(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-30
(45)【発行日】2022-09-07
(54)【発明の名称】強化骨足場材料
(51)【国際特許分類】
A61F 2/28 20060101AFI20220831BHJP
A61L 27/54 20060101ALI20220831BHJP
A61L 27/56 20060101ALI20220831BHJP
【FI】
A61F2/28
A61L27/54
A61L27/56
(21)【出願番号】P 2018554440
(86)(22)【出願日】2017-05-02
(86)【国際出願番号】 US2017030555
(87)【国際公開番号】W WO2017192525
(87)【国際公開日】2017-11-09
【審査請求日】2020-05-01
(32)【優先日】2016-05-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511293629
【氏名又は名称】マーケット ユニバーシティー
(74)【代理人】
【識別番号】110002321
【氏名又は名称】弁理士法人永井国際特許事務所
(72)【発明者】
【氏名】テイビ,ロバット
(72)【発明者】
【氏名】ラゾリアンボロウジーニ, モーテザ
【審査官】細川 翔多
(56)【参考文献】
【文献】特表2007-503226(JP,A)
【文献】特開2009-095522(JP,A)
【文献】米国特許第06451059(US,B1)
【文献】特表2009-513280(JP,A)
【文献】米国特許出願公開第2003/0072790(US,A1)
【文献】特開2012-016517(JP,A)
【文献】特表2002-527144(JP,A)
【文献】特開2015-089433(JP,A)
【文献】特開平06-292716(JP,A)
【文献】米国特許出願公開第2008/0249637(US,A1)
【文献】特表2013-542750(JP,A)
【文献】特表2015-502192(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 2/28
A61L 27/54
A61L 27/56
(57)【特許請求の範囲】
【請求項1】
内部空間を画定する三次元形状を形成するように第一の材料から構築され、第一の生分解速度を持つ骨格
であり、相互に連結した複数の第一の支持体、複数の第二の支持体、複数の第三の支持体を含み、
前記第一の支持体のそれぞれは他の第一の支持体に対して平行に配列され、
前記第二の支持体のそれぞれは他の第二の支持体に対して平行に配列され、前記第一の支持体の角度とは異なる角度で配向されており、
前記第三の支持体のそれぞれは他の第三の支持体に対して平行に配列され、前記第一の支持体の角度および前記第二の支持体の角度とは異なる角度で配向されている骨格、および
第二の材料から構築され、第二の生分解速度を持ち、前記第一の生分解速度がこの第二の生分解速度よりも小さく、前記骨格により形成された前記三次元形状により画定された前記内部空間を埋める母材を含む、骨組織工学に用いられる足場材料。
【請求項2】
前記骨格と前記母材はユニット構造であり、前記母材の孔隙率は前記骨格の孔隙率よりも大きい、請求項1に記載の足場材料。
【請求項3】
前記母材はさらに骨形成タンパク質を含む、請求項1または2に記載の足場材料。
【請求項4】
前記第二の材料は発泡体である、請求項1~3のいずれか一項に記載の足場材料。
【請求項5】
前記母材は
前記骨格内部またはその周囲にさらに配置される、請求項1~4のいずれか一項に記載の足場材料。
【請求項6】
前記骨格は前記第一の支持体、前記第二の支持体、前記第三の支持体による三次元で構造的な支持を提供するよう構成されている、請求項1~
4のいずれか一項に記載の足場材料。
【請求項7】
前記骨格は生体内で足場材料に加わると予測される力で、前記第一の支持体、前記第二の支持体、前記第三の支持体の複数の支持体のうちの少なくとも一つを配列するよう構成されている、請求項6に記載の足場材料。
【請求項8】
前記第一の支持体と前記第二の支持体との角度は120°であり、前記第一の支持体と前記第三の支持体との角度は120°である、請求項
1に記載の足場材料。
【請求項9】
前記骨格は、前記母材と前記骨格との結合を促進するための係合構造をさらに含む、請求項1に記載の足場材料。
【請求項10】
前記母材及び前記骨格の結合を促進するための化学表面処理を含み、前記化学表面処理は加水分解、アミノリシス、プラズマ処理、オゾン処理、または表面開始原子移動ラジカル重合(ATRP)の中から選択される、請求項1~6のいずれか一項に記載の足場材料。
【請求項11】
前記母材は前記骨格により形成された前記三次元形状により画定される内部空間の中に形成され、
前記母材はマクロスケール、マイクロスケール、またはナノスケール
の物理的連結により、前記骨格と物理的連結を行う、請求項1~6のいずれか一項に記載の足場材料。
【請求項12】
骨組織工学に用いられる足場材料を調製する方法であって、
内部空間を画定する三次元形状を形成すること、
第一の材料から構築され、第一の生分解速度を持つ骨格であり、相互に連結した複数の第一の支持体、複数の第二の支持体、複数の第三の支持体を含み、
前記第一の支持体のそれぞれは他の第一の支持体に対して平行に配列され、
前記第二の支持体のそれぞれは他の第二の支持体に対して平行に配列され、前記第一の支持体の角度とは異なる角度で配向されており、
前記第三の支持体のそれぞれは他の第三の支持体に対して平行に配列され、前記第一の支持体の角度および前記第二の支持体の角度とは異なる角度で配向されている骨格を構築すること、
