IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気株式会社の特許一覧 ▶ NEC東芝スペースシステム株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-05
(45)【発行日】2022-09-13
(54)【発明の名称】光受信機
(51)【国際特許分類】
   H04B 10/61 20130101AFI20220906BHJP
   H04B 10/11 20130101ALN20220906BHJP
【FI】
H04B10/61
H04B10/11
【請求項の数】 10
(21)【出願番号】P 2020557679
(86)(22)【出願日】2019-11-22
(86)【国際出願番号】 JP2019045840
(87)【国際公開番号】W WO2020110956
(87)【国際公開日】2020-06-04
【審査請求日】2021-03-25
(31)【優先権主張番号】P 2018223133
(32)【優先日】2018-11-29
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、国立研究開発法人情報通信研究機構「高度通信・放送研究開発委託研究/衛星搭載光通信用デバイスの国産化及び信頼性確保に関する研究開発」、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(73)【特許権者】
【識別番号】301072650
【氏名又は名称】NECスペーステクノロジー株式会社
(74)【代理人】
【識別番号】100109313
【弁理士】
【氏名又は名称】机 昌彦
(74)【代理人】
【識別番号】100149618
【弁理士】
【氏名又は名称】北嶋 啓至
(72)【発明者】
【氏名】小竹 秀明
(72)【発明者】
【氏名】橋本 陽一
(72)【発明者】
【氏名】宮木 誠一郎
(72)【発明者】
【氏名】近藤 一志
【審査官】前田 典之
(56)【参考文献】
【文献】欧州特許出願公開第01672311(EP,A1)
【文献】米国特許第05359412(US,A)
【文献】米国特許出願公開第2005/0088659(US,A1)
【文献】特開2007-020138(JP,A)
【文献】欧州特許出願公開第00967743(EP,A2)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/61
H04B 10/11
(57)【特許請求の範囲】
【請求項1】
光位相変調信号を受信する光受信機であって、
前記光位相変調信号を分岐した2つの光信号間の遅延を1ビット分に制御して干渉させた第1の光信号および第2の光信号を出力する光遅延干渉手段と、前記第1の光信号と前記第2の光信号との差動光検出を行い、第1の主信号を出力する第1の光検出手段と、前記第1の光信号と前記第2の光信号との差動光の強度を示すピーク信号を出力するピーク信号検出手段と、を有する差動光検出手段と、
前記ピーク信号のレベル変動周波数成分を抑圧するレベル変動周波数抑圧手段と、前記レベル変動周波数成分が抑圧されたピーク信号を元にオーバドライブ増幅された光遅延干渉制御信号を生成し前記光遅延干渉手段に印加する光遅延干渉制御手段と、前記差動光検出手段からの前記第1の主信号を元に出力データを復元するデータ復元手段と、を有するディジタル信号処理手段と、
を有する光受信機。
【請求項2】
前記光遅延干渉制御信号におけるオーバドライブ増幅のパルス幅とオーバドライブ増幅率を設定するオーバドライブ係数設定手段を有する請求項1記載の光受信機。
【請求項3】
前記レベル変動周波数成分が抑圧されたピーク信号の信号分岐を行う信号分岐手段と、
前記信号分岐手段で分岐された前記レベル変動周波数成分が抑圧されたピーク信号の収束時間を元に前記オーバドライブ増幅率を調整するオーバドライブ増幅率調整手段と、
を有する請求項2に記載の光受信機。
【請求項4】
前記ピーク信号検出手段は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換手段と、
前記第1の電気信号と第2の電気信号との差動信号を出力する差動検出手段と、
前記差動信号を増幅して前記ピーク信号を出力する信号増幅手段と、
を有する光検出手段と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し線形領域で前記ピーク信号を出力する利得値を、前記信号増幅手段に設定する利得設定手段と、
を有する請求項1から3のいずれか1項に記載の光受信機。
【請求項5】
前記ピーク信号検出手段は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換手段と、
前記第1の電気信号と第2の電気信号との差動信号を前記ピーク信号として出力する差動検出手段と、
を有する光検出手段を有する請求項1から3のいずれか1項に記載の光受信機。
【請求項6】
前記ピーク信号検出手段は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換手段と、
前記第1の電気信号と第2の電気信号との差動検出を行い第2の主信号を出力する差動検出手段と、
前記第2の主信号を増幅し、前記第2の主信号を元に前記ピーク信号を出力する信号増幅手段と、
を有する光検出手段と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し出力が線形に変化する線形領域で前記信号増幅手段が動作する利得値を、前記信号増幅手段に設定する利得設定手段と、
を有する請求項1から3のいずれかに記載の光受信機。
【請求項7】
前記ピーク信号検出手段は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換手段と、
前記第1の電気信号および前記第2の電気信号の差動検出を行い第2の主信号を出力し、前記第1の電気信号と前記第2の電気信号との差動信号を前記ピーク信号として出力する差動検出手段と、
前記第2の主信号を増幅する信号増幅手段と、
を有する光検出手段と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し出力が線形に変化する線形領域で前記信号増幅手段が動作する利得値を、前記信号増幅手段に設定する利得設定手段と、
を有する請求項1から3のいずれかに記載の光受信機。
【請求項8】
前記レベル変動周波数抑圧手段は、
前記ピーク信号の前記レベル変動周波数成分を抑圧するフィルタ帯域を設定するフィルタ帯域設定手段と、
前記ピーク信号に前記フィルタ帯域のフィルタ処理を行うフィルタ処理手段と、
を有する請求項1から7のいずれか1項に記載の光受信機。
【請求項9】
前記レベル変動周波数抑圧手段は、
前記ピーク信号を周波数スペクトルに変換する周波数領域変換手段と、
前記周波数スペクトルから前記レベル変動周波数成分を検出するレベル変動周波数検出手段と、
前記レベル変動周波数検出手段が検出した前記レベル変動周波数成分を元にして、前記レベル変動周波数成分を抑圧するフィルタ帯域を設定するフィルタ帯域設定手段と、
前記ピーク信号に前記フィルタ帯域でフィルタ処理を行うフィルタ処理手段と、
を有する請求項1から7のいずれか1項に記載の光受信機。
【請求項10】
前記レベル変動周波数抑圧手段は、
前記ピーク信号を周波数スペクトルに変換する周波数領域変換手段と、
前記周波数スペクトルから前記レベル変動周波数成分を検出し、検出した前記レベル変動周波数成分の除去を行うレベル変動周波数検出手段と、
前記レベル変動周波数成分が除去された前記周波数スペクトルを時間領域に変換し、前記レベル変動周波数成分が抑圧された前記ピーク信号を出力する時間領域変換手段と、
を有する請求項1から7のいずれかに記載の光受信機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光受信機及び光空間通信システムに関し、特に、光位相変調信号を受信する衛星搭載の光受信機及び光空間通信システムに関する。
【背景技術】
【0002】
近年、地球観測衛星の観測データの増加やハイスループット衛星等に見られるブロードバンド衛星通信サービスに伴い、衛星通信の大容量化のニーズが高まっている。それを解決するための技術として、衛星搭載用の光空間通信技術(衛星間光通信技術、地上衛星間光通信技術)に期待が高まっている。
【0003】
この衛星搭載用の光空間通信を実現するには、伝搬された光ビームの捕捉追尾装置と光増幅器、光送受信機が必要になる。特に、数万kmに渡る距離で通信を確立するには、高感度の光送受信機が使用されなければならない。このような光送受信機の変復調方式として、非特許文献1および非特許文献2に見られるように、差動2値位相変復調(DPSK:Differential Phase Shift Keying)方式が使用されてきている。差動2値位相変復調方式を使用することにより、今まで衛星搭載用として使用されてきた強度変調-直接検波(IM/DD:Intensity Modulation/Direct Detection)方式よりも高感度化が実現できる。
【0004】
また特許文献1には差動位相変復調方式の光受信回路が開示されている。特許文献1の光受信回路は、1ビット遅延干渉計と、2つのフォトダイオードが2つの入力にそれぞれ接続される差動アンプと、差動アンプの2つの出力にそれぞれ接続された2つのエミッタフォロワまたはソースフォロワ回路と、を備えている。また特許文献1に開示されている光受信回路は、差動位相変調された1組の光信号が1ビット遅延干渉計に入力され、1ビット遅延干渉計は、1組の導波路の一方に1ビット遅延素子を備え、互いに隣接するビット間の位相差に応じた1組の2つの光信号を2つのフォトダイオードにそれぞれ出力する。差動アンプにおいて2つの入力信号の差分を出力して復調され、復調された正相および逆相の復調信号が出力される。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5339088号公報
【非特許文献】
【0006】
【文献】D.O.Caplan,et al,“Multi-rate DPSK Optical Transceivers for Free-Space Applications”,SPIE Photonics West LASE,89710K,2014
【文献】H.G.Rao,et al,“Electronics Design of a Multi-Rate DPSK Modem for Free-Space Optical Communications”,SPIE Photonics West LASE,89710Y,2014
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら上述の1ビット遅延干渉計の構成では、環境温度が変動すると、1ビット遅延干渉計から出力される1組の光信号間の遅延量が変動することにより、それらの差動信号のピークが低下する恐れがある。宇宙環境では1ビット遅延干渉計が温度制御されるが、真空環境ではヒータから1ビット遅延干渉計への熱伝達特性が大気中の環境と比較して悪くなるため温度の収束までに時間がかかる。このため宇宙環境では1ビット遅延干渉計から出力される1組の光信号の差動信号のピークが低下して復調が不安定になる恐れがある。このように宇宙環境では差動位相変復調方式を衛星搭載用として宇宙環境に適用することは困難であった。
