(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-30
(45)【発行日】2022-09-07
(54)【発明の名称】密閉設備
(51)【国際特許分類】
F16J 15/10 20060101AFI20220831BHJP
H01L 21/02 20060101ALI20220831BHJP
H01L 21/677 20060101ALI20220831BHJP
【FI】
F16J15/10 P
H01L21/02 Z
H01L21/68 A
(21)【出願番号】P 2018048421
(22)【出願日】2018-03-15
【審査請求日】2021-01-12
(73)【特許権者】
【識別番号】000002059
【氏名又は名称】シンフォニアテクノロジー株式会社
(74)【代理人】
【識別番号】110001841
【氏名又は名称】弁理士法人ATEN
(72)【発明者】
【氏名】河合 俊宏
(72)【発明者】
【氏名】小倉 源五郎
【審査官】羽鳥 公一
(56)【参考文献】
【文献】特開2010-084927(JP,A)
【文献】特開2014-232078(JP,A)
【文献】特開2010-276620(JP,A)
【文献】特開2013-170956(JP,A)
【文献】特開2010-256311(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16J 15/00-15/14
H01L 21/64-21/683
(57)【特許請求の範囲】
【請求項1】
筐体の内部空間と外部空間との間に所定値以下の圧力差が存在する密閉設備であって、
前記筐体は、
開口が形成されるように組まれたフレーム部材と、
前記開口を覆うように前記フレーム部材に取り付けられたカバー部材と、
前記フレーム部材と前記カバー部材との間に挟まれ、前記開口を囲むように延びているシール部材と、を有し、
前記フレーム部材及び前記カバー部材は、板金で形成されており、
前記シール部材は、その延在方向に直交する断面が中空形状を有する弾性部材であ
り、
前記フレーム部材と前記カバー部材との間に、スペーサが配置されていることを特徴とする密閉設備。
【請求項2】
前記シール部材は、
前記フレーム部材及び前記カバー部材のうち一方との接触部分に形成された突出部を有し、
前記突出部は、
前記延在方向と直交し、且つ、前記一方における前記シール部材との接触面に平行な、前記シール部材の幅方向に延びていることを特徴とする請求項
1に記載の密閉設備。
【請求項3】
筐体の内部空間と外部空間との間に所定値以下の圧力差が存在する密閉設備であって、
前記筐体は、
開口が形成されるように組まれたフレーム部材と、
前記開口を覆うように前記フレーム部材に取り付けられたカバー部材と、
前記フレーム部材と前記カバー部材との間に挟まれ、前記開口を囲むように延びているシール部材と、を有し、
前記フレーム部材及び前記カバー部材は、板金で形成されており、
前記シール部材は、その延在方向に直交する断面が中空形状を有する弾性部材であり、
前記シール部材は、
前記フレーム部材及び前記カバー部材のうち一方との接触部分に形成された突出部を有し、
前記突出部は、
前記延在方向と直交し、且つ、前記一方における前記シール部材との接触面に平行な、前記シール部材の幅方向に延びていることを特徴とする密閉設備。
【請求項4】
前記突出部は、前記幅方向において、前記内部空間及び前記外部空間のうち圧力が低い空間側にのみ形成されていることを特徴とする請求項
2又は3に記載の密閉設備。
【請求項5】
前記シール部材には、前記シール部材の中空部と前記外部空間とを連通させるガス抜き穴が形成されていることを特徴とする請求項1
~4のいずれかに記載の密閉設備。
【請求項6】
前記筐体の内部空間と外部空間との間に3000Pa以下の圧力差が存在
し、
前記フレーム部材及び前記カバー部材の少なくとも一方は、厚さ6mm以下の板金で形成されており、
前記フレーム部材とカバー部材の前記シール部材と接触する接触面は、0.5mm/m~5mm/mの平坦度を有
することを特徴とする
請求項1~5のいずれかに記載の密閉設備。
【請求項7】
不活性ガスを供給可能なガス供給手段と、
前記内部空間内のガスを排出するガス排出手段と、
前記ガス供給手段及び前記ガス排出手段を制御する制御部と、を備え、
前記制御部は、
前記ガス供給手段により前記内部空間200L/min以下の前記不活性ガスを供給するとともに、前記ガスの供給量又は前記内部空間の圧力に応じて前記ガス排出手段により前記ガスを排出することで、前記内部空間の酸素濃度を100ppm未満にすることを特徴とする請求項1~6のいずれかに記載の密閉設備。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、密閉設備に関する。
【背景技術】
【0002】
特許文献1には、半導体基板(ウェハ)に所定の処理を施す処理装置と、ウェハが収容されるFOUP(Front-Opening Unified Pod)との間でウェハの受渡しを行う、EFEM(Equipment Front End Module)が開示されている。EFEMは、ウェハの搬送が行われる搬送室が形成された筐体と、筐体の外側に並べて配置され、FOUPがそれぞれ載置される複数のロードポートと、搬送室内に設置され、ウェハの搬送を行う搬送装置と、を備える。
【0003】
