(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-02
(45)【発行日】2022-09-12
(54)【発明の名称】給電分岐ユニット(PFBU)の多ノード・ネットワークを使用して適応型電力分配を提供するための技法、およびそれを使用する海底光通信システム
(51)【国際特許分類】
H04B 3/44 20060101AFI20220905BHJP
H04J 14/02 20060101ALI20220905BHJP
【FI】
H04B3/44
H04J14/02 101
(21)【出願番号】P 2019550747
(86)(22)【出願日】2018-02-20
(86)【国際出願番号】 IB2018051029
(87)【国際公開番号】W WO2018167585
(87)【国際公開日】2018-09-20
【審査請求日】2021-02-16
(32)【優先日】2017-03-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502101180
【氏名又は名称】サブコム,エルエルシー
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(74)【代理人】
【識別番号】100094112
【氏名又は名称】岡部 讓
(74)【代理人】
【識別番号】100106183
【氏名又は名称】吉澤 弘司
(74)【代理人】
【識別番号】100114915
【氏名又は名称】三村 治彦
(74)【代理人】
【識別番号】100125139
【氏名又は名称】岡部 洋
(72)【発明者】
【氏名】マス,エドウィン
(72)【発明者】
【氏名】ヴィズネスキー,セカンド,スタンリー
(72)【発明者】
【氏名】テーラー,レオナルド ジェイ.
(72)【発明者】
【氏名】バウムガルテン,アーサー エー.
【審査官】佐藤 敬介
(56)【参考文献】
【文献】特表2013-529037(JP,A)
【文献】特開2003-244032(JP,A)
【文献】特表2006-521078(JP,A)
【文献】国際公開第2016/092806(WO,A1)
【文献】米国特許出願公開第2013/0202285(US,A1)
【文献】中国特許出願公開第102934377(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 3/44
H04J 14/02
(57)【特許請求の範囲】
【請求項1】
第1の幹線経
路に結合された少なくとも1つのケーブル陸揚げ局(CLS
)であって、前記第1の幹線経
路が少なくとも第1の幹線経路ケーブル・セグメン
トおよび第2の幹線経路ケーブル・セグメン
トを含み、前記第1の幹線経路ケーブル・セグメン
トおよび前記第2の幹線経路ケーブル・セグメン
トの各々が、それぞれ、少なくとも1つの電気導体を有する海底ケーブ
ルを含む、少なくとも1つのケーブル陸揚げ局(CLS
)と、
前記第1の幹線経路ケーブル・セグメン
トと前記第2の幹線経路ケーブル・セグメン
トとの間に結合された海底環境に設置された少なくとも1つの給電分岐ユニット(PFBU
)であって、前記第1の幹線経路
ケーブル・セグメン
トの前記少なくとも1つの電気導体に電気的に結合するための第1のポー
ト、前記第2の幹線経路
ケーブル・セグメン
トの前記少なくとも1つの電気導体に電気的に結合するための第2のポー
ト、および分岐経路ケーブル・セグメン
トの電気導体に電気的に結合するための第3のポー
トを備えたDC/DCコンバータ(DDCM)機
構を有する、少なくとも1つの給電分岐ユニット(PFBU
)と
を含む光システ
ムであって、
前記DDCM機
構が、前記第1の幹線経路
ケーブル・セグメン
トの前記少なくとも1つの電気導体に結合された前記第1のポー
トを介して受信された第1の入力電流、および前記分岐経路ケーブル・セグメン
トの前記電気導体に結合された前記第3のポー
トを介して受信された第2の入力電流に少なくとも部分的に基づいて、前記第2のポー
トを介して一定の出力電流レベルを維持する、
光システ
ム。
【請求項2】
前記DDCM機
構が、前記第1のポー
トに結合された第1のコンバータ段と、前記第3のポー
トに結合された第2のコンバータ段とをさらに含む、請求項1に記載の光システ
ム。
【請求項3】
前記第1のコンバータ段および前記第2のコンバータ段が、フルブリッジ・スイッチング機構を含む、請求項2に記載の光システ
ム。
【請求項4】
前記DDCM機
構が、前記第1のコンバータ段および前記第2のコンバータ段に結合されたコントロー
ラをさらに含む、請求項2に記載の光システ
ム。
【請求項5】
前記コントロー
ラが、第1のパルス幅変調(PWM)信号を前記第1のコンバータ段に、および第2のPWM信号を前記第2のコンバータ段に提供して、前記第1のコンバータ段および前記第2のコンバータ段に、それぞれ、第1の電流レベルおよび第2の電流レベルを抽出させるように構成される、請求項4に記載の光システ
ム。
【請求項6】
前記コントローラが、前記第2のPWM信号のデューティ・サイクルに対する前記第1のPWM信号のデューティ・サイクルを変化させることによって、前記第3のポートに対して前記第1のポートを介して受信される電流の量を変化させる、請求項5に記載の光システ
ム。
【請求項7】
前記第1のPWM信号の前記デューティ・サイクルと、前記第2のPWM信号の前記デューティ・サイクルとの差が一定に保たれる、請求項6に記載の光システ
ム。
【請求項8】
前記第1のPWM信号および前記第2のPWM信号の関連付けられたデューティ・サイクルが、前記第3のポートに対して前記第1のポートから電力を非対称的に引き出すための優先順位付け方式に少なくとも部分的に基づく、請求項6に記載の光システ
ム。
【請求項9】
前記少なくとも1つのPFB
Uが、複数の高電圧スイッ
チを含み、前記複数の高電圧スイッ
チの各々が、前記DDCM機
構の前記第1、第2および第3のポー
トのうちのそれぞれ1つに結合されており、かつ絶縁目的のためにシー・グラウン
ドにスイッチ可能に結合されている、請求項1に記載の光システ
ム。
【請求項10】
前記DDCM機
構の前記第1のポートおよび前記第2のポー
トが、前記DDCM機
構の前記第3のポー
トから電気的に絶縁される、請求項1に記載の光システム。
【請求項11】
前記DDCM機
構のポート間の電気的絶縁が、少なくとも1つの絶縁変圧
器によって提供されるガルバニック絶縁を含む、請求項9に記載の光システ
ム。
【請求項12】
前記PFB
Uが、光追加ドロップ多重化(OADM)機能性を提供するように構成された少なくとも1つのスプリッタまたは波長選択フィルタを含む、請求項1に記載の光システ
ム。
【請求項13】
光通信システ
ム内で電力をクラウド調達するための方法であって、
給電機
器を幹線経
路に結合することと、
複数の給電分岐ユニット(PFBU
)を前記幹線経
路に直列に結合することであって、前記複数のPFB
Uの各々が、第1のポー
トを介して第1の定電流を受信し、第2のポー
トを介して第2の定電流を出力するように構成されている、結合することと、
分岐経
路を前記複数のPFB
Uの各々の第3のポー
トに結合することと、
前記複数のPFB
Uのうちの1つまたは複数によって、前記分岐経
路のうちの少なくとも1つから第3の電流を選択的に抽出すること、および抽出された第3の電流に少なくとも部分的に基づいて、前記第2のポー
トを介して前記第2の定電流を提供することと
を含む方法。
【請求項14】
前記第3の電流が、前記少なくとも1つの分岐経路の各々に関連付けられた給電機
器によって提供される、請求項13に記載の方法。
【請求項15】
前記幹線経路の前記給電機
器によって提供された電力を途絶させる、前記幹線経
路に沿ったフォルト状況に応答して、前記複数のPFB
Uのうちの前記1つまたは複数が、関連付けられた分岐経路から前記第3の電流を抽出する、請求項14に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
光通信システムの伝送容量を最大化するために、いわゆる波長分割多重化システム(これ以降、WDMシステム)では、単一の光ファイバを使用して多数の光信号を搬送することができる。多数の光信号は、多重化されて、集合した多重化信号またはWDM信号を形成することができ、多数の信号の各々は、チャネルと呼ばれる別々の波長上で変調されている。最近のWDMシステムは、高いトラフィック容量を有し、たとえば、チャネル毎に、1秒当たり100ギガバイト(これ以降、Gb/s)またはそれ以上で、100またはそれ以上のチャネルを搬送する容量を有する。
【0002】
WDM光伝送システムは、伝送幹線端末および/または受信幹線端末で終端することができる、比較的長い幹線経路(たとえば、光ファイバ)を含むことがある。ロングホール・システム(long haul-system)などのいくつかのシステムは、大きな水域(たとえば、海洋)に及ぶように、端末間の長さが約6,000キロメートル、またはそれ以上を有することがある。幹線経路を提供するケーブルは、比較的長距離にわたって公称信号電力を維持するために、中継器、増幅器、および分岐ユニットなどの海中コンポーネントに電力を送り出すための1つまたは複数の電気導体を含むことができる。
【0003】