【0008】
本発明の目的は、差動位相変復調方式の光受信機及び光空間通信システムにおいて、隣接ビットの差動信号のピーク変動を抑え、差動位相変復調方式を衛星搭載用として宇宙環境に適用可能にする技術を提供することにある。
【課題を解決するための手段】
【0009】
本発明に係る光受信機は、光位相変調信号を受信する光受信機であって、前記光位相変調信号を分岐した2つの光信号間の遅延を1ビット分に制御して干渉させた第1の光信号および第2の光信号を出力する光遅延干渉計と、前記第1の光信号と前記第2の光信号との差動光検出を行い、第1の主信号を出力する第1の光検出器と、前記第1の光信号と前記第2の光信号との差動光の強度を示すピーク信号を出力するピーク信号検出部と、を有する差動光検出部と、前記ピーク信号のレベル変動周波数成分を抑圧するレベル変動周波数抑圧部と、前記レベル変動周波数成分が抑圧されたピーク信号を元にオーバドライブ増幅された光遅延干渉制御信号を生成し前記光遅延干渉計に印加する光遅延干渉制御部と、前記光検出器からの前記第1の主信号を元に出力データを復元するデータ復元部と、を有するディジタル信号処理部と、を有する。
【0010】
本発明に係る光空間通信システムは、上記の光受信機を有する光受信装置と、前記光位相変調信号を送信する光送信装置と、を有する光空間通信システムにおいて、前記光送信装置は、前記光位相変調信号を出力する光送信機と、前記光位相変調信号の捕捉追尾を行う捕捉追尾装置と、を有し、前記光送信機は、衛星軌道上で発生するドップラー周波数を相殺する光波長になるレーザ駆動電流値を出力する送信制御部と、入力データを元にして入力信号を生成する信号生成部と、クロック信号を生成するクロック生成部と、を備えるディジタル信号処理部と、前記レーザ駆動電流値に基づいてレーザ駆動電流の制御を行うレーザ駆動電流制御部と、前記レーザ駆動電流でレーザ光を出力する送信レーザ部と、前記レーザ光に対して、前記入力信号および前記クロック信号を元にして変調を行い、前記光位相変調信号を出力する光変調部と、を備える光送信部と、を有する。
【発明の効果】
【0011】
本発明によれば、差動位相変復調方式の光受信機及び光空間通信システムにおいて、隣接ビットの差分信号のピーク変動を抑え、差動位相変復調方式を衛星搭載用として宇宙環境に適用することが可能となる。
【図面の簡単な説明】
【0012】
図1】第1の実施形態に係る、DPSK方式の光受信機の構成図である。
図2】第1の実施形態の光空間通信システムの構成図である。
図3図1の光遅延干渉計の構成の一例である。
図4図1のピーク信号検出部の第1の構成例を示すブロック図である。
図5図1のピーク信号検出部の第2の構成例を示すブロック図である。
図6図1のピーク信号検出部の第3の構成例を示すブロック図である。
図7図1のピーク信号検出部の第4の構成例を示すブロック図である。
図8図1のレベル変動周波数抑圧部の第1の構成例を示すブロック図である。
図9図1のレベル変動周波数抑圧部の第2の構成例を示すブロック図である。
図10図1のレベル変動周波数抑圧部の第3の構成例を示すブロック図である。
図11図1のレベル変動周波数抑圧部の第4の構成例を示すブロック図である。
図12図1の光遅延干渉制御部の構成例を示すブロック図である。
図13】オーバドライブ増幅有りおよび無しの場合の、上昇する光遅延干渉制御信号C1と、真空中でオーバドライブ増幅有りおよび無しの場合のピーク信号E1である。
図14】オーバドライブ増幅有りおよび無しの場合の、下降する光遅延干渉制御信号C1と、真空中でオーバドライブ増幅有りおよび無しの場合のピーク信号E1である。
図15】オーバドライブ増幅された、上昇する光遅延干渉制御信号C1に係る設定条件を示した図である。
図16】オーバドライブ増幅された、下降する光遅延干渉制御信号C1に係る設定条件を示した図である。
図17】第1の実施形態の変形例に係る、DQPSK方式の光受信機の構成図である。
図18】第2の実施形態に係る、DPSK方式の光受信機の構成図である。
図19】第2の実施形態の変形例に係る、DQPSK方式の光受信機の構成図である。
図20】第3の実施形態に係る、光空間通信システムを構成する光送信機の構成図である。
図21図20の制御装置とドップラー周波数制御部の第1の構成例を示すブロック図である。
図22】衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、細かい時間間隔でレーザ駆動電流制御部を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機が光位相変調信号を受信するときに残留する周波数誤差WE1を示す図である。
図23】衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、長い時間間隔でレーザ駆動電流制御部を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機が光位相変調信号を受信するときに残留する周波数誤差WE1を示している。
図24図20の制御装置とドップラー周波数制御部の第2の構成例を示すブロック図である。
図25】衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、長い時間間隔でレーザ駆動電流制御部を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機が光位相変調信号を受信するときに残留する周波数誤差WE1を示す図である。
図26】第3の実施形態の第1の変形例に係る光空間通信システムを構成し、単一偏波のNRZのBPSK信号である光位相変調信号を出力する、光送信機の構成図である。
図27】第3の実施形態の第2の変形例に係る光空間通信システムを構成し、単一偏波のRZのQPSK信号である光位相変調信号を出力する光送信機の構成図である。
図28図27の光IQ変調部の一例を示すブロック図である。
図29】第3の実施形態の第3の変形例に係る光空間通信システムを構成し、単一偏波のNRZのQPSK信号である光位相変調信号を出力する光送信機の構成図である。
図30】第3の実施形態の第4の変形例に係る光空間通信システムを構成し、単一偏波のNRZまたはRZの強度変調信号を出力する光送信機の構成図である。
図31】単一偏波のNRZまたはRZの強度変調信号を受信し復調する光受信機の構成図である。
図32】単一偏波の光信号を受信するディジタルコヒーレント光通信方式の光受信機の構成図である。
図33図1の光受信機との比較のための比較例の光受信機の構成図である。
図34】比較例において上昇する光遅延干渉制御信号C1’を光遅延干渉計内部の光位相調整部に印加した場合の、大気中の場合と真空中の場合のピーク信号E1’を示す図である。
図35】比較例において下降する光遅延干渉制御信号C1’を光遅延干渉計内部の光位相調整部に印加した場合の、大気中の場合と真空中の場合のピーク信号E1’を示す図である。
【発明を実施するための形態】
【0013】
<第1の実施形態>
本発明の第1の実施形態について説明する。図1は、第1の実施形態に係る、DPSK方式の光受信機の構成図である。また図2は、本実施形態の光空間通信システムの構成図である。
【0014】
図1に示すように、光受信機10は、差動光検出部110と、ディジタル信号処理部120とを有する。また図2に示すように、第1の実施形態の光空間通信システム100は、光空間通信用光送信装置70と光空間通信用光受信装置80を備えている。光空間通信用光送信装置70は、光送信機50と、高出力光増幅器40と、光捕捉追尾装置30aと、制御装置60aを備えている。光空間通信用光受信装置80は、図1の光受信機10と、低雑音光増幅器20と、光捕捉追尾装置30bと、制御装置60bを備えている。
【0015】
高出力光増幅器40は、光送信機50から出力された光信号を高出力増幅する。高出力増幅された光信号は、光捕捉追尾装置30aに入力される。光捕捉追尾装置30aは、入力された光信号が光空間通信用光送信装置70から自由空間を抜けて光空間通信用光受信装置80に届くよう光空間通信用光受信装置80に向けて送信する。また、制御装置60aは、地上局との間のテレメトリコマンド送受信を用いて、光送信機50と、高出力光増幅器40と、光捕捉追尾装置30aの制御を行う。
【0016】
光空間通信用光受信装置80に入力された光信号は、光捕捉追尾装置30bに入力される。光捕捉追尾装置30bに入力された光信号は、低雑音光増幅器20に入力される。低雑音光増幅器20は、低雑音光増幅を行う。光受信機10は、低雑音光増幅された光信号を受信する。また、制御装置60bは、地上局との間でテレメトリコマンドの送受信を行い、テレメトリコマンドを用いて、光受信機10と、低雑音光増幅器20と、光捕捉追尾装置30bの制御を行う。
【0017】
図1に戻り、光受信機10の構成について詳細に説明する。光位相変調信号は、単一偏波の2値位相変調信号(BPSK:Binary Phase Shift Keying)である。差動光検出部110は、光位相変調信号を光遅延検波で光位相変調信号の位相情報を検出する機能部である。差動光検出部110は、光遅延干渉計210と、光分岐部220aおよび220bと、ピーク信号検出部230と、広帯域バランス型光検出器240、温度制御部250を具備する。ディジタル信号処理部120は、主信号O1およびO2と、ピーク信号E1に対しディジタル信号処理を行う機能部である。ディジタル信号処理部120は、データ復元部310と、レベル変動周波数抑圧部320と、光遅延干渉制御部330と、オーバドライブ係数設定部340とを具備する。
【0018】
光受信機10に入力された光位相変調信号は、差動光検出部110に入力される。差動光検出部110に入力された光位相変調信号は、光遅延干渉計210に入力される。光遅延干渉計210は、光位相変調信号を隣接ビット間で干渉させる。具体的には光遅延干渉計210は、光位相変調信号を2つの光信号に分岐し、分岐した2つの光信号間の遅延を1ビット分に制御して、2つの光信号を干渉させる。
【0019】
図3は、図1の光遅延干渉計の構成の一例である。図3において、光遅延干渉計210は、光位相変調信号を2つの光信号に分岐させた後、導波路の一方に、1ビット分の光遅延を行う光遅延素子211を備えている。また1組の導波路の他方の導波路に、ヒータ等が付属された光位相調整部212を備えている。光位相調整部212には、光遅延干渉制御部330から出力される光遅延干渉制御信号C1が入力され、光遅延干渉制御信号C1により光位相調整部212のヒータが制御されることにより光位相変調信号を2分岐させた2つの光信号間の遅延量が1ビット分になるよう調整される。以下、この調整制御は波長トラッキングともいう。光遅延干渉計210は、調整後の2つの光信号を干渉させ、干渉させた2つの光信号を出力する。
【0020】
なお光位相変調信号の波長変動が生じた場合でも、光遅延干渉制御部330が光遅延干渉計210内部の光位相調整部212のヒータを制御することにより、光受信機10において波長トラッキングを行うことができるようになる。