従来、ウェハ上で製造される半導体回路に対する搬送室内の酸素や水分等の影響は少なかったが、近年、半導体回路のさらなる微細化に伴い、それらの影響が顕在化してきている。そこで、特許文献1に記載のEFEMは、不活性ガスである窒素で搬送室内が満たされるように構成されている。具体的には、EFEMは、筐体の内部で窒素を循環させる、搬送室を含む循環流路と、循環流路に窒素を供給するガス供給手段と、循環流路から窒素を排出するガス排出手段とを備える。窒素は、循環流路内の酸素濃度等の変動に応じて適宜供給及び排出される。これにより、窒素を常時供給及び排出する構成と比べて窒素の供給量の増大を抑えつつ、搬送室内を窒素雰囲気に保つことが可能となる。さらに、循環流路は、筐体を囲む筐体壁(カバー部材)と、筐体壁を支える支柱(フレーム部材)とによって閉止された略密閉空間となっている。これにより、外部空間から循環流路への大気の侵入や、循環流路から外部空間への窒素の漏出が抑制される。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載のようなEFEMにおいて、実際に略密閉空間を形成するために、本願発明者は、フレーム部材とカバー部材との間にOリングを挟んで押しつぶすことで、Oリングをフレーム部材及びカバー部材に密着させ、筐体を密閉することを検討した。ここで、Oリングを押しつぶすためには一定以上の押圧力が必要であり、フレーム部材及びカバー部材がその押圧力に耐えうる剛性を有するように、フレーム部材及びカバー部材を厚くすることが求められる。しかしながら、フレーム部材及びカバー部材を厚くすると、フレーム部材及びカバー部材の重量がかなり増大し、材料費等の製造コストが大幅に増加してしまう。また、例えばEFEMのメンテナンス時にカバー部材を着脱する場合、重いカバー部材を運ぶ必要が生じ、作業性が極めて悪くなるという問題もある。さらには、表面に高い平坦性が要求される。
【0006】
本発明の目的は、フレーム部材及びカバー部材の剛性が高くなくても、筐体を密閉可能にすることである。
【課題を解決するための手段】
【0007】
第1の発明の密閉設備は、筐体の内部空間と外部空間との間に所定値以下の圧力差が存在する密閉設備であって、前記筐体は、開口が形成されるように組まれたフレーム部材と、 前記開口を覆うように前記フレーム部材に取り付けられたカバー部材と、前記フレーム部材と前記カバー部材との間に挟まれ、前記開口を囲むように延びているシール部材と、を有し、前記フレーム部材及び前記カバー部材は、板金で形成されており、前記シール部材は、その延在方向に直交する断面が中空形状を有する弾性部材であることを特徴とするものである。
【0008】
本発明では、シール部材が断面中空の弾性部材であるため、小さな押圧力でもたわみやすい。すなわち、フレーム部材とカバー部材とに挟まれているシール部材が圧縮されやすく、シール部材とフレーム部材及びカバー部材との接触面積が大きくなりやすい。このため、小さな押圧力で、シール部材をフレーム部材及びカバー部材に密着させることができる。これにより、剛性が高くない板金でフレーム部材及びカバー部材が形成されていても、シール部材を圧縮させるための押圧力にフレーム部材及びカバー部材が耐えることができる。ここで、中空のシール部材は、内部空間と外部空間との圧力差が大きいと、圧力の高い側から低い側へシール部材が押されることで密閉性が悪化しやすいが、本発明では、内部空間と外部空間との圧力差が小さい(例えば、1~3000Pa(G)、好ましくは3~500Pa(G)、より好ましくは5~100Pa(G))ため、密閉性の悪化は抑制される。以上より、フレーム部材及びカバー部材の剛性が高くなくても、筐体を密閉することができる。
【0009】
第2の発明の密閉設備は、前記第1の発明において、前記シール部材には、前記シール部材の中空部と外部とを連通させるガス抜き穴が形成されていることを特徴とするものである。
【0010】
本発明では、フレーム部材にカバー部材を取り付ける際、すなわちシール部材が圧縮される際に、ガス抜き穴を介してシール部材の中空部から気体が排出される。このため、ガス抜き穴が形成されていない場合と比べて、シール部材が圧縮されたときに、中空部の圧力が上昇することを抑制し、シール部材による反発力を弱めることができる。したがって、小さな押圧力で確実にシール部材を圧縮することができる。
【0011】
第3の発明の密閉設備は、前記第1又は第2の発明において、前記フレーム部材と前記カバー部材との間に、スペーサが配置されていることを特徴とするものである。
【0012】
シール部材が圧縮され過ぎて完全につぶれた状態で使用されると、シール部材が傷みやすくなる等のおそれがある。本発明では、スペーサによってフレーム部材とカバー部材との距離が開くので、シール部材の厚みが当該距離よりも小さくなることが防止される。したがって、フレーム部材とカバー部材との距離を適切に開けることで、シール部材が圧縮され過ぎることを防止できる。
【0013】
第4の発明の密閉設備は、前記第1~第3のいずれかの発明において、前記シール部材は、前記フレーム部材及び前記カバー部材のうち一方との接触部分に形成された突出部を有し、前記突出部は、前記延在方向と直交し、且つ、前記一方における前記シール部材との接触面に平行な、前記シール部材の幅方向に延びていることを特徴とするものである。
【0014】
本発明では、幅方向に突出している突出部によって、シール部材と、フレーム部材及びカバー部材のうち一方との接触面積を大きくすることができる。したがって、筐体の密閉性を向上させることができる。
【0015】
第5の発明の密閉設備は、前記第4の発明において、前記突出部は、前記幅方向において、前記内部空間及び前記外部空間のうち圧力が低い空間側にのみ形成されていることを特徴とするものである。
【0016】
