IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ロジャーズ ジャーマニー ゲーエムベーハーの特許一覧

特許7130775金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法
<>
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図1
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図2
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図3
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図4
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図5
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図6
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図7
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図8
  • 特許-金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-26
(45)【発行日】2022-09-05
(54)【発明の名称】金属セラミック基板を冷却するためのシステム、金属セラミック基板、およびシステムの製造方法
(51)【国際特許分類】
   H01L 23/473 20060101AFI20220829BHJP
   H05K 7/20 20060101ALI20220829BHJP
【FI】
H01L23/46 Z
H05K7/20 M
【請求項の数】 9
(21)【出願番号】P 2020560793
(86)(22)【出願日】2019-05-14
(65)【公表番号】
(43)【公表日】2021-08-19
(86)【国際出願番号】 EP2019062302
(87)【国際公開番号】W WO2019219656
(87)【国際公開日】2019-11-21
【審査請求日】2020-10-29
(31)【優先権主張番号】102018112000.1
(32)【優先日】2018-05-18
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】515063390
【氏名又は名称】ロジャーズ ジャーマニー ゲーエムベーハー
【氏名又は名称原語表記】Rogers Germany GmbH
【住所又は居所原語表記】Am Stadtwald 2, D-92676 Eschenbach, Germany
(74)【代理人】
【識別番号】100116322
【弁理士】
【氏名又は名称】桑垣 衛
(72)【発明者】
【氏名】マイヤー、アンドレアス
(72)【発明者】
【氏名】ギル、ビタリ
(72)【発明者】
【氏名】ミュラー、ラースロー
(72)【発明者】
【氏名】ヘルマン、ライナー
(72)【発明者】
【氏名】ブリッティング、シュテファン
【審査官】多賀 和宏
(56)【参考文献】
【文献】特開2014-175568(JP,A)
【文献】国際公開第2014/014054(WO,A1)
【文献】特開2010-278438(JP,A)
【文献】国際公開第2015/027995(WO,A1)
【文献】特開2007-123736(JP,A)
【文献】特開2006-179771(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 23/427-23/473
H05K 7/20
(57)【特許請求の範囲】
【請求項1】
構成要素側(5)と、前記構成要素側(5)とは反対側の冷却側(6)とを有する金属セラミック基板(1)を冷却するためのシステムであって、前記システムは、
冷却構造(20)内に流体を導くための少なくとも1つの統合された流体チャネル(30)を備えた金属製の前記冷却構造(20)と、
前記流体チャネル(30)に流体を供給するためのプラスチック製の分配構造(40)と
を備え、
前記冷却構造(20)は、分配構造(40)に面する外側(A)に、入口開口部(31)と、前記入口開口部(31)から分離している出口開口部(32)とを有し、
前記入口開口部(31)と前記出口開口部(32)とは、前記流体チャネル(30)を介して互いに接続され、
前記冷却構造(20)が設置されると、前記入口開口部(31)から流体が前記構成要素側(5)の方向に案内され、前記冷却構造(20)内で流体が再方向付けされるように前記流体チャネル(30)は構成され、
それぞれが前記入口開口部(31)を有する複数の前記流体チャネル(30)は列方向(RR)から見て並んで配置されていることと、
前記分配構造(40)は複数の前記入口開口部に流体を供給するように設計されていることと、
のうちの少なくとも一方である、システム。
【請求項2】
前記分配構造(40)を出た後の流体の流れ方向が、前記冷却構造(20)の主拡張面(HSE)に平行に走る方向に関して、前記分配構造(40)に入るときの流体の流れ方向に対して横方向にオフセットされるように、前記冷却構造(20)は特に前記流体チャネル(30)と前記分配構造(40)とのうちの少なくとも一方は構成されている、
請求項1に記載のシステム。
【請求項3】
前記流体チャネル(30)はU字形であり、
U字形の前記流体チャネル(30)は、
