IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ノーヴィゲ アーベーの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-29
(45)【発行日】2022-09-06
(54)【発明の名称】フローティングプラットフォーム
(51)【国際特許分類】
   B63B 35/00 20200101AFI20220830BHJP
   F03B 13/14 20060101ALI20220830BHJP
【FI】
B63B35/00 T
F03B13/14
【請求項の数】 15
(21)【出願番号】P 2018548802
(86)(22)【出願日】2017-03-15
(65)【公表番号】
(43)【公表日】2019-04-11
(86)【国際出願番号】 SE2017050253
(87)【国際公開番号】W WO2017160216
(87)【国際公開日】2017-09-21
【審査請求日】2020-03-13
(31)【優先権主張番号】1650352-6
(32)【優先日】2016-03-16
(33)【優先権主張国・地域又は機関】SE
(73)【特許権者】
【識別番号】518323950
【氏名又は名称】ノーヴィゲ アーベー
(74)【代理人】
【識別番号】110000659
【氏名又は名称】弁理士法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】ショルドハンメル,ヤン
【審査官】中島 昭浩
(56)【参考文献】
【文献】特開平01-142273(JP,A)
【文献】特開2013-144538(JP,A)
【文献】特開平09-183399(JP,A)
【文献】特開2015-163791(JP,A)
【文献】米国特許出願公開第2012/0032444(US,A1)
【文献】特表2012-510019(JP,A)
【文献】堀田 平、宮崎 武晃、鷲尾 幸久,浮体式波力発電装置の係留について,海洋科学技術センター試験研究報告,日本,海洋研究開発機構,1987年08月
(58)【調査した分野】(Int.Cl.,DB名)
B63B 35/00
B63B 21/00
B63B 21/50
F03B 13/14
F03B 13/18
F03B 13/22 - 13/26
(57)【特許請求の範囲】
【請求項1】
中空体(24)を備える波エネルギ変換器(WEC)用のポイントアブソーバタイプのフローティングプラットフォーム(1)であって、前記フローティングプラットフォーム(1)が、使用時に水面に面する下面(28)と、反対方向に面する上面(29)と、前面(30)を形成する第1の長辺と、背面(31)を形成する第2の長辺と、2つの短辺(33)とを有し、前記フローティングプラットフォーム(1)が、前記フローティングプラットフォーム(1)の前記前面(30)を波面と位置合わせさせるように、すなわち波(6)の進行方向に対して垂直に位置合わせさせるように構成された少なくとも1つの位置合わせ手段(34)を備えており、前記フローティングプラットフォーム(1)の前記前面(30)が少なくとも30mの長さであり、前記前面(30)の長さが前記短辺(33)の長さの少なくとも2倍であり、前記フローティングプラットフォーム(1)の高さが少なくとも1mであり、前記フローティングプラットフォーム(1)は、海底と前記フローティングプラットフォーム(1)の間の少なくとも1つのアンカー固定部(4)を用いて前記海底に固定されるように構成され、さらに、前記フローティングプラットフォーム(1)は、前記フローティングプラットフォーム(1)に配置されるか、または前記フローティングプラットフォーム(1)の下方に部分的に吊り下げられるエネルギ変換機械(27)と、電力を生成するため、前記フローティングプラットフォーム(1)に作用する垂直力がエネルギ変換機械(27)によって変換できるように、前記エネルギ変換機械(27)を前記海底の係留部(25)に連結するように取り付けられた、少なくとも1つの電力取出接続部(25b;25b’、25b’’、25b’’’)とを、備えることを特徴とするフローティングプラットフォーム(1)。
【請求項2】
前記前面(30)の長さが、少なくとも40mである、請求項1に記載のフローティングプラットフォーム(1)。
【請求項3】
前記前面(30)の長さが、前記短辺(33)の長さの少なくとも3倍ある、請求項1に記載のフローティングプラットフォーム(1)。
【請求項4】
前記フローティングプラットフォーム(1)の高さが、少なくとも2mである、請求項1に記載のフローティングプラットフォーム(1)。
【請求項5】
前記位置合わせ手段(34)が、少なくとも前記上面(29)に設けられた翼(2)と、前記下面(28)の近くに配置された少なくとも1つのジェットスラスタ(7)、前記短辺(33)の近くに配置されたブレード(19)、および/または前記下面(28)の近くに配置された少なくとも1つのプロペラ(38)のうちの任意の1つまたは組み合わせである、請求項1に記載のフローティングプラットフォーム(1)。
【請求項6】
前記翼(2)が、前記前面(30)と前記背面(31)との間の中間ではじまり、前記背面(31)の後方に到達するように配置される、請求項5に記載のフローティングプラットフォーム(1)。
【請求項7】
少なくとも2つの翼(2)がある、請求項5または6に記載のフローティングプラットフォーム(1)。
【請求項8】
少なくとも2つのジェットスラスタ(7)が、1つの短辺(33)の近くでそれぞれ水を後方および前方に押し出すように構成されている、請求項5に記載のフローティングプラットフォーム(1)。
【請求項9】
前記短辺(33)が、前記前面(30)との角度が90度よりも大きくなるように設けられた、少なくとも第1の部分(33a)を有する、請求項1に記載のフローティングプラットフォーム(1)。
【請求項10】
前記アンカー固定部(4)を取り付けるための、前記フローティングプラットフォーム(1)の前記下面(28)に設けられた回転可能な取り付け手段(8)をさらに備える、請求項1に記載のフローティングプラットフォーム(1)。
【請求項11】