突出部が、内部空間及び外部空間のうち圧力が高い空間側に形成されていると、内部空間と外部空間との圧力差が増大した場合、圧力が高い側から低い側にシール部材が押圧されたときに、突出部の抵抗によってシール部材が動きにくくなる。つまり、圧力が高い空間から圧力が低い空間に気体が抜けにくい。すると、上記圧力差が増大し続けた場合に、中空で強度が低いシール部材が破壊等されるおそれがある。本発明では、内部空間と外部空間との圧力差が増大した場合に、圧力が高い空間から圧力が低い空間に気体が比較的抜けやすいため、シール部材が破壊等されることを抑制することができる。
【0017】
第6の発明の密閉設備は、筐体の内部空間と外部空間との間に3000Pa以下の圧力差が存在する密閉設備であって、前記筐体は、開口が形成されるように組まれたフレーム部材と、前記開口を覆うように前記フレーム部材に取り付けられたカバー部材と、前記フレーム部材と前記カバー部材との間に挟まれ、前記開口を囲むように延びているシール部材と、を有し、前記フレーム部材及び前記カバー部材の少なくとも一方は、厚さ6mm以下の板金で形成されており、前記フレーム部材とカバー部材の前記シール部材と接触する接触面は、0.5mm/m~5mm/mの平坦度を有し、前記シール部材は、その延在方向に直交する断面が中空形状を有する弾性部材であることを特徴とするものである。
【0018】
本発明では、フレーム部材やカバー部材が削り出して製造された場合と比べて表面の平坦性に劣る板金をフレーム部材又はカバー部材に使用しても、シール部材が小さい押圧力で表面に追従して変形するので、必要な密閉性を得ることができる。
【0019】
第7の発明の密閉設備は、前記第1~第6のいずれかの発明において、不活性ガスを供給可能なガス供給手段と、前記内部空間内のガスを排出するガス排出手段と、前記ガス供給手段及び前記ガス排出手段を制御する制御部と、を備え、前記制御部は、前記ガス供給手段により前記内部空間200L/min以下の前記不活性ガスを供給するとともに、前記ガスの供給量又は前記内部空間の圧力に応じて前記ガス排出手段により前記ガスを排出することで、前記内部空間の酸素濃度を100ppm未満にすることを特徴とするものである。
【0020】
本発明では、筐体を密閉することができ、外部空間から内部空間にガスが侵入することを抑制できるため、不活性ガスの供給流量が200L/min以下と少ない場合でも、不活性ガス以外のガスの濃度が上昇してしまうことを抑制できる。
【図面の簡単な説明】
【0021】
【
図1】本実施形態に係るEFEM及びその周辺の概略的な平面図である。
【
図6】筐体の前面に配置されたシール部材を示す図である。
【
図7】シール部材及びその周辺の構成を示す図である。
【発明を実施するための形態】
【0022】
次に、本発明の実施の形態について、
図1~
図7を参照しながら説明する。なお、説明の便宜上、
図1に示す方向を前後左右方向とする。すなわち、EFEM(Equipment Front End Module)1と基板処理装置6とが並べられている方向を前後方向とする。EFEM1側を前方、基板処理装置6側を後方とする。前後方向と直交する、複数のロードポート4が並べられている方向を左右方向とする。また、前後方向及び左右方向の両方と直交する方向を上下方向とする。
【0023】
(EFEM及び周辺の概略構成)
まず、EFEM1(本発明の密閉設備)及びその周辺の概略構成について、
図1及び
図2を用いて説明する。
図1は、本実施形態に係るEFEM1及びその周辺の概略的な平面図である。
図2は、EFEM1の電気的構成を示す図である。
図1に示すように、EFEM1は、筐体2と、搬送ロボット3と、複数のロードポート4と、制御装置5とを備える。EFEM1の後方には、半導体基板であるウェハWに所定の処理を施す基板処理装置6が配置されている。EFEM1は、筐体2内に配置された搬送ロボット3によって、ロードポート4に載置されているFOUP(Front-Opening Unified Pod)100と基板処理装置6との間でウェハWの受渡しを行う。FOUP100は、複数のウェハWを上下方向に並べて収容可能な容器であり、後端部(前後方向における筐体2側の端部)に蓋101が取り付けられている。FOUP100は、例えば、ロードポート4の上方に設けられた不図示のレールに吊り下げられて走行する、不図示のOHT(天井走行式無人搬送車)によって搬送される。OHTとロードポート4との間で、FOUP100の受渡しが行われる。
【0024】
筐体2は、複数のロードポート4と基板処理装置6とを接続するためのものである。筐体2の内部には、外部空間7に対して略密閉された、ウェハWが搬送される搬送室41が形成されている。EFEM1が稼動しているとき、搬送室41は、窒素等の不活性ガスで満たされている。筐体2は、搬送室41を含む内部空間40を窒素が循環するように構成されている(詳細については後述する)。また、筐体2の後端部にはドア2aが取り付けられ、搬送室41は、ドア2aを隔てて基板処理装置6と接続されている。
【0025】
搬送ロボット3は、搬送室41内に配置され、ウェハWの搬送を行う。搬送ロボット3は、位置が固定された基台部3a(
図3参照)と、基台部3aの上方に配置され、ウェハWを保持して搬送するアーム機構3b(
図3参照)と、ロボット制御部11(
図2参照)とを有する。搬送ロボット3は、主に、FOUP100内のウェハWを取り出して基板処理装置6に渡す動作や、基板処理装置6によって処理されたウェハWを受け取ってFOUP100に戻す動作を行う。
【0026】
ロードポート4は、FOUP100を載置する(
図5参照)ためのものである。複数のロードポート4は、それぞれの後端部が筐体2の前側の隔壁に沿うように、左右方向に並べて配置されている。ロードポート4は、FOUP100内の雰囲気を窒素等の不活性ガスに置換可能に構成されている。ロードポート4の後端部には、ドア4aが設けられている。ドア4aは、不図示のドア開閉機構によって開閉される。ドア4aは、FOUP100の蓋101のロックを解除可能、且つ、蓋101を保持可能に構成されている。ロックが解除された蓋101をドア4aが保持している状態で、ドア移動機構がドア4aを開けることで、蓋101が開けられる。これにより、FOUP100内のウェハWが、搬送ロボット3によって取出可能になる。