主拡張面(HSE)に対して実質的に垂直に延びる2つの脚領域(34)と、
2つの前記脚領域(34)を接続する少なくとも1つの横方向領域(33)と
を備える、請求項1または2に記載のシステム。
【請求項4】
前記主拡張面(HSE)に平行に延びる前記脚領域(34)の開口断面は、前記冷却構造(30)内の流れ方向に沿って横方向にシフトされ、
特に前記脚領域(34)は、第1開口断面(Q1)を有する第1部分セクション(T1)と、第2開口断面(Q2)を有する第2部分セクション(T2)とを備え、
前記主拡張面(HSE)に平行に走る方向から見た場合、前記第1開口断面(Q1)は前記第2開口断面(Q2)に対してオフセット距離(V)だけオフセットされている、
請求項に記載のシステム。
【請求項5】
流体に乱流を形成するために、少なくとも1つの前記脚領域(34)の流体は、少なくとも一部内に実質的に螺旋状のコースを有する、
請求項またはに記載のシステム。
【請求項6】
前記分配構造(40)は、前記冷却構造(20)に隣接する壁状構造を備え、
前記壁状構造は列方向(RR)に対して15°未満で傾斜し、好ましくは前記列方向に平行に延びる、
請求項からのいずれか一項に記載のシステム。
【請求項7】
前記分配構造(40)は、前記入口開口部(30)の2つの隣接する列に流体を供給する、
請求項1からのいずれか一項に記載のシステム。
【請求項8】
構成要素側(5)と、前記構成要素側(5)とは反対側の冷却側(6)とを有する金属セラミック基板(1)であって、前記金属セラミック基板(1)は、主拡張面(HSE)に沿って延びるセラミック層(11)と、金属化層(12)とを備え、
前記冷却側(6)は
流体を導くための少なくとも1つの統合された流体チャネル(30)を備えた金属製の冷却構造(20)と、
前記流体チャネル(30)に流体を供給するためのプラスチック製の分配構造(40)とを有し、
前記冷却構造(20)は、分配構造(40)に面する外側(A)に、入口開口部(31)と、前記入口開口部(31)から分離している出口開口部(32)とを有し、
前記入口開口部(31)と前記出口開口部(32)とは、前記流体チャネル(30)を介して互いに接続され、
前記冷却構造が設置されると、前記入口開口部(31)から流体が前記構成要素側(5)の方向に案内され、前記冷却構造(20)内で流体が再方向付けされるように前記流体チャネル(30)は構成され、
それぞれが前記入口開口部(31)を有する複数の前記流体チャネル(30)は列方向(RR)から見て並んで配置されていることと、
前記分配構造(40)は複数の前記入口開口部に流体を供給するように設計されていることと、
のうちの少なくとも一方である、金属セラミック基板。
【請求項9】
請求項1~のいずれか一項に記載のシステムを製造するか、請求項に記載の金属セラミック基板を製造する方法であって、
少なくとも1つの前記流体チャネル(30)を備える前記冷却構造(20)は、層構造と3D印刷処理とのうちの少なくとも一方によって製造される、
方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属セラミック基板を冷却するためのシステム、その製造方法、および金属セラミック基板に関する。
【背景技術】
【0002】
金属セラミック基板は、例えば、プリント回路基板または回路基板として知られている。典型的には、電気部品または要素および導体経路は、金属セラミック基板の構成要素側に配置され、電気部品および導体経路は、電気回路を形成するために相互接続することができる。特殊な用途では、個々の電気部品と導体経路との電気絶縁のための高い電気絶縁強度を含む絶縁層、たとえば対応するセラミックからなる絶縁層を備える金属セラミック基板が、特に有利であることが証明されている。
【0003】
これらの金属セラミック基板の動作中、電気部品は通常、それらが加熱され、構成要素側に局所的な熱源が形成されるように応力が加えられる。加熱によって引き起こされる電気部品または金属セラミック基板への損傷を回避するために、最先端技術、例えば、特許文献1または特許文献2から、冷却構造が知られている。これにより、金属セラミック基板から熱を取り除くことができる。冷却構造を通過して流れる冷却液との熱交換を使用して熱を除去することが特に効果的であることが判明した。
【先行技術文献】
【特許文献】
【0004】
【文献】独国特許出願公開第102012200325号明細書
【文献】独国特許出願公開第102014105727号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、SiCやGaNなどの半導体素子などの新しいタイプの電気部品の開発により、冷却性能の観点からの冷却システムの要件も高まっている。さらに、最先端の冷却システムを操作する方法によって、金属セラミック基板の冷却構造の寸法が制限される場合がある。
【課題を解決するための手段】
【0006】
本発明のタスクの1つは、最先端のものと比較して、金属セラミック基板の冷却性能をさらに改善する冷却システムを提供することである。
この課題は、請求項1に記載の金属セラミック基板を冷却するためのシステム、請求項9に記載の金属セラミック基板、および請求項10に記載のシステムを製造するための方法によって解決される。本発明のさらなる利点および特徴従属クレームならびに説明および添付の図から生じる。
【0007】