海中光通信システムはますます、幹線ケーブルを介してコンポーネントに電力を送り出すための能力によって制限されている。電力分配のいくつかのアプローチによっては、たとえば、10,000から12,000kmの距離に到達することができるが、伝送容量は、幹線ケーブルによって海中要素に送り出すことができる電圧および電流によって制限される。ラマン増幅などの光バンド幅を増加させるためのオプション、光ポンプ電力を増加させること、「C」バンドを越えて拡張し、増幅したファイバの数を増加させることは、あいにく現システムの性能を超えた電力を必要とする。高伝導性材料の量を増加させることに基づいたケーブル抵抗の低減は、ケーブル・コストの大幅な増加をもたらす。システム電圧の増加もまた、通常、コストを増加させ、生産技術および材料によってしばしば制約される。念入りな設計およびエンジニアリングを通じてなんらかの利益を得ることはできるが、依然として制約は残り、既存の海底光通信システムを再建築すること、たとえば、幹線ケーブルおよびその関連付けられた機能要素(たとえば、分岐ユニット、増幅器、その他)を変更することのコストは、数多くの難題を提起する。
【0004】
これより、本発明が付属の図面を参照して例として説明されることになる。
【図面の簡単な説明】
【0005】
【
図1】本開示の一実施形態と一致した光通信システムの概略図である。
【
図2】本開示の一実施形態と一致した光通信システムの別の概略図である。
【
図3】本開示の一実施形態と一致した光通信システムの別の概略図である。
【
図4】本開示の一実施形態と一致した光通信システムの別の概略図である。
【
図5】本開示の一実施形態と一致した給電分岐ユニット(PFBU)の一実施形態の概略図である。
【
図6】
図5のPFBUにおける使用に好適な例示的なコンバータ機構の概略図である。
【0006】
本開示は、光通信システムに関し、より詳細には、フォルト状況および/または負荷の変化に対応するために、多ノード・ネットワークを使用して光通信システムにおいて電力を分配することに関する。
【0007】
一般的に、本開示と一致した、光通信システムにおいて使用される分岐構成は、双方向式に電力を分配するために、複数の動作モードが可能な多ポートDC/DCコンバータ・モジュール(DDCM)機構を有する1つまたは複数の給電分岐ユニット(PFBU)を含む。本分岐構成は、波長分割多重化(WDM)システムにとりわけよく適していてよいが、本開示は、この点に限定されることを意図しない。DDCM機構は、たとえば、ケーブル・セグメント内の電気導体を介して、1つまたは複数の幹線経路ケーブル・セグメントに電気的に結合するための、および分岐ケーブル・セグメントに電気的に結合するための、複数のポートを含むことができる。幹線ケーブル・セグメントに結合されたポートは、分岐ケーブル・セグメントに結合されたポートから電気的に絶縁することができる。一実施形態において、複数のPFBUが、幹線経路に沿って配置されてよく、各PFBUは、幹線経路に結合された給電機器を介して、関連付けられた分岐経路に電力供給し、それによって、たとえば、ローカル給電機器(PFE)なしに、分岐経路が無動力にされるのを可能にする。分岐経路がローカルPFEを含む事例においては、関連付けられたPFBUが、必要に応じて幹線経路への電力を利用可能にするために、分岐経路から電力を引き出すことができる。同様に、いわゆる「ブリッジング」分岐経路を介して、第1の幹線経路が第2の幹線経路に結合されてよく、それによって、第1のPFBUがブリッジング分岐経路の1つの端部で第1の幹線経路に結合され、第2のPFBUがブリッジング分岐経路のもう1つの端部で第2の幹線経路に結合される。この実施形態において、ブリッジング分岐経路のいずれかの端部にあるPFBUは、第2の幹線経路による使用のための電力を、第1の幹線経路から引き出すように協力して動作することができ、その逆も同様である。
【0008】
いずれの場合においても、幹線経路に沿った複数のPFBUは、共同してDCグリッドを形成することができ、定電流または定電圧、およびケーブル抵抗を所望の制限内に維持しようとする所定の設定点に基づいて、全体の電力を調節する/均衡させることができる。各PFBUは、関連付けられた分岐経路またはブリッジング分岐経路から必要に応じて電流を調達する/つぎ込むことができるので、PFBUは、したがって、「共有」電力供給方式を提供することができ、これはまた、クラウド電力供給方式(crowd powering scheme)と呼ばれることもある。共有電力方式において、幹線経路は、したがって、たとえば、ケーブルカットまたはコンポーネント障害などのフォルト状況のために、1つまたは複数の供給が失敗した、または切断された場合でさえ、公称電力を確実にする冗長性/オーバーラップが組み込まれた、多数のPFBUを介して電力供給されてよい。共有電力方式は、光通信システムが、所望の構成に応じて、たとえば10,000kmまでの、またはそれ以上の、現在の制限をはるかに超える距離に及ぶ幹線経路を有することを可能にすることができる。加えて、PFBUによって形成されたDCグリッドにより、ケーブル・フォルトおよび/またはコンポーネント障害の場合に必ずしも冗長性を失うことなく、光増幅(および他の海中用途)のための合計利用可能電力が、海底光通信システムへの他のアプローチにおいて利用可能な最大電力を超えることが可能になる。本開示のPFBUはまた、光通信システムが、比較的低いシステム電圧および電流制限を有することを可能にし、それにより、システム・コスト、コンポーネント寿命、および複雑性を有利に低減することができる。
【0009】
図を見てみると、
図1は、本開示の一実施形態に従った一例示的なWDM光通信システム(または、光システム)100を例示する。光通信システム100は、非常に簡略化された形式で示されており、他の実施形態も本開示の範囲内である。光通信システム100は、幹線経路112に沿って結合されたノードに光信号を転送し、電力供給するために、幹線経路、たとえば幹線経路112に結合された、たとえばケーブル陸揚げ局(CLS)110において、1つまたは複数の幹線端末を含む。幹線経路112は、複数の海底光ケーブル・セグメント、たとえば、海底ケーブル・セグメント114-1・・・114-Nを含むことができ、海底ケーブル・セグメントは、1つまたは複数のファイバおよび電気導体を含む。本明細書で使用されるとき、用語「結合される」は、1つのシステム要素によって搬送される信号が、それによって「結合された」要素に伝達される、任意の接続、結合、リンク、その他を指す。用語「信号」は、必ずしも光信号に限定はされず、光通信システム100のケーブルを介して送り出され得る電力もまた包含する。そのような「結合された」デバイスは、必ずしも互いに直接接続されておらず、そのような信号を操作する、または変更することができる中間コンポーネントまたは中間デバイスによって隔てられていてもよい。
【0010】
光通信システム100は、
図1に示されるようなシングル・エンド構成を含むことができ、ここでの幹線経路112は、光通信システム100の端部に設置された、単一のCLS110およびPFE104を含む。光通信システム100は、たとえば、海水/アース・グラウンドの戻りの原理を使用することができる。この実施形態において、
図1の光通信システム100は、伝送ケーブル内の単一の導体と、戻り導体として動作する海水/グラウンドを介した戻り経路とを流れる電流を含むことができ、たとえば、電極(図示せず)が、各海中ノードにおいて、海水またはアース・グラウンドと接触していてよい。このシングル・エンド構成は、単相システムにおける少なくとも2つの(2)導体、または3相システムにおける3つの(3)導体を必要とする他のAC電力分配アプローチと比較して、とりわけ有利であることがある。
【0011】
幹線経路112は、幹線経路112に沿って配置された複数の分岐ユニット(BU)、たとえば、BU118-1・・・118-6を含むことができる。CLS110は、電気的な電力分配のための給電機器(PFE)104と、光信号を送信および受信するための回線終端機器(LTE)105との両方を提供することができる。PFE104は、CLS110で必ずしもローカルに電力を生成しなくてもよく、陸上の電力グリッドまたは他の好適な電源から、光通信システム100のケーブルにもたらされる電力のうちの少なくとも一部を調達することができることに留意されたい。光通信システム100は、ダブル・エンド構成などの他の電力分配構成を含んでもよく、ここでの幹線経路112は、たとえば、
図4に示されるように、各々がPFEを有する2つ以上のCLS間に延在することができることに留意されたい。
【0012】
PFE104は、幹線経路112に、より詳細には、ケーブル・セグメント114-1・・・114-Nの各々における1つまたは複数の電気導体に、電気的に結合することができる。BU118-1・・・118-6の各々は、各ケーブル・セグメントを、隣接するケーブル・セグメントに電気的に結合することができる。BU118-1・・・118-6の各々はまた、隣接するケーブル・セグメントと関連付けられた分岐経路ケーブル・セグメントとを、たとえば光ファイバを介して、光学的に結合することができる。たとえば、BU118-1・・・118-6の各々は、たとえば、エクスプレス・チャネル・パススルー構成、光追加/ドロップ・マルチプレクサ(OADM)などのフィルタ機構、光結合器、またはそれらの任意の組合せを含むことができる。したがって、ケーブル・セグメント114-1は、ケーブル・セグメント114-2に、BU118-1を介して電気的および光学的の両方で結合されてよく、ケーブル・セグメント114-3は、ケーブル・セグメント114-4に、BU118-2を介して電気的および光学的の両方で結合されてよい、などとなる。BU118-1・・・118-6の各々は、複数のポート、たとえば、幹線経路112のそれぞれのケーブル・セグメントに結合するための少なくとも第1のポートおよび第2のポートと、分岐経路ケーブル・セグメントに結合するための第3のポートとを含むことができる。フォルト状況(たとえば、ケーブルカット、コンポーネント障害、その他)の場合の損傷を妨げるために、および保守および交換中の安全のために、幹線経路112のそれぞれのケーブル・セグメントに結合された第1のポートおよび第2のポートを、分岐経路ケーブル・セグメントに結合された第3のポートから電気的に絶縁することができ、ポートの各々は、以下でより詳細に議論されるように、電力の双方向の流れをサポートするように構成されてよい。