第二の材料から構築され、第二の生分解速度を持ち、前記第一の生分解速度が前記第二の生分解速度よりも小さい前記母材で、前記三次元形状により画定された前記内部空間を埋めることを含む、方法。
【請求項13】
前記母材及び前記骨格の結合を促進するための前記骨格の化学表面処理をさらに含み、前記化学表面処理は加水分解、アミノリシス、プラズマ処理、オゾン処理、または表面開始原子移動ラジカル重合(ATRP)の中から選択される、請求項12に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本願は、2016年5月2日に提出された米国特許仮出願第62/330,561号の優先権を主張するものであり、その全内容を参照により本明細書に組み込む。
【0002】
本開示は、骨組織工学の分野に関する。より具体的には、本開示は生体内骨組織工学の足場材料に関する。
【0003】
通常、人はその生涯で少なくとも1回は骨折する。また、損傷、病気、あるいは遺伝的欠損により骨欠損や骨量の減少を患う人もいる。骨組織成長の分野は、過去20年以上に亘って組織工学による解決が進められてきた。典型的には、多孔性材料を足場材料として用いて、その上に新しい骨細胞を成長させる。解決法によっては、この多孔性足場材料が経時的に体内で分解および/または溶解するように足場材料をさらに生分解性材料で構築している。
【0004】
しかしながら、本発明者らは現在利用可能な骨成長足場材料には限界があることを発見した。まず、現在の多孔性および生分解性足場材料は機械強度が弱い。孔隙率と生分解性はいずれも足場材料の機械強度に相反する性質である。骨の損傷または欠損が小さい場合、足場材料と新しい骨組織は、その損傷または欠損を取り囲む既存の骨組織の強度に依存してもよい。しかしながら、骨の損傷または欠損が大きくなるに従い、あるいは損傷または欠損の位置が特に負荷がかかるところであれば、新しい骨が再成長するまでに機械強度の外部供給源が必要である。現在利用可能な他の解決手段として、損傷または欠損の領域内および領域の周囲に金属板、ピン、またはネジを用いてもよい。しかしながら、これらの解決手段は、患者の体内に永久に残る、あるいは後で取り出さなければならず、追加の手術が必要である、あるいは周囲組織を損傷することにつながる。さらに、このような金属または複合体構造は、患者によってはアレルギー反応を誘発する場合がある。
【発明の概要】
【0005】
骨組織工学に用いる足場材料の例示的な実施形態は、骨格と母材を備える。骨格は、三次元形状を形成するように構築されている。この骨格は第一の材料から構築され、第一の生分解速度を持つ。母材は、この骨格により形成された三次元形状に充填されている。この母材は第二の材料から構築され、第二の生分解速度を持つ。第一の生分解速度は、第二の生分解速度よりも小さい。
【0006】
足場材料のさらなる例示的な実施形態では、骨格と母材はユニット構造であり、母材の孔隙率は骨格の孔隙率よりも大きい。他の例示的な実施形態では、母材は、骨形成タンパク質をさらに含む。さらなる例示的な実施形態では、骨格は第一の孔隙率を持ち、母材は第二の孔隙率を持ち、第二の孔隙率は第一の孔隙率よりも大きい。他の態様では、第一の孔隙率は第二の孔隙率と同じかそれ以上であってもよい。例えば、複数の実施形態では、第一および第二の生分解速度は他の物性(これに限定されないが、例えば、材料の選択)に依存している。
【0007】
骨組織工学に用いる足場材料を調製する方法の一例示的な実施形態は、患者の治療領域の3Dモデルを取得することを含む。足場材料の所望の分解性は患者および治療領域に基づいて決定される。所望の分解性を達成するように、少なくとも1つの骨格特徴が選択され、少なくとも1つの母材特徴が選択される。骨格は、治療領域に合うようにデジタルで設計される。この骨格は、少なくとも1つの骨格特徴により作製される。骨格は、少なくとも1つの母材特徴を持つ母材が充填されている。
【0008】
足場材料を調製する方法のさらなる例示的な実施形態では、上記少なくとも1つの骨格特徴は、基材、材料処理技術、孔隙率、および孔径のうちの少なくとも1つを含む。この例示的な実施形態では、少なくとも1つの母材特徴は、基材、材料処理技術、孔隙率、および孔径のうちの少なくとも1つを含む。他の例示的な実施形態では、骨格の作製は骨格を3D印刷することを含む。
【0009】
一例示的な実施形態では、上記母材は発泡体であり、上記方法は、母材を充填した骨格を冷凍乾燥して足場材料を形成することをさらに含む。さらなる例示的な実施形態では、母材の少なくとも1つの材料が選択される。母材の少なくとも1つの材料の溶液が調製される。この溶液は撹拌されて母材の発泡体を形成する。この母材の発泡体は上記骨格に成形される。母材の発泡体を充填した骨格は冷凍される。この冷凍された骨格と母材の発泡体は、冷凍乾燥されて足場材料を形成する。
【図面の簡単な説明】
【0010】
【
図1】
図1は、足場材料の一例示的な実施形態を示す。
【0011】
【
図2】
図2は、母材のない骨格の一例示的な実施形態を示す。
【0012】
【
図3A】
図3Aは、骨格の構成の様々な例示的な実施形態を示す。
【
図3B】
図3Bは、骨格の構成の様々な例示的な実施形態を示す。
【
図3C】
図3Cは、骨格の構成の様々な例示的な実施形態を示す。
【
図3D】
図3Dは、骨格の構成の様々な例示的な実施形態を示す。
【
図3E】
図3Eは、骨格の構成の様々な例示的な実施形態を示す。
【0013】
【
図4】
図4は、足場材料の例示的な動的機械的分析試験の結果を示すグラフである。
【0014】
【
図5】