前記回転可能な取り付け手段(8)が、前記フローティングプラットフォーム(1)の下面(28)に固定された内リング(10)の周りを自由に滑走するように取り付けられた外リング(9)を備える、請求項10に記載のフローティングプラットフォーム(1)。
【請求項12】
前記リング(9、10)が前記フローティングプラットフォーム(1)の前記短辺(33)の長さよりも大きい、請求項11に記載のフローティングプラットフォーム(1)。
【請求項13】
前記少なくとも1つの電力取出接続部(25b; 25b’、25b’’、25b’’’)が、前記回転可能な取り付け手段(8)を貫通して前記フローティングプラットフォーム(1)に入るように配置される、請求項10に記載のフローティングプラットフォーム(1)。
【請求項14】
前記フローティングプラットフォーム(1)が、鋼、アルミニウム、サンドイッチ複合材料、PVC、および/またはEPS/XPSで構成される、請求項1に記載のフローティングプラットフォーム(1)。
【請求項15】
回転を制限し、前記フローティングプラットフォーム(1)を前記波面と位置合わせさせるために、前記アンカー固定部(4)が、相対固定位置に、前記フローティングプラットフォーム(1)を固定するよう配置される、請求項1に記載のフローティングプラットフォーム(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポイントアブソーバタイプの波エネルギ変換器(WEC)に使用されるように構成されたフローティング(浮動)プラットフォームに関する。
【背景技術】
【0002】
電気エネルギを取り出すための潜在的可能性として海洋波の巨大な力がよく知られている。空気に対する水の重量は、830/1であり、これは、はるかに少ない領域において風力と同じかそれ以上の効果が取り出されることを示している。これはまた、平均風速が波の垂直波速度よりも高い場合であっても同様である。
【0003】
既存の波力発電システムのコスト/効率の最良の数値は、現在では風力よりも約80%高い。存在する波力変換器は、100KW未満の単位あたりの平均電力を与える。この組み合わせは、商業投資家の間で非常に適度な関心を説明する。ほとんどのポイントアブソーバは、表面に浮遊してワイヤなどを介して海底に接続された直径7~14メートルの円形ブイを備える。現在の設計のポイントアブソーバは、一般に、直径が小さく且つ重量が重いために波の中で非常に低く浮遊している。それらはまた、大抵の場合、丸みのある底部を有する。これらの要因は、波が上層の直下でかなり平らになり、波の高さが示すことができるよりもはるかに低い揚力を与えるため、出力に非常に負の影響を与えている。
【0004】
上記は、サイズが小さく、相対重量が重く、浮遊性を低くし且つV字形の底部および円形形状を有する理想的な設計ではないことによる、現在のポイントアブソーバの欠点を示している。現在の構成におけるMWあたりのコストは、結果的に、風力と競合するには高すぎる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、本発明の目的は、より良好で且つより効果的なポイントアブソーバを提供することである。
【課題を解決するための手段】
【0006】
本発明によれば、エネルギ変換機械が配置されることができる中空体を備える波エネルギ変換器(WEC)用のフローティングプラットフォーム(すなわち、ある種のポイントアブソーバ)が提供される。フローティング(浮動)プラットフォームは、使用時に水面に面する下面と、反対方向に面する上面と、前面を形成する第1の長辺と、背面を形成する第2の長辺と、2つの短辺とを有する。フローティングプラットフォームの前面を波面と位置合わせさせるように、すなわち波の方向に対して垂直に位置合わせさせるように構成された少なくとも1つの位置合わせ手段が設けられる。フローティングプラットフォームの前面は、少なくとも30mの長さである。フローティングプラットフォームの前面を波面と位置合わせすることによって、前および次の波によって影響を受けることなく拡大された上昇領域が使用されることができる。そうでなければ、それは、プラットフォームが波形に追従することができないという事実のために上昇高さを減少させるであろう。その場合、プラットフォームは、波の底まで下方に追従することができず、また上部を切断し、それゆえに上昇高さを減少させ、したがって取り出し電力を減少させる。
【0007】
本発明の実施形態によれば、前面の長さは、少なくとも40m、好ましくは少なくとも50mである。
【0008】
前面の長さは、側面の長さの少なくとも2倍、好ましくは少なくとも3倍、最も好ましくは側面の長さの少なくとも5倍である。
【0009】
フローティングプラットフォームの高さは、少なくとも1m、好ましくは少なくとも2m、または少なくとも4mである。好ましくは、電力を取り出すための機械は、フローティングプラットフォームの内部に配置され、このための十分な空間が設けられなければならない。
【0010】
フローティングプラットフォームは、複合サンドイッチ(複合挟持)構造によって構成されている。これは、軽量で堅いフローティングプラットフォームを提供する。したがって、フローティングプラットフォームは、水中よりも水上に大部分が多く存在しており、例えば10~30cmなど、僅かに水中に突出している。これは、結果として、コンセプトが、より一般的ではなく、直径/サイズに対して非常に重い共振アブソーバとは対照的に、非共振アブソーバとして挙動することを有する。我々の試験および計算は、いくつかの利点の1つが通常の重いアブソーバの高い慣性によって遅れずに波の上昇力に即座に反応することができることであることを示した。これは、より低い波が支配的である場合にはさらに重要である。他の態様は、提案されたコンセプトが、より大きい/より深い喫水を有するコンセプトとは対照的に、波高の高い水粒子の垂直方向の動きを利用し、面積に対する「付加質量」の影響を低減することである。この軽くて高いフローティングアブソーバはまた、大きな喫水、相対面積を有するコンセプトよりも高い放射力を生成し、結果として同様により多くの上昇力を発揮する。
【0011】