本発明によれば、構成要素側と、構成要素側とは反対側の冷却側とを有する金属セラミック基板を冷却するためのシステムが提供される。システムは、冷却構造内の流体を導くための少なくとも1つの統合された流体チャネルを備えた金属冷却構造と、流体チャネルに流体を供給するための、特にプラスチック製の分配構造とを備える。冷却構造は、分配構造に面する外側に、入口開口部と、入口開口部とは別の出口開口部とを有し、入口開口部および出口開口部は流体チャネルを介して互いに接続される。冷却構造が取り付けられると、流体は入口開口部から構成要素側の方向に導かれ、冷却構造内で再方向付けされるように流体チャネルは構成される。
【0008】
当技術分野から知られている冷却用システムと比較して、本発明によるシステムは、流体の特に適切に方向付けられた誘導によって際立っている。制御されたガイダンスは、流体を流体チャネルの入口開口部に導く分配構造から始まる。次に、流体は、冷却構造内の区画された流路に沿って構成要素側に向かって輸送され、再び冷却構造から排出される。冷却構造内の制御されたガイダンスが有利であることが判明した。これは、このガイダンスにより、たとえば、乱流を作成したり、金属冷却構造と流体の間の接触面を大幅に増やしたりして、冷却構造の性能を改善できるためである。さらに、分配構造によれば、流体が出口開口部の中に向けられたり、出口開口部に向けられたりすることがなくなる。言い換えれば、流体を入口開口部に向けることにより、分配構造は、流体チャネル内で望ましくない逆流が発生しないことを保証し、流体チャネル内の流れの方向または誘導をサポートする。さらに、分配構造を使用して、複数の流体チャネルへの流体の分配を制御して、それらすべてに同じ温度で流体が供給されるようにすることができる。つまり、冷却にすでに使用されている流体が数回使用されることを回避できる。これは、冷却側の全体または完全な冷却側の冷却時に均一性についてプラスの効果をもたらす。
【0009】
プラスチックから分配構造を作ることにより、例えば射出成形および/または圧縮成形によって、比較的容易かつ費用効果的に製造することができる。特に、分配構造は、設置時に冷却構造の外側に直接に接している。分配構造は、好ましくは、インフィード構造によって運ばれる流体の少なくとも一部が入口開口部に再方向付けされるように、インフィード構造によって第1主流方向に沿って輸送される流体を迂回させるタスクを有する。この目的のために、分配構造および冷却構造の外側が密封されていることは絶対に必要ではない。分配構造は、インフィード構造と冷却構造の間に配置されることも意図されている。たとえば、分配構造はインフィード構造によって包まれているか、または囲まれている。好ましくは、流体チャネルは、(冷却構造において)流れ方向に対して垂直な平面内に開口断面を有し、その直径は2mmよりも小さく、好ましくは1.5mmよりも小さく、そして特に好ましくは1mmまたは0.5mm未満が好ましい。これにより、流体を比較的高い空間分解能で目的の位置に向けることができる。さらに、したがって、冷却構造の外側に、冷却構造内の均一な温度分布のためのいくつかの流体チャネルを提供することが可能であり、分配構造は、好ましくは、流体でいくつかの入口開口部、好ましくはすべての入口開口部のサブセットを供給する。さらに、開口部の断面は、正方形、長方形、楕円形、または円形であると考えられる。
【0010】
分配構造は、好ましくは、流体が入口開口部に導入される入口部分に加えて、流体が流体チャネルの出口開口部から引き出される出口部分を有する。言い換えれば、分配構造は、入口開口部への流体の供給を保証するだけでなく、出口開口部からの制御された流れも保証する。入口部分は、好ましくは、入口開口部に隣接しており、出口部分は、特に直接、出口開口部に隣接している。さらに、分配構造は、流れが発生しないこと、または主拡張面に平行な出口開口部に沿って流れが減少することを確実にするように構成されていると考えられる。これは、出口開口部から排出された流体が、そうでなければそこで発生するであろう流れの影響を受けるのを防ぐための有利な方法である。
【0011】
本発明の好ましい実施形態によれば、冷却構造、特に流体チャネル、および/または分配構造は、分配構造を離れた後の流体の流れ方向、例えば第2主流方向に沿う方向が、分配構造に入るときの流体の流れ方向、例えば第1主流方向に沿う方向に対して、拡張面に平行な方向で横方向にオフセットされるように構成されることが提供される。オフセットは、例えば、流体チャネルによってのみ、または分配構造によってのみ引き起こされる可能性がある。特に、流体は、第1主流方向に対して横方向にオフセットされ、第2主流方向に沿って流れ続ける。特に、「横方向」とは、第1主流方向に関して横方向のオフセットを意味する。好ましくは、横方向オフセットは、第1主流方向に平行な方向に沿って見た場合、流れ断面(第1主流方向または第2主流方向に対して垂直に寸法が定められている)が重ならないか、交差しないほど大きい。言い換えると、冷却構造と分配構造のシステムを離れた後、流体チャネルによって導かれる流体は、横方向であるか、または横方向にオフセットされる。これは、冷却にすでに使用された流体、すなわち使用済み流体が、新鮮な流体または流体の新鮮な部分と混合することを回避するための有利な方法である。すなわち、供給流体と排出流体は互いに分離され、さらに冷却構造の下に輸送される。このようにして、第1主流方向に沿って見た後部流体チャネルに、第1主流方向に沿って見た前部流体チャネルに導入された流体の温度に実質的に等しい温度の流体が供給されることが保証され得る。これは、複数の分配構造が第1主流方向に沿って、または第1主流方向に沿って直列に配置または構築されている場合に特に当てはまる。これは、冷却側の冷却を可能な限り均一にするための有利な方法である。本出願で流体について言及する場合は常に、これは特に冷却を目的とした一般的な流体の一部を指す。好ましくは、流体は液体である。
【0012】