図5は、乾燥環境と湿潤環境で足場材料の様々な実施形態について行った応力対ひずみの測定の例示的な試験結果を示すグラフである。
【0015】
【
図6】
図6は、方法の例示的な実施形態を示す流れ図である。
【0016】
【
図7】
図7は、足場材料の構築方法の例示的な実施形態を示す流れ図である。
【発明を実施するための形態】
【0017】
組織工学は、外傷、老化、または病気で損傷した組織および器官の修復、置換、あるいは再生のための最近の手法としてよく知られている。過去20年間で、組織工学の方法は皮膚、軟骨、および骨組織の再生に非常によい成績をあげている。米国の骨折数は、毎年6,200,000件を超える。残念なことだが、これらの症例の10%では癒着不能または癒着遅延により治療術がうまくいっていない。これらのうまくいかなかった治療術に対応するための介在治療は、追加の健康保険経費を増加させ、回復のために患者の時間を奪うことになる。
【0018】
この骨の治療に対する大きな要求を満たすため、異なる方法が用いられてきた。自家移植片は、骨の怪我を修復する代表的な治療法である。この治療法の主な問題は、供給原が限られることと、ドナーの部位の病的状態である。あるいは、自家移植片の代わりに骨の同種移植片を用いてもよい。しかしながら、骨同種移植片を用いる場合、費用の問題が深刻で、病気の伝染の恐れもある。特に大きな骨欠損の骨治療では金属移植片もまた広く用いられている。しかし、天然の骨とは異なり、これらは自己修復材料ではない。金属移植片もまた、生理的条件での変化に合わせて調節することができない。より重要なのは、移植片が動くようになり、経時的に緩くなることがあることである。
【0019】
上記手法の欠点が、過去10年の間に骨組織工学の普及を促した。組織工学者にとって最も重要な責務は、足場材料の開発である。よい足場材料は、生体適合性かつ生分解性である。その構造は良好な剛性と強度を持った高多孔性である。骨組織工学のための足場材料設計の目標は骨の形態、構造、および機能を模倣することである。現在、この目的のために異なる種類の生体適合材料が用いられており、合成または天然由来のもので具現化されていてもよい。組織工学の足場材料は、細胞の移動と栄養素の送達、究極的には血管新生を可能にする相互接合したマクロ多孔性ネットワークからなっていなければならない。しかしながら、孔隙率により足場材料の機械強度は大きく低下するが、特に大きな骨欠損の場合に機械強度は重要である。
【0020】
なお、骨の自然再生は比較的小さい欠損に限定される。腫瘍、外傷、移植片の緩み、または骨炎によって生じた大きな骨欠損は、手術による治療が必要である。大きな骨分節の再構築は重要な臨床課題である。これにも関わらず、当該分野での解決法の向上が未だ必要とされている。
【0021】
図1は本明細書で開示される足場材料10の例示的な実施形態を示している。足場材料10は一般に、2つの構成要素、すなわち骨格20と母材30から構成される。
図2には骨格20が例示的に示されている。この図では骨格20を見やすくするため母材30が省いてある。骨格20は、例えば、高い機械強度、生体適合性、および生分解性を持つ材料から構築されているが、母材30よりも比較的長い時間かけて生分解する。自明であるが、例示的な実施形態では孔隙率、厚み、および材料組成がすべて足場材料10の骨格20および/または母材30の分解性に寄与することがある。複数の実施形態では、生体適合性の骨格10として1種または複数種の材料を選択して、高い機械特性と母材30の生分解性に比べて比較的緩やかな生分解性を得る。この骨格20を、生物活性特性と新しい骨組織の成長促進のために選択された母材30と組み合わせる。足場材料10の母材30は、組織の成長と、栄養素や排泄物の拡散を促進するように機能する。一実施形態では、母材30は骨形成タンパク質(BMP)を含む。BMPは、骨組織の成長を促すのに複数の実施形態で用いられてもよい。従来の骨組織のための足場材料は、足場材料そのものの構造よりもむしろ材料の使用に注目していた。表1は、骨組織の足場材料として提案された各種材料をその得られた機械特性と孔隙率と共に示している。
【0022】
図3A~
図3Eは、すべて、本明細書で開示される足場材料の例示的な実施形態で用いてもよい足場材料の骨格20の様々な例示的な実施形態を示している。
【0023】
自明であるが、
図2は箱形あるいは直方体形の骨格の例示的な実施形態を示している。この骨格は、例示として長方形の足場材料を構築し、足場材料を三次元で構造的に補強している。
図3A~
図3Cに示すように、骨格20は、一次元あるいは二次元以上で足場材料に対する構造支持を提供するように構築されていてもよい。
図3Aは、単一方向に配列した支持体22を例示的に示している。一般に、足場材料内に支持体22を並行に配列すると、足場材料は単一方向(例えば、支持体22が延びる方向)に機械的に支持される。
図3Aでは支持体22は垂直方向として示されているが、自明のとおり、他の方向(深さまたは幅方向、あるいはそれに対して他の方向に延びることを含む)もまた本開示の範囲内であってもよい。
【0024】
図3Bは、第一の方向に延びる複数の支持体22と、第二の方向に延びる複数の支持体24を示している。例示的に
図3Bに示すように、これら第一の支持体22は、第二の支持体24のうちの少なくとも1つと交差し、第一の支持体22はすべて互いに平行であり、各第二の支持体24は他の第二の支持体24と平行である。
図3Bに示す骨格20の実施形態は、少なくとも1つの第二の支持体24に交差する少なくとも1つの第一の支持体22を示しているが、自明のとおり、第一の支持体22と第二の支持体24がすべて互いに直交しているわけではなく、また必ずしもユニット構造で固定されてはいない。従って、