このプラットフォームは、最も深刻な可能性のある巨大波(怪物波)の1.3倍以上の海深において深海形状の波の中で動作するように構成されている。怪物波はまた、一般に、不正波または異常波として知られている。それらは、不規則に発生し、平均波高の2~4倍にもなることがある。300000のうちの1つのみが4倍の高さになるが、それらは構成されなければならない。
【0012】
本発明の実施形態によれば、位置合わせ手段は、例えば、少なくとも上側に設けられた翼、下側の近くに配置されたジェットスラスタ、短辺の近くに配置されたブレード、および/または下側の近くに配置されたプロペラのうちの任意の1つまたは組み合わせである。他の手段も考えられる。
【0013】
本発明のさらなる実施形態によれば、翼は、前面と背面との間の中間で始まり、背面の後方に到達するように配置される。好ましくは、少なくとも2つの翼、好ましくは少なくとも4つの翼がある。翼は、後方に広がる0度から8度の角度を有してほぼ平行であることが好ましい。
【0014】
本発明の実施形態によれば、少なくとも2つのジェットスラスタは、フローティングプラットフォームの1つの短辺の近くで、好ましくはフローティングプラットフォームの背面および前面の端部において、それぞれ、後方および前方に水を押し出すように構成されている。
【0015】
本発明の実施形態によれば、短辺は、前面と第1の部分との間に90度よりも大きな角度で設けられた少なくとも第1の部分を有する。本発明の実施形態によれば、フローティングプラットフォームは、底部とフローティングプラットフォームとの間に少なくとも1つのアンカーによって海底にアンカー固定される。1つの実施形態では、アンカーは、フローティングプラットフォームの下側に設けられた回転可能な取り付け手段に取り付けられる(付随している)。他の実施形態では、フローティングプラットフォームは、前面および背面の固定点を介してアンカー固定される。
【0016】
本発明の実施形態によれば、海底とフローティングプラットフォームとの間に少なくとも1つの係留および電力取出接続部が設けられる。1つの実施形態では、少なくとも1つの電力取出接続部は、回転可能な取り付け手段を介してフローティングプラットフォーム内に入る。
【0017】
本発明は、ここで、添付の図面を参照して異なる実施形態を用いて説明される。
【図面の簡単な説明】
【0018】
図1a】本発明のフローティングプラットフォームの実施形態の斜視図である。
図1b】アンカー固定の実施形態と、位置合わせ手段の1つの選択肢とを有する波における本発明のフローティングプラットフォームの実施形態の斜視図である。
図2】フローティングプラットフォームの実施形態の正面図である。
図3】アンカー固定の他の実施形態と、位置合わせ手段の3つの異なる選択肢とを有するフローティングプラットフォームの実施形態の平面図である。
図4】短辺を示すフローティングプラットフォームの実施形態の側面図である。
図5】アンカー固定のための取り付けの実施形態を示す、フローティングプラットフォームの実施形態の下側からの図である。
図6図5のアンカー固定のための取り付けの実施形態の側面図である。
図7】プラットフォームの下方からの平面図である。
図8】電力ケーブルブイに向かって異なる角度における岸構成に対する電力ケーブルを示す平面図である。
図9】持出ケーブルレールと固定されたアンカー固定点とを有するプラットフォームの実施形態の側面図である。
図10a】ブイ15を介した岸または接続ハブに対する電力ケーブル14を示す側面図である。
図10b】ブイ15を介した岸または接続ハブに対する電力ケーブル14を示す側面図である。
図10c】ブイ15を介した岸または接続ハブに対する電力ケーブル14を示す側面図である。
図10d】ブイ15を介した岸または接続ハブに対する電力ケーブル14を示す側面図である。
図11a】舷外浮材を示す平面図である
図11b】舷外浮材を示す短側面図である。
図12a】複数の機械接続部の側面図である。
図12b】複数の機械接続部の側面図である。
【発明を実施するための形態】
【0019】
図面の全ての図は、本発明の選択されたバージョンを説明するためのものであり、本発明の範囲を限定するものではない。
【0020】
本発明は、ポイントアブソーバ原理にしたがって波のエネルギを取り出すように構成されたフローティングプラットフォーム1に関する。図1aには、本発明の実施形態が示されている。フローティングプラットフォーム1は、中空体24として構成されている。内部には、中空体24の空間26において、エネルギ変換機械27が配置されることができる。例えば、少なくともギアボックスおよび発電機が本体24内に配置されることができる。機械27は、プラットフォーム1内にあることができるか、プラットフォーム1の下方に部分的に吊り下げられることができるか、海底17にあることができるか、またはこれらの2つの組み合わせとすることができる。
【0021】
フローティングプラットフォーム1は、使用時に水6に面する下側28と、反対方向に面する上側29と、前面30を形成する第1の長辺と、背面31を形成する第2の長辺とを備える。端部32には、短辺33が存在する。短端部の形状は、直線状、凹状、凸状または尖鋭、すなわち、各部分33a、33bに対して、前面30と背面31との間にそれぞれ90度よりも大きい角度で配置された2つの部分33a、33bを有するなどの任意の適切な形状とすることができる。
【0022】
プラットフォーム1には、少なくとも1つの位置合わせ手段34が設けられている。位置合わせ手段34は、フローティングプラットフォーム1の前面30を波面、すなわち波6の進行方向に垂直に対して垂直に位置合わせさせるように構成される。
【0023】
フローティングプラットフォーム1は、好ましくは、例えば、海底岩石における穿孔およびこれらにおける金属製のスピアを接合するなどの他の手段によって、大きな係留部25または海底への取り付け部に接続される。さらに、例えばアンカーチェーン4を用いて例えば2つから4つのアンカー5によって相対固定位置にアンカー固定されることができる。各アンカー5にはブイ3が使用される。ブイの目的は、垂直移動を制限することなく、プラットフォーム1を定位置に保持することである。それらはまた、プラットフォーム1のアンカー固定部4、5に減衰力を加える。アンカーチェーン4は、チェーンであってはならず、ケーブル、ワイヤ、チェーン、ベルトなどとすることができる。