好ましくは、それぞれが入口開口部を有する複数の流体チャネルは、列方向から見て並んで配置され、および/または分配構造は、複数の入口開口部を、特に互いの隣りに配置された入口開口部を、液体で供給するように設計される。列方向は、第1主流方向に平行であることと、斜めであることとのうちの少なくとも一方であり得、特に第1主流方向に対して垂直であり得る。さらに、出口開口部はまた、列方向に沿って並んで配置され、特に入口開口部に平行にオフセットされている。好ましくは、列方向は一般的なコースのみを反映し、隣接する流体チャネル同士は、制限(特に分配構造によって決定される)内で互いにオフセットされ得る。さらに、流体チャネルの入口開口部に列方向で流体が供給され、入口開口部と流体で覆われた経路とは無関係に流体が本質的に同じ温度を有するように、分配構造、特に入口部分は構成されると考えられる。例えば、分配構造、特に入口部分はこの目的のために傾斜形状構造を含み、流体がカバーする距離が長くなると傾斜形状構造と冷却構造の外側との間の距離が小さくなるように、傾斜形状構造は傾斜している。これにより、流体による均一な冷却が可能になる流れが確立される。
【0013】
好ましくは、流体チャネルはU字形であり、U字形の流体チャネルは、主拡張面に対して実質的に垂直に延びる2つの脚領域と、2つの脚領域を接続する少なくとも1つの横方向領域とを有する。これにより、U字型の冷却チャネル内の冷却液を金属セラミック基板のセラミック層のできるだけ近くに誘導し、冷却基板を均一に冷却することができる。特に、横方向領域は弧状であることと、積層方向から見たときに流体の戻り点を形成することとのうちの少なくとも一方が意図されている。特に、積層方向から見た流体チャネルは、積層方向で測定された冷却構造の全厚さの半分を超えて、好ましくは3分の2を超えて、特に好ましくは4分の3を超えて延びることが意図されている。さらに、積層方向(取り付け状態で構成要素側に面する)で見ると、単層金属層、特に銅層が、横方向領域に隣接することが意図されている。この最終的な単層金属層の厚さは、0.2mmから1.5mmの間、好ましくは0.4mmから1mmの間、より好ましくは0.6mmから0.8mmの間である。
【0014】
本発明のさらなる実施形態によれば、主拡張面に平行に延びる脚領域の開口断面が、冷却構造内の流れ方向に沿って横方向にシフトされることが提供される。特に脚領域は、第1開口断面を有する第1部分セクションと、第2開口断面を有する第2部分セクションとを備え、主拡張面に平行に走る方向で見たときに第1開口断面は、第2開口断面に対してオフセット距離だけオフセットされている。好ましくは、オフセットは、50μmから500μmの間、好ましくは80μmから300μmの間、特に好ましくは100μmから200μmの間の値を有する。特に、第1部分セクション内および第2部分セクション内では、開口断面が再配置されない(すなわち、積層方向から見たときに開口断面は一定である)ので、第1開口断面と第2開口断面との間の離散的なジャンプが発生する。例えば、互いに異なる金属層を積み重ねることによって冷却構造が形成された場合、第1部分セクションおよび第2部分セクションは、対応する金属層に割り当てられる個々の層平面を区画する。金属層は、積層方向で測定された厚さが100μmから1000μmの間、好ましくは200μmから800μmの間、より好ましくは500μmから600μmの間である。このような厚さの場合、エッチング処理(仕上げ状態で開口断面を形成する凹部を形成するため)をより適切に制御することができ、これらの厚さも冷却性能に有益であることが示されている。
【0015】
第1開口断面を第2開口断面にオフセットすることにより、特に第1部分セクションと第2部分セクションとの間の遷移部にエッジまたは凹部を作成することができ、これにより、流体チャネル内部の流れに乱流が形成される。乱流は、冷却構造を介した熱放散にプラスの効果をもたらす。流体チャネル内の乱流は、流体チャネル内に突き出た構造によって実現されることも考えられる。
【0016】
本発明のさらなる実施形態では、流体に乱流を形成するために、少なくとも1つの脚領域の流体が、少なくとも部分内に実質的に螺旋状のコースを有することが提供される。螺旋状のコースは、特に、主拡張面に平行に延びる脚領域の開口断面が、主拡張面にある少なくとも2つの異なる方向で、冷却構造内の流れ方向に沿って連続して横方向に再配置されるという事実によって規定される。好ましくは、再配置は、時計回りまたは反時計回りの方向にいくつかの平面にわたって行われる。螺旋状のオフセットは、流体と金属冷却構造の間の接触面積を増加させる。これは、熱放散に、したがって冷却性能にもプラスの効果をもたらす。
【0017】
本発明のさらなる実施形態によれば、分配構造は、冷却構造に隣接する壁状構造を含むことが意図される。壁状構造は、列方向に対して15°未満だけ傾斜し、好ましくは列方向に平行に延びる。特に、そうでなければ主流方向に沿って輸送される流体は、個々の入口開口部にそれぞれ輸送するために、壁状構造によって、横方向に再方向付けされること、すなわち第1主流方向を横切って再方向付けされることが意図される。好ましくは、入口部分および出口部分の両方は、それぞれ壁状構造として設計される。
【0018】