【0013】
BU118-1・・・118-6の各々は、所望の構成に応じて、分岐経路通信、たとえば、チャネル波長の送信/受信と、さらに所与の分岐経路に沿って結合されたコンポーネントへの電力の分配との、両方をサポートすることができる。たとえば、BU118-1・・・118-6の各々は、固定された、もしくは再構成可能なOADM機構、または他の好適なフィルタ/結合デバイス(たとえば、バンドパス・フィルタ、ブロック・フィルタ、光結合器、その他)などのフィルタリング機構を使用して、チャネル波長を、関連付けられた分岐経路、たとえば分岐経路107、111へと/から、光学的に結合することができる。いくつかの事例においては、すべてのチャネル波長を、幹線経路112から所与の分岐経路へと提供することが望ましいことがあることに留意されたい。それに応じて、各BU(またはPFBU)は、必ずしもフィルタリング・デバイスを含まなくてもよいし、光通信システム100内の他のBUと同一に構成されなくてもよい。各BUはまた、ファイバ経路を再構成するためのファイバ光スイッチを収容することができる。
【0014】
分岐経路、たとえば、分岐経路107および111はまた、光信号の双方向通信のための伝送経路を提供するために、光ケーブル・セグメントにおいて光ファイバを含むことができる。光通信システム100は、したがって、たとえば、CLS110および分岐端末、BU、その他のノード間で、光信号の双方向通信を提供するように構成されてよい。解説しやすさのために、本発明における説明は、1つの端末から別の端末への伝送を指していることがある。しかしながら、システム100は、ノード間での双方向通信または一方向通信のために構成されてもよいことを理解されたい。
【0015】
幹線経路および分岐経路におけるコンポーネントは、それらの意図した機能性を実現するためのさまざまな構成を含むことができる。中継器171は、たとえば、伝送経路上の信号減衰を補償する、任意の光増幅器/中継器構成を含むことができる。たとえば、中継器のうちの1つまたは複数は、エルビウム添加光ファイバ増幅器(EDFA)、ラマン増幅器、またはハイブリッド・ラマン/EDFA増幅器などの光増幅器として構成されてもよい。また、中継器のうちの1つまたは複数は、光信号を電気信号にコンバートし、電気信号を処理し、次いで光信号を再伝送することによって光信号を再生する、光-電気-光構成において提供されてもよい。
【0016】
光通信システム100は、水域、たとえば海洋に及ぶ、たとえば、約1000kmよりも長い総距離(DTotal)125を有するロングホール・システムとして構成されてよい。たとえば、ロングホール・システムは、約6000~20,000km、またはそれ以上の距離を含むことができる。分岐ユニット、たとえば、BU118-1・・・118-6は、海底環境における海洋底に据え付けられてよい。
【0017】
BU118-1・・・118-6の各々はまた、関連付けられた分岐経路を幹線経路112に電気的に結合して、そこに結合されたコンポーネントによる消費のための電力を提供するように構成されてもよい。たとえば、示されるように、分岐経路107は、中継器/光増幅器171と、分岐端末機器120とを含む。このようにして、分岐経路107に沿って結合された機器は、独占的に、または少なくとも部分的に、幹線経路112を介して分配される電力から動作するように構成されてよい。分岐構成106は、幹線経路112を介して分配される電力で少なくとも部分的に動作するように構成されるとき、正確には、無動力分岐、または半動力分岐と呼ばれてもよい。分岐構成はまた、所望の構成に応じて、たとえば、ローカルPFEを含んで、少なくとも部分的に自己動力であってもよい。各分岐経路、たとえば、分岐経路107、111は、たとえば、所望の構成に応じて、数百キロメートルから数千キロメートルまで、長さにおいて多様であってよく、光増幅器、たとえば光増幅器171を含んで、全体の長さに沿った公称の光パフォーマンスを確実にすることができる。
【0018】
光通信システム100によって、たとえば、定電流または定電圧分配方式を含む、さまざまな電力方式が実装されてよい。しかしながら、幹線経路112から電力を引き出すコンポーネントの数、その電力消費の程度、および幹線112の全体の長さなどの、光通信システム100のさまざまな特性が、幹線112に沿った電力の利用可能性を大幅に制限することがある。たとえば、幹線経路112を形成する1つまたは複数の海底ケーブル、たとえばケーブル・セグメント114-1・・・114-Nは、(光ファイバ・ケーブル特性に応じて)キロメートル(km)当たり約1オームの抵抗の増加をもたらすことがあり、それにより、たとえば、数万キロメートル延在するロングホール・システムにおける電力を大幅に低減することができる。
【0019】
それに応じて、光通信システム100は、幹線112に沿った電力要件に基づいた制限された容量、および、たとえば、抵抗損失に部分的に基づいた光通信システムの全体の長さを有することができる。たとえば、PFE104は、光増幅器171、BU118-1、118-2、分岐経路107、111、およびそれらに結合されたコンポーネント、たとえば、分岐端末機器120および水中分配ハブ(UDH)140の動作をサポートするために、距離D1までのケーブル・セグメント114-1および114-3に沿って十分な電力の量を提供するように構成されてよい。しかしながら、幹線経路領域109に対応するように、距離D2分、幹線経路112を延在させることは、光通信システム100の上述した電力分配制限に基づいて妨げられることがある。
【0020】
このようにして、かつ本開示の一実施形態に従って、幹線経路112は、給電分岐ユニット(PFBU)として構成された少なくとも1つのBUを含むことができる。たとえば、BU118-3は、本開示と一致したPFBUとして実装されてよく、PFBU118-3ともまた呼ばれてよい。他のBUは、電力スイッチング分岐ユニット(PSBU)として構成されてもよく、PSBUは、関連付けられた分岐経路を幹線経路112に単純に電気的に結合する電気回路、およびフォルトの場合の絶縁性能(たとえば、シー・グラウンドへのクランプ)を含むことができ、しかしPSBUは、本明細書でさまざまに開示される、PFBUの双方向電力分配性能、電力調整、および他の電力調節の態様は含まない。
【0021】
PFBU118-3は、たとえば、OADM機能性、フィルタ、エクスプレス・チャネル性能、その他を含んで、上で議論したBUと実質的に同様に構成されてもよいが、第3のポートを介して分配のための電力を調達するために、2つ以上のポートを可能にするように構成された追加の回路を備える。別の言い方をすれば、PFBU118-3は、幹線セグメント114-3に結合された第1のポート126-1を介して、および/または、分岐経路113に結合された第3のポート126-3を介して電力を調達して、幹線経路領域109に沿って結合されたコンポーネントのために、より詳細には、たとえば、ケーブル・セグメント114-5・・・114-Nに沿った光コンポーネントによる消費のために、第2のポート126-2を介して出力電力を提供するように構成された回路を含むことができる。PFBU118-3の回路は、電流が、第1のポート126-1を介して(たとえば、i
trunk)、第3のポート126-3を介して(たとえば、i
branch)、または第1のポートと第3のポートとの組合せを介して(たとえば、i
trunk+i
branch)調達されるのを可能にする、DC-DCコンバータ・モジュール(DDCM)機構を含むことができる。このDDCM機構は、正確には、多入力、単出力コンバータとして説明されてよい。表1は、この実施形態におけるPFBU118-3のさまざまな例示的なDDCMコンバータ・モードを要約している。
【表1】
【0022】
PFBU118-3は、幹線ソース・モードで動作することができ、それによって、出力電流(Iout)は、第2のポート126-2を介して提供され、かつケーブル・セグメント114-3によってPFBU118-3の第1のポート126-1の中に給電された幹線電流(itrunk)から独占的に調達される。分岐ソース・モードにおいて、PFBU118-3は、第2のポート126-2を介して出力電流(Iout)を提供し、出力電流(Iout)は、第3のポート126-3を介して分岐電流(ibranch)から独占的に調達される。いくつかのケースにおいて、たとえばPFE104が故障した場合に、出力電流Ioutは、第1のポート126-1を介して供給されてもよい。
【0023】