【0024】
プラットフォーム1への電力取出接続部25bは、ほぼ垂直な方向線、ケーブル、ワイヤ、チェーン、ベルト等によって実現することができる。本発明は、垂直波の力が本発明によって電気に変換されることができるように海洋波の力を利用することができる。本発明の発電電力は、水中電気ケーブルまたはオーバーヘッドフローティング電気ケーブルを介して配電センターに輸送されることができる。
【0025】
本発明のフローティングプラットフォームは、上昇領域が波6に平行に配置される結果として大きくなる形状を有するため、前面30および背面31に沿ってそれぞれ長くなることがある。前面30の長さは、少なくとも30m、好ましくは少なくとも40m、最も好ましくは少なくとも50mとすることができる。
【0026】
正面30の長さと短辺33の長さとの比は、建築材料にかかわらず、2:1以上とすることができる。ほとんどの波エネルギ変換器WECは、表面に浮遊してワイヤなどを介して海底に接続する直径7-14mの円形ブイを備える。直径の大きさは、波の中を完全に下方に移動するとともに波の頂点を切断しないように制限される。7メートルは、42平方メートルの上昇領域を与える。14メートルの直径は、154メートルの面積を与える。通気式フローティングプラットフォーム1が14メートルの幅を有する場合、それは、例えば51メートルの長さを有することができ、多かれ少なかれ矩形形状のため、提示された設計において714平方メートルの上昇領域を与える。これは、円形ブイと比較して4.6倍大きい上昇領域である。換言すれば、特許の優位性は、波に平行に配置された波プラットフォームに基づいている。
【0027】
平均波高が3メートル以上の領域において、示された3.5:1の比は、膨大な上昇力を形成するのに十分である。例えば、波高が低い領域など、より多くの上昇力が必要な場合は、比は10:1まで増加することができる。これの理由は、連続波間の距離が波の高さが低くなるにつれて減少し、14mの正面30から背面31までの考えられる距離が長すぎるためである。14メートルなどを有する場合には危険であるため、8~10メートルの距離が波を切断しないためにより適している。51×14は、上昇の714平方メートルである。代わりに、100×10メートルの大きさになると、小さい波は、1000平方メートルの上昇によって補償され、これは、円形ブイの10倍以上である。そして、電力取出システムおよび機械は、より高い波で達成されるものとはそれほどかけ離れていない歪みおよび出力で動作する。この比はまた、例えば、140×14メートルを有するより高い波/より長い波の領域において使用されることができ、約2000平方メートルの上昇領域を与える。
【0028】
この狭い形状のプラットフォームにより、システムは、はるかに高い波を有する全ての沿岸地域に加えて、世界中で容易にみられる平均波高が約1.5メートルの地域であっても巨大な発電を生成することができる。この高い比を有するフローティングプラットフォーム1に必要な強度を達成することは困難であるように思われるかもしれないが、実際には、この種の重い負荷を処理することのできる現在利用可能な建設方法がある。内部構造は、力が高くなる関連領域での補強とともにリブによって構成されることができる。あるいは、内部の多くを埋め尽くす軽量ブロックとしてXPSなどのより大規模な構造が可能である。形状または技術的解決策は、図面に対して正確に境界付けられておらず、それらは、添付の特許請求の範囲内の可能な設計の単なる例にすぎない。
【0029】
図1bおよび図3に示す短辺33は、海をより良好にするのに役立つが、また風に向かって安定化(位置合わせ)するのに役立つ2つの部分33a、33bを有する僅かに縁の形状とされる。この理由は、プラットフォーム1が一方に回転するにつれて、アンカーリング上の圧力の中心から測定される正面風圧が風に向かう側でより大きく回転するためである。これらの短辺33、33a、33bは、最大底面を達成するように垂直であることが好ましい。
【0030】
前面30および背面31の長辺は、水平面内でより良好に安定するように、内側および下方に窪みを有していてもよく、すなわち、下側28は上側29よりも小さくてもよい。これは、プラットフォーム1が垂直側面とともに、より減少した形状でも動作するため任意である。例えば、図4を参照されたい。
【0031】
プラットフォーム1の下側28は、できるだけ多くの上昇力を達成するために好ましくは平坦である。上部は、図では平坦であるが、機械並びに試験およびアニメーションに応じて異なる形状を有してもよい。
【0032】
機械が搭載されている場合、プラットフォーム1の中央に、波力が乾燥部の異なる構成要素に輸送される濡れ空間がある。濡れ空間は、好ましくは、上側29に対して水密であるか、またはプラットフォーム1の高さに応じて高さの少なくとも3分の2である。プラットフォーム1の高さは、少なくとも1m、好ましくは少なくとも2mまたは少なくとも4mの高さである。
【0033】
位置合わせ手段34は、少なくとも上側29に設けられた翼2、下側28の近くに配置されたジェットスラスタ7、短辺の近くに配置されたブレード19、および/または下側28の近くに配置されたプロペラ38のうちの任意の1つまたは組み合わせである。1つの実施形態によれば、ジェットスラスタ7のシステムが設けられる(図3を参照)。それは、プラットフォーム1の下方から水を吸い上げ、水ジェットが前面30または背面31に向かって移動するかどうかを弁が決定する配管内のスプリットに向かってそれを押し込み、それによってプラットフォーム1を所望の方向に回転させることによって動作し、そのため、波6と平行になる。それは、いかなる中型ヨットについても一般的な船首スラスタと同様に動作するが、異物に絡まる可能性のあるプロペラを有しないという利点を有する。代わりに、弁および出口などのジェットスラスタ7の全体または一部は、プラットフォーム1の端部33のすぐ外側の中心線上に配置されることができる。エンジンは、搭載されたエネルギ生成システムから電力を供給することができる電気または油圧ユニットであってもよい。この原理は、特にジェットスラスタ7に限定されるものではなく、通常の船首支柱、プロペラ38(図2を参照)、短い端部延長部の外側、およびプラットフォーム1をいずれかの方向に回転させる同様の解決策は、本発明のヨー制御のための選択肢である。