本発明のさらなる実施形態では、分配構造が、入口開口部の2つの隣接する列に流体を供給することが提供される。特に、ここでは、入口部分および出口部分は、それぞれ、底部および2つの側面がチャネルを横方向に区切るチャネルとして形成され、チャネルの長手方向は、列方向に実質的に平行に延びる。チャネルとして設計された入口部分は、冷却構造の外側に開いており、積層方向から見たときに流体チャネルの列の下ではなく、むしろ流体チャネルの2つの隣接する列の半分の下に配置されるように寸法と位置が調整されている。したがって、この実施形態では、2つの異なる流体チャネルの2つの隣接する入口開口部、または2つの異なる流体チャネル(出口開口部)の2つの出口開口部が、列の方向に対して垂直な方向に対を形成する。それ自体が列方向に列を形成するこれらの対のそれぞれは、再び、チャネルとして入口部分または出口部分に割り当てられる。壁状構造が流体を横方向にシフトする分配構造とは対照的に、ここでは流体チャネルが横方向のシフトを保証する。換言すれば、流体は、1つのチャネル、入口部分から、流体チャネルを介して、隣接するチャネル、出口部分へと迂回または再分配される。好ましくは、入口部分の底部は、冷却構造の外側に向かって第1主流方向に傾斜した傾斜形構造を形成する。特に、出口部分の底部、すなわち隣接する分配構造は、流体の流出を容易にするために反対方向に傾斜している。換言すれば、それぞれが入口部分と出口部分を形成する隣接するチャネルの傾斜形の底部の傾斜は、反対方向に傾斜している。
【0019】
本発明のさらなる目的は、構成要素側と、構成要素側とは反対側の冷却側とを有する金属セラミック基板であり、金属セラミック基板は、主拡張面に沿って延びるセラミック層と、金属化層とを含む。冷却側は、流体を伝導するための少なくとも1つの統合された流体チャネルを備えた金属冷却構造と、流体チャネルに流体を供給するための特にプラスチック製の分配構造とを有する。ここで、冷却構造は、分配構造に面する外側に、入口開口部と、入口開口部とは別の出口開口部とを有する。ここで、入口開口部および出口開口部は、流体チャネルを介して互いに接続される。冷却構造が設置されると、流体は入口開口部から構成要素側の方向に導かれ、冷却構造内に再方向付けされるように、流体チャネルは構成される。本発明によるシステムについて説明されたすべての特徴およびそれらの利点はまた、本発明によるシステムに移すことができ、逆もまた同様である。
【0020】
好ましくは、金属セラミック基板は、セラミック層に加えて二次層を有し、金属中間層は、セラミック層と二次層との間に配置される。金属中間層は、積層方向から見たときのセラミック層の厚さと、二次層の厚さと、セラミック層および二次層の厚さの合計とのうちの少なくとも一つよりも厚い。好ましくは、最適な熱拡散のために金属中間層は1mmより厚く、好ましくは1.5mmより厚く、特に好ましくは2.5mmより厚いことと、金属中間層は単層として形成されることと、のうちの少なくとも一方である。
【0021】
さらに、冷却構造は、金属セラミック基板の不可欠な部分であることが好ましい。この目的のために、冷却構造は、好ましくは、DCB(直接銅結合)処理、DAB(直接アルミニウム結合)処理、およびAMB(活性金属ろう付け)処理のうちの少なくとも一つによって、セラミック層と二次層とのうちの少なくとも一方に接続される。
【0022】
本発明のさらなる目的は、本発明によるシステムを製造するための方法であり、少なくとも1つの流体チャネルを備えた冷却構造は、層構造と3D印刷処理とのうちの少なくとも一方によって製造される。本発明によるシステムまたは金属セラミック基板について記載されたすべての特徴およびそれらの利点もまた、本発明による処理に同様に移すことができ、逆もまた同様である。
【0023】
流体チャネルが層状構造によって製造される場合、個々の金属層に凹部が打ち抜かれることとエッチングされることとのうちの少なくとも一方が行われ、次に個々の層が積層方向に沿って上下に配置されることで流体チャネルが形成されることが好ましい。この目的のために、完成した状態で第1開口断面または第2開口断面を区画する個々の凹部は、従って整列される。特に、金属層の1つは、2つの凹部の代わりに、例えば、打ち抜きまたはエッチングされた長尺孔を有する。後で組み立てられた冷却構造では、この長尺孔が、流体が再方向付けされる横方向領域を形成する、個々の金属層は、異なる金属で作ることも、異なる厚さにすることもできる。特に、流体チャネルを形成するための凹部を有する金属層は、凹部が作成されていない金属層であって、組み立てられた状態で、流体チャネルの横方向領域とセラミック層または二次層との間に位置する金属層とは、異なると考えられる。
【0024】
金属化層、中間層、冷却構造、および冷却構造の層のうちの少なくとも一つの材料として考えられる材料は、銅、アルミニウム、モリブデン、およびそれらの合金のうちの少なくとも一つである。同様に、CuW、CuMo、CuAl、AlCu、およびCuCuなどの積層体のうちの少なくとも一つである。特に、第1銅層および第2銅層を有する銅サンドイッチ構造であり、第1銅層の粒子サイズは第2銅層とは異なる。さらに、金属化層が表面改質されていることが好ましい。表面改質として、例えば、貴金属、特に銀および/または金、またはENIG(無電解ニッケル浸漬金)、または亀裂形成もしくは拡張を抑制するための第1または第2金属化層でのエッジシーリングが考えられる。好ましくは、金属層は、DCB処理および/またははんだ付け処理によって互いに接続されて、冷却構造を形成することが意図されている。例えば、金属層は互いの上に配置され、次にはんだ付けおよび/または焼結される。
【0025】
好ましくは、セラミック層Al、Si、AlN、HPSXセラミック(すなわち、ZrO2のxパーセントシェアを含むAlマトリックスを有するセラミック、例えば、9%ZrO=HPS9を有するAlまたは25%ZrO=HPS25を有するAl)、SiC、BeO、MgO、高密度MgO(>理論密度の90%)、TSZ(正方晶で安定化された酸化ジルコニウム)、またはセラミックの材料としてのZTAがある。また、絶縁層は、さまざまな望ましい性質を組み合わせるべく、材料組成が異なる複数のセラミック層を重ね合わせて接合して絶縁層を形成して複合セラミックまたはハイブリッドセラミックとして設計することも考えられる。好ましくは、可能な限り低い熱抵抗のために、高熱伝導性セラミックが使用される。
