IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ボーイング・カンパニーの特許一覧

特許7132045複合構造体の表面付近不具合のサーモグラフィ検査
<>
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図1
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図2
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図3
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図4
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図5
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図6
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図7
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図8
  • 特許-複合構造体の表面付近不具合のサーモグラフィ検査 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-29
(45)【発行日】2022-09-06
(54)【発明の名称】複合構造体の表面付近不具合のサーモグラフィ検査
(51)【国際特許分類】
   G01N 25/72 20060101AFI20220830BHJP
   G01N 29/04 20060101ALI20220830BHJP
【FI】
G01N25/72 K
G01N29/04
【請求項の数】 13
【外国語出願】
(21)【出願番号】P 2018170313
(22)【出願日】2018-09-12
(65)【公開番号】P2019095423
(43)【公開日】2019-06-20
【審査請求日】2021-09-01
(31)【優先権主張番号】15/821,668
(32)【優先日】2017-11-22
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(74)【代理人】
【識別番号】100163522
【弁理士】
【氏名又は名称】黒田 晋平
(74)【代理人】
【識別番号】100154922
【弁理士】
【氏名又は名称】崔 允辰
(72)【発明者】
【氏名】ホン・フェ・タット
(72)【発明者】
【氏名】ウィリアム・ジョセフ・タピア
(72)【発明者】
【氏名】バリー・アレン・フェッツァー
(72)【発明者】
【氏名】ゲイリー・イー・ジョージソン
(72)【発明者】
【氏名】マーティン・エル・フリート
(72)【発明者】
【氏名】ジェフリー・ジー・トンプソン
【審査官】外川 敬之
(56)【参考文献】
【文献】特開2016-057187(JP,A)
【文献】特開2017-003481(JP,A)
【文献】特開2003-121424(JP,A)
【文献】特開2017-129560(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 25/72
G01N 29/04
(57)【特許請求の範囲】
【請求項1】
超音波トランスデューサ(166)を用いて、構造体(104)の第一表面(124)内に信号(168)を送信すること(702)と、
前記超音波トランスデューサ(166)において超音波応答信号(170)を受信すること(704)と、
前記超音波トランスデューサ(166)が前記第一表面(124)内に信号(168)を送信している間に、前記第一表面(124)の反対側の前記構造体(104)の第二表面(112)の部分(160)を加熱すること(706)と、
前記第二表面(112)を加熱することの後に前記構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ること(708)とを備える方法。
【請求項2】
前記赤外線画像(162)の局所的な熱コントラストの領域(167)を特定すること(708)と、
前記局所的な熱コントラストの領域(167)を用いて、前記構造体(104)の第二表面(112)から1/4インチ(0.635cm)以内の不具合(163)を検出すること(710)とを更に備える請求項1に記載の方法。
【請求項3】
前記第二表面(112)が台形(147)であり、
前記第二表面(112)の非平行な脚(148、158)の不具合(163)を検出することを更に備える請求項1又は2に記載の方法。
【請求項4】
前記構造体(104)の第二表面(112)の部分(160)を加熱することが、ラインヒータ(114)で前記部分(160)を加熱することを備える、請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記構造体(104)の第二表面(112)の部分(160)を加熱することが、ヒートランプ又はフラッシュランプで前記部分(160)を加熱することを備える、請求項1から4のいずれか一項に記載の方法。
【請求項6】
前記ヒートランプ又はフラッシュランプと赤外線カメラ(110)とがエンドエフェクタ(176)に接続されて、
前記構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ることの後に前記構造体(104)に対して相対的に前記エンドエフェクタ(176)を移動させることを更に備える請求項5に記載の方法。
【請求項7】
前記構造体(104)が複合構造体(118)である、請求項1から6のいずれか一項に記載の方法。
【請求項8】
前記第二表面(112)を加熱することの後に前記構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ることが、幾つかの赤外線カメラ(110)を用いて赤外線画像(162)を撮ることを備え、各赤外線カメラ(110)が他の各赤外線カメラに対して異なる向きに位置決めされる、請求項1から7のいずれか一項に記載の方法。
【請求項9】
前記超音波応答信号(170)及び前記赤外線画像(162)を用いて、不具合(608)のサイズ(610)を測定すること(716)を更に備える請求項1から8のいずれか一項に記載の方法。
【請求項10】
前記不具合(608)が共硬化複合界面(606)又は共結合複合界面(606)に位置する、請求項9に記載の方法。
【請求項11】
前記第二表面(112)の部分(160)の少なくとも一部が前記第一表面(124)に平行ではない、請求項1から10のいずれか一項に記載の方法。
【請求項12】
前記構造体(104)が複合材(118)であり、
前記赤外線画像(162)を用いて、前記構造体(104)を形成している大半の層(136、138)に対して非平坦な不具合(506)を特定すること(714)を更に備える請求項1から11のいずれか一項に記載の方法。
【請求項13】