【0027】
図2に示すように、制御装置5(本発明の制御部)は、搬送ロボット3のロボット制御部11、ロードポート4の制御部(不図示)、基板処理装置6の制御部(不図示)と電気的に接続されており、これらの制御部との通信を行う。また、制御装置5は、筐体2内に設置された酸素濃度計55、圧力計56、湿度計57等と電気的に接続されており、これらの計測機器の計測結果を受信して、筐体2内の雰囲気に関する情報を把握する。また、制御装置5は、供給バルブ112及び排出バルブ113(後述)と電気的に接続されており、これらのバルブの開度を調節することで、筐体2内の雰囲気を適宜調節する。例えば、窒素を循環させるタイプのEFEM1においては、内部空間40から外部空間7への窒素の漏出を抑制しつつ、外部から内部空間40への大気の侵入を確実に抑制するために、内部空間40の圧力を外部空間7の圧力よりもわずかに高く保つ必要がある。具体的には、1Pa(G)~3000Pa(G)の範囲内であり、好ましくは、3Pa(G)~500Pa(G)、より好ましくは、5Pa(G)~100Pa(G)である。このため、制御装置5は、内部空間40の圧力が所定の範囲から外れると、排出バルブ113の開度を変更することで窒素の排出流量を変更し、圧力が所定の目標圧力になるように調節する。このように、酸素濃度に基づいて窒素の供給流量が調節され、圧力に基づいて窒素の排出流量が調節されることで、酸素濃度及び圧力が制御される。本実施形態では、10Pa(G)の差圧となるよう調整している。
【0028】
図1に示すように、基板処理装置6は、例えば、ロードロック室6aと、処理室6bとを有する。ロードロック室6aは、筐体2のドア2aを隔てて搬送室41と接続された、ウェハWを一時的に待機させるための部屋である。処理室6bは、ドア6cを隔ててロードロック室6aと接続されている。処理室6bでは、不図示の処理機構によって、ウェハWに対して所定の処理が施される。
【0029】
(筐体及びその内部の構成)
次に、筐体2及びその内部の構成について、
図3~
図6を用いて説明する。
図3は、筐体2の正面図である。
図4は、
図3のIV-IV断面図である。
図5は、
図3のV-V断面図である。
図6は、筐体2の前面に配置された後述のシール部材61を示す図である。なお、
図3においては、隔壁の図示を省略している。また、
図5においては、搬送ロボット3等の図示を省略している。
【0030】
筐体2は、全体として直方体状である。
図3~
図6に示すように、筐体2は、柱21~26と、隔壁31~36とを有する。上下方向に延びる柱21~26に隔壁31~36が取り付けられており、筐体2の内部空間40が外部空間7に対して略密閉されている。
【0031】
より具体的には、
図4に示すように、筐体2の前端部において、柱21~24が左方から右方にかけて順番に並べて立設配置されている。柱21と柱24との間に配置された柱22、23は、柱21及び柱24よりも短い。筐体2の後端部の左右両側に、柱25、26が立設配置されている。柱21~26は、例えばSPCC材等の炭素鋼からなる一般的な板金(圧延された厚さ6mm以下の金属板)で形成されている。
【0032】
図3に示すように、筐体2の底部に隔壁31が、天井部に隔壁32が配置されている。
図4に示すように、前端部に隔壁33が、後端部に隔壁34が、左端部に隔壁35が、右端部に隔壁36が、それぞれ配置されている。筐体2の右端部には、後述するアライナ54が載置される載置部53(
図3参照)が設けられている。アライナ54及び載置部53も、筐体2の内側に収容されている(
図4参照)。
【0033】
図3及び
図5に示すように、筐体2内の上側部分(柱22、23の上方)には、水平方向に延びる支持板37が配置されている。これにより、筐体2の内部は、下側に形成された前述の搬送室41と、上側に形成されたFFU設置室42とに分かれている。FFU設置室42内には、後述するFFU(ファンフィルタユニット)44が配置されている。支持板37の前後方向における中央部には、搬送室41とFFU設置室42とを連通させる開口37aが形成されている。なお、筐体2の隔壁33~36は、搬送室41用の下部壁とFFU設置室42用の上部壁とに分けられている(例えば、
図5における前端部の隔壁33a、33b及び後端部の隔壁34a、34bを参照)。隔壁31~36及び支持板37も、柱21~26と同様の板金で形成されている。
【0034】
筐体2について、もう少し詳しく説明する。筐体2においては、柱21~26、隔壁31、32及び支持板37が組み立てられていることで(
図3、
図4参照)、
図6に示すように、複数の開口38が形成されている。例えば、筐体2の前端部の下部には、柱21、柱24、隔壁31及び支持板37によって、開口38aが形成されている。筐体2の前端部の上部には、柱21、柱24、隔壁32及び支持板37によって、開口38bが形成されている。隔壁33~36(
図4参照)は、開口38を覆うように柱21~26、隔壁31、32及び支持板37に取り付けられている。柱21~26、隔壁31、32及び支持板37(以下、柱21等とする)が、本発明のフレーム部材に相当する。隔壁33~36(以下、隔壁33等とする)が、本発明のカバー部材に相当する。柱21等と隔壁33等との間には、
図6に示すように、開口38を密閉するためのシール部材61が挟まれている。例えば、開口38aを覆うように取り付けられた隔壁33(隔壁33a。
図6の二点鎖線参照)と柱21等との間には、シール部材62(