【0026】
本発明の好ましい実施形態では、冷却構造および/または分配構造を備えた金属セラミック基板が、特にキャリア基板の主拡張面に対して垂直な積層方向に沿って、熱機械的に対称に構成されることが提供される。熱機械的に対称な構成とは、特に、積層方向から見たときに熱機械的膨張係数が対称であることを意味する。熱機械的膨張係数は、温度変化または温度変更中のそれぞれの層の膨張の尺度である。好ましくは、金属セラミック基板は、特に仮想一次サブ基板、仮想二次サブ基板、および仮想中間層を有する仮想サブ基板に分割することができ、仮想サブ基板の熱膨張係数は、積層方向に対して対称に分配される。特に、二次サブ基板は、冷却構造および/または分配構造を考慮に入れ、冷却構造の場合、熱機械的有効厚さは冷却構造に想定され、冷却構造の流体チャネルの存在を考慮に入れる。
【0027】
膨張係数の対称的な構成により、金属セラミック基板が有利な方法で提供され、作動または環境条件によって引き起こされる温度変化と比較して、歪みが比較的少ない。結果、そうでない場合に熱的に誘発されうる機械的応力によって引き起こされる欠陥や亀裂を回避することができる。
【0028】
さらなる利点および特徴は、添付の図を参照して、本発明の主題の好ましい実施形態の以下の説明から生じる。個々の実施形態の個々の特徴は、本発明の範囲内で組み合わせることができる。
【図面の簡単な説明】
【0029】
図1】本発明の第1の例示的な実施形態による金属セラミック基板の概略図。
図2】本発明の第1の例示的な実施形態の冷却構造および分配構造のシステムの詳細図。
図3】本発明の第1の例示的な実施形態の冷却構造および分配構造のシステムの詳細図。
図4】本発明の第1の例示的な実施形態の冷却構造および分配構造のシステムの詳細図。
図5】本発明の第1の例示的な実施形態の冷却構造および分配構造のシステムの詳細図。
図6】本発明の第1の例示的な実施形態の冷却構造および分配構造のシステムの詳細図。
図7】本発明の第2の例示的な実施形態による冷却構造および分配構造のシステムの図解。
図8図7からのシステムの斜視図。
図9図8の分配構造の斜視図。
【発明を実施するための形態】
【0030】
図1は、本発明の第1の例示的な実施形態による金属セラミック基板1を概略的に示している。このような金属セラミック基板1は、好ましくは、金属セラミック基板1に接続することができる電子部品または電気部品4のキャリアとして使用される。このような金属セラミック基板1の必須構成要素は、主拡張面HSEに沿って延びるセラミック層11と、セラミック層11に結合された金属層12とである。セラミック層11は、セラミックを含む少なくとも1つの材料でできている。金属層12とセラミック層11は、主平面HSEに対して垂直な積層方向Sに沿って互いに重なり合って配置され、結合面を介して互いに材料的に結合されている。完成状態では、金属層12は、金属セラミック基板1の構成要素側5上に構造化されて、電気構成要素のための導体経路または接続端子を形成する。図示の実施形態では、金属セラミック基板1は、二次層13と,セラミック層11と二次層13との間に配置された金属中間層15とを含む。セラミック層11、金属中間層15、および二次層13は、積層方向Sに沿って上下に配置される。さらに、金属中間層15は、セラミック層11と二次層13とのうちの少なくとも一つよりも厚くすることが好ましい。好ましくは金属中間層15は1mmよりも厚く、好ましくは1.5mmよりも厚く、特に好ましくは2.5mmよりも厚い。セラミック層11は好ましくはセラミックでできており、十分な絶縁強度を提供し、金属セラミック基板1を硬化させるように構成される。二次層13はまた、例えば、ここで顕著な絶縁強度が求められないので、タングステンまたはモリブデンで作ることができる。このようにして、材料費を削減することができる。あるいは、二次層13もセラミックを含む材料でできている。
【0031】
構成要素側5とは反対側である金属セラミック基板1の冷却側6には、金属冷却構造20が設けられている。金属冷却構造20は、二次層13に直接に接続されていることが好ましい。
【0032】
これにより、他の方法で形成される界面が、対応する結合材料によって熱伝導率に悪影響を与えるのを防ぎ、したがって、構成要素側5から冷却側6への熱放散を制限する。例えば、冷却構造20はAMB処理、DCB(直接銅結合)、またはDAB(直接アルミニウム結合)処理を介して直接に二次層13に結合される。特に、複数の流体チャネル30が金属冷却構造20に統合されていることが提供される。明確にするために、図1は、例としてこれらの流体チャネル30のうちの1つのみを示す。流体チャネル30は、金属冷却構造20内の流体、特に冷却流体の制御された誘導のために使用される。流体は、分配構造40を介して冷却構造20に供給され、分配構造40を介して再び排出される。好ましくは、分配構造40は、入口部分41および出口部分42を有する。
【0033】
特に、流体チャネル30は、入口開口部31と、入口開口部31から離間した出口開口部32とを有する。特に、入口開口部31および出口開口部32は、分配構造40に面する冷却構造20の外側Aの一部である。好ましくは、分配構造40の入口部分41は入口開口部31に隣接し、出口部分42は出口開口部32に隣接している。
【0034】