図3Bに示すように骨格20の例示的な実施形態では、骨格20は、それぞれ面および/または一方向に延びて二次元で得られる足場材料を支持する複数の支持体部材を含んでいてもよい。
【0025】
図3Cは骨格20のさらなる例示的な実施形態を示している。例示的に、骨格20は三次元で構造的な支持を提供し、
図2に描画した実施形態に示すように例示的に長方形または直方体形の形状を具現化している。
図3Cに示す骨格では、支持体部材26は、2つの支持体部材の間に延びる第三の支持体28によって例示的に結合されている。自明だが、他の実施形態(例えば、
図2に示す骨格20)では、構造的な支持のために1つ以上の方向に延びる支持体層を積層して第三の方向に骨格20を延ばして三次元の構造的な支持をしてもよい。一般に長方形の足場材料を形成するため、
図3A~
図3Cに示す例示的な実施形態は、例示として、一般に長方形の骨格20を示しているが、自明のとおり、骨格および得られる足場材料の他の形状および/または構成を本開示の範囲内で用いてもよい。
【0026】
図3Dおよび
図3Eは、足場材料10用の配列のさらなる例示的な実施形態を示している。
図3Dは、一例示的な実施形態での円筒形形状の足場材料を示している。円筒形の足場材料の骨格20は、
図2に示す骨格と同様に構築されてもよいが、例えば、骨格の角を切り落として円筒形の構成としてもよい。自明だが、このような実施形態では、骨格は、直交方向に配向される支持体の層を順次噛み合わせることでシリンダの軸に沿って支持される。
【0027】
図3Eは、骨格20のさらなる例示的な実施形態を示している。この骨格20では、例えば、支持体の複数の層を配向させて蜂巣パターンに配置している。支持体の各層は、その層の他の支持体と平行に配列されているが、各層の支持体は隣接する層の支持体とは異なる方向に配列されている。
図3Eに示す例示的な実施形態では、これらの層は、例示的に
図3Eに示す隣接する層のそれぞれに対して互いに直交しない異なる角度(例えば、120°)で配列されていてもよい。しかしながら、自明だが、さらなる実施形態では支持体の他の配向角度を用いてもよい。
【0028】
例示として
図2および
図3Dに示すように、骨格を形成する支持体の配置を修正して、得られる足場材料の全体的な三次元形状を標的または治療領域に合わせ、例示的に生体内で足場材料に加わると予測される力で骨格の支持体を配列してもよい。
【0029】
図1に示すように、母材30は、例示として骨格20の少なくとも一部の内部またはその周囲に配置されて、足場材料10を形成する。本明細書でさらに詳細に開示される足場材料10の例示的な実施形態では、母材30は様々な方法で骨格20に固定されてもよい。母材30と骨格20が噛み合うことで、母材から比較的強くより弾力のある骨格への力の伝達を容易にするのを助け、特に骨格20が経時的に生分解するに従って骨格20の支持体の周りの母材30からあるいはその周囲での骨組織の成長をさらに促進する。
【0030】
本明細書でさらに詳細に記載するように、1つ以上の固定方法を開示される足場材料の実施形態に用いて、母材30を骨格20に固定してもよい。一例示的な実施形態では、本明細書でさらに詳細に記載するように、例示として、足場材料を骨格と母材の両方を含む一体に構築する場合、足場材料10はユニット構造であってもよい。一例示的な実施形態では、足場材料は3D印刷を用いて構築してもよく、骨格と母材はいずれも同じ材料または同じ材料を基本成分とする関連する材料で構築されている。一例示的な実施形態では、孔隙率、表面積、または密度の程度を変化させて、結合させた骨格と母材を設計・構築してもよい。これは、例えば、材料から骨格をしっかりと形成し、母材は骨組織の成長とより速い生分解のための空間をもたらす溝、孔を示すように、あるいは繊維状ネットワークとして形成するなど、設計により達成してもよい。自明であるが、生分解と細胞の成長の促進という異なる特性は、本明細書で記載するのと同じ基材を持つ2種以上の材料を、骨格と母材に異なる性質を付与するための異なる添加剤または第二の材料と共に3D印刷することで達成されてもよい。骨格と母材の両方の基材が共有する性質により、3D印刷時にこれら2つの構造を互いに結合させるのが容易になる。
【0031】
本明細書で記載する足場材料の実施形態では、母材を骨格内に成形してもよく、成形された母材は、骨格に形成されてもよいマクロ連結部によりcで物理的に連結されてもよい。マクロ連結部は、成形された母材の表面積を増やす孔、あるいは母材が成形されると物理的に連結されてもよい骨格のフック(鉤状突起)、リッジ(長く延びた突起)、または他の特徴的な構造を含んでいてもよい。
図3Aは、例示的に、様々なマクロ連結部、例えば、リッジ30、フック32、穴34、または凹み36を示している。自明のとおり、
図3Aに示すこれらマクロ連結部は、本開示の観点から当業者に認められているように実施形態の何れかに例示的に用いられてもよい。
【0032】
さらに他の実施形態は、マイクロサイズまたはナノサイズの物理的連結であってもよい。マイクロおよび/またはナノサイズの物理的連結構造(例えば、骨格表面の孔、リッジ、または他の連結構造)は、母材と骨格との連結を促進する。一例示的で非限定的な実施形態では、骨格がセラミックで母材が重合体および/またはタンパク質である一実施形態にマイクロスケールおよびナノスケールの物理的連結を用いてもよい。
【0033】
さらなる例示的な実施形態では、骨格と母材は、本来物理的結合を形成するためのものであってもよい。骨格および/または母材の一方または両方を表面変性すると、物理的結合のためのこのような配置をさらに形成または向上させる場合がある。一例示的な実施形態では、骨格はセラミック系であり、母材は重合体系であるが、他の実施形態では骨格は重合体系であり、母材はセラミック系である。また、他の例示的な実施形態では、一実施形態で用いて重合体系の骨格と重合体系の母材を足場材料内に物理的結合を形成してもよい。