【0021】
一方、温度制御部250は、温度調整のための制御信号を、ペルチェ素子等のような温度調整素子213に送る。温度モニタ素子214は、温度モニタ信号を温度制御部250に送る。このループバック制御により、光遅延干渉計210の温度を一定に維持する制御が行われる。
【0022】
図1に示すように、光遅延干渉計210から出力された第1の光信号および第2の光信号は、それぞれ光分岐部220aおよび光分岐部220bで分岐される。光分岐部220aで分岐された光信号の一方は、ピーク信号検出部230に入力される。また、光分岐部220aで分岐された光信号の他方は、広帯域バランス型光検出器240に入力される。ピーク信号検出部230は、光遅延干渉計210で干渉させた2つの光信号(第1の光信号および第2の光信号)の差動光の強度を示すピーク信号E1をディジタル信号処理部120に出力する。広帯域バランス型光検出器240は、光遅延干渉計210で干渉させた2つの光信号の差動光検出を行い、主信号O1およびO2をディジタル信号処理部120に出力する。
【0023】
図4は、図1のピーク信号検出部の第1の構成例を示すブロック図である。図4に示すように、本構成例のピーク信号検出部230は、バランス型光検出器231と、利得設定部235と、アナログ・ディジタル変換器236とを具備する。バランス型光検出器231は、光電変換器232aおよび232bと、差動検出部233と、信号増幅部234とを具備する。
【0024】
ピーク信号検出部230に光遅延干渉計210で干渉させた2つの光信号が入力される。ピーク信号検出部230に入力された2つの光信号は、バランス型光検出器231に入力され、それぞれ光電変換器232aおよび232bに入力される。光電変換器232aおよび光電変換器232bは、入力された2つの光信号をそれぞれ光電変換して2つの電気信号(第1の電気信号および第2の電気信号)を差動検出部233に出力する。差動検出部233は、入力された2つの電気信号の差動信号であるピーク信号E0を生成して信号増幅部234に出力する。信号増幅部234は、例えば、トランスインピーダンスアンプである。信号増幅部234は、ピーク信号E0を利得設定部235に設定されている利得で増幅する。信号増幅部234の利得は、光受信機10が受信する光位相変調信号の光入力パワーの範囲内において光入力パワーに対し信号増幅部234が出力するピーク信号E0’が線形領域で変化するような利得に設定されている。信号増幅部234で増幅されたピーク信号E0’は、アナログ・ディジタル変換器236に出力される。アナログ・ディジタル変換器236は、ディジタル電気信号に変換されたピーク信号E1を出力する。
【0025】
利得設定部235に設定する、信号増幅部234の利得は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0026】
図5は、図1のピーク信号検出部の第2の構成例を示すブロック図である。図5に示すように、本構成例のピーク信号検出部230aは、バランス型光検出器231aと、アナログ・ディジタル変換器236とを具備する。バランス型光検出器231aは、光電変換器232aおよび232bと、差動検出部233とを具備する。
【0027】
ピーク信号検出部230aに、光遅延干渉計210で干渉させた2つの光信号が入力される。2つの光信号はバランス型光検出器231に入力され、それぞれ光電変換器232aおよび232bに入力される。光電変換器232aおよび光電変換器232bは、入力された2つの光信号をそれぞれ光電変換した2つの電気信号を差動検出部に出力する。差動検出部233は、入力された2つの電気信号の差動信号であるピーク信号E0をアナログ・ディジタル変換器236に出力する。アナログ・ディジタル変換器236は、ディジタル電気信号に変換されたピーク信号E1を出力する。
【0028】
図6は、図1のピーク信号検出部の第3の構成例を示すブロック図である。図6に示すように、本構成例のピーク信号検出部230bは、広帯域バランス型光検出器241と、利得設定部235と、アナログ・ディジタル変換器236と、終端部237とを具備する。広帯域バランス型光検出器241は、広帯域光電変換器242aおよび242bと、広帯域差動検出部243と、広帯域信号増幅部244とを具備する。
【0029】
ピーク信号検出部230bに、光遅延干渉計210で干渉させた2つの光信号が入力される。ピーク信号検出部230bに入力された2つの光信号は、広帯域バランス型光検出器241に入力され、それぞれ広帯域光電変換器242aおよび広帯域光電変換器242bに入力される。広帯域光電変換器242aおよび広帯域光電変換器242bは、それぞれに入力された光信号を光電変換した電気信号を広帯域差動検出部243に出力する。広帯域差動検出部243は、入力された2つの電気信号の差動検出を行い、主信号O3およびO4を広帯域信号増幅部244に出力する。広帯域信号増幅部244は、例えば、トランスインピーダンスアンプである。広帯域信号増幅部244は、主信号O3およびO4を、利得設定部235に設定されている利得で増幅して終端部237を出力する。広帯域信号増幅部244の利得は、光受信機10が受信する光位相変調信号の光入力パワーの範囲内において光入力パワーに対し広帯域信号増幅部244が出力する主信号O3およびO4が線形領域で変化するような利得に設定されている。広帯域信号増幅部244で増幅された主信号O3’およびO4’は、終端部237で終端される。
【0030】
また広帯域信号増幅部244は、主信号O3およびO4を、アナログ電気信号のピーク信号E0’に変換して、アナログ・ディジタル変換器236に出力する。広帯域信号増幅部244は、例えば主信号O3をピーク信号E0’として出力してもよい。アナログ・ディジタル変換器236は、入力されたピーク信号E0’をディジタル電気信号に変換してピーク信号E1を出力する。
【0031】
利得設定部235に設定する、広帯域信号増幅部244の利得は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0032】
図7は、図1のピーク信号検出部の第4の構成例を示すブロック図である。図7に示すように、本構成例のピーク信号検出部230cは、広帯域バランス型光検出器241aと、利得設定部235と、アナログ・ディジタル変換器236と、終端部237とを具備する。広帯域バランス型光検出器241aは、広帯域光電変換器242aおよび242bと、広帯域差動検出部243aと、広帯域信号増幅部244とを具備する。
【0033】
ピーク信号検出部230cには、光遅延干渉計210で干渉させた2つの光信号が入力される。ピーク信号検出部230cに入力された2つの光信号は、広帯域バランス型光検出器241aに入力され、それぞれ広帯域光電変換器242aおよび広帯域光電変換器242bに入力される。広帯域光電変換器242aおよび広帯域光電変換器242bは、それぞれに入力された光信号を光電変換した電気信号を広帯域差動検出部243aに出力する。広帯域差動検出部243aは、入力された2つの電気信号の差動検出を行い、主信号O3およびO4を広帯域信号増幅部244に出力する。また広帯域差動検出部243aは、入力された2つの電気信号の差動信号であるピーク信号E0をアナログ・ディジタル変換器236に出力する。広帯域信号増幅部244は、入力された主信号O3およびO4を、利得設定部235に設定されている利得で増幅して終端部237に出力する。広帯域信号増幅部244で増幅された主信号O3’およびO4’は、終端部237で終端される。また広帯域差動検出部243aは、入力された2つの電気信号をアナログ電気信号のピーク信号E0に変換してアナログ・ディジタル変換器236に出力する。広帯域差動検出部243aは、入力された2つの電気信号の差動信号をピーク信号E0としてアナログ・ディジタル変換器236に出力してもよい。アナログ・ディジタル変換器236は、アナログ電気信号のピーク信号E0をディジタル電気信号に変換したピーク信号E1を出力する。
【0034】
利得設定部235に設定する、広帯域信号増幅部244の利得は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0035】
図1にもどり光受信機10の構成について説明する。ディジタル信号処理部120に入力された主信号O1および主信号O2は、データ復元部310に入力される。データ復元部310は、例えばクロックデータ再生器であり、主信号O1およびO2を元に、クロックリカバリを行い、リカバリされたクロックでデータをラッチすることで出力データD1およびD2を復元して出力する。
【0036】
またディジタル信号処理部120に入力されたピーク信号E1は、レベル変動周波数抑圧部320に入力される。レベル変動周波数抑圧部320は、ピーク信号E1のピークレベルの変動する周波数を検出し、その周波数のピーク変動成分を抑圧して光遅延干渉制御部330にピーク信号E2を出力する。なお上記のピーク変動成分は、以下、レベル変動周波数成分という。
【0037】
図8は、図1のレベル変動周波数抑圧部の第1の構成例を示すブロック図である。図8に示すように、本構成例のレベル変動周波数抑圧部320は、フィルタ帯域設定部321と、フィルタ処理部322とを具備する。
【0038】
フィルタ帯域設定部321は、ピーク信号E1のレベル変動周波数成分を抑圧するフィルタ帯域を設定する。
【0039】
レベル変動周波数抑圧部320に、ピーク信号E1が入力される。フィルタ処理部322は、ピーク信号E1に対し、フィルタ帯域設定部321に設定されているフィルタ帯域でレベル変動周波数成分を抑圧するためのフィルタ処理を行う。これにより、レベル変動周波数抑圧部320から、レベル変動周波数成分が抑圧されたピーク信号E2が出力される。
【0040】
図9は、図1のレベル変動周波数抑圧部の第2の構成例を示すブロック図である。図9に示すように、本構成例のレベル変動周波数抑圧部320aは、フィルタ帯域設定部321aと、フィルタ処理部322と、周波数領域変換部323と、レベル変動周波数検出部324とを具備する。
【0041】
レベル変動周波数抑圧部320aに、ピーク信号E1が入力され、入力されたピーク信号E1は、周波数領域変換部323に入力される。周波数領域変換部323は、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってピーク信号E1を周波数スペクトルに変換し、ピーク信号E1の周波数スペクトルをレベル変動周波数検出部324及びフィルタ帯域設定部321aに出力する。レベル変動周波数検出部324は、ピーク信号E1の周波数スペクトルから、レベル変動周波数成分を検出する。フィルタ帯域設定部321aは、周波数領域変換部323からの出力であるピーク信号E1の周波数スペクトルと、レベル変動周波数検出部324にて検出したレベル変動周波数成分を元に、レベル変動周波数成分を抑圧するフィルタ帯域を設定する。フィルタ処理部322は、ピーク信号E1に対し、フィルタ帯域設定部321aにより設定されたフィルタ帯域で、レベル変動周波数成分を抑圧するためのフィルタ処理を行う。これによりレベル変動周波数抑圧部320aは、レベル変動周波数成分が抑圧されたピーク信号E2を出力する。
【0042】