図2から図4では、金属冷却構造20および分配構造40のみが斜視図で示され、図5および図6では、2つの異なる側面図で示されている。図では、冷却構造20全体の代わりに、冷却構造20のいくつかの流体チャネル30が示されている。言い換えれば、流体チャネル30は、それらが埋め込まれている金属体なしでここに示されている。さらに、積層方向Sで見ると、インフィード構造50が分配構造40の底部に接続されている。したがって、分配構造は、積層方向Sで見たときに、冷却構造とインフィード構造との間に位置する。このようなインフィード構造50は、好ましくは、第1主流方向HS1を提供するために提供される。たとえば、インフィード構造はチャネル形状である。さらに、インフィード構造50は、流体回路または冷却流体供給および冷却流体廃棄に接続することができる少なくとも1つの入口および1つの出口(ここには示されていない)を有する。分配構造40は、好ましくは、流体を、第1主流方向HS1に沿って流れる流れから、冷却構造20に迂回させるか、またはそこに導入するように構成される。さらに、図2から図5は、概要のために、流体チャネル30の単一の列のみを示している。複数の列が列方向RRに対して垂直で主平面HSEに平行な方向に互いに隣り合ってまたは互いに後ろに配置され、これらの列のそれぞれが対応する分配構造40、例えば単一の分配構造を介して流体を供給されることが好ましい。好ましくは、これらのいくつかの列は、分配構造に面する冷却構造20の外側Aを完全に越えて延びる。
【0035】
特に、いくつかの流体チャネル30が並んで配置されることが提供される。特に、示される実施形態の流体チャネル30は、列に沿って配置され、これは、示される実施形態では、第1主流方向HS1に対して本質的に垂直である。基本的に、列は、第1主流方向HS1に対して0から90°の間の角度で傾斜している列方向RRに沿って走ることも考えられる。好ましくは、角度は45°よりも小さい。
【0036】
図2から図6に示される実施形態では、流体の少なくとも一部が、入口開口部31に向けられる前に最初に第1主流方向HS1から、列方向に平行である横方向Qに再方向付けされるように、分配構造40は流体を再方向付けすることが提供される。さらに、流体は、冷却構造20に向かって入口開口部31の方向に、すなわち上向きに向けられる。これにより、分配構造は、異なる流体チャネル30のいくつかの入口開口部31に、同じ温度を有する流体を供給することができる。この目的のために、入口部分41は、示される実施形態では、列方向RRに本質的に平行に走る壁状構造として設計されている。インフィード構造50が流体を分配構造40の一部のみに供給するということが提供されるのが好ましい。示されている実施形態では、本質的に、入口部分41の第1部分、特に左半分が、第1主流方向HS1に沿った冷却流体の流れを形成するために使用される。しかしながら、流体チャネル30の完全な列は、分配構造40によって流体が供給される。好ましくは、入口部分は、列方向RRに傾斜している傾斜形状構造を含み、傾斜形状構造は、特に主拡張面HSEに対して列方向RRに傾斜している。
【0037】
流体チャネル30を通過した後、流体は、出口開口部32を介して冷却構造20を出て、分配構造の出口部分42に導かれる。分配構造40の出口部分42はまた、列方向RRに本質的に平行である壁状構造として構成されている。特に、出口部分42は、出口開口部32から出てくる流体を収集し、第2主流方向HS2に再方向付けしてインフィード構造50に戻すように構成されることが意図されている。例えば、出口部分42は、列方向RRに傾斜した傾斜形状構造を含み、傾斜形状構造は特に、分配構造40の入口部分41の傾斜形状構造に対して傾斜している。さらに、第1主流方向HS1および第2主流方向HS2は互いに平行にオフセットされていることが提供される。言い換えれば、分配構造40を出た後、流体の流れは、分配構造40に入るときに流れに対して横方向または横側にオフセットされる。
【0038】
示される実施形態では、分配構造40の入口部分41は、第1主流方向HS1に沿って見て、分配構造40の出口部分42の前に配置されている。しかしながら、第1主流方向HS1に沿って見て、出口部分42が、分配構造40の入口部分41の前に配置されることも考えられる。
【0039】
個々の流体チャネル30は、好ましくはU字形であり、U字形の流体チャネル30は、主拡張面HSEに対して本質的に垂直に延びる2つの脚領域34と、2つの脚領域34を接続する横方向領域33とを有する。特に、横方向領域33は、流体を再方向付けするために使用され、設置された場合、二次層13またはセラミック層11に最も近い。好ましくは、横方向領域33と、冷却構造20に隣接するセラミック層11または二次層13との間の距離は、0.2mmから1.5mmの間、好ましくは0.4mmから1mmの間、特に好ましくは0.6mmから0.8mmの間の値を有する。好ましくは、流体チャネル30同士は、特にそれらの脚領域34同士は、流体が流体チャネル30内で乱流を経験するように構成される。この目的のために、例えば、主拡張面HSEに平行に走る脚領域34の開口断面Q1、Q2は、流体チャネル30内の流体、特に脚領域34内の流体の流れ方向に沿って横方向にシフトされることが意図される。脚領域34は、第1開口断面Q1を有する第1セクションT1と、第2開口断面Q2を有する第2セクションT2とを備える。第1開口断面Q1は、主拡張面HSEに平行に走る方向から見たときに、第2開口断面Q2からオフセット距離Vだけオフセットされる。好ましくは、第1開口断面Q1および第2開口断面Q2は同じサイズである。ただし、第1開口断面は、第2開口断面とは異なることも考えられる。特に、第1セクションT1および第2セクションT2は、それぞれ金属層に割り当てられ、例えば、製造中に互いの上に積層される。個々の金属層は、同じ厚さであっても、厚さが異なっていてもかまわない。また、例えば、個々の層の厚さが構成要素側に向かって減少および/または増加することも考えられる。