多ソース・モードともまた呼ばれてよいデュアル・ソース・モードにおいて、PFBU118-3は、第1のポート126-1および第3のポート126-3から引き出される電流、たとえば、幹線電流(itrunk)および分岐電流(ibranch)のそれぞれの組合せに基づいて、第2のポート126-2を介して出力電流(Iout)を提供する。とりわけ、幹線経路領域109におけるコンポーネントの負荷に応じて、定電流モードが所望される場合に、定電流設定点(たとえば、1amp)を、電圧ブーストを介して維持することができる。たとえば、負荷が2kW分の利用可能な電力を超える場合、グラウンドに対して第1のポート126-1よりも高い電圧でそれを保つことによって、第2のポート126-2を介して電圧を増加させることができる。それに応じて、電力PはI×Vに等しいので(P=I×V)、電圧を増加させて十分な電力を提供することができる。
【0024】
したがって、幹線領域109のコンポーネントにサービスするために追加の電力が必要とされるときでさえ、第2のポート126-2を介した電流を一定に保つことができる。以下でさらに議論するように、多ソース・モードにおいては、第1のポート126-1および第3のポート126-3から引き出される特定の電流の量が、一方のポートを他方のポートよりも選好するように優先され、つまりは、一方のポートから他方に対して、より大きな比の電流を非対称的に引き出すことができる。いくつかのケースにおいては、等しい量の電流が各ポートから引き出される(たとえば、1:1比)。分岐給電モードにおいては、電力は、第1のポート126-1を介して調達され、第2のポート126-2を介して分岐経路に独占的に提供されてもよい。
【0025】
いずれの場合においても、第1のポート126-1および第3のポート126-3のうちの1つまたは両方から引き出される電流の量は、PFBUのコントローラ、たとえば、
図6のコントローラ606によって実装される制御/調節方式に基づいて、所定の設定点を維持するために効率的な調節を提供することができ、これは、
図5および
図6に関してより詳細に議論される。
【0026】
PFBU118-3は、初期設定モード、定電流モード、(たとえば、修理および保守を考慮するための)安全モード、および定電圧モードを含む、複数の動作モードのうちの1つで動作することができる。初期設定モードの間、PFBU118-3は、第1のポート126-1または第3のポート126-3から比較的少量の電力を引き出すことによって本質的に「ブートアップ」して、電力が利用可能になると、関連付けられたDDCM機構の少なくとも一部に通電することができる。したがって、PFBU118-3は、幹線経路112または関連付けられた分岐経路を介して十分な電力の量が利用可能になると、自動的に初期設定するように構成されてよい。以下の説明は、電流を抽出するために単独で、または組み合わせて使用され得る第1のポート126-1および第3のポート126-3を、それぞれ、「入力」ポートと呼ぶが、本開示はこの点において必ずしも限定されない。たとえば、第1のポート126-1、第2のポート126-2、および第3のポート126-3のうちのいずれか1つが、それぞれ、初期設定を開始するために、PFBU118-3の内部負荷に少なくとも部分的に電力供給するための入力電力として使用されてもよい。
【0027】
PFBU118-3は次いで、少なくとも部分的に電力供給されるとき、たとえば、光通信システム100の光ケーブルによって提供される光シグナリング、および/またはメモリに記憶された値を介して、さまざまな動作パラメータを受信するために、初期設定モードへと移行することができる。動作パラメータは、PFBU118-3のDDCM機構についての特定の動作モード、たとえば、定電流ソース・モードまたは定電圧ソース・モードを表す値を含むことができる。加えて、動作パラメータは、ケースに応じて、定電圧目標値または定電流目標値などの、識別された動作モードのための所定の設定点を含むことができる。PFBU118-3はまた、所定の比または他の閾値に基づいて、たとえば、第3のポート126-3に対して、第1のポート126-1から電力を引き出す/抽出するための優先順位付け方式を定義する他の動作パラメータを受信することができる。たとえば、優先順位付け方式は、所与のポートから抽出される合計電流を制限するために、そのポートのための最大電流値を定義することができる。他のケースにおいて、優先順位付け方式は、第3のポート126-3に対して、第1のポート126-1から引き出される電力の一定の比の、1:1(50/50)、2:1、3:1、4:1、その他などを強制することができる。したがって、制御ループを介して実装される優先順位付け方式は、所望の構成に応じて、各入力ポートから非対称的または対称的に、電力を動的に引き出すことができる。
【0028】
PFBU118-3は次いで、動作パラメータを使用して、DDCM機構についての動作モード、優先順位付け方式、および動作モードに関連付けられた設定点を選択することができる。初期設定の後、第1のポート126-1および/または第3のポート126-3の測定された電流/電圧レベルが閾値(たとえば、1amp)を超えると、PFBU118-3は、選択された動作モード(たとえば、定電流または定電圧)へと移行することができる。たとえば、PFE104と幹線経路112との間で、より詳細にはケーブル・セグメント114-1・・・114-3の間で、電力が先頃回復した場合に、BU118-1・・・118-2の各々がオンラインになり、連続して次々と電力を出力し始めると、電力は、制御されたやり方である時間の期間にわたって上昇することができる。このようにして、PFBU118-3は、第1のポート126-1および/または第3のポート126-3を介して利用可能な電力の十分な量の測定に応答して、選択された動作モードで関連付けられたDDCM機構を動作させて、識別された動作モード、ソースの優先方式、および関連付けられた設定点に従って、DDCM機構を動作させ、電力出力を調節することができる。
【0029】
定電流モードにおいて、PFBU118-3は、第2のポート126-2を介して比較的一定の電流レベルを出力しようとする。定電圧モードにおいて、PFBUは、第2のポート126-2を介して比較的一定の電圧レベルを出力しようとする。DC-DCコンバータ機構によって実装されるこれらのモードの各々は、
図5および
図6に関して、さらに以下でより詳細に議論される。
【0030】
いくつかのケースにおいて、光通信システム100の複数のBU、たとえばBU118-1・・・118-6は、本開示と一致したPFBUとして各々実装されてもよい。幹線経路112はこのようにして、効率的なフォルト・トレラント式に電力を分配するために、複数のPFBUを直列に提供することができる。たとえば、複数のPFBU118-1・・・118-6は、ケーブル・セグメント114-1・・・114-Nの各々に沿って比較的一定の電流を利用可能にすることを考慮するために、定電流モードで構成されてよい。加えて、複数のPFBU118-1・・・118-6は、たとえば、コンポーネント障害および/またはケーブルカットに基づいた、幹線経路112に沿ったフォルト状況の発生を考慮し、影響されていない他の部分が電力供給されたままであるのを可能にしながら、幹線経路112の影響された部分を自動的に絶縁する。たとえば、PFBU118-3は、ケーブル・セグメント114-3に沿って発生したフォルト状況の場合に、上述した分岐ソース・モードに自動的にスイッチすることができる。この事例において、PFBU118-3は、たとえば、フォルトのケーブル・セグメント114-3を絶縁するために、第1のポート126-1をシー・グラウンドにスイッチすることができる。電力はこのようにして、ケーブル・セグメント114-4、114-6、114-Nに沿って電力を供給するために、分岐経路113(これは、分岐経路ケーブル・セグメント113と呼ばれてもよい)から、より詳細には、PFE190から引き出されてよい。BU118-4、118-5、118-6などの、ケーブル・セグメント114-4、114-6、114-Nに結合されたコンポーネントは、分岐端末150、160、170がノード内のやり方で通信を継続することを考慮する。
【0031】
したがって、PFBUは、PFBU118-3の第1のポート126-1および第3のポート126-3のそれぞれに送り出された電力を妨げる、またはそうでなければ低下させるフォルト状況に応答して、幹線ソース・モード、分岐ソース・モード、および多ポートソース・モードの間で自動的にスイッチすることができる。上述したソース・モード間で自動的にスイッチすることの代わりに、またはそれに加えて、PFBUは、光通信システム100の、たとえばネットワーク・オペレーション・センタ(NOC)から、光通信システム100の伝送ケーブルを介して受信した光信号に基づいて、ソース・モード間でスイッチすることができる。
【0032】
BU118-1・・・118-6のうちの1つまたは複数は、関連付けられた分岐経路に給電された電力をダウンステップする/ダウンコンバートするDDCM機構などのコンバータ機構で構成されてもよい。たとえば、BU118-2は、分岐経路111に結合されたコンポーネントによる消費のために、高電圧信号、たとえば10キロボルト(kV)を、中電圧、たとえば400vにステップダウンするように構成されてもよい。水中分配ハブ(UDH)140は、中電圧を受信し、それを科学センサ、水中自律車両(UAV)、その他による消費のために、低電圧、たとえば12vにコンバートすることができる。他のケースにおいて、BU118-1・・・118-6の各々は、電力を調整する/コンバートすることなく、関連付けられた分岐経路を、幹線経路112に単純に電気的に結合することができる。