図10は、レベル変動周波数抑圧部の第3の構成例を示すブロック図である。図8に示すように、本構成例のレベル変動周波数抑圧部320bは、周波数領域変換部323と、レベル変動周波数検出部324と、時間領域変換部325とを具備する。
【0043】
レベル変動周波数抑圧部320bに、ピーク信号E1が入力される。ピーク信号E1は、周波数領域変換部323に入力され、周波数領域変換部323は、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってピーク信号E1を周波数スペクトルに変換し、ピーク信号E1の周波数スペクトルをレベル変動周波数検出部324に出力する。レベル変動周波数検出部324は、ピーク信号E1の周波数スペクトルから、レベル変動周波数成分を検出する。レベル変動周波数検出部324は、ピーク信号E1の周波数スペクトルから、検出したレベル変動周波数成分のみを除去して時間領域変換部325に出力する。時間領域変換部325は、高速逆フーリエ変換(IFFT:Inverse Fast Fourier Transform)等を行って、レベル変動周波数検出部324からの周波数スペクトルをピーク信号E2に変換して、レベル変動周波数成分が抑圧されたピーク信号E2を出力する。これにより、レベル変動周波数抑圧部320bは、レベル変動周波数成分が抑圧されたピーク信号E2を出力する。
【0044】
図11は、図1のレベル変動周波数抑圧部の第4の構成例を示すブロック図である。図11に示すように、本構成例のレベル変動周波数抑圧部320cは、平均化数設定部326と、平均化処理部327とを具備する。
【0045】
レベル変動周波数抑圧部320cに、ピーク信号E1が入力される。平均化処理部327は、平均化数設定部326に設定されている平均化処理部327の平均化数情報を元に、ピーク信号E1に対しレベル変動周波数成分を抑圧するための平均化処理を行う。これにより、レベル変動周波数抑圧部320cは、レベル変動周波数成分が抑圧されたピーク信号E2を出力する。
【0046】
図1に戻り、光受信機10の構成についてさらに説明する。光遅延干渉制御部330は、レベル変動周波数成分が抑圧されたピーク信号E2の出力レベルとオーバドライブ係数設定部340からの情報を元に、光遅延干渉計210における遅延量を制御する、オーバドライブ増幅された光遅延干渉制御信号C1を生成する。光遅延干渉制御部330は、ピーク信号E2の出力レベルとオーバドライブ係数設定部340からの情報を元に、ピーク信号E2のピークを高くするよう設定された一定レベルの信号を瞬間的にオーバドライブ増幅した波形の光遅延干渉制御信号C1を生成する。光遅延干渉制御部330からの出力である光遅延干渉制御信号C1は、光遅延干渉計210に印加される。
【0047】
このように光遅延干渉計210がフィードバック制御されることより、光遅延干渉計210で分岐した2つの光信号間の遅延が制御され、ピーク信号の出力レベルを高くすることができる。
【0048】
オーバドライブ係数設定部340に設定する情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0049】
図12は、図1の光遅延干渉制御部の構成例を示すブロック図である。図12に示すように、本構成例の光遅延干渉制御部330は、制御信号生成部331と、ディジタル・アナログ変換器332とを具備する。
【0050】
レベル変動周波数成分が抑圧されたピーク信号E2が、光遅延干渉制御部330に入力され、制御信号生成部331に入力される。制御信号生成部331は、入力されたピーク信号E2の出力レベルとオーバドライブ係数設定部340からの情報を元に、まず、ピーク信号E2の出力レベルとオーバドライブ係数設定部340からの情報を元にピーク信号E2のピークを高くするようディジタル・アナログ変換器332に出力する光遅延干渉制御信号C0のレベルを設定する。
【0051】
例えば、制御信号生成部331は、所定の周期で、入力されたピーク信号E2を基に、記憶しているピーク信号E2のレベルと光遅延干渉制御信号C0のレベルの履歴を参照して、前回のステップでのレベルよりピーク信号が増える方向に所定のレベルだけ変更したレベルに決定する。なお制御信号生成部331は、光遅延干渉制御信号C0を設定するとき、ピーク信号E2のレベルと光遅延干渉制御信号C0のレベルを対応させて記憶している。
【0052】
制御信号生成部331は、今回のピーク信号E2のレベルが前回より上がった場合、前回のステップで光遅延干渉制御信号C0のレベルを上げていたときは、前回のレベルより所定のレベルだけ上げたレベルに光遅延干渉制御信号C0のレベルを設定する。また制御信号生成部331は、今回のピーク信号E1のレベルが前回より下がった場合、前回のステップで光遅延干渉制御信号C0のレベルを上げていたときは、前回のレベルより所定のレベルだけ下げたレベルに光遅延干渉制御信号C0のレベルを設定する。
【0053】
その後、制御信号生成部331は、設定したレベルの信号を、オーバドライブ係数設定部340からの情報を元に瞬間的にプッシュアンドプルでオーバドライブ増幅した波形の、ディジタル電気信号の光遅延干渉制御信号C0を生成し、ディジタル・アナログ変換器332に出力する。ディジタル・アナログ変換器332は、入力されたディジタル電気信号の光遅延干渉制御信号C0をアナログ電気信号に変換した光遅延干渉制御信号C1を出力する。
【0054】
図13は、オーバドライブ増幅有りおよび無しの場合の、上昇する光遅延干渉制御信号C1と、真空中でオーバドライブ増幅有りおよび無しの場合のピーク信号E1である。図13で示す通り、真空中の場合、オーバドライブ増幅無しの場合の、上昇する光遅延干渉制御信号C1を、光遅延干渉計内部の光位相調整部212に印加すると、オーバドライブ増幅によってピーク信号E1は持ち上がるようになる。そのため、オーバドライブ増幅有りのピーク信号E1は、オーバドライブ増幅無しのピーク信号E1と比較して、収束時間が改善される。
【0055】
図14は、オーバドライブ増幅有りおよび無しの場合の、下降する光遅延干渉制御信号C1と、真空中でオーバドライブ増幅有りおよび無しの場合のピーク信号E1である。図14で示す通り、真空中の場合、オーバドライブ増幅無しの場合の、上昇する光遅延干渉制御信号C1を、光遅延干渉計内部の光位相調整部212に印加すると、オーバドライブ増幅によってピーク信号E1は持ち上がるようになる。そのため、オーバドライブ増幅有りのピーク信号E1は、オーバドライブ増幅無しのピーク信号E1と比較して、収束時間が改善される。
【0056】
図15は、オーバドライブ増幅された、上昇する光遅延干渉制御信号C1に係る設定条件を示した図である。n段目のステップ電圧値はVnであり、n段目のオーバドライブ電圧値はOVnである。T1nは電圧値がVn-1からOVnへと立上る時刻であり、T2nはOVnからVn-1へと立下る時刻であり、T3nは電圧値がVn-1からVnへと立上る時刻である。1ステップ幅PW1は、
PW1=T1n+1-T1n
である。
パルス幅PW2は、
PW2=T2n-T1n
である。
パルス幅PW3は、
PW3=T3n-T2n
である。
オーバドライブ増幅率A1は、
A1={(OVn)-(Vn-1)}/{(Vn)-(Vn-1)
である。
オーバドライブ係数設定部340に設定する条件は、例えば、パルス幅PW2と、パルス幅PW3と、オーバドライブ増幅率A1である。オーバドライブ増幅率A1は、個々の光遅延干渉計内部ヒータの応答性にバラツキがあるため、個々の光遅延干渉計毎に設定する必要がある。
【0057】
オーバドライブ係数設定部340に設定する情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0058】
図16は、オーバドライブ増幅された、下降する光遅延干渉制御信号C1に係る設定条件を示した図である。n段目のステップ電圧値はVnであり、n段目のオーバドライブ電圧値はOVnである。T1nは電圧値がVn-1からOVnへと立下る時刻であり、T2nはOVnからVn-1へと立上る時刻であり、T3nは電圧値がVn-1からVnへと立下がる時刻である。1ステップ幅PW1は、
PW1=T1n+1-T1n
である。
パルス幅PW2は、
PW2=T2n-T1n
である。
パルス幅PW3は、
PW3=T3n-T2n
である。
オーバドライブ増幅率A1は、
A1={(OVn)-(Vn-1)}/{(Vn)-(Vn-1)
である。
オーバドライブ係数設定部340に設定する条件は、例えば、パルス幅PW2と、パルス幅PW3と、オーバドライブ増幅率A1である。オーバドライブ増幅率A1は、個々の光遅延干渉計内部ヒータの応答性にバラツキがあるため、個々の光遅延干渉計毎に設定する必要がある。
【0059】
オーバドライブ係数設定部340に設定する情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
<第1の実施形態の効果>
図33は、図1の光受信機との比較のための比較例の光受信機の構成図である。図33において、比較例の光受信機16は、ディジタル信号処理部126に、レベル変動周波数抑圧部320及びオーバドライブ係数設定部340を備えていない。また比較例のディジタル信号処理部126においては、ピーク信号検出部230から出力されるピーク信号E1は、直接、光遅延干渉制御部334に入力される。すなわち、光補足追尾装置の制御によって生じる光擾乱や、大気等の媒質による光ビーム伝搬変動などといった外的レベル変動要因によるピーク信号E1のレベル変動が抑圧されることなく、ピーク信号検出部230から出力されるピーク信号E1が光遅延干渉制御部334に入力される。また比較例の光遅延干渉制御部334は、光遅延干渉制御信号C1’をオーバドライブ増幅せず、各ステップの期間中、一定のレベルとする。
【0060】
このような比較例の構成では差動位相変復調方式を衛星搭載用として適用するにあたり、以下の問題点がある。
【0061】
第1の問題点は、真空環境になることで、光遅延干渉計210内部のヒータの応答性が悪くなることである。これにより、大気中の環境と比較し、光位相調整部212の光分岐路への熱伝達特性が悪くなる。図34は、比較例において上昇する光遅延干渉制御信号C1’を光遅延干渉計210内部の光位相調整部に印加した場合の、大気中の場合と真空中の場合のピーク信号E1を示す図である。図35は、比較例において下降する光遅延干渉制御信号C1’を光遅延干渉計内部の光位相調整部に印加した場合の、大気中の場合と真空中の場合のピーク信号E1を示す図である。図34図35に示す通り、真空中の場合は熱伝達特性が悪くなることにより、大気中と比較してピーク信号収束まで時間がかかるようになる。そのため、光遅延干渉制御部334を介した、光遅延干渉計210内部の光位相調整部212のヒータ調整において、受信側での波長トラッキングが安定しなくなり、波長トラッキングの収束に時間がかかるようになる。また、光遅延干渉計210内部の光位相調整部212のヒータの応答性も、個体によってバラツキが存在する。
【0062】