図6のハッチング部分参照)が挟まれている。開口38bを覆うように取り付けられた隔壁33(隔壁33b。
図6の二点鎖線参照)と柱21等との間には、シール部材63(
図6のハッチング部分参照)が挟まれている。シール部材61は、開口38を囲むように延びている。シール部材61のさらなる詳細については後述する。
【0035】
次に、筐体2の内部の構成について説明する。具体的には、筐体2内で窒素を循環させるための構成及びその周辺構成、並びに、搬送室41内に配置された機器等について説明する。
【0036】
筐体2内で窒素を循環させるための構成及びその周辺構成について、
図3~
図5を用いて説明する。
図5に示すように、筐体2の内部空間40には、窒素を循環させるための循環路が形成されている。循環路は、搬送室41と、FFU設置室42と、帰還路43とによって構成されている。概要としては、内部空間40においては、FFU設置室42から清浄な窒素が下方へ送り出され、搬送室41の下端部まで到達した後、帰還路43を通って上昇し、FFU設置室42に戻るようになっている(
図5の矢印参照)。
【0037】
FFU設置室42には、支持板37上に配置されたFFU44と、FFU44上に配置されたケミカルフィルタ45とが設けられている。FFU44は、ファン44aとフィルタ44bとを有する。FFU44は、ファン44aによってFFU設置室42内の窒素を下方に送出しつつ、窒素に含まれるパーティクル(不図示)をフィルタ44bによって除去する。ケミカルフィルタ45は、例えば基板処理装置6から内部空間40に持ち込まれた活性ガス等を除去するためのものである。FFU44及びケミカルフィルタ45によって清浄化された窒素は、FFU設置室42から、支持板37に形成された開口37aを介して搬送室41に送り出される。搬送室41に送り出された窒素は、層流を形成し、下方へ流れる。
【0038】
帰還路43は、筐体2の前端部に配置された柱21~24(
図5においては柱23)及び支持板37に形成されている。すなわち、柱21~24は中空になっており、窒素が通れる空間21a~24aがそれぞれ形成されている(
図4参照)。つまり、空間21a~24aが、それぞれ帰還路43を構成している。帰還路43は、支持板37の前端部に形成された開口37bによってFFU設置室42と連通している(
図5参照)。
【0039】
帰還路43について、
図5を参照しつつ、より具体的に説明する。なお、
図5には柱23が示されているが、他の柱21、22、24についても同様である。柱23の下端部には、搬送室41内の窒素を帰還路43(空間23a)に流入させやすくするための導入ダクト27が取り付けられている。導入ダクト27には開口27aが形成され、搬送室41の下端部に到達した窒素が帰還路43に流入可能となっている。導入ダクト27の上部には、下方へ向かうほど後方に広がる拡大部27bが形成されている。拡大部27bの下方には、ファン46が配置されている。ファン46は、不図示のモータによって駆動され、搬送室41の下端部に到達した窒素を帰還路43(
図5においては空間23a)に吸い込んで上方に送り出し、窒素をFFU設置室42に戻す。FFU設置室42に戻された窒素は、FFU44やケミカルフィルタ45によって清浄化され、再び搬送室41へ送り出される。以上のようにして、窒素が循環路内を循環可能になっている。
【0040】
また、
図3に示すように、FFU設置室42の側部には、内部空間40に窒素を供給するための供給管47が接続されている。供給管47は、窒素の供給源111に接続されている。供給管47の途中部には、窒素の単位時間あたりの供給量を変更可能な供給バルブ112(本発明のガス供給手段)が設けられている。供給バルブ112の開度を調節することで、供給源111から内部空間40に供給される窒素の流量を0~500L/minで調整することが可能である。また、
図5に示すように、搬送室41の前端部には、循環路内の気体を排出するための排出管48が接続されている。排出管48は、例えば不図示の排気ポートにつながっている。排出管48の途中部には、循環路内の気体の単位時間あたりの排出量を変更可能な排出バルブ113(本発明のガス排出手段)が設けられている。供給バルブ112及び排出バルブ113は、制御装置5と電気的に接続されている(
図2参照)。これにより、内部空間40に窒素を適宜供給及び排出することが可能となっている。例えば、内部空間40における酸素濃度の上昇が酸素濃度計55によって検出された場合に、制御装置5は、供給バルブ113の開度を一時的に大きくして、供給源111から供給管47を介して内部空間40に窒素を一時的に多く供給する。また、制御装置5は、上述したように、内部空間40の圧力に応じて排出バルブ113の開度を変更(フィードバック制御)し、排出管48を介して窒素と共に酸素を排出する。このようにして、制御装置5は、内部空間40の酸素濃度を例えば100ppm未満にする。或いは、制御装置5は、供給バルブ113の開度(すなわち、窒素の供給量)に応じて排出バルブ113の開度を変更しても良い。つまり、例えば、制御装置5は、供給バルブ113の開度の変更と同時に排出バルブ113の開度を変更し、所定時間が経過した後にフィードバック制御を再開しても良い。
【0041】
また、制御装置5は、圧力計56(
図2参照)の値に基づき、供給バルブ112及び排出バルブ113を制御する。これにより、内部空間40の圧力は、外部空間7の圧力よりもわずかに(例えば、約10Pa)高く保たれている。
【0042】
次に、搬送室41内に配置された機器等について、
図3及び
図4を用いて説明する。
図3及び
図4に示すように、搬送室41内には、上述した搬送ロボット3と、制御部収容箱51と、計測機器収容箱52と、アライナ54とが配置されている。制御部収容箱51は、例えば搬送ロボット3の基台部3a(