【0034】
ジェットスラスタ7または類似のシステムは、システムに正しく電力を供給するための入力部を必要とする。利用可能ないくつかの選択肢があるが、最も可能性が高く且つ証明されている解決策は、ポートおよび右舷前面30に配置され且つGPSシステムに接続された加速度計22(図2を参照)である。GPSは、安価であるが、GPSと組み合わせたジャイロまたは単独でも使用されることもできる。センサを監視するとともにコマンドを実行するためには、既に市場に存在する非常に簡単なロジックが必要とされる。加速度計22は、到来する波とともに最初に上昇するのがプラットフォーム1の側のどちらかをそれぞれ感知し、それぞれの側は最初に通過する波の頂点によって下降する。例えば、ポート側が最初に上昇する場合、コマンドは、ジェットスラスタ7を始動させるために与えられるとともに、再び波と位置合わせされるようにプラットフォーム1を回転するために、関連する前面または背面の吹き出しを開放するために弁に与えられる。後方または前方の吹き出しは、双方とも、プラットフォーム1のどの端部32にスラスタ7が配置されるかに依存する。加速度計22に対する選択肢として、水/波6の高さを測定する前面30上のレーザまたはセンサが使用されることができる。
【0035】
図面には示されていないが、プラットフォーム1上に搭載された電気的要求は、搭載されたエネルギ生成ユニットからまたはバッテリーと組み合わせられたデッキ上に配置されたより小さな固定位置風力タービンからタップされることができる。クレーンまたはウインチが同様にデッキ内に設置されることができ、重い部品の取り付けおよび交換を支援することもできる。
【0036】
図3および図4には、位置合わせ手段34の他の実施形態が示されている。翼2は、少なくとも上側29の上部に配置される。図3では、翼2は、前面30と背面31との間の中間で始まり、背面31の後方に到達するように配置されていることが示されている。それらはまた、背面31の後方において下方に突出することが好ましい。翼は、後方に広がる0度と8度との間の角度を有してほぼ平行であってもよい。垂直翼2は、前方長辺30を有するプラットフォーム1を波の方に配置するのに役立つ。風と波の差異は最大45度である可能性があるため、これだけでは、完全な位置合わせには不十分であるが、いかなるエネルギも消費することなく仕事の大部分を行う。位置合わせはまた、他の手段によって行うこともできるため、翼2は、選択肢であって必須ではない。翼2は、示された図のいずれかの側に対して約5度の角度を有する。この目的は、より迅速に安定化するように回転の初期段階でより多くの力を得ることである。翼2はまた、他の角度で並びに異なる大きさ、形状および数でも動作する。好ましくは、それらは、アンカー固定圧力の中心の後ろに配置され、モーメントを得るために後方に延在し、船尾側で上方に延在し且つ最適には少し下がるが、海に交わるほどではない。それらは、最大風力に耐えることができる任意の材料および設計で構成されることができる。
【0037】
波の方向は、滅多に風の方向に対して正確に垂直ではないため、プラットフォーム1を風にできるだけ位置合わせして配置するために追加の機能が必要となることがある。この仕事の大部分を担う簡単な解決策の1つは、翼の回転をおよそプラスマイナス30~40度にすることである。これは、多くの航空機のエレベータトリムと同様の方法で行うことができる。この場合、翼は、垂直の旋回軸に取り付けられ、油圧式または電気式のスクリュージャッキが翼の前端を所望の位置に押し込む。4つの翼の場合、それらは、全てフロントエンドスパーに接続され、1つのスクリュージャッキによって動かされる。大きな運動量のために、比較的低い電力が必要とされる。システムは、ゆっくりと動く。
【0038】
図2および図3において、端部ブレード19は、付加的なヨー制御のための選択肢である。端部ブレード19は、ポートまたは右舷側の風圧を増加させるために、いずれかの側で押し入れおよび押し出されることができる。これは、翼が固定されていない回転可能な解決策である場合に十中八九関連する選択肢であり、平均的に風が波に向かって直角でない場合、ジェットスラスタ7の動作を緩和する。あるいは、それらは、正しいサイズであれば翼を代用することができる。軸受によって支持された狭いフレームの滑走レール上にブレードが配置されてもよい。それらは、電気または油圧モータに接続された歯車車輪によって水平方向に出し入れすることができる。可能な他の機械的解決策、原理は重要なポイントである。
【0039】
プラットフォーム1は、2つから4つのアンカー5およびアンカーチェーン4によって相対固定位置にアンカー固定されてもよい。それは、波の方向が変化しても有効なままであるように、どちらの側にも180度回転することができる。固定アンカー取り付け部を有するより簡単な選択肢も利用可能である。図3を参照すると、プラットフォーム1の下方にある電力取出システムのサイズに応じて、どちらかの側に約160度に回転が制限される、しかし、120度以内であればより望ましい。この選択肢は、大部分の日の波の方向がこの悪影響の範囲内にある領域に関連する。図3では、1つのチェーン4がプラットフォーム1の背面31に直接取り付けられている。これが両側で使用されるとき、チェーン4をプラットフォーム1の側面30、31から離して保持するために、角度は、いずれかの側で約80度に制限される。延長部21がプラットフォームの長辺30および/または31に外側および/または下方に取り付けられて、チェーン4の取り付け分がさらに外れる場合、角度は、約160度まで増加させることができる。このアンカー固定の実施形態では、これがケーブル14のたるみを比較的一定に保つため、電気的な持出ケーブル14は、プラットフォームの底部の孔を通って、好ましくは中心の比較的近くまで延在することができる。このアンカー固定の実施形態は、アンカー固定の単純且つ費用効果的な方法であり、その領域の波方向が、ほとんどの月に+/-90度以下で変化する場合には完璧である。アンカー5に対する角度およびアンカーチェーン4の締め付けは、プラットフォーム1の動きが全ての象限においてほぼ等しくなるように計算される。