【0040】
特に、第1開口断面Q1および第2開口断面Q2はそれぞれ、第1主流方向HS1または第2主流方向HS2に平行な方向に沿って、且つ列方向RRに平行な方向に沿って、つまり互いに平行ではない2つの方向に沿って、互いにオフセットされていることが規定される。好ましくは、第1開口断面Q1および第2開口断面Q2が積層方向Sで見たときに上下に配置されて第1開口断面Q1または第2開口断面が重なり合う面積の比率は、0.5から0.9の間、好ましくは0.5から0.8の間、より好ましくは0.5から0.7の間の値を有する。特に、入口開口部および/または出口開口部の開口断面は、第1開口断面および/または第2開口断面よりも大きいと考えられる。これにより、流体チャネル用の漏斗状の入口領域および出口領域を形成することができる。
【0041】
しかしながら、第1開口断面Q1および第2開口断面Q2が異なるサイズであることも考えられる。好ましくは、第1開口断面および第2開口断面は、流体チャネル30に対して実質的に螺旋状のコースを形成するように構成される。流体チャネル30は、例えば、対応する開口を有する金属層を積み重ねることによって、または3D印刷処理によって実現され得る。さらに、入口開口部31は、直径および/または縁の長さが0.1mmから2.5mmの間、好ましくは0.5mmから1.5mmの間、より好ましくは本質的に1mmの値を有する第1開口断面を有することが提供される。第1開口断面Q1または第2開口断面Q2は、流体チャネル30の脚領域34内では変化しないことが好ましい。
【0042】
さらに、好ましくは同じ流体チャネルのものである、2つの隣接する脚領域の間の距離Aは、0.1mmから5mmの間、好ましくは0.2mmから2mmの間、より好ましくは本質的に1.5mmの値を有するべきであると規定される。第1開口断面Q1または第2開口断面Q2の2つの中心間の距離Aは、積層方向Sにおいて同じ高さで測定される。
【0043】
図7は、本発明のさらなる実施形態による、冷却構造20および分配構造40の配置を示している。特に、入口部分および出口部分は、本質的にシェル状の形状またはチャネル形状であり、シェル状構造は、冷却構造20の外側Aに開いており、外側Aに直接に隣接していることが意図されている。示される実施形態では、シェル要素は、特に、底部61と、底部61から垂直に突出する2つの側面62とを含む。シェル要素が列方向RRに実質的に長手方向に平行に延在することで、シェル要素が流体を、冷却構造20の外側に沿って、例えば、引抜き面(xで示される)の中に突出する方向に方向付けするようにさらに提供される。特に、隣接する列に配置された2つの流体チャネルの入口開口部31をシェル要素が供給するように、主拡張面HSEに沿ってシェル要素の寸法が定められることが提供される。言い換えれば、図7の実施形態では、隣接する列の流体チャネル30の入口開口部31は、入口部分41を共有し、互いに隣接して配置されている。すなわち、列方向RRに対して垂直な方向において、流体チャネルの入口開口部31および出口開口部32は交互ではなく、入口部分41および出口部分42に交互に割り当てられる対を形成する。流体は、それぞれの出口開口部32を介して冷却構造の流体チャネル30を離れた後、分配構造の出口部分42を形成して入口部分41と平行に走る別のシェル要素に導入される。その結果、隣接する出口ポート42の2つの列の対が、分配構造40の出口部分に設けられている。
【0044】
図8は、図7からのシステムの斜視図を示す。特に、互いに隣接して配置されたシェル要素またはチャネルは、入口部分41および出口部分42を交互に形成することが識別できる。入口部分41および出口部分42は、傾斜形の底部61の傾斜によって互いに異なる。好ましくは、入口部分41の傾斜形の底部と、出口部分42の傾斜形の底部とは、互いに反対方向に向けられている。できれば、傾斜路形状の底部61同士は、同じ絶対値の角度で傾斜させることができる。例えば、すべての入口部分41の傾斜形の底部61同士は平行に走り、すべての排出出口42の傾斜形の底部61同士は互いに平行に走る。底部61の傾斜は、分配構造内の流速を制御するために特に使用される。代替的または補足的に、シェル要素が流速を調整するために流れ方向にテーパーになっており、すなわちシェル要素の幅が減少していることも考えられる。特に、ここの図8に金属層を見ることができる。
【0045】
図9は、図7および図8からのシステムの分配構造40を概略的に示している。ここで、流体は、例えば、ここで提供される接続を介して、側面から供給および排出される。
【符号の説明】
【0046】
1…金属セラミック基板。
4…構成要素。
5…構成要素側。
6…冷却側。
11…セラミック層。
12…金属層。
13…二次層。
15…中間層。
20…冷却構造。
30…流体チャネル。
31…入口開口部。
32…出口開口部。
33…横方向領域。
34…脚領域。
40…分配構造。
41…入口部分。
42…出口部分。
50…インフィード構造。
61…底部。
62…側面。
T1…第1部分セクション。
T2…第2部分セクション。
Q…横方向。
Q1…第1開口断面。
Q2…第2開口断面。
HS1…第1主流方向。
HS2…第2主流方向。
HSE…主拡張面。
S…積層方向。
図1
図2
図3
図4
図5
図6
図7
図8
図9