図3参照)の左方に設置され、アーム機構3b(
図3参照)と干渉しないように配置されている。制御部収容箱51には、上述したロボット制御部11が収容されている。計測機器収容箱52は、例えば基台部3aの右方に設置され、アーム機構3bと干渉しないように配置されている。計測機器収容箱52には、上述した酸素濃度計55、圧力計56、湿度計57等の計測機器(
図2参照)が収容可能となっている。
【0043】
アライナ54は、搬送ロボット3のアーム機構3b(
図3参照)に保持されているウェハWの保持位置が、目標保持位置からどれだけずれているか検出するためのものである。例えば、上述したOHT(不図示)によって搬送されるFOUP100(
図1参照)の内部では、ウェハWが微妙に動くおそれがある。そこで、搬送ロボット3は、FOUP100から取り出した処理前のウェハWを、いったんアライナ54に載置する。アライナ54は、ウェハWが搬送ロボット3によって目標保持位置からどれだけずれた位置で保持されていたか計測し、計測結果をロボット制御部11に送信する。ロボット制御部11は、上記計測結果に基づいて、アーム機構3bによる保持位置を補正し、アーム機構3bを制御して目標保持位置でウェハWを保持させ、基板処理装置6のロードロック室6aまで搬送させる。これにより、基板処理装置6によるウェハWの処理を正常に行うことができる。
【0044】
以上の構成を備えるEFEM1において、開口38(
図6参照)を密閉するためのシール部材61として、本願発明者は、当初、一般的なOリングを用いることを検討していた。ここで、Oリングを押しつぶすためには一定以上の押圧力が必要であり、柱21等及び隔壁33等がその押圧力に耐えうる剛性を有することが求められる。しかしながら、これらの部材の剛性を上げようとすると、板金の代わりに厚板を削り出した部材で柱21等及び隔壁33等を製造する必要が生じ、材料費や加工費等の製造コストが大幅に上昇する。また、例えばEFEMのメンテナンス時に隔壁33等を着脱する場合、重い部材を運ぶ必要が生じ、作業性が極めて悪くなるという問題もある。そこで、EFEM1においては、柱21等及び隔壁33等の剛性が高くなくても筐体2を密閉可能にするために、シール部材61及びその周辺の構成が、以下のようになっている。
【0045】
(シール部材及びその周辺の詳細構成)
シール部材61及びその周辺の詳細構成について、
図6及び
図7を用いて説明する。
図7(a)は、
図6のVII-VII断面図であり、隔壁33が柱21に取り付けられる前の状態を示す図である。
図7(b)は、
図7(a)に示された隔壁33が、柱21に取り付けられた後の状態を示す図である。以下の説明では、シール部材61の延びる方向を延在方向(
図6参照)とする。延在方向と直交し、且つ、柱21の、シール部材61と接触する接触面21b(
図7参照)と平行な方向を、シール部材61の幅方向とする。幅方向において、
図7の紙面左方を外部空間7側とし、
図7の紙面右方を内部空間40側とする。延在方向及び幅方向の両方と直交する方向を、シール部材61の厚み方向とする。なお、以下の説明では、例として、シール部材61の、柱21と隔壁33との間に挟まれた部分について説明するが、他の柱と隔壁との間に挟まれた部分も同様の構成を有する。
【0046】
EFEM1に適用されるシール部材61は、例えば、EPDM(エチレン・プロピレン・ジエンゴム)と呼ばれるゴムからなる。シール部材61は、例えば押出成形によって直線状に形成された後、加硫接合によって環状に接合されている。これにより、通常のシロキサン等を含む接着剤によってシール部材61の延在方向における端部同士を接着させる場合と比べて、半導体基板であるウェハWの汚染が抑制される。なお、シール部材61は、半導体基板であるウェハWを汚染しないものであれば良く、フッ素系ゴムやニトリルゴム等、他の弾性部材によって形成されていても良い。
【0047】
図7(a)、(b)に示すように、シール部材61は、土台部65と、本体部66と、突出部67とを有する。シール部材61は、柱21と隔壁33との間に挟まれて圧縮されることで、隔壁33によって開口38(
図6参照)を密閉し、内部空間40と外部空間7とを隔てる。
図7(a)、(b)においては、紙面左方が外部空間7側であり、紙面右方が内部空間40側である。隔壁33に固定された土台部65から、中空の本体部66が柱21側へ延びており、厚み方向における本体部66の先端部及び突出部67が、柱21の接触面21bに接触する。隔壁33の土台部65に接触する面及び接触面21bの平坦度は、例えば0.5mm/m~5mm/mである。
【0048】
土台部65は、シール部材61を隔壁33に固定するための部分である。
図7(a)、(b)に示すように、土台部65は、平板状の部分であり、シール部材61の、厚み方向における隔壁側の端部に形成されている。土台部65は、幅方向に延びている。土台部65の幅方向における両側には、土台部65と同等の厚みを有する(或いは、土台部65よりもやや薄い)土台板71、72が配置されている。土台部65及び土台板71、72の厚み方向における柱21側には、土台部65と土台板71とにまたがる取付板73と、土台部65と土台板72とにまたがる取付板74とが配置されている。土台板71と取付板73は、例えばねじ75によって隔壁33にねじ止めされている。土台板72と取付板74は、ねじ76によって隔壁33にねじ止めされている。これにより、土台部65の幅方向における両側部分が取付板73、74によって隔壁33側に押圧され、シール部材61が隔壁33に固定されている。これにより、シール部材61が固定されていない場合と比べて、隔壁33を着脱する際にシール部材61の取扱いが容易化される。