第2の問題点は、広帯域バランス型光検出器240内部のトランスインピーダンスアンプが、入力が所定のパワー以上になると出力レベルが飽和する非線形特性を持つ場合、ピーク信号においても非線形特性の影響が見られ、波長トラッキングが不可能になることである。波長トラッキングを行うには、広帯域バランス型光検出器からのピーク信号を、広帯域バランス型光検出器240または光遅延干渉計210が受信する光位相変調信号の光信号のパワーに対して広帯域バランス型光検出器240の出力振幅が線形に変化する線形領域で検出する必要がある。
【0063】
第3の問題点は、光捕捉追尾装置の制御によって生じる光擾乱や、大気等の媒質による光ビーム伝搬変動などといった外的レベル変動要因により、広帯域バランス型光検出器240からのピーク信号E1がレベル変動することである。広帯域バランス型光検出器240からのピーク信号E1を参照し、光遅延干渉制御信号C1’のレベルとの対応関係に基づいて光遅延干渉計210内部の光位相調整部212にて波長トラッキングを行うので、ピーク信号レベルの変動が生じると、干渉させる2つの光信号間の遅延量の調整が不安定になり、1ビット分の遅延量に収束しなくなる。
【0064】
上記の比較例における問題点に対し、第1の実施形態によれば、レベル変動周波数抑圧部320を備え、レベル変動周波数成分が抑圧されたピーク信号E2が光遅延干渉制御部330に入力されることにより、ピーク信号の検出能力を向上できる。さらにオーバドライブ増幅された光遅延干渉制御信号C1により光遅延干渉計210をフィードバック制御することにより、真空環境における光遅延干渉計210での波長トラッキングの応答性を改善することができる。これらによって差動位相変復調方式の光受信機及び光空間通信システムにおいて1ビット遅延干渉計から出力される光信号の差動信号のピーク変動を抑え、差動位相変復調方式を衛星搭載用として宇宙環境に適用することが可能となる。
<第1の実施形態の変形例>
次に、第1の実施形態の変形例について説明する。図17は、本変形例に係る、差動4値位相変復調(DQPSK:Differential Quadrature Phase Shift Keying)方式の光受信機の構成図である。なお本変形例に係る光空間通信システムの構成は、図2と同様である。本変形例の光位相変調信号は、単一偏波の4値位相変調信号(QPSK:Quadrature Phase Shift Keying)である。
【0065】
図17に示すように、本変形例の光受信機11は、差動光検出部111と、ディジタル信号処理部121とを有する。差動光検出部111は、光位相変調信号を光遅延検波で光位相変調信号の位相情報を検出する機能部である。差動光検出部111は、光遅延干渉計210aおよび210bと、光分岐部220aおよび220bおよび220cおよび220dおよび220eと、ピーク信号検出部230dおよび230eと、広帯域バランス型光検出器240aおよび240b、温度制御部250aおよび250bを具備する。
【0066】
ディジタル信号処理部121は、主信号O1a、O2a、O1bおよびO2bと、ピーク信号E1aおよびE1bに対しディジタル信号処理を行う機能部であり、データ復元部310aおよび310bと、レベル変動周波数抑圧部320dおよび320eと、光遅延干渉制御部330aと、オーバドライブ係数設定部340aを具備する。
【0067】
光受信機11に入力された光位相変調信号は、差動光検出部111に入力され、差動光検出部111に入力された光位相変調信号は、光分岐部220eで分岐される。分岐された光位相変調信号は、光遅延干渉計210aおよび210bに入力される。光遅延干渉計210aおよび210bは、それぞれ干渉させた光信号の組を出力する。したがって、光遅延干渉計210aおよび210bから、2組の干渉させた光信号が出力される。なお本変形例の光遅延干渉計210aは、入力された光位相変調信号を2分岐し、2分岐した2つの光信号の遅延量を1ビット分に制御した後、一方の信号についてはπ/4位相シフトを行い、これらを干渉させて光信号の組(2つの光信号)を出力する。また本変形例の光遅延干渉計210bは、入力された光位相変調信号を2分岐し、2分岐した2つの光信号の遅延量を1ビット分に制御した後、一方の信号については-π/4の位相シフトを行い、これらを干渉させて光信号の組(2つの光信号)を出力する。
【0068】
光遅延干渉計210aから出力された2つの光信号は、それぞれ第1の実施形態と同様な光分岐部220a、光分岐部220bで分岐される。光分岐部220aで分岐された光信号は、それぞれピーク信号検出部230dと、第1の実施形態の広帯域バランス型光検出器240と同様な広帯域バランス型光検出器240aに入力される。光分岐部220bで分岐された光信号は、それぞれピーク信号検出部230dと、広帯域バランス型光検出器240aに入力される。ピーク信号検出部230dは、光遅延干渉計210aで干渉させた2つの光信号をピーク信号E1aに変換して出力し、広帯域バランス型光検出器240aは、光遅延干渉計210aで干渉させた2つの光信号を主信号O1aおよびO2aに変換して出力する。このとき、主信号O1aおよびO2aは、光位相変調信号のI相成分に相当する主信号である。なお本変形例のピーク信号検出部230dは、上述の第1の実施形態のピーク信号検出部の構成のいずれかに、π/4位相シフトされた一方の光信号を-π/4位相シフトする位相シフト部を追加した構成としてよい。ピーク信号検出部230dは、π/4位相シフトされた一方の光信号を-π/4位相シフトした後、上述の第1の実施形態のピーク信号検出部の構成のいずれかによって、2つの光信号の差動光の強度を示すピーク信号E1をディジタル信号処理部121に出力する構成としてよい。
【0069】
光遅延干渉計210bから出力された2つの光信号は、それぞれ光分岐部220c、光分岐部220dで分岐される。光分岐部220cで分岐された2つの光信号は、それぞれピーク信号検出部230eと、第1の実施形態の広帯域バランス型光検出器240と同様な広帯域バランス型光検出器240bに入力される。光分岐部220dで分岐された光信号は、それぞれピーク信号検出部230eと、広帯域バランス型光検出器240bに入力される。ピーク信号検出部230eは、光遅延干渉計210bで干渉された2つの光信号をピーク信号E1bに変換して出力し、広帯域バランス型光検出器240bは、光遅延干渉計210bで干渉された2つの光信号を主信号O1bおよびO2bに変換して出力する。このとき、主信号O1bおよびO2bは、光位相変調信号のQ相成分に相当する主信号である。なお本変形例のピーク信号検出部230eは、上述の第1の実施形態のピーク信号検出部の構成のいずれかに、-π/4位相シフトされた一方の光信号をπ/4位相シフトする位相シフト部を追加した構成としてよい。ピーク信号検出部230eは、-π/4位相シフトされた一方の光信号をπ/4位相シフトした後、上述の第1の実施形態のピーク信号検出部の構成のいずれかによって、2つの光信号の差動光の強度を示すピーク信号E1をディジタル信号処理部121に出力する構成としてよい。また、温度制御部250aおよび温度制御部250bは、第1の実施形態の温度制御部250と同様な構成であり、光遅延干渉計210aおよび210bの温度を一定に維持するように温度調整を行う。
【0070】
ディジタル信号処理部121に入力された、I相に相当する主信号O1aおよび主信号O2aは、第1の実施形態のデータ復元部310と同様な構成のデータ復元部310aに入力される。データ復元部310aは、主信号O1aおよびO2aを元に、クロックリカバリを行い、リカバリされたクロックでデータをラッチすることで出力データD1aおよびD2aを復元して出力する。ディジタル信号処理部120に入力された、Q相に相当する主信号O1bおよび主信号O2bは、第1の実施形態のデータ復元部310と同様な構成のデータ復元部310bに入力される。データ復元部310bは、主信号O1bおよびO2bを元に、クロックリカバリを行い、リカバリされたクロックでデータをラッチすることで出力データD1bおよびD2bを復元して出力する。
【0071】
ディジタル信号処理部121に入力されたピーク信号E1aおよびピーク信号E1bは、それぞれレベル変動周波数抑圧部320dおよび320eに入力される。レベル変動周波数抑圧部320dは、入力されたピーク信号E1aのレベル変動周波数成分を抑圧してピーク信号E2aを光遅延干渉制御部330aに出力し、レベル変動周波数抑圧部320eは、入力されたピーク信号E1bのレベル変動周波数成分を抑圧してピーク信号E2bを光遅延干渉制御部330aに出力する。なおレベル変動周波数抑圧部320dおよびレベル変動周波数抑圧部320eは、上述の第1の実施形態のレベル変動周波数抑圧部320のいずれかの構成としてよい。光遅延干渉制御部330aは、レベル変動周波数成分が抑圧されたピーク信号E2aおよびE2bの出力レベルとオーバドライブ係数設定部340aからの情報を元にオーバドライブ増幅された、光遅延干渉制御信号C1aおよびC1bを出力する。オーバドライブ係数設定部340aは、光遅延干渉制御信号C1aと光遅延干渉制御信号C1bのそれぞれについて、第1の実施形態の光遅延干渉制御部330が設定する光遅延干渉制御信号C1に係る設定条件と同様な設定条件を設定するとしてよい。オーバドライブ係数設定部340aに設定する情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。また光遅延干渉制御部330aは、第1の実施形態の光遅延干渉制御部330と同様な構成により、レベル変動周波数成分が抑圧されたピーク信号E2aの出力レベルとオーバドライブ係数設定部340aからの情報を元にオーバドライブ増幅された、光遅延干渉制御信号C1aを出力する。また光遅延干渉制御部330aは、第1の実施形態の光遅延干渉制御部330と同様な構成により、レベル変動周波数成分が抑圧されたピーク信号E2bの出力レベルとオーバドライブ係数設定部340aからの情報を元にオーバドライブ増幅された光遅延干渉制御信号C1bを出力するとしてよい。光遅延干渉制御部330aは光遅延干渉制御部330aからの出力であるオーバドライブ増幅された光遅延干渉制御信号C1aおよびC1bにより光遅延干渉計210aおよび210bをフィードバック制御する。
【0072】
以上説明した本変形例により、DQPSK方式の光受信機においても第1の実施形態と同様、ピーク信号の検出能力を向上でき、真空環境における光遅延干渉計210aおよび210bでの波長トラッキングの応答性を改善することができる。これらによって差動位相変復調方式を衛星搭載用として宇宙環境に適用することが可能となる。
【0073】
なおQPSK信号に対して例を示したが、Mが4値以上のM-PSK(Phase Shift Keying)や、M-QAM(Quadrature Amplitude Modulation)、M-APSK(Amplitude Phase Shift Keying)の光信号の受信にも適用可能である。
<第2の実施形態>
本発明の第2の実施形態に係る、DPSK方式の光受信機について説明する。図18は、本発明の第2の実施形態に係る、DPSK方式の光受信機の構成図である。本実施形態に係る光空間通信システムの構成は、図2と同様である。本実施形態においては、光位相変調信号は、単一偏波のBPSK信号である。光受信機12は、第1の実施形態と同様な構成の差動光検出部110と、第1の実施形態と異なるディジタル信号処理部122とを有する。
【0074】
