更を加え、第2実施形態と同じように、学習制御器3を適応制御器2の内部に付加したものである。図7に示すように、学習制御器3は、第2減算器26と適応フィードバック制御部23との間に付加されている。学習制御器3は、適応制御器2に入力される偏差eaに対して学習し、当該偏差eaを補正する。この偏差eaは、適応制御器2zが出力する操作量uを計算するために適応制御器2zで求められる量であるということができる。学習制御器3は、第2減算器26が出力する1周期前の偏差ea’を用いて、現在の偏差eaを補正する。学習制御器3により得られた補正偏差elは、適応フィードバック制御部23に入力される。上記で説明した以外の構成は、上述の第1実施形態と同様である。
【0052】
次に、本発明の制御による効果について、図8から図10までに示すシミュレーション結果を参照して説明する。
【0053】
このシミュレーション実験では、一般的な学習制御、従来技術(上記の特許文献1)の学習制御、及び本発明(第2実施形態)の学習制御をそれぞれ行った場合の、制御量の変化を調べた。何れのシミュレーションでも、目標値として、1周期が10秒である台形の波形が用いられた。
【0054】
図8から図10までのグラフにおいて、上側には目標値及び制御量が示され、下側には目標値と制御量との偏差(制御偏差)が示されている。上下何れのグラフにおいても、横軸は時間である。シミュレーション計算において、ゼロ秒より前の時点では制御系の制御性能を意図的に低下させており、これにより、制御対象の特性がゼロ秒の時点で大きく変化したことを模擬している。時間は、上下のグラフで対応している。右側のグラフには、左側のグラフにおいて十分に時間が経過した状態における1周期分の値の推移の詳細が、時間軸方向に引き伸ばした形で示されている。
【0055】
図8には、一般的な学習制御(言い換えれば、学習制御器だけが用いられる場合)のシミュレーション結果が示されている。図8の左上のグラフから、一般的な学習制御では、制御量が目標値に十分に近づくまでに10周期程度の時間を要することがわかる。
【0056】
図9は、従来技術(特許文献1に相当する構成)のシミュレーション結果を示している。図9の左上のグラフから、従来技術の構成では、一般的な学習制御の1/2ぐらいである5周期程度が経過すれば、制御量が目標値に十分に近づくことがわかる。
【0057】
図10は、本発明(上述の第2実施形態)のシミュレーション結果である。図10の左上のグラフに示すように、本実施形態の適応学習制御装置1xを用いると、従来技術の更に1/2、一般的な学習制御と比較すると1/4程度である2~3周期程度で、制御量を目標値に十分に近づけることができる。
【0058】
そして、図10の右下のグラフを図8及び図9の右下のグラフと比較すると、本発明の制御によれば、制御量が目標値に追従した後の制御偏差が、一般的な学習制御及び従来技術の学習制御と比較して、極めて小さくなっていることがわかる。
【0059】
上記のシミュレーション結果から、本発明の制御は、素早い学習速度及び優れた学習後の制御性能(即ち、精度の良い追従特性)を有することが確かめられた。
【0060】
次に、図11を参照して、上述の従来技術と本発明の制御との相違点について、PI制御系を用いたアナロジーにより補足的に説明する。
【0061】
サーボ系においては、「目標波形に対して定常偏差なく追従するためには、目標波形に応じた補償要素(目標波形と同じ極を持つ補償器)をフィードバックループ内に持たなければならない」という原理があることが知られている。この原理は、内部モデル原理と呼ばれている。
【0062】
例えば、任意のステップ状の目標波形は、積分器(1/s)に適当な初期値を与えることにより発生できる。これに対応して、ステップ状の目標波形に対して定常偏差をゼロにするには、積分器をフィードバックループに組み込むことが必要である。PI制御系はその典型である。
【0063】
この考え方を適用すれば、周期がLである目標波形に対して定常偏差をゼロにするには、周期がLである周期関数を発生させる機構をフィードバックループに含めれば良い。実際、上記の学習制御器3は、1周期前の入力に基づく出力が行われることから、そのような性質を有している。即ち、周期的な目標波形に制御量を追従させるときの学習制御器3は、ステップ状の目標波形が与えられるPI制御系での積分器に対応するということができる。
【0064】
上記の従来技術(特許文献1)及び本実施形態をPI制御系になぞらえて説明すると、従来技術は図11(a)に示すように積分項のみを適応的に調整するのに対し、本発明は図11(b)に示すように比例項及び積分項の両方を適応的に調整するものであって、本質的な違いがあるということができる。
【0065】