前記赤外線画像(162)を用いて、前記第一表面(124)に対して非平坦な不具合(506)を特定すること(718)を更に備える請求項1から12のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に複合構造体の検査に係り、特にサーモグラフィ検査法を用いた複合構造体の検査に関する。より具体的には、本開示は、表面付近不具合(むら、不均一性,inconsistency)について、非平行であったり粗かったりする表面を含む複合表面のサーモグラフィ検査に関する。
【背景技術】
【0002】
超音波は、複合構造体等の構造体の検査に用いられる非破壊検査法である。超音波検査では、超音波信号を構造体内に送信し、超音波応答信号を分析して、構造体を検査する。
【0003】
超音波検査は構造の幾何学的特性に影響され易い。超音波を用いて構造体を検査するためには、構造体の表面と裏面とが互いに平行であることが望ましい。また、超音波検査では、表面及び裏面が実質的に平滑であることが望ましい。
【0004】
非平行な表面や、大きな表面粗さや、表面付近不具合を有する複合構造体は、従来の超音波検査法では検査が難しいものとなり得て、検査を完遂するには時間及び/又は労力が要される。従って、少なくとも上記問題のうちいくつか、また他の考えられる問題を考慮した方法及び装置が望まれる。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示の例示的な一実施形態は一方法を提供する。超音波トランスデューサを用いて、構造体の第一表面内に信号を送信する。超音波トランスデューサにおいて超音波応答信号を受信する。超音波トランスデューサが第一表面内に信号を送信している間に、構造体の第二表面の部分を加熱するが、第二表面は、構造体の第一表面の反対側にある。第二表面を加熱した後に、構造体の第二表面の部分の赤外線画像を撮る。
【0006】
本開示の例示的な他の実施形態は一方法を提供する。構造体の第二表面に対して相対的な第一位置にサーモグラフィシステムを位置決めするが、第二表面は複数の部分を備え、それら複数の部分の各部分は異なる角度を有する。サーモグラフィシステムの熱源で構造体の第二表面の部分を加熱して、加熱部分を形成する。加熱部分の赤外線画像を撮るが、その加熱部分内の第二表面の各部分は、サーモグラフィシステムの少なくとも一つの赤外線カメラがその部分から±30度以内に位置するようにする。加熱部分の赤外線画像を撮った後に、第二表面に対して相対的な第二位置にサーモグラフィシステムを移動させる。
【0007】
本開示の例示的な更なる実施形態は一方法を提供する。複合構造体の第一表面に対して超音波検査を行う。複合構造体の第二表面に対してサーモグラフィ検査を行うが、その第二表面は複合構造体の第一表面の反対側にあり、第二表面の少なくとも一部は第一表面に平行ではない。サーモグラフィ検査を用いて、構造体の第二表面に対する表面付近不具合が特定される。
【0008】
本開示の多様な実施形態における特徴及び機能は独立的にも達成可能であり、他の実施形態において組み合わせることも可能であり、その更なる詳細については、以下の説明及び図面を参照して明らかとなるものである。
【0009】
例示的な実施形態を特徴付けると考えられる新規特徴は添付の特許請求の範囲に与えられている。しかしながら、例示的な実施形態、好ましい使用モード、更なる目的及び特徴は、添付図面と共に本開示の例示的な実施形態の以下の詳細な説明を読むことで最良に理解されるものである。
【図面の簡単な説明】
【0010】
図1】例示的な実施形態に係る超音波法を用いて複合構造体が検査される環境のブロック図の例示図である。
図2】例示的な実施形態に係るサーモグラフィシステムを用いて複合構造体を検査することの等角図の例示図である。
図3】例示的な実施形態に係るサーモグラフィシステムを用いて複合構造体を検査することの断面図の例示図である。
図4】例示的な実施形態に係る複合構造体の超音波検査と赤外線検査との同時検査の断面図の例示図である。
図5】例示的な実施形態に係る傾斜表面に平行な不具合を有する複合構造体の断面図の例示図である。
図6】例示的な実施形態に係る複合構造体の界面に位置する不具合の断面図の例示図である。
図7】例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図である。
図8】例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図である。
図9】例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図である。
【発明を実施するための形態】
【0011】
例示的な実施形態は一つ以上の異なる検討事項を認識して考慮する。例えば、例示的な実施形態は、構造体の表面又は裏面付近の剥離や異物等の不具合の検出が、超音波検査を用いては望ましくなく難しくなり得ることを認識して考慮する。例示的な実施形態は、構造体の表面又は裏面付近の不具合が、表面エコーとの干渉のせいで、超音波では検出が望ましくなく難しくなり得ることを認識して考慮する。例示的な実施形態は、構造体の表面又は裏面付近の不具合が、超音波が局所的な幾何学的特性の影響を受け易いせいで、検出が望ましくなく難しくなり得ることを認識して考慮する。
【0012】
例示的な実施形態は、表面近くでの検査要求を、そこでの超音波検査が望ましくなく難しい場合に、変更し得ることを認識して考慮する。例示的な実施形態は、不具合の感度に起因して変更された検査要求が、構造体の設計に影響し得ることを認識して考慮する。例示的な実施形態は、表面付近で不具合検出を増やすことが、構造体の設計の改善を可能にすることを認識して考慮する。
【0013】
例示的な実施形態は、共硬化又は共結合の複合構造体において、界面が複合構造体の部分同士を接続することを認識して考慮する。例示的な実施形態は、不具合が界面で生じる場合、超音波のみを用いては不具合のサイズを特定することが望ましくなく難しくなり得ることを認識して考慮する。例示的な実施形態は、複数の検査法を組み合わせて用いて、界面内の不具合を特定及び測定し得ることを認識して考慮する。
【0014】
例示的な実施形態は、赤外線サーモグラフィが表面付近欠陥の検出を可能にすることを認識して考慮する。例示的な実施形態は、サーモグラフィを用いて、略1/4インチの深さまで検出し得ることを認識して考慮する。例示的な実施形態は、サーモグラフィでの不具合の検出が、構造体の深部よりも表面近くでより上手くいくことを認識して考慮する。
【0015】
例示的な実施形態は、赤外線サーモグラフィが超音波検査よりも大きな視野を有することを認識して考慮する。例示的な実施形態は、より大きな視野を有することが、赤外線サーモグラフィを超音波検査よりも高速にすることを認識して考慮する。
【0016】
例示的な実施形態は、赤外線サーモグラフィが水との結合を要しないことを認識して考慮する。例示的な実施形態は、超音波検査では、水や他の結合物質を用いて構造体の表面から超音波信号を送受信することを認識して考慮する。例示的な実施形態は、結合システムが超音波検査システムに含まれ、システムの複雑性が増大すること、例えば、超音波検査用の水や他の結合物質は収集されることを認識して考慮する。
【0017】