差動光検出部110は、上述のように光位相変調信号を光遅延検波で光位相変調信号の位相情報を検出する機能部であり、光遅延干渉計210と、光分岐部220aおよび220bと、ピーク信号検出部230と、広帯域バランス型光検出器240、温度制御部250を具備する。
【0075】
ディジタル信号処理部122は、主信号O1およびO2と、ピーク信号E1に対しディジタル信号処理を行う機能部であり、データ復元部310と、レベル変動周波数抑圧部320と、光遅延干渉制御部330と、オーバドライブ係数設定部341と、信号分岐部350と、オーバドライブ増幅率調整部360を具備する。データ復元部310と、レベル変動周波数抑圧部320と、光遅延干渉制御部333は第1の実施形態と同様な構成であるが、オーバドライブ係数設定部341は、第1の実施形態と異なる。また本実施形態のディジタル信号処理部122は、信号分岐部350と、オーバドライブ増幅率調整部360を具備する点でも第1の実施形態と異なっている。
【0076】
光受信機12に入力された光位相変調信号は、第1の実施形態と同様、差動光検出部110に入力され、差動光検出部110に入力された光位相変調信号は、光遅延干渉計210に入力される。光遅延干渉計210は、第1の実施形態と同様、光位相変調信号を隣り合うビット間で干渉させ、光遅延干渉計210から干渉させた第1の光信号および第2の光信号が出力される。干渉させた第1の光信号および第2の光信号は、第1の実施形態と同様、光分岐部220aおよび光分岐部220bで分岐され、光分岐部220aおよび光分岐部220bで分岐された光信号は、それぞれピーク信号検出部230と、広帯域バランス型光検出器240に入力される。第1の実施形態と同様、ピーク信号検出部230は、ピーク信号E1を出力し、広帯域バランス型光検出器240は主信号O1およびO2を出力する。また、温度制御部250は、第1の実施形態と同様、光遅延干渉計210の温度を一定に維持するように温度調整を行う。
【0077】
ディジタル信号処理部122に入力された主信号O1および主信号O2は、第1の実施形態と同様、データ復元部310に入力され、データ復元部310は、主信号O1およびO2を元に、クロックリカバリを行い、リカバリされたクロックでデータをラッチすることで出力データD1およびD2を復元して出力する。
【0078】
またディジタル信号処理部122に入力されたピーク信号E1は、第1の実施形態と同様なレベル変動周波数抑圧部320に入力され、レベル変動周波数抑圧部320は、入力されたピーク信号E1のレベル変動周波数成分を抑圧してピーク信号E2を出力する。ピーク信号E2は、信号分岐部350に入力されて分岐され、光遅延干渉制御部330とオーバドライブ増幅率調整部360に入力される。
【0079】
オーバドライブ係数設定部341に当初、設定される情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0080】
オーバドライブ増幅率調整部360は、例えばオーバドライブ係数設定部341に設定する条件である、オーバドライブ増幅率A1を徐々に変化させ、信号分岐部350で分岐されたピーク信号E2の収束時間を計測し、計測した収束時間を元に、オーバドライブ増幅率A1aを決定する。オーバドライブ増幅率調整部360は、例えば収束時間が予め定められた目標時間以内に収まるようにオーバドライブ増幅率A1を決定する。オーバドライブ増幅率調整部360は、決定したオーバドライブ増幅率A1を、オーバドライブ係数設定部341に設定する。光遅延干渉制御部330は、信号分岐部350で分岐されたピーク信号E2の出力レベルとオーバドライブ係数設定部341からの情報を元にオーバドライブ増幅された光遅延干渉制御信号C1を出力する。光遅延干渉制御部330は、オーバドライブ増幅された光遅延干渉制御信号C1により、光遅延干渉計210をフィードバック制御する。
【0081】
以上説明した本実施形態によっても、第1の実施形態およびその変形例と同様、ピーク信号の検出能力を向上でき、真空環境における光遅延干渉計210での波長トラッキングの応答性を改善することができる。これらによって差動位相変復調方式を衛星搭載用として宇宙環境に適用することが可能となる。
<第2の実施形態の変形例>
本発明の第2の実施形態に係る光受信機の変形例について説明する。図19は、本変形例に係る、DQPSK方式の光受信機の構成図である。なお本変形例に係る光空間通信システムの構成は、図2と同様である。本変形例において光位相変調信号は、上述の第1の実施形態の変形例と同様、単一偏波のQPSK信号である。光受信機13は、上述の第1の実施形態の変形例と同様な差動光検出部111と、上述の第1の実施形態、その変形例、及び第2の実施形態とは異なるディジタル信号処理部123とを具備する。
【0082】
差動光検出部111は、上述の第1の実施形態の変形例と同様、光位相変調信号を光遅延検波で光位相変調信号の位相情報を検出する機能部である。差動光検出部111は、上述の第1の実施形態の変形例と同様な光遅延干渉計210aおよび210bと、光分岐部220aおよび220bおよび220cおよび220dおよび220eと、ピーク信号検出部230dおよび230eと、広帯域バランス型光検出器240aおよび240b、温度制御部250aおよび250bを具備する。
【0083】
ディジタル信号処理部123は、主信号O1a、O1b、O2aおよびO2bと、ピーク信号E1aおよびE1bに対しディジタル信号処理を行う機能部である。ディジタル信号処理部123は、データ復元部310aおよび310bと、レベル変動周波数抑圧部320dおよび320eと、光遅延干渉制御部330aと、オーバドライブ係数設定部341aと、信号分岐部350aおよび350bと、オーバドライブ増幅率調整部360a及び360bを具備する。データ復元部310aおよび310bと、レベル変動周波数抑圧部320dおよび320eと、光遅延干渉制御部330aは、上述の第1の実施形態の変形例と同様であるが、オーバドライブ係数設定部341aは、第1の実施形態の変形例のオーバドライブ係数設定部340aと異なる。また本実施形態のディジタル信号処理部123は、信号分岐部350aおよび350bと、オーバドライブ増幅率調整部360aおよび360bを具備する点でも第1の実施形態の変形例と異なっている。
【0084】
光受信機13に入力された光位相変調信号は、第1の実施形態の変形例と同様、差動光検出部111に入力され、差動光検出部111に入力された光位相変調信号は、光分岐部220eで分岐され、分岐された光位相変調信号は、光遅延干渉計210aおよび210bに入力される。光遅延干渉計210aおよび210bは、第1の実施形態の変形例と同様、それぞれ干渉させた光信号の組(2つの光信号)を出力する。したがって、第1の実施形態の変形例と同様、光遅延干渉計210aおよび210bから、2組の干渉させた光信号が出力される。光遅延干渉計210aは、第1の実施形態の変形例と同様、入力された光位相変調信号を2分岐し、一方の信号については1ビット分遅延させ、他方の信号についてはπ/4位相シフトを行い、これらを干渉させて光信号の組(2つの光信号)を出力する。また光遅延干渉計210bは、第1の実施形態の変形例と同様、入力された光位相変調信号を2分岐し、一方の信号については1ビット分遅延させ、他方の信号については-π/4の位相シフトを行い、これらを干渉させて光信号の組(2つの光信号)を出力する。
【0085】
光遅延干渉計210aから出力された2つの光信号は、それぞれ第1の実施形態の変形例と同様、光分岐部220a、光分岐部220bで分岐される。光分岐部220aで分岐された光信号は、それぞれ、第1の実施形態の変形例と同様なピーク信号検出部230dと、第1の実施形態の広帯域バランス型光検出器240と同様な広帯域バランス型光検出器240aに入力される。光分岐部220bで分岐された光信号は、それぞれピーク信号検出部230dと、広帯域バランス型光検出器240aに入力される。ピーク信号検出部230dは、第1の実施形態の変形例と同様、光遅延干渉計210aで干渉された2つの光信号をピーク信号E1aに変換して出力し、広帯域バランス型光検出器240aは光遅延干渉計210aで干渉された2つの光信号を主信号O1aおよびO2aに変換して出力する。このとき、主信号O1aおよびO2aは、第1の実施形態の変形例と同様、光位相変調信号のI相成分に相当する主信号である。なお本変形例のピーク信号検出部230dは、第1の実施形態の変形例と同様、上述の第1の実施形態のピーク信号検出部の構成のいずれかに、π/4位相シフトされた一方の光信号を-π/4位相シフトする位相シフト部を追加した構成としてよい。
【0086】
光遅延干渉計210bから出力された2つの光信号は、それぞれ第1の実施形態の変形例と同様、光分岐部220c、光分岐部220dで分岐される。光分岐部220cで分岐された2つの光信号は、第1の実施形態の変形例と同様、それぞれピーク信号検出部230eと、第1の実施形態の広帯域バランス型光検出器240と同様な広帯域バランス型光検出器240bに入力される。光分岐部220dで分岐された光信号は、第1の実施形態の変形例と同様、それぞれピーク信号検出部230eと、広帯域バランス型光検出器240bに入力される。ピーク信号検出部230eは、第1の実施形態の変形例と同様、光遅延干渉計210bで干渉された2つの光信号をピーク信号E1bに変換して出力し、広帯域バランス型光検出器240bは、光遅延干渉計210bで干渉された2つの光信号を主信号O1bおよびO2bに変換して出力する。このとき、主信号O1bおよびO2bは、第1の実施形態の変形例と同様、光位相変調信号のQ相成分に相当する主信号である。なお本変形例のピーク信号検出部230eは、第1の実施形態の変形例と同様、上述の第1の実施形態のピーク信号検出部の構成のいずれかに、-π/4位相シフトされた一方の光信号をπ/4位相シフトする位相シフト部を追加した構成としてよい。また、温度制御部250aおよび温度制御部250bは、第1の実施形態の変形例と同様、第1の実施形態の温度制御部250と同様な構成であり、光遅延干渉計210aおよび210bの温度を一定に維持するように温度調整を行う。
【0087】
ディジタル信号処理部123に入力された、I相に相当する主信号O1aおよび主信号O2aは、第1の実施形態の変形例と同様、データ復元部310aに入力される。データ復元部310aは、主信号O1aおよびO2aを元にクロックリカバリを行い、リカバリされたクロックで主信号O1aおよびO2aをラッチすることで出力データD1aおよびD2aを復元して出力する。ディジタル信号処理部123に入力された、Q相に相当する主信号O1bおよび主信号O2bは、第1の実施形態の変形例と同様、データ復元部310bに入力される。データ復元部310bは、主信号O1bおよびO2bを元にクロックリカバリを行い、リカバリされたクロックで主信号O1bおよびO2bをラッチすることで出力データD1bおよびD2bを復元して出力する。
【0088】