【0040】
ブイ3は、極端な天候でも浮遊し続けるのに十分な大きさでなければならない。必要以上に撓まないように、比較的平坦な形状、例えば1:3が好ましい。約10m3のサイズが推定されるが、もちろん、これはチェーン4の重量とプラットフォーム1のサイズに依存する。したがって、各実施形態について計算される必要がある。ブイ3の目的は、垂直移動を制限することなく、プラットフォーム1を定位置に保持することである。それらはまた、プラットフォームのアンカー固定部に減衰力を加える。
【0041】
チェーン4は、極端な天候下でプラットフォーム1を定位置に保持するのに十分な強度を有するものでなければならない。30~60mmのグレードのU3は、関連する領域の最大可能風に応じて、51メートルのプラットフォームの可能性が高い選択肢である。アンカー5は、極端な天候においてプラットフォーム1を定位置に保持するようなサイズにされる。2~5トンのドラッグアンカー5は、関連する領域の最大可能風並びに海底状況に応じて、可能性が高い選択肢である。
【0042】
固定された実施形態によってアンカーチェーン4がプラットフォーム1に取り付けられている場合、持出ケーブル14は、プラットフォームの下方に移動し、デッキは、ポートおよび右舷側で自由になる。そして、端部ブレード19は、水平ではなく、換言すれば上側29の上方に、同様の論理で垂直に突出することができる。
【0043】
風と波の条件は様々な領域とは異なるため、アンカー固定の実施形態を選択できることが望ましい。これまで、固定された実施形態が図3に示されている。ここで、他の実施形態が図4図6および図9図10を参照して説明される。図4には、滑走リング機構8が水平に示されている。このアンカー固定の実施形態では、プラットフォームは、いずれかの側に180度回転することができ、波の方向が1年に数日の間に120度以上異なる地域では望ましい。チェーン4は、外リング9に接続されており、水で潤滑されたプラットフォーム1に固定された内リング10の周りを自由に滑走する(図6を参照)。内リング10は、リング10の本体から径方向外側に突出したリップ39を有し、滑走リング9をプラットフォーム1に取り付けたままにする。リングの大きさはまた、前面30と背面31との間の幅よりも大きくすることができる(図5を参照)。ここで、チェーン上で異なる運動量が必要な場合は、破線円23がこの実施形態を示している。図6には、持出ケーブル14がリング9、10を通って移動する実施形態も示されている。また、選択された電力取出解決策に応じて、係留接続部25b、好ましくはチェーンは、リング機構8を通過することができる。プラットフォーム1は、持出ケーブル14が海底17への接続部と衝突することなく、90度、135度または160度まで揺動することができる。
【0044】
固定されたアンカー固定部のいくつかの領域では、固定翼2、エンドプレートおよびジェットスラスタ7が保証されてもよいが、他の滑走リングのアンカー固定部では、可動翼2およびスラスタ7などがより最適な実施形態である。多くの考えられる組み合わせおよびサイズがある。プラットフォーム1の幅対長さの比はまた、使用されるプラットフォーム1の全実施形態に影響を及ぼす要因でもある。1つのヨーシステム(位置合わせ手段34)はまた、単独で、プラットフォームの寸法および位置を考慮して、プラットフォーム1を位置合わせさせるのに十分であり得る。
【0045】
図7のバラストタンク20には、機械室および湿潤室40として機能する内部空間26が示されている。バラストタンクは、所望の量まで水で満たされてもよく、プラットフォーム1のバランスおよび浮力に影響を与える。全ての空間は、描かれているよりも異なる寸法および場所とすることができる。
【0046】
図8には、電気持出ケーブル14を配置する他の実施形態が示されている。プラットフォーム1は、電気持出ケーブル14のためのブイ15に関して3つの異なる位置に示されている。この実施形態では、ケーブル14は、端部32の1つからプラットフォーム1を離れる。この実施形態は、いずれかの方法で、180度回転、選択肢として360度の合計を有することを望む場合に関連する。関連領域においていずれかの側が一般に90~120度で十分である場合、ケーブル14は、アンカーチェーン4と干渉しないため、代わりにプラットフォームの底部の孔を通って延在されることができる(図3を参照)。これは、固定されたアンカー固定解決策(図3を参照)並びにリング機構8(図6を参照)によって適用可能である。固定されたアンカー固定解決策21により、アンカーチェーン4の変位、ひいては締め付けは、リング選択肢8よりもかなり困難になる。もう1つの選択肢を選択することは、関連する領域における風および波の条件に対して、プラットフォーム1の建築コストとサイズとの間の検討事項である。
【0047】
1つの位置pos.Aにおいて、プラットフォーム1は、延長された中心線の僅か20度の角度でブイに最も近い位置にあるプラットフォーム1のその端部32を有する。ブイ15において、ケーブル14は、いくつかのプラットフォーム1または風力発電所のために海岸または接続点に連続している。他の位置pos.Bにおいて、プラットフォームは、ブイ15から170度回転される。さらなる位置pos.Cにおいて、プラットフォームは、ブイ15から50度回転される。
【0048】
持出ケーブル14は、プラットフォーム1の一方の端部32の中心から上昇してもよい。それは、レール11上を約135度滑走する堅いチューブ12を通過することができる。好ましくは、レール11とチューブ12との間の摩擦は、レール11上のローラの使用によって最小限に抑えられる。完全に135度の撓みのチューブ12がなおも(滅多に達成されない)180度の位置まである程度離れているため、可撓性ホースまたはチューブ13がチューブ12の延長部上に配置される。その目的は、疲労に問題がないように、ケーブル14をより長い距離にわたって曲げることである。また、これは、ケーブル14をプラットフォーム1の側部のさらに外側に延在して180度または僅かにそれ以上の角度を可能にするため、レール11をより大きくすることも考えられる(破線16を参照)。図6は、レール11が上側29を横切って僅かに上方にある短端部32からのプラットフォーム1を示している。