例示的な実施形態は、超音波検査システムは接触検査システムであることを認識して考慮する。例示的な実施形態は、サーモグラフィ検査システムはスタンドオフ検査システムであることを認識して考慮する。スタンドオフは検査される構造体からの距離である。例示的な実施形態は、構造体から特定のスタンドオフ距離において赤外線サーモグラフィが行われることを認識して考慮する。
【0018】
例示的な実施形態は、超音波は、赤外線サーモグラフィよりも正確な構造体に対する位置決めを要することを認識して考慮する。例示的な実施形態は、赤外線サーモグラフィと超音波検査とを組み合わせることによって、構造体の両側に対して自動化検査を同時に行うことができることを認識して考慮する。例示的な実施形態は、両側からの超音波が、信号反射によって両側において受信される信号の質に影響し得ることを認識して考慮する。
【0019】
例示的な実施形態は、上包層(オーバーラッププライ,overwrap ply)がIML(inner mold line,インモールドライン)加工の必要性を無くし得ることを認識して考慮する。例示的な実施形態は、上包層の中又は下の不具合は層と層との間又は中に存在することを認識して考慮する。例示的な実施形態は、上包の中又は下の不具合は超音波を用いては簡単に検査できなくなり得ることを認識して考慮する。例示的な実施形態は、上包の中又は下の不具合は、上包層で包まれた層の大半とは平行ではなくなり得ることを認識して考慮する。例示的な実施形態は、非平行な不具合は、超音波トランスデューサから離れる方向に音波を散乱することを認識して考慮する。
【0020】
以下図面を参照するが、特に図1を参照すると、本発明に係る超音波法を用いて複合構造体が検査される環境のブロック図の例示図が示されている。検査環境100は、構造体104に対してサーモグラフィ検査102を行うサーモグラフィシステム101を含む。サーモグラフィ検査102は、構造体104の不具合106を検出する。
【0021】
サーモグラフィ検査102は、熱源108及び幾つかの赤外線カメラ110を用いて行われる。本願において「幾つかの」物体とは、一つ又は複数(一つ以上)の物体のことである。従って、「幾つかの赤外線カメラ110」とは、一つ又は複数の赤外線カメラを含む。
【0022】
一部の例示的な例では、熱源108及び幾つかの赤外線カメラ110は構造体104に対して相対的に移動して、構造体104第二表面112に対するサーモグラフィ検査102を行う。一部の例示的な例では、熱源108及び赤外線カメラ110に対して相対的に構造体104を移動させて、構造体104の第二表面112に対するサーモグラフィ検査102を行う。
【0023】
一部の例示的な例では、熱源108はラインヒータ114の形態を取る。一部の例示的な例では、熱源108がラインヒータ114の形態を取る場合、ラインヒータ114及び幾つかの赤外線カメラ110を構造体104の第二表面112に対して相対的に“走査”又は掃引して、サーモグラフィ検査102を行うことができる。
【0024】
一部の例示的な例では、熱源108はランプ116の形態をとる。一部の例示的な例では、ランプ116はヒートランプ又はフラッシュランプであり得る。一部の例示的な例では、熱源108がランプ116の形態を取る場合、ランプ116及び幾つかの赤外線カメラ110を構造体104の第二表面112にわたってステップ駆動(段階的に駆動)させて、サーモグラフィ検査102を行うことができる。
【0025】
一部の例示的な例では、構造体104は複合材118で形成される。こうした例示的な例では、構造体104は複合構造体と称される。サーモグラフィ検査102は、構造体104の第二表面112の1/4インチ(つまり0.635cm)以内の深度において不具合106を検出する。第二表面112の1/4インチ以内の不具合106は表面付近不具合とも称される。
【0026】
構造体104は第一側120及び第二側122を有する。第一側120は第二側122と対向している。第二表面112は構造体104の第二側122にある。第一表面124は構造体104の第一側120にある。
【0027】
一部の例示的な例では、第二側122は非加工表面126を有する。非加工表面126はハード機械加工(hard tooling)無しで形成される。非加工表面126は、ハード機械加工で形成された表面とは異なる表面粗さを有し得る。
【0028】
構造体104が複合材118で形成される場合、複合材118は複合層(複合プライ)として積層され得る。図示されるように、構造体104は複合膜(複合スキン)128、厚い複合積層体(複合レイアップ)130、上包(オーバーラップ)132から形成される。一部の例示的な例では、上包132は任意選択的なものである。
【0029】
不具合106は、第二表面112から1/4インチ以内の構造体104のあらゆる部分に存在し得る。不具合106は、上包132と厚い複合積層体130と複合膜128とのうち少なくとも一つに存在し得る。上包132が任意選択的なものである場合、不具合106は、厚い複合積層体130と複合膜128とのうち少なくとも一方に存在し得る。
【0030】
第一側120は、複合膜128の一部によって形成される。上包132が存在する場合、第二側122は上包132を用いて形成される。こうした例示的な例では、上包132が厚い複合積層体130を覆う。一部の例示的な例では、厚い複合積層体130は積層複合レイアップとも称される。一部の例示的な例では、厚い複合積層体130はインチ単位で測定され得る。例えば、厚い複合積層体130は、1インチ、2インチ、3インチ、又はそれ以上のものとなり得る。上包132が厚い複合積層体130を覆う場合、上包132が第二側122を形成する。
【0031】
他の例示的な例では、上包132は存在しない。上包132が存在しない場合、厚い複合積層体130が第二側122を形成する。
【0032】
複合膜128は、複数の複合層136を積層することによって形成される。複数の複合層136と、厚い複合積層体130の第二複数の複合パイル138とは互いに平行である。第二複数の複合層138は様々な幅140を有し、厚い複合積層体130を形成するように積層される。一部の例示的な例では、複合膜128と厚い複合積層体130とは共に硬化されて、構造体104を形成する。一部の例示的な例では、複合膜128と厚い複合積層体130とは共に結合されて、構造体104を形成する。
【0033】
一部の例示的な例では、厚い複合積層体130を硬化させて、斜面(ランプ)142を形成する。図示されるように、第二複数の複合パイル138は様々な厚さ140を有し、斜面142と第二斜面146とを形成する。第二表面112が台形147である場合、斜面142は第二表面112の非平行な脚148を形成する。一部の例示的な例では、非平行な脚148は厚い複合積層体130で形成される。一部の例示的な例では、第二表面112の非平行な脚148は斜面142の形状を有するが、上包132で形成される。
【0034】
斜面142は第一側120に対する第一角度150を有する。斜面142が第二側122の一部であって、第二側122が非加工表面126である場合、斜面142は粗い表面152を有する。斜面142が粗い表面152を有する場合、斜面142は、平均表面粗さの顕著な変動を有する。
【0035】