【0034】
他の例示的な実施形態では、化学結合により骨格と母材を一体化させる。骨格および/または母材は、互いに反応して化学結合を形成する活性官能基を含んでいてもよい。一例示的な実施形態では、骨格と母材の一方または両方の1種以上の活性官能基を表面変性またはバルク変性すると、骨格と母材との化学結合を形成する化学反応を生じるあるいは向上させる場合がある。一例示的な実施形態では、骨格が重合体系で母材が重合体および/またはタンパク質系であると化学結合が起こることがある。
【0035】
【0036】
十分な機械特性と孔隙率の二律背反は、組織工学構築物の設計において主要な課題の1つである。例えば、PLG足場材料では、孔隙率が80%から92%に増加すると、弾性率は0.26MPaから0.0047MPa(約50倍)に劇的に減少することが観察されている。さらに、調査では、足場材料は乾燥状態で機械的な試験をすることが多く、体内の水性媒体の効果は無視されている。
【0037】
組織足場材料を作製するのに必要な多くの生体適合性および生分解性重合体(例えば、ゼラチン、コラーゲン、またはキトサン)は、水性媒体でかなり膨潤する。この場合、弾性率は水分量に反比例する。膨潤は、水分の取り込みが少なくても(5%未満)弾性率を顕著に減少させる(約3倍)場合がある。これらの重合体から形成された足場材料は、ヒトの体内環境を模したものではない乾燥状態で試験をした場合、より良好な機械特性(1~100MPaの範囲の弾性率)を示す。これら材料から作製された足場材料を膨潤状態で試験すると、弾性率は大きく(例えば、100kPa未満まで)低下することがある。
【0038】
既知のことであるが、2種以上の異なる材料を選択して、本明細書で開示される足場材料を構築する。以下の材料を1種または複合体で用いて、骨格および/または母材を構築してもよい。
【0039】
複数の実施形態では、骨格および/または母材は、少なくとも部分的に合成重合体から構築されていてもよい。そのような合成重合体としては、これらに限定されないが、ポリ(α-エステル)、例えば、ポリグリコリド、ポリラクチド、ポリ(ラクチド-co-グリコリド)、ポリジオキサノン、ポリカプロラクトン、ポリ(炭酸トリメチレン)、および細菌ポリエステルが挙げられる。
【0040】
エステル結合間に合理的に短い脂肪族鎖を持つ脂肪族ポリエステルは、生物医学用途のほとんどで求められる期間をかけて分解することが可能である。ポリ(α-エステル)は、最も初期の、最も広く研究されている生分解性重合体の群を含む。これらは、その良好な生体適合性と制御可能な分解特性により生体材料として大きな関心を集めている。
【0041】
アミド結合の水素結合能とエステル結合によって付与された生分解性により、ポリ(エステルアミン)共重合体は良好な機械特性と熱特性を持つ。ポリ(エステルアミド)の分解は、エステル結合の加水分解性開裂が生じてアミド部分を程度の差こそあれ無傷で残すことが示されている。
【0042】
ポリ(オルトエステル)は疎水性表面腐食重合体としてALZA社(Alzamers)により開発された。オルトエステル結合は加水分解しやすいが、その重合体は疎水性で、水性環境での腐食が非常に遅い。ポリ(オルトエステル)に固有の特徴は、その表面腐食反応機構に加えて、これら重合体の分解速度、pH感度、およびガラス転移が挙げられる。
【0043】
ポリ無水物は、最も広く研究されている生分解性表面腐食重合体と見なされる場合がある。主鎖の不安定な加水分解性と重合体の疎水性と合わさって、水がマトリックスに浸透するのを防ぎ、ポリ無水物が真に表面腐食を受けるようにする。
【0044】
さらなる例示的な実施形態では、骨格および/または母材は、その全体または部分がポリウレタン、ポリ(無水物-co-イミド)、架橋ポリ無水物、ポリ(フマル酸プロピレン)、疑似ポリ(アミノ酸)、ポリ(シアノアクリル酸アルキル)、ポリホスファゼン、またはポリリン酸エステルで構築されていてもよい。
【0045】
骨格および/または母材の他の実施形態では、例示として1種以上の天然重合体を用いてもよい。天然重合体は、タンパク質およびポリアミノ酸、例えば、コラーゲン、ゼラチン、天然ポリアミノ酸、合成ポリアミノ酸、エラスチン、エラスチン様ペプチド、アルブミン、またはフィブリンを含んでいてもよい。天然重合体は、ヒト由来のポリ糖類、あるいは非ヒト由来のポリ糖類など、多糖をさらに含んでいてもよい。
【0046】
さらなる例示的な実施形態では、他の材料は、これらに限定されないが、セラミック、金属、またはヒドロゲルを含む。これらは単独または複合体の形態で用いて骨格と母材の一方または両方を構築してもよい。例えば、セラミック/バイオセラミック/ガラスは、これらに限定されないが、ヒドロキシアパタイト、リン酸三カルシウム、リン酸カルシウム塩、およびバイオ活性ガラスを含んでいてもよい。例えば、金属は、これらに限定されないが、マグネシウムまたは鉄を含んでいてもよい。例えば、ヒドロゲルは、これらに限定されないが、ゼラチン、コラーゲン、アルギン酸塩、エラスチン、またはヒアルロン酸を含んでいてもよい。
【0047】
自明であるが、上記で同定された材料はそれぞれ特定の材料の特性として自然の生分解速度を持つ。また、この分解性は、さらに骨格および/または母材の物理的構築に依存する。骨格および/または母材の厚みは、完全に分解するまでの時間を長くする。骨格および/または母材の孔隙率が増加すると、その構造の分解性も高くなる。従って、骨格と母材の材料および物理的構築を選択することで、各成分の分解性を制御および選択して、推定骨成長速度を特定の患者および患者の生理学的位置に合わせることができる。