第1の実施形態の変形例と同様、ディジタル信号処理部123に入力されたピーク信号E1aは、レベル変動周波数抑圧部320dに入力され、ディジタル信号処理部123に入力されたピーク信号E1bは、レベル変動周波数抑圧部320eに入力される。第1の実施形態の変形例と同様、レベル変動周波数抑圧部320dは、入力されたピーク信号E1aのレベル変動周波数成分を抑圧してピーク信号E2aを、信号分岐部350aに出力し、レベル変動周波数抑圧部320eは、入力されたピーク信号E1bのレベル変動周波数成分を抑圧してピーク信号E2bを、信号分岐部350bに出力する。信号分岐部350aはピーク信号E2aを分岐して、光遅延干渉制御部333aと、オーバドライブ増幅率調整部360aに入力する。信号分岐部350bは、ピーク信号E2bを分岐して光遅延干渉制御部333aと、オーバドライブ増幅率調整部360bに入力する。オーバドライブ係数設定部341aに当初、設定される情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。オーバドライブ増幅率調整部360aは、オーバドライブ係数設定部341aに設定する条件である、オーバドライブ増幅率A1aを徐々に変化させ、信号分岐部350aで分岐されたピーク信号E2aの収束時間を計測し、計測した収束時間を元に、オーバドライブ増幅率A1aを決定する。オーバドライブ増幅率調整部360aは、例えば収束時間が予め定められた目標時間以内に収まるようにオーバドライブ増幅率A1aを決定する。オーバドライブ増幅率調整部360bは、オーバドライブ係数設定部341aに設定する条件である、オーバドライブ増幅率A1bを徐々に変化させ、信号分岐部350bで分岐されたピーク信号E2bの収束時間を計測し、計測した収束時間を元に、オーバドライブ増幅率A1bを決定する。オーバドライブ増幅率調整部360bは、例えば収束時間が予め定められた目標時間以内に収まるようにオーバドライブ増幅率A1bを決定する。オーバドライブ増幅率調整部360aおよび360bは、決定したオーバドライブ増幅率A1aおよびA1bを、オーバドライブ係数設定部341aに設定する。
【0089】
光遅延干渉制御部330aは、レベル変動周波数成分が抑圧されたピーク信号E2aおよびE2bの出力レベルとオーバドライブ係数設定部341aからの情報を元にオーバドライブ増幅された、光遅延干渉制御信号C1cおよびC1dを出力する。光遅延干渉制御部330aは、光遅延干渉制御信号C1cにより光遅延干渉計210aをフィードバック制御し、光遅延干渉制御信号C1dにより光遅延干渉計210bをフィードバック制御する。
【0090】
以上説明した本変形例によっても、第1の実施形態、その変形例、及び第2の実施形態と同様、ピーク信号の検出能力を向上でき、真空環境における光遅延干渉計210での波長トラッキングの応答性を改善することができる。これらによって差動位相変復調方式を衛星搭載用として宇宙環境に適用することが可能となる。
【0091】
なおQPSK信号に対して例を示したが、Mが4値以上のM-PSKや、M-QAM、M-APSKの光信号の受信にも適用可能である。
<第3の実施形態>
本発明の第3の実施形態に係る光空間通信システムについて説明する。本実施形態に係る光空間通信システムの構成図は、図2と同じである。
【0092】
図20は、本発明の第3の実施形態に係る、光空間通信システムを構成する光送信機の構成図である。本実施形態の光送信機50から出力される光位相変調信号は、単一偏波のゼロ復帰符号(RZ:Return-to-Zero)のBPSK信号である。光送信機50は、光送信部510と、ディジタル信号処理部520とを有する。また、制御装置60は、衛星軌道情報またはドップラー周波数またはレーザ駆動電流値を、光送信機50に入力する。
【0093】
光送信部510は、レーザ駆動電流制御部511と、レーザ温度制御部512と、送信レーザ部513と、光位相変調部514と、光強度変調部515とを有する。
【0094】
ディジタル信号処理部520は、ドップラー周波数制御部521と、信号生成部522と、クロック生成部523とを有する。
【0095】
光送信機50に、制御装置60から衛星軌道情報またはドップラー周波数またはレーザ駆動電流値が入力される。制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ディジタル信号処理部520に入力され、ディジタル信号処理部520に入力された衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ドップラー周波数制御部521に入力される。ドップラー周波数制御部521は、衛星軌道上で発生するドップラー周波数を相殺する光波長になるレーザ駆動電流値を、光送信部510に出力し、光送信部510に出力されたレーザ駆動電流値は、レーザ駆動電流制御部511に設定される。レーザ駆動電流制御部511は、送信レーザ部513に、衛星軌道上で発生するドップラー周波数を相殺する光波長になるレーザ駆動電流値を設定し、送信レーザ部513からのレーザ光を出力させる。一方で、レーザ温度制御部512は、送信レーザ部513の温度を一定に制御する。
【0096】
光送信機50に、入力データI1が入力される。入力データI1は、ディジタル信号処理部520に入力され、ディジタル信号処理部520に入力された入力データI1は、信号生成部522に入力される。信号生成部522は、入力データI1に沿った入力信号を生成する。入力信号は、光送信部510を介して光位相変調部514に入力される。光位相変調部514は、信号生成部522からの入力信号を元にして、送信レーザ部513から出力されるレーザ光に対し変調を行う。光位相変調部514からは、非ゼロ復帰符号(NRZ:Non-Return-to-Zero)の2値位相変調信号が出力される。ディジタル信号処理部520を構成するクロック生成部523から生成されたクロック信号は、光送信部510に入力され、光送信部510に入力されたクロック信号は、光強度変調部515に入力される。光強度変調部515は、クロック生成部523からのクロック信号を元にして、光位相変調部514から出力されるNRZのBPSK信号に対し、RZの変調を行う。光強度変調部515からは、RZの2値位相変調信号が出力される。
【0097】
図21は、図20の制御装置とドップラー周波数制御部の第1の構成例を示すブロック図である。図21に示すように、制御装置60は、衛星軌道情報設定部610と、ドップラー周波数算出部620と、レーザ駆動電流算出部630とを有し、ドップラー周波数制御部521は、レーザ駆動電流設定部5211を有する。
【0098】
制御装置60を構成する衛星軌道情報設定部610は、衛星軌道情報設定部610に格納されている衛星軌道情報をドップラー周波数算出部620に入力する。ドップラー周波数算出部620は、衛星軌道情報を元にして、衛星軌道上で発生するドップラー周波数を算出する。ドップラー周波数算出部620で算出されたドップラー周波数は、レーザ駆動電流算出部630に入力される。レーザ駆動電流算出部630は、ドップラー周波数算出部620で算出されたドップラー周波数を元にして、衛星軌道上で発生するドップラー周波数を相殺する光波長になるレーザ駆動電流値を算出する。このとき、レーザ駆動電流値は、レーザ温度制御部512で一定に制御される温度の場合でのレーザ駆動電流値と光波長の関係から、算出される。レーザ駆動電流算出部630で算出されたレーザ駆動電流値は、ドップラー周波数制御部521に出力され、ドップラー周波数制御部521に出力されたレーザ駆動電流値は、レーザ駆動電流設定部5211に設定される。レーザ駆動電流設定部5211に設定されたレーザ駆動電流値は、レーザ駆動電流制御部511に受け渡される。
【0099】
なお制御装置60を構成するドップラー周波数算出部620およびレーザ駆動電流算出部630は、ドップラー周波数制御部521に含めるような構成にしても良い。また、制御装置60を構成するレーザ駆動電流算出部630のみがドップラー周波数制御部521に含まれるような構成にしても良い。
【0100】
制御装置60に設定する衛星軌道情報設定部610に設定される衛星軌道情報は、予めメモリ等の記録装置に格納してもよいし、地上局から送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0101】
図22は、衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、細かい時間間隔でレーザ駆動電流制御部511を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機10が光位相変調信号を受信するときに残留する周波数誤差WE1を示している。簡単化のため、ドップラー周波数変動速度は、一定としている。このとき、細かい時間間隔は、1秒以下である。周波数誤差WE1は、
WE1=|W1-L1|
である。
0≦WE1≦+B/4
上記の関係が成立する場合、光受信機10は、周波数誤差WE1が残留する光位相変調信号を受信できる。なおBは光位相変調信号のシンボルレートを示す。
なお、図22は、W1がL1よりも波長が長い場合の制御を示しているが、L1がW1よりも波長が長い場合で、波長を制御してもよい。
【0102】
図23は、衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、長い時間間隔でレーザ駆動電流制御部を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機が光位相変調信号を受信するときに残留する周波数誤差WE1を示している。簡単化のため、ドップラー周波数変動速度は、一定としている。このとき、長い時間間隔は、1秒以上である。周波数誤差WE1は、
WE1=|W1-L1|
である。
0≦WE1≦+B/4
上記の関係が成立する場合、光受信機10は、周波数誤差WE1が残留する光位相変調信号を受信できる。なおBは光位相変調信号のシンボルレートを示す。
なお、図23は、W1がL1よりも波長が長い場合の制御を示しているが、L1がW1よりも波長が長い場合で、波長を制御してもよい。
【0103】
図24は、図20の制御装置とドップラー周波数制御部の第2の構成例を示すブロック図である。図24に示すように、制御装置60は、第1の構成例と同様、衛星軌道情報設定部610と、ドップラー周波数算出部620と、レーザ駆動電流算出部630とを有する。またドップラー周波数制御部521aは、第1の構成例と同様なレーザ駆動電流設定部5211と、第1の構成例にはないフィルタ処理部5212及びフィルタ帯域設定部5213とを有する。
【0104】
第1の構成例と同様、制御装置60を構成する衛星軌道情報設定部610は、衛星軌道情報設定部610に格納されている衛星軌道情報をドップラー周波数算出部620に入力する。ドップラー周波数算出部620は、衛星軌道情報を元にして、衛星軌道上で発生するドップラー周波数を算出する。ドップラー周波数算出部620で算出されたドップラー周波数は、レーザ駆動電流算出部630に入力される。レーザ駆動電流算出部630は、第1の構成例と同様、ドップラー周波数算出部620で算出されたドップラー周波数を元にして、衛星軌道上で発生するドップラー周波数を相殺する光波長になるような、レーザ駆動電流値を算出する。このとき、レーザ駆動電流値は、第1の構成例と同様、レーザ温度制御部512で一定に制御される温度の場合でのレーザ駆動電流値と光波長の関係から、算出される。レーザ駆動電流算出部630で算出されたレーザ駆動電流値は、ドップラー周波数制御部521aに入力され、ドップラー周波数制御部521aに入力されたレーザ駆動電流値は、レーザ駆動電流設定部5211に設定される。レーザ駆動電流設定部5211に設定されたレーザ駆動電流値は、フィルタ処理部5212で、フィルタ処理が行われる。フィルタ処理部5212のフィルタ処理によって、ステップ状ではなく滑らかになったレーザ駆動電流値が出力される。フィルタ処理部5212のフィルタ帯域は、フィルタ帯域設定部5213からのフィルタ帯域情報を元に、設定される。フィルタ処理部5212で滑らかになったレーザ駆動電流値は、レーザ駆動電流制御部511に受け渡される。