図示されるように、構造体104は第二斜面146も有する。第二斜面146は第二複数の複合層138を用いて形成される。第二斜面146は第一側120に対する第二角度154を有する。第二斜面146が第二側122の一部であって、第二側122が非加工表面126である場合、第二斜面146は粗い表面156を有する。第二斜面146が粗い表面156を有する場合、第二斜面146は平均表面粗さの顕著な変動を有する。
【0036】
一部の例示的な例では、第二斜面146は台形147の第二表面112の一部である。第二斜面146が台形147の第二表面112の一部を形成する場合、第二斜面146は第二表面112の非平行な脚158を形成する。
【0037】
サーモグラフィ検査102中に、熱源108は、構造体104の第二表面112の部分160を加熱する。一部の例示的な例では、第二表面112の加熱部分160は、ラインヒータ114での加熱部分160を備える。一部の例示的な例では、第二表面112の加熱部分160は、ヒートランプ又はフラッシュランプでの加熱部分160を備える。
【0038】
一部の例示的な例では、熱源108がラインヒータ114である場合、サーモグラフィシステム101を用いて構造体104が走査される。一部の例示的な例では、サーモグラフィシステム101は、エンドエフェクタ(図示せず)に接続された幾つかの赤外線カメラ110及びランプ116を含む。こうした例示的な例では、サーモグラフィシステム101は、構造体104を走査するように構造体104に対して相対的に移動する。他の例示的な例では、構造体104が、構造体104を走査するようにサーモグラフィシステム101に対して相対的に移動する。一部の例示的な例では、サーモグラフィ検査102中に赤外線画像162が連続的に撮られる。
【0039】
他の例示的な例では、サーモグラフィシステム101はパルス型検査を行う。サーモグラフィ検査102がパルス型である場合、構造体104とサーモグラフィシステム101とのうち少なくとも一方を互いに対して相対的にステップ型に(段階的に)移動させる。
【0040】
パルス型の方法の場合、熱源108は部分160を加熱し、次いで、幾つかの赤外線カメラ110が部分160の赤外線画像162を撮る。一部の例示的な例では、赤外線画像162を撮った後に、サーモグラフィシステム101を構造体104に対して相対的に移動させる。
【0041】
不具合106は赤外線画像162から特定される。赤外線画像162で特定された局所的な熱コントラストの領域を用いて、不具合106が検出される。不具合106は表面付近不具合とも称され得る。サーモグラフィ検査102は、構造体104の第二表面112から1/4インチ以内の不具合106を検出する。
【0042】
例示的な一例では、局所的な熱コントラストの領域167が赤外線画像162において特定される。この例示的な例では、構造体104の第二表面112から1/4インチ以内の不具合163が、局所的な熱コントラストの領域167を用いて検出される。
【0043】
不具合106のうちいくつかは第一表面124に対して非平行であり得る。例示的な一例では、不具合163は、非平行な脚148又は非平行な脚158のうち一方に存在する。この例示的な例では、サーモグラフィシステム101は、非平行な脚、つまり、第二表面112の非平行な脚148又は非平行な脚158の不具合163を検出する。不具合106のうちいくつかは、複数の複合層136及び第二複数の複合層138に対して非平行であり得る。
【0044】
第二表面112が非加工表面126である場合でも、サーモグラフィシステム101を用いて、不具合106が検出される。斜面142が粗い表面152を有し、第二斜面146が粗い表面156を有する場合でも、サーモグラフィシステム101を用いて、不具合106が検出される。
【0045】
一部の例示的な例では、第一表面124及び第二表面112が同時に検査され得る。一部の例示的な例では、超音波検査164が第一表面124に対して行われる一方で、サーモグラフィ検査102が第二表面112に対して行われる。超音波検査機器165で第一表面124に対して超音波検査164を行う。一部の例示的な例では、超音波検査機器165は超音波トランスデューサ166の形態を取る。
【0046】
超音波トランスデューサ166は構造体104の第一表面124内に信号168を送信する。超音波応答信号170が構造体104の第二表面112において形成される。超音波トランスデューサ166は超音波応答信号170を受信する。一部の例示的な例では、超音波トランスデューサ166はフェイズドアレイ172の形態を取る。
【0047】
超音波応答信号170を用いて、第一表面124近くの不具合174が検出される。不具合174は複数の複合層136又は第二複数の複合層138に存在する。
【0048】
図1の検査環境100の例示は、例示的な実施形態が実施され得る方法に対する物理的又は設計上の制限を示唆するものではない。例示されているものに加えて又は代えて他の構成要素を使用し得る。一部の構成要素は不必要なものとなり得る。また、ブロックは、一部の機能的構成要素を例示するために与えられているものである。これらブロックのうち一つ以上は、例示的な実施形態を実施する際に、組み合わせられ、分割され、又は別のブロックへと組み合わせて分割されたりし得る。
【0049】
例えば、サーモグラフィシステム101は任意選択的にエンドエフェクタ176を含み得る。一部の例示的な例では、幾つかの赤外線カメラ110のうちの一つの赤外線カメラとランプ116(ヒートランプ又はフラッシュランプの形態を取る)とがエンドエフェクタ176に接続される。こうした例示的な例では、構造体104の第二表面112の部分160の赤外線画像162を撮った後に、エンドエフェクタ176を構造体104に対して相対的に移動させる。
【0050】
以下、図2を参照すると、例示的な実施形態に係るサーモグラフィシステムを用いて複合構造体を検査することの等角図の例示図が示されている。構造体200は図1の構造体104の物理的な実施形態である。構造体200は第一表面202と第二表面204とを有する。
【0051】
第二表面204は複数の角度を有する。第二表面204は複数の部分206を有する。複数の部分206の各部分はそれ自体の角度を有する。図示されるように、第二表面204は台形部分205を有する。第二表面204の台形部分205は、構造体200の斜面によって形成された非平行な脚207を有する。非平行な脚207は構造体200の第一表面202に対して非平行である。
【0052】
サーモグラフィシステム208は図1のサーモグラフィシステム101の物理的な一実施形態である。サーモグラフィシステム208は、サーモグラフィ検査、例えば図1のサーモグラフィ検査102等を行う。サーモグラフィシステム208は、熱源210と赤外線カメラ212とを備える。サーモグラフィシステム208は単一の赤外線カメラ(赤外線カメラ212)を有するものとして示されているが、サーモグラフィシステム208は所望の数の赤外線カメラを含む。サーモグラフィシステム208は第二表面204を撮像するための所望の数のカメラを含む。サーモグラフィシステム208は、第二表面204の各部分から±30度以内で位置決めされた少なくとも一つの赤外線カメラを有する。