【0049】
本体部66は、延在方向に直交する断面が中空形状を有する部分である。本体部66は、中実であるOリングと比べて圧縮されやすい。本体部66は、圧縮されていない状態では断面円形であるが、断面形状はこれに限られるものではない。本体部66の内側には、中空部66aが形成されている。また、本体部66の延在方向における一部に、中空部66aと本体部66の外部とを連通させるガス抜き穴66bが形成されている。ガス抜き穴66bは、本体部66の幅方向における外部空間7側(紙面左方)に形成されている。これにより、本体部66が圧縮されたときに(
図7(b)参照)、中空部66a内の気体が外部空間7へ抜け出ることが可能となっている。このため、ガス抜き穴66bが形成されていない場合と比べて、本体部66が圧縮されたときの反発力が弱まるので、本体部66は、より圧縮されやすい。なお、ガス抜き穴66bは、延在方向において1つだけ形成されていれば良いが、ガス抜き穴66bの数はこれに限られるものではない。
【0050】
シール部材61は、本体部66が中空であり圧縮されやすい一方で、断面中実のOリング等と比べると、密閉力はあまり高くない。シール部材61は、例えば、内部空間40と外部空間7との圧力差が3000Pa(G)以下であれば、密閉性を保てるように構成されている。言い換えると、上記圧力差が3000Pa(G)を超えると、圧力が高い空間から低い空間へ気体が漏れ出る可能性がある。但し、上述したように、内部空間40と外部空間7との圧力差はわずか(10Pa程度)であるため、この程度の密閉力でも、筐体2を密閉することは可能である。
【0051】
突出部67は、シール部材61の、柱21(本発明の、フレーム部材とカバー部材のうち一方)との接触部分に形成されている。別の言い方をすると、突出部67は、本体部66の厚み方向における柱21側の端部から突出している。突出部67は、幅方向において、外部空間7側(つまり、内部空間40と比べて圧力が低い空間側)に突出している。これにより、本体部66が圧縮されたときに(
図7(b)参照)、柱21の接触面21bとの接触面積が大きくなる(
図7(b)の太線参照)。本体部66の幅方向における突出部67の反対側の部分は、外部空間7側に湾曲している。つまり、突出部67は、圧力が低い外部空間7側にのみ形成されている。このため、万一、内部空間40の圧力が外部空間7に対してかなり高くなった場合(前述した3000Pa(G)を超えた場合)、突出部67による抵抗がないため、循環路内の窒素が外部空間7へ抜けやすい。このため、圧力差が増大した場合に、シール部材61が破壊等されることが抑制される。
【0052】
また、厚み方向において、柱21と隔壁33との間には、スペーサ77が配置されている。スペーサ77は、隔壁33が柱21に取り付けられたとき、柱21と隔壁33との間に所定の距離を生じさせるための柱状部材である。本実施形態においては、スペーサ77は、柱21に設けられている。これにより、隔壁33の構成を単純にし、且つ、隔壁33の重量の増大を抑制できる(つまり、隔壁33の取り扱いを容易化できる)。隔壁33が柱21に取り付けられたとき、柱21と隔壁33との距離は、スペーサ77の厚み以下になることが防止される。これにより、シール部材61が圧縮され過ぎることが防止される。図示は省略するが、スペーサ77は、シール部材61の延在方向において複数設けられている。なお、スペーサ77は、隔壁33に設けられていても良い。或いは、スペーサ77は、隔壁33と柱21の両方に設けられていても良い。
【0053】
シール部材61のサイズについて説明する。シール部材61の延在方向における長さは、例えば1000mm~6000mmである。シール部材61の幅方向におけるサイズは、例えば10mm~30mmである。シール部材61の厚み方向におけるサイズは、例えば10mm~30mmである。また円環部の外径サイズは、例えば、8mm~25mm、肉厚は、例えば1~5mmである。
【0054】
以上の構成を有するEFEM1において、
図7(b)に示すように、隔壁33が柱21に取り付けられた状態では、柱21と隔壁33との間に作用する押圧力により、本体部66及び67が厚み方向に圧縮されて弾性変形する。このため、シール部材61が隔壁33と柱21の両方に密着し、内部空間40と外部空間7とが隔てられる。ここで、上述したように、柱21等のフレーム部材及び隔壁33等のカバー部材は板金で形成されており、厚板と比べれば剛性が高くない。このような構成であっても、断面中空のシール部材61が小さな押圧力で圧縮可能であるため、柱21や隔壁33等がシール部材61の反発力によってたわむことが抑制される。
【0055】
以上のように、シール部材61が断面中空の弾性部材であるため、小さな押圧力でもたわみやすい。すなわち、柱21等のフレーム部材と隔壁33等のカバー部材とに挟まれているシール部材61が圧縮されやすく、シール部材61とフレーム部材及びカバー部材との接触面積が大きくなりやすい。このため、小さな押圧力で、シール部材61をフレーム部材及びカバー部材に密着させることができる。これにより、剛性が高くない板金でフレーム部材及びカバー部材が形成されていても、シール部材61を圧縮させるための押圧力にフレーム部材及びカバー部材が耐えることができる。ここで、一般に、中空のシール部材61は、内部空間40と外部空間7との圧力差が大きいと密閉性が悪化しやすいが、本実施形態では、内部空間40と外部空間7との圧力差が所定値以下であることを前提とするため、密閉性の悪化は抑制される。以上より、フレーム部材及びカバー部材の剛性が高くなくても、筐体2を密閉することができる。
【0056】