【0048】
足場材料および/または母材材料の孔隙率および孔径は、構造と用いる調製/製造方法に合うように選択した1種または複数種の材料に依存する。調製/製造方法の選択および制御により、孔隙率および/または孔径、従って骨格および/または母材の得られる分解性を制御することができる。
【0049】
上述のように、生体適合性、高い機械強度、および比較的小さい生分解性を持つ骨格を加えることで、足場材料10の機械強度が明らかに高まる。新しい骨組織の成長は、治療部位で骨成長を促進するように選択された構造および組成を持つ足場材料10の母材30により促進される。
【0050】
図4は、動的機械分析の例示的な試験結果を示すグラフである。同図では、本明細書で開示される足場材料40の一例示的な実施形態の経時的弾性率を従来の構築物50の足場材料の経時的弾性率と比較している。この例では、新しい足場材料の実施形態は、ポリ(L-ラクチド)重合体(CAS登録番号33135-50-1、25℃のCHCl3中の固有粘度が0.9~1.2dl/g)の骨格で構築された。この母材は、マトリックスと充填剤の複合体からなる。例示的に、このマトリックスは、粉末形態のタイプAで細胞培養に好適なブタの皮膚由来のゼラチン(CAS登録番号9000-70-8)である。例示的に、充填剤はヒドロキシアパタイト(リン酸水酸化カルシウム、デュラパタイト、ヒドロキシルアパタイト)、CAS登録番号1306-06-5である。
図4から、従来の足場材料は、約6分で安定状態に達して、本明細書で開示される実施形態に比べて最終的には例示的な100倍と水性環境での経時弾性率が大きく低下していることが分かる。
【0051】
同様に、
図4および
図5は、異なる試験環境、すなわち乾燥環境および湿潤(水性)環境で足場材料の様々な実施形態について強度および応力を測定した例示的な比較試験の結果を示すグラフである。
図4のグラフは、湿潤条件および乾燥条件の両方での従来の足場材料と湿潤条件および乾燥条件での本発明の足場材料の機械特性を示している。
図5では、乾燥した本発明の足場材料510と湿潤した本発明の足場材料520の測定された応力対ひずみ機械特性が比較されている。
図5では、乾燥した従来の足場材料530と湿潤した従来の足場材料540の測定された機械特性と比べて有意に大きい応力対ひずみが示されている。特に、両方の足場材料が水溶液中で湿潤している(ヒトの体内で見られる条件)場合、従来の足場材料540の試験結果と本発明の足場材料420の試験結果の比較で、応力対ひずみ特性について試験した従来の足場材料540の試験結果に比べて本発明の足場材料520の試験結果は約375倍高い。
【0052】
複数の実施形態では、足場材料の骨格の生分解性は、足場材料骨格によりもたらされる構造および強度を提供する。この骨格は新しい骨組織が成長するに従い、経時的に置換されるが、より長い期間の間所望の機械強度を提供しつつ、同時に非生分解性支持体を置換するための追加の手術あるいは回収の必要性をなくす。しかしながら、自明であるが、患者が異なると、新しい骨組織の自然の(あるいは高められた)成長速度も異なることがある。例えば、患者の年齢、健康、免疫系、および骨の生理学的位置は、新しい骨組織の完全成長に必要な相対時間に影響を及ぼすことがある。複数の実施形態では、骨格の材料の構築および/または設計を新しい骨組織の推定成長速度に対して修正または調整してもよい。追加の薬物または内科的治療により患者の新しい骨組織の自然の成長速度を高めてもよい。本明細書で開示される例示的な実施形態では、患者の新しい骨組織の推定成長速度を求めて、足場材料の骨格の推定分解速度を合わせてもよい。新しい骨組織の推定成長速度に合わせた足場材料の骨格の推定分解速度により、足場材料の骨格材料は足場材料の骨格が分解するとのほぼ同じ速度で新しい骨組織に置換されて、足場材料の機械強度が維持される。前述のように、次元(例えば、厚み)、材料、および孔隙率は、所望の分解速度を達成するように調整または選択してもよい足場材料の骨格の特性である。
【0053】
図6は、骨組織の成長のための足場材料を製造する方法600の一例示的な実施形態を示す流れ図である。610では、骨の損傷または欠損の3Dモデルが作成される。一例示的な実施形態では、骨組織工学で修復される骨の損傷または欠損の寸法と形状は、必要とされる足場材料に大きく影響を与えることがある。特に、本発明者らの観察から、骨の損傷または欠損は不規則な形状であることが多いが、直径、平均直径、または長径が少なくとも1.5cm、例えば、1.5cm~5cm、あるいはそれ以上であると、本明細書で開示される足場材料の実施形態により提供される向上した機械強度が特に必要である。
【0054】
620で、治療する患者に基づいて足場材料の分解性が決定される。上述のように、患者の年齢、健康、免疫応答、および骨の損傷または欠損の生理学的位置は、新しい骨組織成長率と足場材料の分解性に影響を及ぼすことが予測され、特に足場材料の骨格は、新しい骨組織の推定成長速度に一致するように選択されてもよい。
【0055】
630で、求めた分解性を達成するように足場材料の特性、特に足場材料の骨格の特性が選択される。上述のように、例えば、骨格の支持体の厚みまたは直径など、物理的次元を調整して決定された分解性を持つ足場材料を提供してもよい。決定された分解性を達成するように、骨格を構築するのに用いられる1種または複数種の材料、および骨格の孔隙率を選択してもよい。例えば、足場材料が低い分解性を持つ(分解に長時間かかることを意味する)ことが望ましい場合、骨格片の厚みを増やして、生分解性がより低い材料を選択してもよい。一方、足場材料が比較的早く分解するのが望ましい場合、骨格片の厚みを小さくして、孔隙率または他の表面積を骨格に付加し、より大きい生分解性を持つ1種以上の材料を選択してもよい。