【0053】
複数の部分206の角度が変化すると、赤外線カメラの所望の数も変化し得る。一部の例示的な例では、複数の部分206は全て、複数の部分206の他の各部分に対して30度以内の角度を有する。こうした例示的な例では、サーモグラフィシステム208は単一のカメラのみを有し得る。一部の例示的な例では、複数の部分206は互いに30度よりも大きな角度を有し得る。こうした例示的な例では、サーモグラフィシステム208は二つ以上のカメラを有し得る。一部の例示的な例では、サーモグラフィシステム208の各赤外線カメラは、サーモグラフィシステム208の他の各赤外線カメラに対して異なる向きに位置決めされる。
【0054】
図示されるように、熱源210はラインヒータ214の形態を取る。サーモグラフィシステム208はラインスキャン又はダイナミックサーモグラフィ検査において使用される。一部の例示的な例では、構造体200が、第二表面204を検査するようにサーモグラフィシステム208に対して相対的に移動し得る。他の例示的な例では、サーモグラフィシステム208が、第二表面204を検査するように構造体200に対して相対的に移動し得る。
【0055】
ラインヒータ214は構造体200の第二表面204の一部分を加熱して、加熱部分を形成する。その後、赤外線カメラ212が加熱部分の赤外線画像を撮る。この例示的な例では、ラインヒータ214が構造体200を加熱して、赤外線カメラ212が構造体200の赤外線画像を撮るにつれて、構造体200にわたってサーモグラフィシステム208を移動させることが連続的に行われる。
【0056】
図2の構造体200及びサーモグラフィシステム208の例示図は、例示的な実施形態が実施され得る方法に対する物理的又は設計上の制限を示唆するものではない。例えば、ラインヒータ214と赤外線カメラ212との間の距離は所望の値を有し得る。また、サーモグラフィシステム208と構造体200との間の距離も所望の値を有し得る。更に、構造体200は、他の形状やサイズで所望の形態を取り得る。
【0057】
以下、図3を参照すると、例示的な実施形態に係るサーモグラフィシステムを用いて複合構造体を検査することの断面図の例示図が示されている。サーモグラフィシステム300は、図1のサーモグラフィシステム101の物理的な実施形態である。サーモグラフィシステム300は、構造体200に対してサーモグラフィ検査を行うための代替配置構成である。サーモグラフィシステム300はパルス型検査において使用される。サーモグラフィシステム300は熱源302と赤外線カメラ304とを有する。熱源302はランプ306の形態を取る。ランプ306はヒートランプ又はフラッシュランプから選択され得る。
【0058】
サーモグラフィシステム300を用いてサーモグラフィ検査を行うため、ランプ306が第二表面204の部分308を加熱して、加熱部分を形成する。部分308の加熱後に、赤外線カメラ304が第二表面204の部分308の画像を撮る。その後、サーモグラフィシステム300が構造体200に対して段階的(ステップ式)に移動する。従って、サーモグラフィシステム300は構造体200にわたって不連続に移動する。
【0059】
図示されるように、サーモグラフィシステム300は、第一視野310、続いて第二視野312、次いで第三視野314において第二表面204を検査するように構造体200に対して相対的に移動し得る。サーモグラフィシステム300の視野のサイズは、第二表面204からのサーモグラフィシステム300の距離316と、赤外線カメラ304の仕様とに依存している。
【0060】
図3の構造体200及びサーモグラフィシステム300の例示図は、例示的な実施形態が実施され得る方法に対する物理的又は設計上の制限を示唆するものではない。単に簡単のために、サーモグラフィシステム300は単一のカメラ(赤外線カメラ304)を有するものとして示されている。他の例示的な例では、サーモグラフィシステム300は所望の数のランプを有し得る。他の例示的な例では、サーモグラフィシステム300は所望の数のランプを有し得る。
【0061】
以下、図4を参照すると、例示的な実施形態に係る複合構造体の超音波検査と赤外線検査との同時検査の断面図の例示図が示されている。検査環境400は、構造体406の第一表面404を検査する超音波検査システム402と、構造体406の第二表面410を検査するサーモグラフィシステム408とを有する。検査環境400は図1の検査環境100の物理的な実施形態である。構造体406は図1の構造体104の物理的な実施形態である。
【0062】
図示されるように、超音波検査システム402は超音波トランスデューサ412を有する。超音波トランスデューサ412は構造体406の第一表面404内に信号を送信し、超音波応答信号を受信する。超音波検査システム402は、超音波応答信号を用いて、第一表面404近くの不具合、例えば不具合414等を検出する。
【0063】
図示されるように、第一表面404は実質的に平坦である。また、第一表面404は、超音波検査システム402を用いた超音波検査を促進するように実質的に平滑でもある。
【0064】
構造体406の第二表面410は複数の角度を有する。第二表面410は複数の部分(セクション)416を有する。図示されるように、複数の部分416の各部分は、複数の部分416の他の各部分と独立した角度を有する。図示されるように、部分418及び部分420は第一表面404に平行である。図示されるように、部分422及び部分424は第一表面404に平行ではない。
【0065】
図示されるように、部分422と部分420と部分424は台形425である。部分422の角度426は構造体406の斜面428によって形成される。部分422は、第二表面410の台形425の部分の非平行な脚と称され得る。部分424の角度430は構造体406の第二斜面432によって形成される。部分424は、第二表面410の台形425の部分の非平行な脚と称され得る。
【0066】
第二表面410の超音波検査は、複数の部分416と、第二表面410を形成する層の方向と、第二表面410の粗さとのうち少なくとも一つに起因して、所望のものよりも困難なものとなり得る。超音波検査を用いた第二表面410近くの不具合の検出は、不具合の深さと上包の存在とのうち少なくとも一つに起因して所望のものよりも困難なものとなり得る。本願において、「~のうち少なくとも一つ」との用語が、項目の列挙と共に用いられている場合、これは、列挙されている項目のうち一つ以上の多様な組み合わせが使用可能であることを意味し、列挙されている各項目のうち一つのみが必要とされ得る。つまり、「~のうち少なくとも一つ」は、列挙されている項目をあらゆる組み合わせとあらゆる数において使用し得ることを意味するが、列挙されている全ての項目が要される訳ではない。項目は、特定の物体、物、カテゴリーであり得る。
【0067】
例えば、「項目Aと項目Bと項目Cとのうち少なくとも一つ」は、項目Aを含むか、項目Aと項目Bを含むか、又は、項目Bを含み得るがこれらに限定されない。また、この例は、項目Aと項目Bと項目Cとを含むか、又は、項目Bと項目Cとを含み得る。勿論、これら項目のあらゆる組み合わせが存在し得る。他の例では、「~のうち少なくとも一つ」は、項目Aを二つ、項目Bを一つ、項目Cを十個含むものであったり、項目Bを四つ、項目Cを七つ含むものであったりし得るが、これに限定されず、他の適切な組み合わせともなり得る。