【0033】
BU118-1・・・118-6のうちの1つまたは複数は、スタブ型の(stubbed)PFBUとして構成されてもよい。スタブ型のPFBUは、最初に、関連付けられた分岐経路またはブリッジ経路のケーブル・セグメントなしに配備されてもよい。この事例において、スタブ型のPFBUは、後で取り出され、たとえば船によって上面に運ばれ、関連付けられた分岐経路またはブリッジ経路のケーブル・セグメントに結合され、より詳細には、スタブ型のPFBUの第3のポートに結合されて、光通信システム100を拡張することができる。これにより、最初に配備されるときに関連付けられた分岐経路に必ずしも結合されなくても、PFBUが定電流(または定電圧)を関連付けられた幹線経路ケーブル・セグメントに有利に提供するのをなおも可能にしながら、スタブ型のPFBUが、広い意味において、光通信システム100の将来の拡張のための場所を確保するもの(place holder)となることを可能にする。将来的なアップグレードはその場合、アップグレードの間の幹線トラフィックを必ずしも中断することなく実施することができる。
【0034】
図2を見てみると、本開示の一実施形態に従った例示的な光通信システム200が示されている。光通信システム200は、非常に簡略された形式で示されており、他の実施形態も本開示の範囲内である。示されるように、光通信システムは、2つの幹線経路、すなわち、第1の幹線経路234および第2の幹線経路236を含む。第1の幹線経路234および第2の幹線経路236の各々は、数百から数万キロメートル延在することが可能なロングホール・システムとして構成されてよい。
【0035】
第1の幹線経路234および第2の幹線経路236の各々は、CLS210、211にそれぞれ結合される。CLS210、211の各々は、たとえば、11kVを約1.0Aの一定のアンペア数で提供するように構成されてよいPFE204、205をそれぞれ含む。CLS210、211は、各それぞれの幹線経路に結合された、LTE105などのLTEデバイスをさらに含むことができるが、単にわかりやすさのために簡略化された形式で例示されている。PFE204、205の各々は、所望の構成に応じて、たとえば、0.5Aから1.5Aまたはそれ以上の広い範囲の電流レベル、ならびに、たとえば、1kVから15kVまたはそれ以上の広い範囲の電圧レベルを出力するように構成されてよい。前述の説明は、例示的な定電流(たとえば、1.0A)を提供するPFE204、205を具体的に議論しているが、PFE204、205の各々は、異なるモードで動作するように構成されてもよいことに留意されたい。
【0036】
さらに示されるように、光通信システム200は、第1の幹線経路234および第2の幹線経路236に沿って配置された複数のPFBU、たとえば、PFBU218-1・・・218-9を含む。PFBU218-1・・・218-9の各々は、関連付けられた分岐経路210-1・・・210-7を、それらの関連付けられた幹線経路に電気的および光学的の両方で結合するように構成されてよい。分岐端末220、250、280、294、296、光増幅器271、およびUDH240、290などのコンポーネントは、それらの関連付けられた幹線経路を介して分配された電力を消費することができる。分岐経路に沿って結合されたコンポーネント、および、たとえば、抵抗損失による所与の分岐経路ケーブル・セグメントの長さに応じて、各分岐経路によって消費される具体的な電力の量は多様であってよい。本明細書で提供される具体的な電力値は、限定することを意図しておらず、むしろ、単にわかりやすさと説明しやすさのために提供される。
【0037】
この例示的な実施形態において、PFBU218-1・・・218-9の各々は、たとえば、それらの内部負荷および関連付けられた分岐経路に結合された負荷に部分的に基づいて、約2kWまでの電力、またはそれ以上を消費することができる。このようにして、第1の幹線経路234は、抵抗損失および関連付けられた負荷に基づいて、特定の数の分岐経路および全体の距離D1に限定されてよい。一実施形態に従って、PFBU218-3は、幹線経路領域209に沿って配置されたコンポーネントが適切な量の利用可能な電力を有するのを確実にするために、分岐/ブリッジ経路213を介して電流を調達することができる。幹線経路領域209には、単一のPFBU218-4のみが示されているが、任意の数のPFBUおよび関連付けられた分岐構成が、所望の構成に応じて存在してよい。
【0038】
示された実施形態において、PFBU218-3は、ブリッジ経路213の第1の端部に結合されてよく、PFBU218-7は、ブリッジ経路213の第2の端部に結合されてよい。PFBU218-3および218-7はまた、第1の幹線234と第2の幹線236との間で光信号が送信されるのを可能にすることができる。
図2のPFBUは、上で議論したPFBU118-3に従って、たとえば、多入力、単出力構成で構成されたDDCM機構を用いて実装されてよく、その説明は簡潔さのために繰り返さないことにする。
【0039】
続けると、第1の幹線経路234に沿って提供される幹線電流(i
trunk)が、PFBU218-3の第1のポートで利用可能な約8kWの電力(たとえば、8kV×1A=8kW)を有する場合、これ単独では、組み合わせて10kWの電力を消費する、幹線経路領域209に沿ったコンポーネントに電力供給するには足りないことがある。PFBU218-3はその場合、
図1に関して先に議論したように、多ソース・モードで動作して、幹線/ブリッジ経路213から追加の電力、たとえば、(i
bridge)を引き出して、電圧ブーストを介して必要とされる追加の2kWの電力を提供することができる。したがって、たとえば、PFBU218-3が定電流モードで動作していることを想定すると、PFBU218-3は、幹線領域209のコンポーネントが十分な電力を有し、電流が一定のままであることを確実にするために、PFBU218-7を介して、分岐/ブリッジ電流、たとえばi
bridgeから、電力を調達することができる。示されるように、これは、第2の幹線経路236から、ブリッジ電流i
bridgeとしても知られる電流の一部を引き出すことを含み、その電流の一部は、継続した動作を確実にするために必要である追加の2kWの電力を、幹線経路領域209のコンポーネントが消費するのを可能にするのに十分である。この目的のために、負荷(たとえば、10kW)が、単独のPFE204を介して幹線経路234が供給することが可能な分を超えたときでさえ、PFBU218-3は、幹線領域209に沿った定電流を維持することができる。
【0040】
したがって、PFBU218-7は、正確には、ブリッジングPFBU218-7として説明されてよい。ブリッジングPFBU218-7は、上で議論されたPFBU118-3と同様に構成され、たとえば、OADM機能性、フィルタ、エクスプレス・チャネル性能、その他を含むことができる。ブリッジングPFBU218-7は、単入力、多出力構成を含む関連付けられたDDCM機構を含むことができ、それによって、第1のポート226-1は、ケーブル・セグメント214-1を介して電流を抽出するための入力として動作する。第2のポート226-2および第3のポート226-3は、それぞれ、分岐/ブリッジ経路213およびケーブル・セグメント214-2・・・214-Nを介して電力を提供するための出力として動作し、より詳細には、多ソース・モードで動作するPFBU218-3のおかげにより、第2の幹線経路236のケーブル・セグメント214-2・・・214-Nに沿ったコンポーネントによる、および第1の幹線経路234の幹線領域209に沿って配置されたコンポーネントによる消費のために動作する。PFBU218-7に関連付けられたこのDDCM機構は、正確には、単入力、多出力コンバータとして説明されてよい。表2は、この実施形態におけるPFBU218-7のさまざまな例示的なDDCMコンバータ・モードを要約している。
【表1】
【0041】
PFBU218-7は、幹線出力モードで動作することができ、それによって、出力電流(I
out)は、第2のポート226-2のみを介して、たとえば、第3のポート226-3を除外して、提供される。別の言い方をすれば、幹線出力モードは、PFBU218-7に第2の幹線経路236に沿ってのみ電流を出力させて、たとえば、ケーブル・セグメント214-2、214-Nに電力を提供する。分岐出力モードにおいて、PFBU218-7は、第2のポート226-2を介して電流を提供することを除外して、第3のポート226-3を介してブリッジ電流(i
bridge)を提供する。デュアル出力モードまたは多出力モードにおいて、PFBU218-7は、第3のポート226-3を介してブリッジ電流(i
bridge)を提供し、第2のポート226-2を介して出力電流(I
out)を提供する。第3のポート226-3は、関連付けられた第1の設定点に基づいて、出力ブリッジ電流(i
bridge)を調節することができる。第1の設定点は、
図1に関して上で議論したように、PFBU218-7によって受信される動作パラメータのうちの1つであってよい。第2のポート226-2は、関連付けられた第2の設定点を有するPFBU218-7によって同様のやり方で調節されてよい。第1の設定点および第2の設定点は、所望の出力に応じて、異なっていても、同じであってもよい。
【0042】