【0056】
足場材料の特性が選択された後、640で足場材料の骨格を骨の損傷または欠損に特異的にデジタル設計する。治療対象の患者の骨の損傷または欠損の寸法を含む形状に合わせて足場材料の骨格の形状および/または構造を修正してもよい。例示的な実施形態では、これらに限定されないが、本明細書で記載する骨格の設計のいずれかを例示として用いてもよい。複数の実施形態で、骨の損傷または欠損に合う足場材料を提供するため、骨格の形状をこれらの次元で修正してもよい。また、母材によって、例えば、穴、リッジ、またはフックなどの特徴部を付加した骨格を設計してもよい。
【0057】
650で、デジタル設計した足場材料の骨格が製造される。例示的な実施形態では、足場材料の骨格は3D印刷、マイクロ切削、微小射出成形、注型成形、または他の既知の製造技術により製造してもよい。
【0058】
以下は、用いられる材料の種類に応じた骨格の作製方法の例である:3D印刷、高速試作、押出、成形、微小射出成形、および加熱焼結。
【0059】
足場材料の骨格が製造された後、660で骨格に母材が充填されて足場材料が完成する。上述のように、一実施形態では、3D印刷または他の高速試作を用いて骨格と母材を一緒に同時に製造してもよい。母材は多孔性であり、生物活性材料(BMPを含んでいてもよいが必ずしも含んでいなくてもよい)から構築されている。母材は、特に新しい骨組織の成長過程の初期でU骨組織の成長を促進し、容易にする。
【0060】
上記のように、実施形態では様々な技術を用いて骨格に対して母材を結合または固定してもよい。これらの技術は、上記のものを含んでいてもよい。母材を骨格に結合するのに用いられる技術は、これらに限定されないが、加水分解、アミノリシス、プラズマ処理、UV誘導共重合、イオンビーム照射、オゾン処理、または表面開始原子移動ラジカル重合(ATRP)をさらに含んでいてもよい。さらなる例示的な実施形態では、γ-線照射、オゾン、または光誘導グラフトを用いてヒドロキシル、カルボキシルに対してアミノ基を重合体表面に移植して、親水性を導入してもよい。
【0061】
用いる材料の種類に応じて母材を調製する方法の例としては、次のものが挙げられる:冷凍乾燥、溶液キャスティング/微粒子浸出、気体発泡、細孔形成剤浸出、自己集合、3D印刷、高速試作、溶融成形、繊維結合、繊維メッシュ、膜積層、微小球焼結、および鋳型複製。
【0062】
図7は、冷凍乾燥を用いて母材として使用する多孔性構造を製造するように足場材料を構築する方法700の一例示的な実施形態を示す流れ図である。上述のように、孔隙率は母材の望ましい品質である。というのは、孔隙率は、骨細胞が成長して広がることができる空間を提供することで骨組織の成長を容易にしつつ、追加の空間を提供する母材の分解速度を高めるからである。新しい骨組織は、この追加の空間内で母材が占めていた容積と置き換わることができる。足場材料の例示的な実施形態が足場材料の機械強度のための足場材料の骨格に依存するに従い、より多孔性の母材を用いてもよい。
【0063】
方法700の例示的な実施形態では、702で母材の材料が選択される。選択された母材の材料は、本明細書でさらに詳細に記載されるように撹拌により発泡体を形成することが可能な材料である。例示的な実施形態では、これは、重合体、タンパク質、またはこれら材料の一方または両方を含む複合材料を含んでいてもよい。さらに例示的な実施形態では、発泡性能を持たない材料を、発泡体を形成する選択された母材の材料と組み合わせて、材料の組み合わせが発泡性能を持つようにしてもよい。一例示的な実施形態は、セラミックを発泡材料に添加して、母材がセラミック特性を持ちつつ、撹拌下で発泡体を形成することができるようにしてもよい。本開示の観点から当業者には自明だが、発泡体を形成することができる材料のさらなる例としてはゼラチン、コラ-ゲン、アルブミン、およびその他が挙げられる。自明のとおり、発泡体を形成することができない他の材料を母材に用いてもよいが、上述のように他の調製方法の1つを用いてもよい。本明細書で記載する方法700は、例示として、足場材料を調製する一方法であり、他の手順も本開示の範囲内に含まれていてもよい。
【0064】
704で、母材の材料または材料の組み合わせから溶液が調製される。一例示的な実施形態では、704で昇華により除去することができる何れかの溶媒を用いて溶液を調製してもよい。一例示的で非限定的な実施形態では、溶媒は水である。704で溶液を調製する際に溶液の濃度は例えば、1~50%重量/体積であってもよい。さらなる一例示的な実施形態では、溶液の濃度は2~20%重量/体積である。さらなる一例示的な実施形態では、溶液の濃度は5~15%重量/体積である。
【0065】
次いで、706で溶液を撹拌して発泡体を形成する。例示的な実施形態では、発泡体状の流体が得られるまで、例えば、機械的攪拌器、ホモジナイザ-、または超音波破砕機を用いて溶液を所定の時間、所定の速度で撹拌する。特定の攪拌器、撹拌速度、および撹拌時間は、例えば、撹拌される特定の母材の1種または複数種の材料、あるいは実験室の環境条件に依存する場合がある。一例示的な実施形態では、機械的攪拌器を用いた撹拌速度は、例えば、100~40,000RPMであってもよい。さらなる一例示的な実施形態では、機械的攪拌器を用いた撹拌速度は300~20,000RPMである。さらなる一例示的な実施形態では、機械的攪拌器を用いた撹拌速度は、500~5,000RPMであってもよい。撹拌時間は、例えば、少なくとも部分的に撹拌速度に依存してもよく、例えば、1~60分であってもよい。さらなる一例示的な実施形態では、撹拌時間は例えば、5~45分であってもよい。さらなる一例示的な実施形態では、撹拌時間は10~30分であってもよい。