【0068】
サーモグラフィシステム408は、第二表面410に対するサーモグラフィ検査を行う。一部の例示的な例では、図示されるように、第一表面404の検査と第二表面410の検査とが同時に行われ得る。他の例示的な例では、第一表面404の検査と第二表面410の検査とは逐次的なものとなり得る。
【0069】
図示されるように、サーモグラフィシステム408はランプ434と幾つかの赤外線カメラ436とを含む。幾つかの赤外線カメラ436は赤外線カメラ438と赤外線カメラ440とを含む。図示されるように、赤外線カメラ438と赤外線カメラ440とは、互いに異なる向きで位置決めされる。
【0070】
サーモグラフィシステム408は第二表面410を検査して、不具合442を検出する。不具合442は第二表面410から1/4インチ以内に存在する。
【0071】
図示されるように、破線444は、上包、例えば図1の上包132等によって形成された構造体406の領域を示す。破線444から第二表面410までの領域内の層は平坦ではない。破線444から第二表面までの領域内の各層は、第二表面410と同じ形状を有する。一部の例示的な例では、部分422と部分424とのうち少なくとも一つと平行な上包によって、不具合が導入され得る。
【0072】
図示されているこの例では、構造体406は、厚い複合積層体と複合膜と上包から形成され得る。厚い複合積層体及び複合膜の層は実質的に平坦である。厚い複合積層体及び複合膜の層は第一表面404に実質的に平行である。
【0073】
図示されていない一部の他の例示的な例では、構造体206を形成するのに上皮が用いられないものとなり得る。こうした例示的な例では、構造体206の全ての層が実質的に平坦である。こうした例示的な例では、構造体206の全ての層が第一表面404に実質的に平行である。
【0074】
以下、図5を参照すると、例示的な実施形態に係る傾斜表面に平行な不具合を有する複合構造体の断面図の例示図が示されている。構造体500は、図1の構造体104の物理的な実施形態である。構造体500は第一表面502と第二表面504とを有する。図示されるように、第二表面504は第一表面502に平行ではない。更に、第二表面504近くの不具合506は第一表面502に平行ではない。
【0075】
サーモグラフィ検査、例えば図1のサーモグラフィ検査102等を用いて、不具合506が検出される。サーモグラフィ検査を用いると、第一表面502に対する不具合506の角度は、不具合506の検出に影響しない。
【0076】
所望の構成要素を有するサーモグラフィシステムを用いて、第二表面が検査される。一部の例示的な例では、図2のサーモグラフィシステム208又は図3のサーモグラフィシステム300を用いて、不具合506が検出される。図示されるように、第二表面504は、或る角度、つまり、第一表面502に対する角度508を有する。一部の例示的な例では、第二表面504が単一の角度のみを有するので、一つの赤外線カメラがサーモグラフィシステムで使用され得る。他の例示的な例では、第二表面504を検査するのに用いられるサーモグラフィシステムは、一つよりも多くの赤外線カメラを含む。
【0077】
一部の例示的な例では、超音波検査機器を用いて第一表面502が検査されるに連れて、サーモグラフィシステムを用いて第二表面504が検査される。一部の例示的な実施形態では、構造体500の移動又は移送ステップ中に、サーモグラフィシステムを用いて第二表面504が検査される。
【0078】
以下、図6を参照すると、例示的な実施形態に係る複合構造体の界面に位置する不具合の断面図が示されている。構造体600は図1の構造体104の物理的な実施形態である。構造体600は、界面606で結合された複合膜602と厚い複合積層体604とを有する。複合膜602と厚い複合積層体604は、共硬化又は共結合によって界面606を形成し得る。界面606が共硬化によって形成される場合、界面606は、共硬化複合界面と称され得る。界面606が共結合によって形成される場合、界面606は、共結合複合界面と称され得る。
【0079】
図示されるように、不具合608は界面606内に広がっている。不具合608は、二つの異なる種類の検査によって検出され得る。一部の例示的な例では、超音波応答信号と赤外線画像とを用いて、不具合608のサイズ610が測定される。こうした例示的な例では、超音波検査は構造体600の第一表面612に対して行われる。こうした例示的な例では、サーモグラフィ検査は構造体600の第二表面614に対して行われる。
【0080】
超音波検査からの超音波応答信号は、不具合608の部分616を特定するのに用いられる。サーモグラフィ検査からの赤外線画像は、不具合608の部分618を特定するのに用いられる。部分616と部分618を組み合わせることによって、不具合608のサイズ610が決定される。
【0081】
図2図6に示される多様な構成要素は図1の構成要素と組み合わせられたり、図1の構成要素と共に用いられたり、又はこれらの組み合わせとなり得る。また、図2図6の一部の構成要素は、どのようにして図1のブロック図に示される構成要素が物理的構造体として実施可能であるのかについての例示的な例であり得る。
【0082】
以下、図7を参照すると、例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図が示されている。方法700は、図1の超音波検査164及びサーモグラフィ検査102を行うように検査環境100において実施され得る。方法700は、図2のサーモグラフィシステム208又は図3のサーモグラフィシステム300を使用し得る。方法700は、図4の構造体406、図5の構造体500、図6の構造体600のうちいずれかに対して行われ得る。
【0083】
方法700は、超音波トランスデューサを用いて構造体の第一表面内に信号を送信する(工程702)。一部の例示的な例では、構造体は複合構造体である。方法700は、超音波トランスデューサにおいて超音波応答信号を受信する(工程704)。
【0084】
方法700は、超音波トランスデューサが第一表面内に信号を送信している間に、構造体の第二表面の部分を加熱するが、ここで、第二表面は構造体の第一表面の反対側にある(工程706)。一部の例示的な例では、第二表面の部分の少なくとも一部は第一表面に平行ではない。一部の例示的な例では、構造体の第二表面の部分を加熱することは、ラインヒータで部分を加熱することを備える。一部の例示的な例では、構造体の第二表面の部分を加熱することは、ヒートランプ又はフラッシュランプで部分を加熱することを備える。
【0085】
方法700は、第二表面を加熱することの後に、構造体の第二表面の部分の赤外線画像を撮る(工程708)。一部の例示的な例では、第二表面を加熱することの後に構造体の第二表面の部分の赤外線画像を撮ることは、幾つかの赤外線カメラを用いて赤外線画像を撮ることを備え、各赤外線カメラは、他の各赤外線カメラに対して異なる向きに位置決めされる。
【0086】