また、一般的に、制御対象の特性が大きく変動する場合は、積分項だけでなく比例項も調整する方が、応答性をより改善することができる。この点で、本発明は従来技術と比較して明らかな優位性があるということができる。
【0066】
続いて、図12を参照して、上記で説明した適応学習制御方法を耐圧試験装置に適用した適用例について説明する。図12は、適応学習制御装置1を備える耐圧試験装置5の構成を示す模式図である。
【0067】
図12に示す本適用例の耐圧試験装置(圧力試験装置)5は、供試体60に対して圧力を反復して加えることにより内圧疲労耐性等を評価するものである。供試体60としては、配管、バルブ、機械の外殻等、様々なものが考えられるが、図12では、圧力容器を試験する例が示されている。
【0068】
この耐圧試験装置5は、圧力制御コントローラ(圧力制御装置)50と、上位コントローラ51と、油圧ユニット52と、増圧機53と、圧力センサ54と、を備える。
【0069】
圧力制御コントローラ50は、上位コントローラ51から入力される目標圧力波形(目標値r)、及び、供試体60内の圧力を検出する圧力センサ54から入力される実際の圧力値(制御量y)に基づいて、油圧ユニット52に操作量uを出力する。
【0070】
この適用例では、圧力制御コントローラ50として第1実施形態の適応学習制御装置1が用いられている(ただし、他の実施形態の適応学習制御装置1x,1y,1zを用いることもできる)。油圧ユニット52、増圧機53及び供試体60を含んだ全体が、適応学習制御装置1による制御対象4に相当する。
【0071】
油圧ユニット52は、圧力制御コントローラ50から入力される操作量uに基づいて、増圧機53を駆動する。油圧ユニット52は、例えば、図示しないポンプから吐出される圧油を切り換える電磁弁等により構成されている。
【0072】
増圧機53は、油圧ユニット52により駆動されるシリンダ等を備える。増圧機53は、圧力媒体を吐出又は吸入することにより、供試体60に加えられる圧力を増大又は減少させる。
【0073】
圧力センサ54は、供試体60内の圧力を実際に検出し、検出値である圧力値を制御量yとして圧力制御コントローラ50に出力する。
【0074】
この耐圧試験装置5は、図12に小さなグラフで示すような正弦波、三角波、台形波等の波形に従って、圧力を供試体60に繰り返し加えることができる。圧力制御コントローラ50は、上述の適応学習制御を行うことで、供試体60内の圧力(即ち、制御量y)を、変動する目標値rに素早くかつ精度良く追従させることができる。
【0075】
上述したとおり、試験に供される供試体60としては、容量等が異なる様々なものが考えられる。容量が変化すれば圧力の上がり易さが変わるので、従来の手法では制御性能が悪化する可能性があった。この点、図12の耐圧試験装置5は、供試体60を別のものに取り換えたとしても、圧力制御コントローラ50が上述の優れた制御性能を有するため、供試体60に対して実際に加えられる圧力を目標圧力波形に素早くかつ精度良く追従させることができる。これにより、様々な供試体60を、手間及び時間を掛けることなく試験することができる。
【0076】
以上に説明したように、上記の実施形態の適応学習制御装置1,1x,1y,1zは、制御対象4からの制御量yを指示された目標値rに追従させるように制御対象4に操作量uを出力する。この適応学習制御装置1,1x,1y,1zは、適応制御器2,2x,2y,2zと、学習制御器3と、を備える。適応制御器2,2x,2y,2zは、制御対象4の特性に応じて制御ゲインパラメータKr,Kx,Keを適応的に調整する。学習制御器3は、1周期前の入力us’,ue’,e’,ea’を用いて、現在の入力us,ue,e,eaを補正して出力する。
【0077】
これにより、制御対象4の特性変動に応じて、適応制御器2,2x,2y,2zの制御ゲインパラメータKr,Kx,Keが適応的に調整されるので、制御対象4の特性の変動による制御系の安定性及び応答性に対する影響を抑制できる。従って、制御対象4の特性変動に影響されず、学習制御器3の学習速度及び学習後の制御性能を良好に維持することができる。
【0078】
また、第1実施形態の適応学習制御装置1において、学習制御器3は、適応制御器2が出力する操作量usを補正する。
【0079】
これにより、学習制御器3に入力する前の制御系は、制御対象4の特性変動に強い安定性、及び目標値rへの良好な追従特性を有することができる。また、制御対象4の特性の変動が制御系に与える影響は、適応制御器2により吸収される。従って、制御対象4の特性が変動する場合においても、学習制御器3の学習特性を良好に維持することができる。
【0080】
一方、第2実施形態の適応学習制御装置1xにおいては、適応制御器2xに、適応フィードバック制御部23が設けられる。学習制御器3は、適応フィードバック制御部23が出力する操作量ueを補正する。この操作量ueは、適応制御器2xが出力する操作量uを計算するために適応制御器2xで求められる量である。