また、このように、柱21等のフレーム部材及び隔壁33等のカバー部材が板金で形成されているため、例えば厚板を削り出してフレーム部材及びカバー部材を形成する場合と比べて、材料費や加工費等の製造コストの増大を抑制することができる。さらに、カバー部材の重量の増大を抑制できるため、例えばEFEM1のメンテナンス時にカバー部材を着脱する必要が生じた場合、カバー部材の取扱いを容易化できる。
【0057】
また、フレーム部材にカバー部材を取り付ける際、すなわちシール部材61が圧縮される際に、ガス抜き穴66bを介してシール部材61の中空部66aから気体が排出される。このため、ガス抜き穴66bが形成されていない場合と比べて、シール部材61が圧縮されたときに、中空部66aの圧力が上昇することを抑制し、シール部材61による反発力を弱めることができる。したがって、小さな押圧力で確実にシール部材61を圧縮することができる。
【0058】
本発明では、板金により制作されるフレーム部材やカバー部材によりEFEM1が構成されているが、削り出して作成したフレーム部材やカバー部材に対して表面の平坦性に劣るものの、本発明のシール部材61を含む構成によれば、小さい押圧力で表面に追従して変形するので、N2循環型のEFEM1において必要な密閉性を得ることができる。本実施形態によれば、0.5~5mm/mの表面平坦性を持つフレーム部材やカバー部材において、問題なくN2循環型のEFEM1において必要な密閉性(1.5L/min以下のリーク量)を得ることができた。また、窒素供給量が200L/min以下であっても、搬送室41内は100ppm未満の酸素濃度を実現することができた。つまり、窒素以外のガスの濃度が上昇してしまうことを抑制できた。
【0059】
なお、フレーム部材やカバー部材の平坦度は、部材の任意の2点間(例えば500mm以上)における谷から谷(又は山から山)の間に直線を引いた時、その直線と波の山(波の谷)までの距離を測定することで計算される。例えば、接触式/非接触式三次元測定装置により測定することができる。
【0060】
また、スペーサ77によって柱21等のフレーム部材と隔壁33等のカバー部材との距離が開くので、シール部材61の厚みが当該距離よりも小さくなることが防止される。したがって、フレーム部材とカバー部材との距離を適切に開けることで、シール部材61が圧縮され過ぎることを防止できる。
【0061】
また、幅方向に突出している突出部67によって、シール部材61と、柱21等のフレーム部材との接触面積を大きくすることができる。したがって、筐体2の密閉性を向上させることができる。
【0062】
また、突出部67が、幅方向において、外部空間7側(すなわち、内部空間40及び外部空間7のうち圧力が低い空間側)にのみ形成されている。このため、内部空間40と外部空間7との圧力差が増大した場合に、外部空間7に気体が比較的抜けやすいので、シール部材61が破壊等されることを抑制することができる。
【0063】
次に、前記実施形態に変更を加えた変形例について説明する。但し、前記実施形態と同様の構成を有するものについては、同じ符号を付して適宜その説明を省略する。
【0064】
(1)前記実施形態において、突出部67が、幅方向において、外部空間7側にのみ突出しているものとしたが、これには限られない。突出部67は、内部空間40側に突出していても良い。或いは、外部空間7側及び内部空間40側の両方に突出していても良い。
【0065】
(2)前記までの実施形態において、突出部67が、シール部材61の柱21との接触部分に形成されているものとしたが、これには限られない。つまり、土台部65が柱21に固定され、突出部67が、シール部材61の隔壁33との接触部分に形成されていても良い。
【0066】
(3)前記までの実施形態において、柱21と隔壁33との間にスペーサ77が配置されているものとしたが、これには限られない。すなわち、スペーサ77が配置されていなくても良い。なお、この場合、隔壁33等を柱21等に取り付ける際にシール部材61が圧縮され過ぎないよう、柱21等と隔壁33等との距離を上手く開けることが好ましい。
【0067】
(4)前記までの実施形態において、シール部材61のガス抜き穴66bが、本体部66の幅方向における外部空間7側に形成されているものとしたが、これには限られない。すなわち、ガス抜き穴66bは、内部空間40側に形成されていても良い。
【0068】
(5)前記までの実施形態において、フレーム部材(柱21~26、隔壁31、32、支持板37)及びカバー部材(隔壁33~36)がいずれも板金で形成されているものとしたが、これには限られない。例えば、カバー部材が板金で形成されており、フレーム部材が厚板の削り出しによって製造されている等の構成でも良い。
【0069】
(6)前記までの実施形態において、本発明は、EFEM1に適用されるものとしたが、これには限られない。例えば、細胞培養を行うための作業空間が形成されたアイソレータ(特開2011-167405号公報を参照)にも、本発明を適用することが可能である。他にも、内部空間と外部空間との間に所定値以下の(例えば、上述した3000Pa(G)以下の)圧力差が存在する密閉設備に対して、本発明を適用することが可能である。内部空間及び外部空間のうち、いずれの圧力が高くても良い。シール部材61の材質は、環境に応じて適宜決めれば良い。シール部材61の延在方向における端部同士の接合の仕方についても、同様である。
【符号の説明】
【0070】
1 EFEM(密閉設備)
2 筐体
5 制御装置(制御部)
7 外部空間
21~26 柱(フレーム部材)
31、32 隔壁(フレーム部材)
33~36 隔壁(カバー部材)
37 支持板(フレーム部材)
38 開口
40 内部空間
61 シール部材
66a 中空部
66b ガス抜き穴
67 突出部
77 スペーサ
112 供給バルブ(ガス供給手段)
113 排出バルブ(ガス排出手段)