一部の例示的な例では、方法700は、赤外線画像中の局所的な熱コントラストの領域を特定する(工程710)。一部の例示的な例では、方法700は、局所的な熱コントラストの領域を用いて、構造体の第二表面から1/4インチ以内の不具合を検出する(工程712)。一部の例示的な例では、方法700は、赤外線画像を用いて、第一表面に対して非平坦な不具合を特定する(工程714)。
【0087】
一部の例示的な例では、方法700は、超音波応答信号と赤外線画像を用いて不具合のサイズを測定する(工程716)。一部の例示的な例では、不具合は、共硬化複合界面又は共結合複合界面に位置する。不具合の一部分は、超音波応答信号を用いて特定され得る。不具合の他の部分は、赤外線画像を用いて特定され得る。不具合のサイズを測定するため、これら二つの部分を組み合わせる。
【0088】
一部の例示的な例では、構造体は複合材であり、方法700は、赤外線画像を用いて、構造体を形成している大半の層に対して非平坦な不具合を特定することを更に備える(工程718)。一部の例示的な例では、大半の層に対して非平坦な不具合は上包の部分である。上包は所望の数の層を含み得る。
【0089】
以下、図8を参照すると、例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図が示されている。方法800は、図1の超音波検査164及びサーモグラフィ検査102を行うための検査環境100において実施され得る。方法800は、図2のサーモグラフィシステム208又は図3のサーモグラフィシステム300を使用し得る。方法800は、図4の構造体406、図5の構造体500、図6の構造体600のうちいずれかに対して行われ得る。
【0090】
方法800は、構造体の第二表面に対して相対的な第一位置にサーモグラフィシステムを位置決めするが、第二表面は複数の部分を備え、それら複数の部分の各部分は異なる角度を有する(工程802)。方法800は、サーモグラフィシステムの熱源で構造体の第二表面の部分を加熱し、加熱部分を形成する(工程804)。
【0091】
方法800は、加熱部分の赤外線画像を撮り、加熱部分内の第二表面の各部分は、サーモグラフィシステムの少なくとも一つの赤外線カメラが該部分から±30度以内に位置するようにする(工程806)。一部の例示的な例では、サーモグラフィシステムは幾つかの赤外線カメラを備え、サーモグラフィシステムの各赤外線カメラは、サーモグラフィシステムの他の各赤外線カメラに対して異なる向きに位置決めされる。方法800は、加熱部分の赤外線画像を撮ることの後に、第二表面に対する相対的な第二位置にサーモグラフィシステムを移動させる(工程808)。
【0092】
一部の例示的な例では、方法800は、加熱部分の赤外線画像を用いて、第二表面から1/4インチ以内の不具合も検出する(工程810)。工程810は任意選択的なステップである。一部の例示的な例では、第二表面から1/4インチ以内には不具合が存在しない。こうした例示的な例では、不具合が検出されない。その後、本方法は終了する。
【0093】
以下、図9を参照すると、例示的な実施形態に係る複合構造体を検査するための方法のフローチャートの例示図が示されている。方法900は、図1の超音波検査164及びサーモグラフィ検査102を行うための検査環境100において実施され得る。方法900は、図2のサーモグラフィシステム208又は図3のサーモグラフィシステム300を使用し得る。方法900は、図4の構造体406、図5の構造体500、図6の構造体600のいずれかに対して行われ得る。
【0094】
方法900は、複合構造体の第一表面に対して超音波検査を行う(工程902)。方法900は、複合構造体の第二表面に対してサーモグラフィ検査を行うが、ここで、第二表面は複合構造体の第一表面の反対側にあり、第二表面の少なくとも一部は第一表面と平行ではない(工程904)。一部の例示的な例では、複合構造体の第二表面は粗い。方法900は、サーモグラフィ検査を用いて、構造体の第二表面の表面付近不具合を特定する(工程906)。一部の例示的な例では、表面付近不具合のうち少なくとも一つは、複合構造体の第一表面に非平行である。その後、本方法は終了する。
【0095】
更に、本開示は以下列挙される段落に記載されている例を含む:
【0096】
A1
超音波トランスデューサ(166)を用いて、構造体(104)の第一表面(124)内に信号(168)を送信すること(702)と、超音波トランスデューサ(166)において超音波応答信号(170)を受信すること(704)と、超音波トランスデューサ(166)が第一表面(124)内に信号(168)を送信している間に、構造体(104)の第二表面(112)の部分(160)を加熱すること(第二表面(112)は構造体(104)の第一表面(124)の反対側にある)(706)と、第二表面(112)を加熱することの後に構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ること(708)とを備える方法。
【0097】
A2
赤外線画像(162)の局所的な熱コントラストの領域(167)を特定すること(708)と、局所的な熱コントラストの領域(167)を用いて、構造体(104)の第二表面(112)から1/4インチ以内の不具合(163)を検出すること(710)とを更に備えるA1に記載の方法。
【0098】
A3
第二表面(112)が台形(147)であり、第二表面(112)の非平行な脚(148又は158)の不具合(163)を検出することを更に備えるA1又はA2に記載の方法。
【0099】
A4
構造体(104)の第二表面(112)の部分(160)を加熱することが、ラインヒータで部分(160)を加熱することを備える、A1とA2とA3のいずれか一つに記載の方法。
【0100】
A5
構造体(104)の第二表面(112)の部分(160)を加熱することが、ヒートランプ又はフラッシュランプで部分(160)を加熱することを備える、A1からA4のいずれか一つに記載の方法。
【0101】
A6
ヒートランプ又はフラッシュランプと赤外線カメラ(110)とがエンドエフェクタ(176)に接続され、構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ることの後に構造体(104)に対して相対的にエンドエフェクタ(176)を移動させることを更に備えるA5に記載の方法。
【0102】
A7
構造体(104)が複合構造体(118)である、A1からA6のいずれか一つに記載の方法。
【0103】
A8
第二表面(112)を加熱することの後に構造体(104)の第二表面(112)の部分(160)の赤外線画像(162)を撮ることが、幾つかの赤外線カメラ(110)を用いて赤外線画像(162)を撮ることを備え、各赤外線カメラが他の各赤外線カメラに対して異なる向きに位置決めされる、A1からA7のいずれか一つに記載の方法。
【0104】
A9
超音波応答信号(170)及び赤外線画像(162)を用いて不具合(608)のサイズ(610)を測定すること(716)を更に備えるA1からA8のいずれか一つに記載の方法。
【0105】
A10
不具合(608)が共硬化複合界面(606)又は共結合複合界面(606)に位置する、A9に記載の方法。
【0106】
A11