いくつかのケースにおいて、PFBU218-7は、幹線経路236が適切に電力供給されるのを確実にするために、第2のポート226-2を介した出力を優先することができる。別の言い方をすれば、第2のポート226-2および第3のポート226-3、それぞれのための第1の設定点および第2の設定点の両方を維持するために必要とされる電力を超えて、需要が幹線経路236に沿って増加した場合に、PFBU218-7は、第3のポート226-3を介した電力出力を低減する、またはそうでなければ停止することができる。代替として、PFBU218-7はまた、所望の構成に応じて、第3のポート226-3を介した出力を選好するように電力を優先することができる。PFE205から利用可能な電力の量が閾値よりも少ない、たとえば、<4kWである場合、PFBU218-7は、実装される優先方式に応じて、幹線出力モードまたはブリッジ出力モードにスイッチすることができる。上の例で議論した提供された電力値は、限定することを意図しておらず、他の電力値もまた本開示の範囲内である。
【0043】
図3は、本開示の一実施形態に従った別の例示的な光通信システム300を示す。示されるように、フォルト状況301、たとえば、ケーブルカットまたはコンポーネント障害が、ケーブル・セグメント314-3・・・314-Nを、PFE304から電気的に分断している。それに応じて、第1のケーブル・セグメント314-1に沿って配置されたコンポーネント、たとえば、光増幅器371、BU318-1、および分岐端末320は、電力供給されたままである。しかしながら、ケーブル・セグメント314-2・・・314-Nに沿ったコンポーネント、たとえば、BU318-2・・・318-5、UDH340、分岐端末350、370は、フォルト301の結果として無動力になることがあり、幹線経路334の影響された/フォルトの部分に沿った通信の損失を引き起こすことがある。
【0044】
BU318-3は、本開示に従ってPFBUとして実装されてよい。それに応じて、PFBU318-3は、現在のモード、たとえば、
図1に関して上で議論した幹線ソース・モードから、フォルト復旧モードへと移行することができる。たとえば、PFBU318-3は、上で議論したように、単入力、多出力構成を含む関連付けられたDDCM機構を含むことができ、それによって、分岐経路315を介して電力を調達することができる。とりわけ、第3のポート326-3は、分岐経路315を通じてPFE305に結合されてよい。いくつかのケースにおいて、PFE305は、プラットフォーム上に配置されてもよいし、または、たとえば、陸上PFEとして内陸に配置されてもよい。PFBU318-3は、第3のポート326-3を介して電流を抽出することができ、その電流を、第1のポート326-1および第2のポート326-2を介した第1の出力電流351および第2の出力電流352として、それぞれ出力することができる。
【0045】
図4は、本開示の一実施形態に従った別の例の光通信システム400を示す。光通信システム400は、単純さおよび説明しやすさのために非常に簡略化された形式で示されている。示されるように、光通信システム400は、PFE404、406によって電力供給されるデュアル・エンドの給電幹線ケーブルを含む。PFE404および406は、たとえば、反対側のケーブル陸揚げ局に設置されてもよい。PFE404、406の各々は、幹線経路412に沿った負荷のために、たとえば、10kWまでの電力を供給するように構成されてよく、PFE408は、分岐経路410に沿った負荷、たとえば、光増幅器471、分岐端末機器、その他のために、たとえば、2kWまでの電力を供給するように構成されてよい。PFE408は、正常動作下では、分岐経路410全体のためにシングル・エンドの電力を提供するように構成されてよく、PFBU418は、たとえば、分岐経路410の数百メートル下方に位置した仮想グラウンド(図示せず)への低電力/低電圧を維持することによって、分岐経路410の幹線端部で「生きた」ままであることができる。
【0046】
フォルト箇所401、たとえば、ケーブルカットによるシャント・フォルトが発生したとき、PFBU418は、電圧および/または電流を関連付けられた閾値と比較することによって、フォルト状況を検出することができる。それに応答して、PFBU418は次いで、出力を自動的に再構成して、それに応じた補償をすることができる。自動再構成の代わりに、またはそれに加えて、PFBU418は、フォルト状況が発生していることをケーブル局に通知するために、アラームを発するための信号を送信することができる。いずれの場合においても、PFBU418が閾値を超えた電圧/電力の変化を検出したとき、PFBU418は、幹線経路412から電力を引き出して、分岐経路410にシャント・フォルトへ電力供給させ続けることによって、検出したフォルト箇所401に応答することができる。PFE408は、分岐経路410の影響されていない部分に電力供給を継続することができる。そのようなフォルトが発生し、電力が損なわれ、しかしデータ搬送ファイバは損なわれていない場合、光増幅器471は電力供給されたまま/生きたままであり、分岐経路410は、したがって、動作可能のままで、分岐経路410への/分岐経路410からの通信を考慮する。これにより、分岐が再電力供給されている間、幹線が動作可能なままであることを有利に可能にする。
【0047】
図5は、本開示の一実施形態と一致した例示的な分岐構成500の図を示す。示されるように、分岐構成500は、光ファイバを介して、幹線経路、たとえば、
図1の幹線経路112に結合されたPFBU518を含む。PFBU518は、わかりやすさおよび実用性のために、非常に簡略化された形式で示されている。さらに示されるように、PFBU518は、幹線経路112の幹線ケーブル・セグメント514-1、514-2に結合し、幹線ケーブル・セグメント514-1、514-2は、幹線光ファイバ550・・・556、および電気導体558、560を含む。幹線ケーブル・セグメント514-1は、第1の幹線ケーブル・セグメント514-1と呼ばれてよく、第2の幹線ケーブル・セグメント514-2は、第2の幹線ケーブル・セグメント514-2と呼ばれてよい。PFBU518は、冗長東西構成をサポートすることができ、それによって、光信号を、反対方向に移動する信号を介して、冗長的に伝送および受信することができる。PFBU518はまた、分岐ケーブル・セグメント517に結合し、分岐ケーブル・セグメント517は、分岐ファイバ564、566、および電気導体562を提供する。
【0048】
幹線経路112は、分岐構成500によって管理されるエクスプレス・チャネルおよびローカル・チャネルを搬送することができる。たとえば、CLS110(
図1)で発信される信号は、1つまたは複数のチャネル(たとえば、エクスプレス・チャネルおよびローカル・チャネル)を占有する1つまたは複数の情報信号を含むことができる。同様に、分岐端末120で発信される信号もまた、1つまたは複数のチャネル(たとえば、ローカル・チャネル)を占有する1つまたは複数の情報信号を含むことができる。情報信号を搬送するチャネルはまた、利用されるチャネルと呼ばれることもある。幹線信号および分岐信号はまた、均一なチャネル・ローディングを維持するために、利用されないチャネルと呼ばれる、情報信号のないチャネル上のローディング信号を含むことができる。ローディング信号は、ブロードバンド・ノイズ、たとえば、ASEノイズ、ASEノイズ・バンド、またはダミー・トーンなどの非情報搬送信号を含むことができる。ダミー・トーンは、一般に、固有の波長に集中し、情報またはトラフックを搬送しない、光エネルギーを指す。
【0049】
任意のエクスプレス・チャネルは、発信幹線端末から、PFBU/BUユニットを通って幹線経路へと直接、中断することなく渡されてよい。1つまたは複数のローカル・チャネルは、幹線経路112からドロップする、またはPFBUユニットで幹線経路112に追加されることがある。PFBUユニット518は、CLS110から発信された情報信号を搬送する1つまたは複数のローカル・チャネル波長をドロップするように、すなわち、抽出するように構成されてよい。ドロップしたローカル・チャネル上の情報信号は次いで、分岐端末機器へと渡されてよい。PFBU518はまた、関連付けられた分岐/ブリッジ機器から発信された情報信号を、幹線経路112へと搬送する1つまたは複数のローカル・チャネル波長を追加するように、すなわち、挿入するように構成されてよい。結果として生じるWDM光信号、すなわち、追加された情報信号を含むWDM光信号は次いで、幹線経路112上に(たとえば、PFBU518の後に続くセグメント514-2上に)渡されてよい。もう一方の端末で発信された情報信号を搬送するローカル・チャネルも同様にPFBU518によって追加される、および/またはドロップされてよい。2つの幹線は、
図2に関して上で議論したブリッジ経路213などのブリッジ経路を介して接続されていてよく、ブリッジ経路は、第1の幹線および第2の幹線に光学的および電気的に結合していることを思い出されたい。このようにして、本明細書でさまざまに開示されたように、第1の幹線経路のノードは、ブリッジ経路を使用するPFBUを介して、第2の幹線経路のノードと、双方向式または一方向式に通信することができる。
【0050】