【0066】
母材の材料の溶液を撹拌して発泡体を形成した後、708で発泡体は足場材料の骨格内に成形される。足場材料の骨格は、本明細書で上述したものの何れかであってもよい。足場材料の骨格内に成形される発泡体により、足場材料が形成される。骨格とここで成形された発泡体を含む足場材料は、710で冷凍庫に移されて、足場材料と発泡体は冷凍される。一例示的な実施形態では、冷凍庫の温度は0℃から-200℃であってもよい。一例示的な実施形態では、冷凍庫の温度は-80℃であってもよい。
【0067】
発泡体を足場材料の骨格内で一旦凍らして、712で足場材料を冷凍乾燥する。冷らせた発泡体の冷凍乾燥工程により、例えば、架橋されていてもよい多孔性母材が製造される。必要に応じて、この母材は異なる架橋剤を含んでいてもよい。そのような架橋剤としては、これらに限定されないが、EDC/NHS、パラホルムアルデヒド、および当業者であれば自明であるその他の架橋剤が挙げられる。
【0068】
714で、この工程により足場材料の骨格内に保持された架橋された多孔性母材が製造されて、上記の足場材料が製造される。
【0069】
自明であるが、実施形態によっては、架橋を促進するために716で足場材料を洗浄し、次いで洗浄した足場材料を冷凍乾燥する任意の工程を行って、足場材料の架橋済み最終多孔性母材を製造してもよい。
【0070】
例示的な実施形態では、骨格と母材は化学的に結合して足場材料を形成している。これらの例示的な実施形態では、PCL、PLA、またはPLGAなどの重合体が骨格に用いられ、ゼラチンが母材として用いられている。
【0071】
第一の例示的な実施形態は、アミノリシスとゼラチン固定を用いる。骨格(例えば、PCL)を40℃で1,6-ヘキサンジアミンのイソプロピルアルコ-ル溶液に浸漬する。アミノリシス処理後、骨格を脱イオン水で洗浄して遊離1,6-ヘキサンジアミンを除去し、真空オ-ブン内で乾燥させる。アミノリシスを受けた骨格を架橋剤(例えば、グルタルアルデヒドまたはEDC/NHS)に浸漬する。撹拌により調製したゼラチン発泡体をこの構築物に加える。この構築物全体を-80℃に移して、冷凍乾燥する。この構築物全体をEDC/NHSまたはグルタルアルデヒドを用いて架橋し、水で洗浄して、再び冷凍乾燥して結合された足場材料を得る。
【0072】
第二の例示的な実施形態は、GMAの表面開始ATRPとゼラチンの接合を用いる。この例では、アミノリシス処理後に、アミン基と臭素2-ブロモイソブチル酸(BIBB)との反応によりアルキルハロゲン化物STRP開始剤をPCL-NH2表面に導入する。洗浄と乾燥後、GMAの表面開始ATRPを行ってPCL-g-P(GMA)を生成する。次いで、ゼラチン形態を処理したPCLと共に培養して、ペンダント型エポキシド基に結合させる。こうして得られたものを冷凍乾燥して、例えば、EDC-NHSまたはグルタルアルデヒドを用いて架橋する。得られたものを水で洗浄して、再び冷凍乾燥し、結合された足場材料を得る。
【0073】
足場材料(骨格と母材を含む)を構築した後、足場材料全体を骨の損傷または欠損に挿入してもよい。足場材料と患者の既存の骨の周りの領域にさらに充填してもよく、その母材は足場材料の母材と同じ1種および/または複数種の材料であってもよく、1種以上の他の材料であってもよい。
【0074】
本明細書では多くの参考文献が引用されている。引用された参考文献は、参照によりその全内容が本明細書に組み込まれる。引用された参考文献の用語の定義と比べて本明細書の用語の定義が一致していない場合、その用語は本明細書の定義に基づいて解釈されるものとする。
【0075】
上の記述で、簡潔さ、明瞭さ、および理解のために特定の用語が用いられた。これらの用語から、従来技術の要件を超えた不必要な限定を推察すべきではない。なぜなら、このような用語は記述的な目的のために用いられており、広く解釈されることを意図するものであるからである。本明細書で記載する異なる系および方法の工程を単独または他の系および方法の2つ以上と組み合わせて用いてもよい。添付の請求項の範囲内で様々な均等物、変化、および修正が可能であることが予測される。
【0076】
図面で提供された機能ブロック図、操作手順、および流れ図は、本開示の新規な側面を実行するための例示的な設計、環境、および方法を代表するものである。説明の簡素化のため、本明細書に含まれる方法は機能図、操作手順、または流れ図の形態であってもよく、一連の動作として記載されてもよいが、自明であるように、これらの方法は動作の順序によって限定されるものではない。というのは、これらの方法に応じて、動作によっては異なる順序で、かつ/または本明細書で示し記載する他の動作と同時に起こってもよいからである。例えば、当業者には自明だが、代替として、ある手法は、状態図など一連の相互に関連する状態や出来事として表されてもよい。また、ある手法に示されたすべての動作が新規な実施に必要とされなくてもよい。
【0077】
ここに記した記述は、最良の形態を含む本発明を開示するための例、また当業者に本発明の作製および使用を可能にするための例を用いている。本発明の特許性のある範囲は、請求項により規定され、当業者に想起される他の例を含んでいてもよい。そのような他の例は、これらの例が請求項の文字通り言語と相違しない構造的要素を持っている場合、あるいは請求項の文字通りの言語とわずかに異なるが均等の構造的要素を含む場合、請求項の範囲内であると解釈される。