【0049】
図7a、図7b、図7cおよび図7dは、レール11上の端部解決策を使用する場合に、海岸に向かう電気持出ケーブル14の側面図を示している。
【0050】
図10aは、プラットフォーム1の前面30を示しており、端部32は、ブイ15に最も近いレール11を有しており、プラットフォーム1が異なる方向に回転するときに可撓性リンクを形成することを目的としている。この位置では、付加重量によって可能なケーブル14の重量は、海底17に衝突しないようにケーブル14を弛緩状態に保つ。
【0051】
図10bは、プラットフォーム1の背面31を示しており、端部32は、プラットフォーム1が180度回転したときに、ブイ15から最も遠く離れたレール11を有する。持出ケーブル14は、プラットフォーム1のほぼ全長に類似して伸びている。以前海底17の近くにあった弛みは、今や、プラットフォーム1の近くに引き上げられているブイ15と同様に、はるかに高い位置に持ち上げられる。ブイを保持するチェーン36は、図面に見られるよりも多くの弛緩を有することができる。
【0052】
上記の2つの解決方法は、ケーブル14およびブイ15の双方の弛緩がより浅い水の場合よりも大きくなるため、プラットフォームの下方の深さがスケールの上端にある場合に関連する。
【0053】
図10cは、より浅い水の場合と同じ原理を示している。これを補うために、コンセプトには追加のブイ15が1つある。ブイ15をともに引っ張り、それによりケーブル14内で利用可能な全弛緩に加える効果を有する小さなウェイト18が追加される。
【0054】
図10dは、レール11がブイ15から最も離れており、ひいては最大ストレッチを有する端部32によって回転されるプラットフォーム1を示している。2つのブイ15によってもたらされる追加の弛緩と、今や持ち上げられたウェイト18とにより、海の深さに対する弛緩の全長はほぼ倍増する。
【0055】
図11a、図11bは、プラットフォーム1が細長い場合の舷外浮材37のコンセプトを示している。図11aは、短辺33からの鳥瞰図であり、図11bは、短辺からの側面図である。長辺30、31の長さ対長辺間の幅の最大10:1の比を有する設計は、より小さな波でも大量のエネルギを取り出したいときに最適である。例えば、北海の広い地域で典型的な平均波高1.8メートルの場合、波長は、40メートルになる。100×10メートルの場合、前面30から背面31までの距離は10メートルであり、この短い波長にうまく収まる。プラットフォームの幅と波長との間の適切な比は、1の4に対する比と、1の5に対する比との間である。このテキストのプラットフォームの幅を参照する場合、それは短辺を意味し、長さは、最も長い辺である。波長は頂上から頂上までである。上昇領域は、同じ領域内の最大風力発電ユニットの毎日の発電量をより低コストで一致させるのに十分である。
【0056】
約3メートルの波高は、完全に発達した海域で約60メートルの波長を与え、約5メートルの波高は、約90メートルの波長を与える。
【0057】
プラットフォーム1は、その強度を有するためにある高さ対幅および長さを必要とするため、この細長い設計は、前に示した3.5:1の比よりも不安定である。したがって、あまり傾けたりまたは転倒したりしないようにするために舷外浮材37が追加されることができる。プラットフォーム1は、本体24内で低く電力取出/機械27およびバラストタンク20を有し、安定性にプラスの影響を及ぼす。これは、前面30および背面31の傾斜がより大きく、本体24のV字形状を提供することと相まって、直立状態を維持するのに十分であるが、舷外浮材は、安定性を高めるための追加の選択肢とすることができる。
【0058】
舷外浮材37は、性能が僅かに悪影響を受けるだけであるように、プラットフォーム1が波谷において沈む距離を僅かに減少させるような中程度のサイズである。安定していても、この僅かな上昇は、プラットフォーム1を大いに安定に保つ。図11bからわかるように、舷外浮材37の下側は、プラットフォーム1の下側28よりも高い位置に設けられている。このようにして、舷外浮材37は、ほとんどの場合、水から離れているか、または必要なときに僅かに触れる。舷外浮材37は、任意の適切な形状を有することができる。
【0059】
図11a、図11bが各側に1つの舷外浮材37を有するプラットフォームを示していても、2つ以上が選択肢であり得るが、プラットフォーム1を安定化させる原理は、同じままである。しかしながら、ポイントアブソーバに向かう力は、下方に向いているため、舷外浮材37を同じ領域に配置することは、力が反対である場合に最も論理的である。このようにして、強度のために必要な材料が少なくなる。1つのポイントアブソーバ接続部25bが中間にある場合、これは、舷外浮材37のための論理領域である。同様に、複数の接続部、例えば25bが関連する場合、舷外浮材37の配置のために複数の領域を考慮する。
【0060】
図12a、図12bにおいて、複数の機械27、示された例では3つの電力取出接続部25b´、25b´´、25b´´´を備え、電力取出接続部25b´、25b´´、25b´´´を介して構造体41にそれぞれ接続され、電力取出接続部25bを介して係留部25に順次接続されるフローティングプラットフォームの実施形態が示されている。これは、プラットフォーム1の長さ対幅が約5:1を超えるときに、電力を取り出す考えられる選択肢である。プラットフォームの負荷を3つの異なる領域にわける際に、構造上の曲げ力がより均一に広がる。結果として、より少ない強化材料が使用される必要があり、プラットフォーム1の構造の軽量化およびコストダウンを実現する。他の態様は、例えば2000平方メートルの上昇領域では、単一の電力取出システムの強度およびサイジングに対する要求が設計上の課題になる可能性があるため、3点での分割がより望ましい場合がある。