示されるように、エクスプレス・チャネルは、第1の幹線ケーブル・セグメント514-1から第2の幹線ケーブル・セグメント514-2へと、分岐構成500を通り抜け、逆もまた同様である。1つまたは複数のローカル・チャネル(ドロップ・チャネルともまた呼ばれる)は、分岐光ファイバ566によって提供されるドロップ分岐経路を介して、幹線経路112から分岐/ブリッジへと、分岐構成500を通り抜けることができる。1つまたは複数のローカル・チャネル(追加チャネルともまた呼ばれる)は、追加分岐ファイバ564によって提供される追加分岐経路から幹線経路112へと、分岐構成500を通り抜けることができる。
【0051】
ローカル・チャネル波長を追加すること、およびドロップすることは、一般に、光追加ドロップ多重化(OADM)と呼ばれる。分岐構成500においてOADMを実装するために、たとえば、分岐構成500は、以下の機能、すなわち、分離すること、フィルタリング、および組み合わせることを実装することができる。分離する機能は、1つの入力ファイバ上の光電力を、2つ以上の送出ファイバに分離することを伴う。光結合器は、分離する機能を実装することができるデバイスの一例である。フィルタリング機能は、他の波長が通ることを可能にしながら、1つまたは複数の送出ファイバから、入力光スペクトル(すなわち、1つまたは複数の波長)の少なくとも一部をブロックすることを伴う。いくつかの波長を伝送し、1つまたは複数の固有の波長をブロックする光フィルタを、たとえば、薄膜光フィルタおよびファイバ・ブラッグ・グレーティングなどの技術を使用して実装することができる。フィルタリング機能はまた、たとえば、減衰器およびオールパス・フィルタなどの、光波長による区別をしないフィルタ構成を使用するフィルタリングを伴うこともできる。組み合わせる機能は、単一の出力ファイバ上の2つ以上のソースからの光信号をマージすることを伴う。光結合器は、組み合わせる機能を実装することができるデバイスの一例である。
【0052】
本開示で言及される海底分岐構成におけるOADM機能性は、固定された光特性の光デバイスを使用して実装されてよい。OADM機能性はまた、光デバイスへのローカルもしくはリモートの制御信号を使用して、光結合特性および/または光フィルタリング特性を、設備された分岐構成において変化させる、または制御することができる、光デバイスを使用して実装されてもよい。一例において、海底システム・オペレータは、海底システム・ケーブルにおいて光ファイバを通じて伝送される光信号としての制御コマンドを、PFBU518ユニットに伝送することができる。OADM機能性を提供するために使用することができる制御可能な光デバイスの例は、限定はせずに、光スイッチ、チューナブル光フィルタ、可変光減衰器、波長選択スイッチ/フィルタ、光スプリッタ、および再構成可能な光追加ドロップ・マルチプレクサ(ROADM)を含む。
【0053】
PFBU518は、OADMコンポーネント534を介して、分離する機能および組み合わせる機能を用いて実装されてよい。たとえば、OADMコンポーネント534は、分岐経路によって要求される幹線経路の合計光スペクトルのその部分を通すためのドロップ・バンドパス・フィルタ(BPF-D)と、幹線経路に追加されることになる分岐経路光スペクトルのその部分を通すための追加バンドパス・フィルタ(BPF-A)と、チャネル波長が追加されたときに幹線経路チャネル波長が再使用されるのを拒否する、またはブロックするためのバンド・リジェクト・フィルタ(BRF)とを含むことができる。
【0054】
PFBU518はまた、DDCM機構501を用いて実装されてよい。DDCM機構501は、幹線経路112を、関連付けられた分岐経路から電気的に絶縁することができ、そこから電力を、たとえば、ケーブル・セグメント514-1、514-2を介して抽出することができる。PFBU518は、抽出された電力を調整する、たとえば、高電圧HVから中電圧MVにダウンコンバートすることができ、抽出し、調整した電力を分岐/ブリッジに供給することができる。
図1~
図4に関して上で先に議論したように、DDCM機構501内の電流は、PFBUのために選ばれた動作の特定のモードに応じて複数の方向に流れることができることに留意し、このことは、簡潔さのために繰り返さないことにする。
【0055】
DDCM機構501は、電力およびテレメトリ510機構と、HVスイッチ512、516、519と、DDCM515とを含む。電力およびテレメトリ機構510は、たとえば、幹線112を介してチャネル波長を送信および受信するために好適な回路およびコンポーネントを含むことができる。電力およびテレメトリ510機構は、所望の構成に応じて、受信したチャネル波長を使用して、DDCM機構501の動作を適合させる、たとえば、設定点、ソース・モード(定電流、定電圧)などの新しい動作パラメータを適用する、HVスイッチ512、516、519のうちの1つまたは複数を閉じる/開く、およびケーブル局にアラームを送信することができる。電力およびテレメトリ機構510は、幹線112を介して電力を調達するための、たとえば、DDCM515などのPFBU518の内部負荷に電力を供給するための、電力供給部をさらに含むことができる。
【0056】
HVスイッチ512、516、519は、たとえば、フォルト状況の場合に、またはPFBU518上で修理が実施されるときの安全を確実にするために、DDCM515の入力ポート、たとえば、ポート626-1、626-2、626-3(
図6)を、シー・グラウンド524にスイッチ可能に結合するように構成されてよい。シー・グラウンド524は、たとえば、陰極および/または陽極であってよい。
【0057】
DDCM515は、所望のモードに応じて、
図1に関して上で議論したように、多入力、単出力コンバータ・モードで、および/または
図2に関して上で議論したように、単入力・多出力コンバータ・モードで動作するように構成されてよい。いくつかのケースにおいて、PFBU518は、所与の光通信システムの電力分配ニーズに応じて、モード間でスイッチすることができる。たとえば、PFBU518は、分岐経路および幹線経路の両方から電力を調達して(たとえば、デュアル入力モード)、幹線経路112のダウン・ストリーム部分、たとえば、
図1の幹線領域109に電力を供給するモードで動作することができる。PFBU518が幹線ケーブル・セグメント514-1に関連付けられたフォルトを判定したことに応答して、PFBU518は、デュアル出力電力モードにスイッチし、それによって、電力を分岐/ブリッジから引き出して、幹線経路112の東部分、および幹線経路112の影響されていない西部分に電力供給を継続することができる。
【0058】
図6を見てみると、本開示の一実施形態に従ったPFBU518における使用に好適な一例示的なDDCM515Aが示されている。示されるように、DDCM515Aは、第1のポート626-1、第2のポート626-2、および第3のポート626-3を含み、ポートの各々は、ケーブル・セグメントの電気導体に結合するように構成されている。たとえば、第1のポート626-1は、第1の幹線ケーブル・セグメント514-1の電気導体558に結合するように構成されてよく、第3のポート626-3は、分岐ケーブル・セグメント517の電気導体562に結合するように構成されてよく、第2のポート626-2は、第2の幹線ケーブル・セグメント514-2の電気導体560に結合するように構成されてよい。DDCM515Aは、第1のポート626-1および第2のポート626-2のうちの1つまたは両方から電流を抽出して、第3のポート626-3を介して分岐に電力を提供するように構成されてよい。
【0059】
他のケースにおいて、
図1を参照して上で議論したように、第1のポート626-1および第2のポート626-2が、それぞれ、第1の幹線経路ケーブル・セグメント、たとえば幹線経路ケーブル・セグメント114-3、および分岐/ブリッジ・ケーブル・セグメント、たとえば分岐経路ケーブル・セグメント113に結合されて、第2の幹線経路ケーブル・セグメント、たとえば幹線経路ケーブル・セグメント114-4に電力を提供することができる。DDCM515Aのこの実施形態は、このようにして、多入力、単出力構成を提供することができるが、他の構成もまた本開示の範囲内である。
【0060】
さらに示されるように、DDCM515Aは、クランプ602と、第1のコンバータ604-1および第2のコンバータ604-2と、コントローラ606と、整流器614と、フィルタ616と、クランプ608とを含む。コントローラ606は、たとえば、幹線経路に沿って提供された高電圧から、使用可能な電圧、たとえば中電圧または低電圧を提供することができる、電力およびテレメトリ機構510における電力供給部を介して電力供給されてよい。いくつかのケースにおいて、コントローラ606は、電力およびテレメトリ機構510内で実装され、必ずしも示されるような別個のコンポーネントでなくてもよいことに留意されたい。
【0061】
コントローラ606は、マイクロプロセッサ、プロセッサ、回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、または任意の他の好適なコントローラ・デバイスとして実装されてよい。第1のコンバータ604-1および第2のコンバータ604-2は、調節されたDC電圧を生み出すように構成されてよく、次いで調節されたDC電圧をチョップして、AC信号を生み出すことができる。ACは次いで、絶縁のための変圧器を通過することができ、次いで整流器614およびフィルタ616をそれぞれ介して、整流され、フィルタリングされて、DC出力を生み出すことができる。出力上のクランプ608は、たとえば、作業者の安全のために、ケーブルを放電することを確実にすることができる。入力上のクランプ602は、ケーブル・フォルトの間、(たとえば、パス・スルーを提供するために)コンバータ周りのサージ電流を迂回させる。クランプ602はまた、各幹線ケーブル上のグラウンドにクランプして、それぞれの幹線ケーブルに修理を行うときの作業を保護することができる。