第二表面(112)の部分(160)の少なくとも一部が第一表面(124)に平行ではない、A1からA10のいずれか一つに記載の方法。
【0107】
A12
構造体(104)が複合材(118)であり、赤外線画像(162)を用いて、構造体(104)を形成している大半の層(136及び/又は138)に対して非平行な不具合(506)を特定すること(714)を更に備えるA1からA11のいずれか一つに記載の方法。
【0108】
A13
赤外線画像(162)を用いて、第一表面(124)に対して非平行な不具合(506)を特定すること(718)を更に備えるA1からA12のいずれか一つに記載の方法。
【0109】
B1
構造体(104)の第二表面(112)に対して相対的な第一位置にサーモグラフィシステム(101)を位置決めすること(第二表面(112)は複数の部分(420、422、424)を備え、複数の部分(420、422、424)の各部分は異なる角度を有する)(802)と、サーモグラフィシステム(101)の熱源(108)で構造体(104)の第二表面(112)の部分(160)を加熱して、加熱部分(160)を形成すること(804)と、加熱部分(160)の赤外線画像(162)を撮ること(加熱部分(160)内の第二表面(112)の各部分(420、422、424)は、サーモグラフィシステム(101)の少なくとも一つの赤外線カメラ(438、440)が当該部分(418、420、422、424)から±30度以内に位置するようにする)(806)と、加熱部分(160)の赤外線画像(162)を撮ることの後に第二表面(112)に対する相対的な第二位置にサーモグラフィシステム(101)を移動させること(808)とを備える方法。
【0110】
B2
サーモグラフィシステム(101)は幾つかの赤外線カメラ(110)を備え、サーモグラフィシステム(101)の各赤外線カメラが、サーモグラフィシステム(101)の他の各赤外線カメラに対して異なる向きに位置決めされる、B1に記載の方法。
【0111】
B3
加熱部分(160)の赤外線画像(162)を用いて、第二表面(112)から1/4インチ以内の不具合(163、442)を検出すること(810)を更に備えるB1又はB2に記載の方法。
【0112】
C1
複合構造体(104)の第一表面(124)に対して超音波検査(164)を行うこと(902)と、複合構造体(104)の第二表面(112)に対してサーモグラフィ検査(102)を行うこと(第二表面(112)は複合構造体(104)の第一表面(124)の反対側にあり、第二表面(112)の少なくとも一部は第一表面(124)に平行ではない)(904)と、サーモグラフィ検査(102)を用いて、複合構造体(104)の第二表面(112)に対する表面付近不具合(106)を特定すること(906)とを備える方法。
【0113】
C2
複合構造体(104)の第二表面(112)が非加工(126)である、C1に記載の方法。
【0114】
C3
少なくとも一つの表面付近不具合(106)が複合構造体(104)の第一表面(124)に対して非平行である、C1又はC2に記載の方法。
【0115】
図示されている多様な実施形態のフローチャート及びブロック図は、例示的な実施形態における装置や方法の設計、機能性、動作を例示するものである。これに関して、フローチャートやブロック図の各ブロックは、動作や工程のモジュール、セグメント、機能、及び/又は部分を表すものであり得る。
【0116】
例示的な実施形態の一部の代替実施形態では、ブロックに記されている機能が図面に記されている順序外で行われ得る。例えば、場合によっては、関連している機能性に応じて、連続して示されている二つのブロックが実質的に同時に行われたり、ブロックが逆の順序で行われたりする場合もあり得る。また、図示されているブロックに加えて、他のブロックをフローチャートやブロック図に追加し得る。
【0117】
例えば、ヒートランプ及び赤外線カメラをエンドエフェクタに接続し、方法700が、構造体の第二表面の部分の赤外線画像を撮った後に構造体に対して相対的にエンドエフェクタを移動させる。一部の例示的な例では、第二表面が台形である。こうした一部の例示的な例では、方法700は、第二表面の非平行な脚の不具合を検出することを更に備える。
【0118】
一部の例示的な例では、フローチャートやブロック図のブロックが全て行われる訳ではない。例えば、方法700のブロックが全て行われる訳ではなくなり得る。工程710から工程718は任意選択的であり、構造体の種類、構造体の形状、不具合の存在に応じて、行われたり行われなかったりし得る。
【0119】
例示的な例は、複合構造体のバルク部分に対して非平行な不具合を検出して特徴付ける方法を提供する。例えば、新たな複合体設計は、構造体の初期表面を覆う上包から成るものとなり得る。上包は構造体の性能を補助し得る。しかしながら、異物等の不具合が上包の下方や内部で生じ得る。構造体の残りの部分に対して上包の下方にある不具合の深さと角度とのうち少なくとも一つは、超音波検査を望ましくなく難しいものにし得る。上包を有する構造体に対しては典型的に、サーモグラフィが、超音波よりも改善されて高速な検査性能を提供し得る。
【0120】
例示的な例は、複合構造体の粗い表面を介する表面付近不具合を検出するための方法を提供する。サーモグラフィは、非加工表面と加工表面とのどちらに対しても等しく実行可能である。
【0121】
超音波は厳密な幾何学的特性や表面状態の影響を受け易いので、超音波にとって非加工表面は非常に難しいものである。サーモグラフィは、厳密な幾何学的特性や表面状態の影響を受け難い。
【0122】
非加工表面や傾斜表面や粗い表面に対してサーモグラフィを用いることによって、複合構造体の全ての表面が検査を受けることができるようになり得る。一部の例示的な例では、超音波検査が第一表面に対して行われる一方で、サーモグラフィ検査が第二表面に対して行われる。一部の例示的な例では、超音波検査とサーモグラフィ検査とは同時に行われる。
【0123】
多様な例示的な実施形態の説明は、例示及び説明目的で与えられているものであって、徹底的なものではなく、開示されている形態に実施形態を限定するものでもない。当業者には多くの修正や変更が明らかである。更に、多様な例示的な実施形態は、他の例示的な実施形態と比較して異なる特徴を与えるものであり得る。選択された実施形態は、実施形態の原理や実際の応用を最も良く説明して、当業者が多様な実施形態の開示が想定される特定の使用に合うように多様な修正を備えることを理解できるようにするために選択されて説明されているものである。
【符号の説明】
【0124】
200 構造体
208 サーモグラフィシステム
210 熱源
212 赤外線カメラ
214 ラインヒータ
300 サーモグラフィシステム
302 熱源
304 赤外線カメラ
306 ランプ
402 超音波検査システム
406 構造体
408 サーモグラフィシステム
412 超音波トランスデューサ
414 不具合
434 ランプ
436 赤外線カメラ
442 不具合
500 構造体
506 不具合
600 構造体
602 複合膜
604 厚い複合積層体
606 界面
608 不具合
図1
図2
図3
図4
図5
図6
図7
図8
図9