【0061】
図12aは、水平位置にある構造体41を示している。構造体41は、プラットフォームを1つの係留部25まわりに旋回させるように構成されている。構造体41の構造は、2つの理由から好ましい。第1に、それは、直線バーよりもはるかに強い。第2に、図12bを参照すると、水平面外にあるいかなる転位も構造体41の底部および上部の双方を図12aに示す位置の方に押し付けることから、それは、3点間のバランス力を発揮する。バランス調整効果は、制御ユニット(図示せず)と組み合わされた電子的および/または機械的測定システムによってさらに強化されることができる。
【0062】
プラットフォーム1は、鋼、アルミニウム、サンドイッチ(挟持)複合材料、PVC、EPS/XPSまたは他の材料から構成されることができる。好ましくは、プラットフォームは、プラットフォーム1を水中で深く進むことなく可能な限り波6に浮遊し続けるようにポリマーサンドイッチ複合材料を使用して、現代のカタマランと同様の方法で構成される。好ましくは、プラットフォームは、約2デシメートルの深さだけ水中に突出する。
【0063】
プラットフォーム1は、波に平行に配置されていても、最も強い風および最も高い波に耐えられるように構成される。当該技術分野における当業者が知っているように、波は30メートルの高さに到達することがある。これは、波の破損を回避するように、十分に深い水中に配置されることを前提としており、通常は最大波高の最低1.3倍に基づいている。プラットフォーム1は、そのような大きな面積を有するとともに、その大きさに比して軽いため、基本的には電力取出に応じて水の上に浮遊する。これは、通常は重くて低浮遊のWECと比較して生存率が異なるという結果をもたらす。波の水平なサージ運動が、より深い敷設コンセプトよりもユニットに与える力がはるかに小さい場合、浮遊ポンツーンのように動作する。これは、プラットフォームの全正面面積が大きい場合であっても、である。
【0064】
本発明は、1つのユニットにおいて、世界最大のオフショア風力発電ユニット以上の電力を利用することを可能にする解決策を提供する。これらの風力タービンは、100メートル以上のタワー高さを有し、深水に高価な設備を必要とし、視界を妨げる160メートル以上の直径を有するブレードも有する。本発明は、オフショア風力発電所の約50~70%、生産されたMWあたりの生産および設置に平均的に費用がかかる。視覚妨害は、最小限に抑えられ、高さの5~10%と中程度の騒音が得られる。それはまた、深さが関連領域内の最も高い可能性のある怪物波の1.3倍以上である限り、海岸近くに配置されることもできる。その理由は、波が深海形状を有するため、フローティング装置に対して危険である波の破砕が回避されるからである。実際の生活では、30~50メートルの深さで十分である。
【0065】
多くの波力発電のコンセプトが荒海において削り取られた係留を有することはよく知られている事実であり、この生存の態様は大きな関心事および課題である。説明は、波が軌道運動しているという事実にあり、水平力は垂直運動とほぼ等しい。一般的なタイプのWECは、水中深くにあり、実際には垂直領域よりも大きな側面領域を有する。これは、例えば最大の上昇力が1MNに到達すると、3MNを超えて3倍になる水平力を有する可能性があり、それらを破砕する理由を説明することを意味する。一般的な形状は、1.0の係数を有する40平方メートルの抗力面積に相当する抗力面積を構成する80平方メートル×0.5の抗力係数である場合、直径8メートル×深さ10メートルである。0.82の抗力係数を有するが、20cmの水中深さしかない50×11メートルの軽量フローティングプラットフォームは、1.0抗力係数の8.2平方メートルに相当する抗力面積を形成する。最新の数値は、電力取出に減衰が適用されていないことから、係留およびアタッチメントに加えられる力は、大きな喫水の標準コンセプトの1/5であり、高波/怪物波の生存チャンスがはるかに優れていることを示している。1/5の横方向の力に加えて、上昇領域の10倍以上もあり、上昇力対生存能力に関しては50~1という大きな利点を示している。
【0066】
ポルトガルのWavECによって行われた計算では、提案された軽量プラットフォームの利点は、通常の円形の深いフローティング形状と比較して、減衰がプラットフォームの深さを水中に保持するフル生産時の電力取出を比較しても12~1を上回ることが示されている。風が40~50ノットを超えると、怪物波の危険が生じる。この場合、PTO減衰は、係留時の歪みの上記低い数値の場合、半分またはゼロに到達することができ、それにより他の低い敷設のコンセプトについては可能でない生存戦略を有する。全体的にみると、それは、荒海ではサーフボード/ポンツーンのように振る舞う。
【0067】
波の垂直速度が毎秒3メートルを超えることができるため、通常の重い共振WECは、慣性によって水中でさらに低くなり、それを係留部上のさらに大きな水平サージ歪みにさらす。フローティングプラットフォームのような軽い高浮遊コンセプトは、急速に上昇する波に直ちに反応し、水面下の露出面積をほぼ同様に保ち、水平力を増加させず、それにより生存する機会を大幅に向上させる。
【0068】
オフショア風力発電のコンセプトよりも高さが非常に低いことを考えると、それは、視覚的な風景を乱すことなく海岸に非常に近く配置されることができる。大抵の場合、風力発電は、沖合20~60kmに配置され、設備、ケーブル構成、およびメンテナンスにコストがかかるコンセプトである。この特定の特許は、フローティングプラットフォーム/アブソーバ設計用である。電力出力は、任意の公知のまたは将来のタイプとすることができる機械に基づいている。
【0069】
全ての異なる実施形態は、図示および説明された1つの異なる部分および部分と組み合わせることができ、請求項にしたがって矛盾しない限り、本明細書に示されているよりも多くのいくつかの実施形態を構成することができる。
図1A
図1B
図2
図3
図4
図5
図6
図7
図8
図9
図10A
図10B
図10C
図10D
図11A
図11B
図12A
図12B