【0062】
第1のコンバータ604-1および第2のコンバータ604-2は、このようにして2つの電力段を提供することができる。第1のコンバータ604-1および第2のコンバータ604-2の各々は、ブースト・コンバータ(図示せず)と、チョッパ(図示せず)とを含むことができる。第1のコンバータ604-1および第2のコンバータ604-2は、たとえば、ハーフ・ブリッジ(たとえば、2つのトランジスタ構成)またはフル・ブリッジ(たとえば、4つのトランジスタ構成)のスイッチング機構で構成されてよい。第1のコンバータ604-1および第2のコンバータ604-2の各々を、コントローラ606を介して、たとえばPWM信号を、たとえばソフト・スイッチすることによって動作させて、電流動作モードに応じて、第1のポート626-1および第2のポート626-2のうちの1つまたは両方からの線電流のある部分を舵取りすることができる。他の電力調節方式も本開示の範囲内であり、本開示は、必ずしもPWM実装に限定はされない。加えて、出力段で電力を追加する磁束を用いて、一般的な変圧器を利用することができる。いずれの場合においても、第1のコンバータ604-1および第2のコンバータ604-2は、ブーストされた電流をチョッパに給電することができ、各それぞれのチョッパは、絶縁変圧器630の一次巻線を駆動する。絶縁変圧器630は、第1のポート626-1および第2のポート626-2と、第3のポート626-3との間にガルバニック絶縁を提供することができる。
【0063】
第1のコンバータ604-1および第2のコンバータ604-2のブースト・コンバータの各々は、第1のパルス幅変調(PWM)信号および第2のPWM信号のそれぞれを介して、コントローラ606によって駆動されてよく、第1のPWM信号は、第2のPWM信号とは異なる。コントローラ606は、第1のPWM信号および第2のPWM信号に基づいて、第1のポート626-1および第2のポート626-2の各々から、非対称の負荷を引き出すことができる。コントローラ606は、したがって、第1のポート626-1および第2のポート626-2から異なる量の電力を引き出して、所望の出力電流/電圧を実現することができる。
【0064】
第1のコンバータ604-1および第2のコンバータ604-2の各々は、所望の構成に応じて、同じに構成されても、または異なって構成されてもよい。出力の、たとえばポート626-3の調節は、第1のポート626-1および第2のポート626-2の各々から電流を選択的に抽出するために、第1のコンバータ604-1と第2のコンバータ604-2とのスイッチングを確実にする制御方式の追加により、単入力コンバータの調節と相対的に同様である。このやり方でのスイッチングは、第2のコンバータ604-2がスイッチ「オフ」にされる間に、第1のコンバータ604-1がスイッチ「オン」にされること、およびその逆を確実にして、両方のポートを通じた同時の入力を妨げることができる。コンバータ604-1、604-2の各々がスイッチ「オン」にされる時間の間、電流は、ポート626-1、626-2を通して流れる。第2のコンバータ604-2に対して、第1のコンバータ604-1がスイッチオンにされる間の時間の比率を制御することによって、入力電流の比を制御することができる。一実施形態において、第1のポート626-1と第2のポート626-2との間の入力電流の比は、デューティ・サイクル制御である限り、たとえば、第1のコンバータ604-1および第2のコンバータ604-2の各々についての第1のPWM信号および第2のPWM信号が、第1のポート626-1および第2のポート626-2を介した入力の比が実質的に一定に維持されるようなやり方で、2つの入力電流時間を率に応じて増減する限り、合計出力負荷電流に必ずしも依存しない。
【0065】
いくつかのケースにおいて、DDCM515Aは、サイクル内スイッチング方式、またはサイクル・バイ・サイクル動作などの他の方式で、定電流または定電圧を出力することができる。出力電圧は、式(1)の比によって制御されてよい。
【0066】
【数1】
ここで、(D)は、デューティ・サイクルであり、(PW)は、第1のコンバータ604-1および第2のコンバータ604-2についての組み合わせたスイッチ「オン」時間であり、(T)は、信号の合計期間である。平均入力電流の比をおおよそ一定に保つために、第2のコンバータ604-2に対する第1のコンバータ604-1からの入力電流の以下の比は、実質的に一定に保たれてよい。
【0067】
【数2】
ここで、(T
in_1)は、第1のコンバータ604-1についてのオン時間を表し、(T
in_2)は、第2のコンバータ604-2についてのオン時間を表す。このようにして、デューティ比を変化させることによって出力電圧を調節することができ、これは、第1のポート626-1と第2のポート626-2との間で入力電流比を必ずしも変えることなく実施することができる。このやり方で出力電圧を制御することにより、PFBUが、第3のポート626-3において定電流出力または定電圧出力を維持することを可能にする。
【0068】
本開示の一態様に従って、光システムが開示される。光システムは、第1の幹線経路に結合された少なくとも1つのケーブル陸揚げ局(CLS)であって、第1の幹線経路が少なくとも第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントを含み、第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントの各々が、それぞれ、少なくとも1つの電気導体を有する海底ケーブルを含む、少なくとも1つのケーブル陸揚げ局(CLS)と、第1の幹線経路ケーブル・セグメントと第2の幹線経路ケーブル・セグメントとの間に結合された海底環境に設置された少なくとも1つの給電分岐ユニット(PFBU)であって、第1の幹線経路セグメントの少なくとも1つの電気導体に電気的に結合するための第1のポート、第2の幹線経路セグメントの少なくとも1つの電気導体に電気的に結合するための第2のポート、および分岐経路ケーブル・セグメントの電気導体に電気的に結合するための第3のポートを備えたDC/DCコンバータ(DDCM)機構を有する、少なくとも1つの給電分岐ユニット(PFBU)とを含み、ここで、DDCM機構は、第1の幹線経路セグメントの少なくとも1つの電気導体に結合された第1のポートを介して受信された第1の入力電流、および分岐経路ケーブル・セグメントの電気導体に結合された第3のポートを介して受信された第2の入力電流に少なくとも部分的に基づいて、第2のポートを介して一定の出力電流レベルを維持する。
【0069】
本開示の別の態様に従って、光通信システムが開示される。光通信システムは、第1の幹線経路に結合された第1のケーブル陸揚げ局(CLS)であって、第1の幹線経路が少なくとも第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントを含み、第1の幹線経路の第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントの各々が、それぞれ、少なくとも1つの電気導体を有する海底ケーブルを含む、第1のケーブル陸揚げ局(CLS)と、第2の幹線経路に結合された第2のCLSであって、第2の幹線経路が少なくとも第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントを含み、第2の幹線経路の第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントの各々が、それぞれ、少なくとも1つの電気導体を有する海底ケーブルを含む、第2のCLSと、第1の幹線経路の第1の幹線経路ケーブル・セグメントと第2の幹線経路ケーブル・セグメントとの間に電気的に結合された第1の給電分岐ユニット(PFBU)と、第2の幹線経路の第1の幹線経路ケーブル・セグメントと第2の幹線経路ケーブル・セグメントとの間に電気的に結合された第2のPFBUとを含み、第2のPFBUは、ブリッジ経路ケーブル・セグメントを介して第1のPFBUに電気的に結合されており、ここで、第1のPFBUは、第2のPFBUからブリッジ電流を受信し、受信されたブリッジ電流に少なくとも部分的に基づいて、第1の幹線経路の第1の幹線経路ケーブル・セグメントおよび第2の幹線経路ケーブル・セグメントのうちの少なくとも1つに出力電流を提供するように構成されている。
【0070】
本開示の別の態様に従って、光通信システム内で電力をクラウド調達するための方法が開示される。方法は、給電機器を幹線経路に結合することと、複数の給電分岐ユニット(PFBU)を幹線経路に直列に結合することであって、PFBUの各々が、第1のポートを介して第1の定電流を受信し、第2のポートを介して第2の定電流を出力するように構成されている、結合することと、分岐経路をPFBUの各々の第3のポートに結合することと、PFBUのうちの1つまたは複数によって、分岐経路のうちの少なくとも1つから第3の電流を選択的に抽出すること、および抽出された第3の電流に少なくとも部分的に基づいて、第2のポートを介して第2の定電流を提供することとを含む。