【0081】
第3実施形態及び第4実施形態の適応学習制御装置1y,1zにおいて、学習制御器3は、適応制御器2y,2zに入力される制御量yに基づいて適応制御器2y,2zが求める制御偏差e,eaを補正する。この制御偏差e,eaは、適応制御器2y,2zが出力する操作量uを計算するために適応制御器2y,2zで求められる量である。
【0082】
この構成によっても、制御対象4の特性が変動する場合において、学習制御器3の学習特性を良好に維持することができる。
【0083】
また、上記の適応学習制御装置1,1x,1y,1zにおいて、適応制御器2,2x,2y,2zは、規範モデル制御部20と、第1適応フィードフォワード制御部21と、第2適応フィードフォワード制御部22と、適応フィードバック制御部23と、PFC24と、から構成される単純適応制御器として構成される。規範モデル制御部20は、所定の応答を与える規範モデルGmを適用する。第1適応フィードフォワード制御部21は、目標値rをフィードフォワードする。第2適応フィードフォワード制御部22は、規範モデルGmの状態量xmをフィードフォワードする。適応フィードバック制御部23は、規範モデル制御部20の出力と制御対象4からの制御量yとの偏差eから、PFC24の出力yfを減算した拡大系の制御偏差eaを入力する。
【0084】
これにより、適応制御器2,2x,2y,2zにおける良好な制御性能を実現できる。
【0085】
また、図12の耐圧試験装置5は、上述の適応学習制御装置1,1x,1y,1zを備える。
【0086】
これにより、耐圧試験のための供試体60を様々に取り換えることに伴って制御対象4の特性が大幅に変更されても、適応学習制御装置1,1x,1y,1zにより、良好な制御を実現することができる。
【0087】
また、上記の適応学習制御装置1,1x,1y,1zでは、以下の制御方法により、制御対象4からの制御量yを指示された目標値rに追従させるように制御対象4に操作量を出力する。即ち、適応制御器2が用いる適応制御系により、制御対象4の特性に応じて制御ゲインパラメータKr,Kx,Keを適応的に調整する。第1実施形態では、1周期前の入力に基づく補正が行われる学習制御器3により、適応制御器2が出力する操作量uを補正する。第2実施形態では、学習制御器3により、適応制御器2xが出力する操作量uを計算するために適応制御器2xで求められる操作量ueを補正する。第3実施形態及び第4実施形態では、学習制御器3により、適応制御器2y,2zが出力する操作量uを計算するために適応制御器2y,2zで求められる制御偏差e,eaを補正する。
【0088】
これにより、素早い学習速度及び精度の良い追従特性を発揮できる良好な制御性能を、簡単な構成及び制御アルゴリズムで実現することができる。
【0089】
次に、上記実施形態の変形例を説明する。図13は、変形例の適応学習制御装置1aの構成を示すブロック図である。なお、本変形例の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
【0090】
本変形例の適応学習制御装置1aは、図13に示すように、適応制御器2の前(入力側)に、学習制御器3を付加して構成されている。この学習制御器3も、前述の実施形態と同様に、図2に示す3種類の構成の学習制御器3a,3b,3cから適宜選択して用いることができる。
【0091】
学習制御器3は、1周期前に入力される目標値rと制御量yとの偏差e’に相当する信号を用いて、現在入力された偏差eを補正して偏差elとして適応制御器2に出力する。これにより、制御対象4から適応制御器2に入力される目標値rと制御量yとの偏差eが、学習制御器3によって補正される。
【0092】
この変形例によっても、上述の実施形態と同様の効果を得ることができる。
【0093】
以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。
【0094】
上記の適応学習制御装置1,1x,1y,1z,1aは、試行を繰り返して行うことが可能なシステムにおける反復学習制御に適用することもできる。この場合、学習制御器3は、繰返し試行の1試行前の入力に基づいて現在の入力を補正して出力するように構成すれば良い。
【0095】
適応学習制御装置1,1x,1y,1z,1aは、耐圧試験装置5の供試体60に加えられる圧力に限定されず、例えばアーム型ロボットの先端の位置等、他の様々なものを制御するのに用いることができる。
【符号の説明】
【0096】
1 適応学習制御装置
2 適応制御器
3 学習制御器
4 制御対象
r 目標値
u 操作量
y 制御量
Kr,Kx,Ke 制御ゲインパラメータ(制御パラメータ)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13