【0105】
なお制御装置60を構成するドップラー周波数算出部620およびレーザ駆動電流算出部630がドップラー周波数制御部521に含まれるような構成にしても良い。また、制御装置60を構成するレーザ駆動電流算出部630のみがドップラー周波数制御部521に含まれるような構成にしても良い。
【0106】
制御装置60に設定する衛星軌道情報設定部610に設定される衛星軌道情報は、予めメモリ等の記録装置に格納してもよいし、地上局から送信されるテレメトリコマンドによって設定されるようにしてもよい。フィルタ帯域設定部5213に設定されるフィルタ帯域情報は、予めメモリ等の記録装置に格納してもよいし、地上局から制御装置60を介して送信されるテレメトリコマンドによって設定されるようにしてもよい。
【0107】
図25は、衛星軌道上のドップラー周波数の影響を受けた場合の光周波数W1と、長い時間間隔でレーザ駆動電流制御部を制御した場合の、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1と、光受信機が光位相変調信号を受信するときに残留する周波数誤差WE1を示している。簡単化のため、ドップラー周波数変動速度は、一定としている。このとき、長い時間間隔は、1秒以上である。また、衛星軌道上で発生するドップラー周波数を相殺可能にする光周波数L1は、フィルタ処理部5212によって滑らかになったレーザ駆動電流値で送信レーザ部513が駆動されているので、光周波数L1に示すような滑らかな光周波数になる。この滑らかな光周波数L1によって、図25の周波数誤差WE1は、図23の周波数誤差WE1よりも小さくすることが可能になる。周波数誤差WE1は、
WE1=|W1-L1|
である。
0≦WE1≦+B/4
上記の関係が成立する場合、光受信機10は、周波数誤差WE1が残留する光位相変調信号を受信できる。なおBは光位相変調信号のシンボルレートを示す。
なお、図25は、W1がL1よりも波長が長い場合の制御を示しているが、L1がW1よりも波長が長い場合で、波長を制御してもよい。
<第3の実施形態の効果>
衛星軌道上の送信機が一定周波数の光信号を送信した場合、送信機と同じ方向に同じ速度で移動する受信機でない限り、受信機が受信する光信号には、ドップラー効果による周波数変動が発生する。このため受信機は環境温度に応じた遅延量の調整に加えて、ドップラー周波数に応じた遅延量の調整を行う必要があり、受信機において波長トラッキングが収束困難になる要因となる。特に、衛星間光通信のような、軌道上を逆方向に移動する周回衛星同志での光空間通信では、大きなドップラー周波数が生じ、光遅延干渉計210による波長トラッキングの負担が大きくなる。
第3の実施形態によれば、衛星軌道情報を元にして、衛星軌道上で発生するドップラー周波数を算出し、これを相殺する光波長になるレーザ駆動電流値を算出し、レーザ駆動電流設定部5211に設定することにより、ドップラー周波数に応じた遅延量調整の負担を軽減し、ドップラー周波数による波長トラッキングへの影響を抑制することが可能となる。
<第3の実施形態の変形例>
本発明の第3の実施形態の第1の変形例に係る光空間通信システムを構成する光送信機について説明する。図26は、本発明の第3の実施形態の第1の変形例に係る光空間通信システムを構成する、光送信機の構成図である。本変形例の光送信機は、単一偏波のNRZのBPSK信号である光位相変調信号を出力する。本変形例の光送信機51は、光送信部516と、ディジタル信号処理部524とを有する。また、制御装置60は、第3の実施形態と同様、衛星軌道情報またはドップラー周波数またはレーザ駆動電流値を、光送信機51に入力する。
【0108】
本変形例の光送信部516は、レーザ駆動電流制御部511と、レーザ温度制御部512と、送信レーザ部513と、光位相変調部514とを有するが、第3の実施形態と異なり、光強度変調部515を有していない。また本変形例のディジタル信号処理部524は、ドップラー周波数制御部521と、信号生成部522とを有するが、第3の実施形態と異なり、クロック生成部523を有していない。
【0109】
光送信機51に、制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値が入力される。制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ディジタル信号処理部524に入力され、ディジタル信号処理部524に入力された衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ドップラー周波数制御部521に入力される。ドップラー周波数制御部521は、レーザ駆動電流値を、光送信部516に入力し、光送信部516に入力されたレーザ駆動電流値はレーザ駆動電流制御部511に設定される。レーザ駆動電流制御部511は、送信レーザ部513にレーザ駆動電流値を設定し、送信レーザ部513からレーザ光を出力させる。一方で、レーザ温度制御部512は、送信レーザ部513の温度を一定に制御する。
【0110】
光送信機51に、入力データI1が入力される。入力データI1は、ディジタル信号処理部524に入力され、ディジタル信号処理部524に入力された入力データI1は、信号生成部522に入力される。信号生成部522は、入力データI1に沿った入力信号を生成する。入力信号は、光送信部516に入力され、光送信部516に入力された入力信号は、光位相変調部514に入力される。光位相変調部514は、信号生成部522からの入力信号を元にして、送信レーザ部513から出力されるレーザ光に対し変調を行う。光位相変調部514からは、NRZのBPSK信号が出力される。
【0111】
本発明の第3の実施形態の第2の変形例に係る光空間通信システムを構成する光送信機について説明する。図27は、本発明の第3の実施形態の第2の変形例に係る光空間通信システムを構成し、単一偏波のRZのQPSK信号である光位相変調信号を出力する光送信機の構成図である。光送信機52は、光送信部517と、ディジタル信号処理部525とを有する。また、制御装置60は、衛星軌道情報またはドップラー周波数またはレーザ駆動電流値を、光送信機52に入力する。
【0112】
本変形例の光送信部517は、レーザ駆動電流制御部511と、レーザ温度制御部512と、送信レーザ部513と、光IQ変調部514aと、光強度変調部515aとを有する。
【0113】
また本変形例のディジタル信号処理部525は、ドップラー周波数制御部521と、信号生成部526と、クロック生成部523とを有する。
【0114】
光送信機50に、制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値が入力される。制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ディジタル信号処理部525に入力され、ディジタル信号処理部525に入力された衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ドップラー周波数制御部521に入力される。ドップラー周波数制御部521は、レーザ駆動電流値を、光送信部517に入力し、光送信部517に入力されたレーザ駆動電流値は、レーザ駆動電流制御部511に設定される。レーザ駆動電流制御部511は、送信レーザ部513にレーザ駆動電流値を設定し、送信レーザ部513からのレーザ光を出力させる。一方で、レーザ温度制御部512は、送信レーザ部513の温度を一定に制御する。
【0115】
光送信機52に、入力データI1およびI2が入力される。入力データI1およびI2は、ディジタル信号処理部525に入力され、ディジタル信号処理部525に入力された入力データI1およびI2は、信号生成部526に入力される。信号生成部526は、入力データI1およびI2に沿った入力信号を生成する。入力信号は、光送信部517に入力され、光送信部517に入力された入力信号は、光IQ変調部514aに入力される。光IQ変調部514aは、信号生成部526からの入力信号を元にして、送信レーザ部513から出力されるレーザ光に対し変調を行う。光IQ変調部514aからは、NRZのQPSK信号が出力される。ディジタル信号処理部525を構成するクロック生成部523から生成されたクロック信号は、光送信部517に入力されると同時に、光強度変調部515aに入力される。光強度変調部515aは、クロック生成部523からのクロック信号を元にして、光IQ変調部514aから出力されるNRZのQPSK信号に対し、RZの変調を行う。光強度変調部515aからは、RZのQPSK信号が出力される。
【0116】
図28は、図27の光IQ変調部の一例を示す。図28において、光IQ変調部514aは、光分岐部5141と、光合波部5142と、光位相変調部5143および5144と、光位相調整部5145とを有する。送信レーザ部513からのレーザ光は、光IQ変調部514aに入力され、光IQ変調部514aに入力されたレーザ光は、光分岐部5141で分岐される。光分岐部5141からのそれぞれの出力光は、光位相変調部5143および5144に入力される。光位相変調部5143および5144は、入力データI1およびI2を元にして、光分岐部5141からの出力光に対して変調を行い、2値の光位相変調信号を出力する。光位相変調部5144からの2値光位相変調信号は、光位相調整部5145に入力される。光位相調整部5145は、2値光位相変調信号に対し、π/2の位相シフトを行う。光位相変調部5143からの出力である2値光位相変調信号と、光位相調整部5145からの出力であるπ/2の位相シフトが行われた2値光位相変調信号は、光合波部5142で合波される。これにより、光合波部5142から、NRZの4値光位相変調信号が出力される。
【0117】
QPSK信号に対して例を示したが、Mが4値以上のM-PSKや、M-QAM、M-APSKの光信号の受信にも適用可能である。
【0118】
本発明の第3の実施形態の第3の変形例に係る光空間通信システムを構成する光送信機について説明する。図29は、本発明の第3の実施形態の第3の変形例に係る光空間通信システムを構成し、単一偏波のNRZのQPSK信号である光位相変調信号を出力する光送信機の構成図である。光送信機53は、光送信部518と、ディジタル信号処理部527とを有する。また、制御装置60は、衛星軌道情報またはドップラー周波数またはレーザ駆動電流値を、光送信機53に入力する。
【0119】
本変形例の光送信部518は、レーザ駆動電流制御部511と、レーザ温度制御部512と、送信レーザ部513と、光IQ変調部514aとを有する。また本変形例のディジタル信号処理部527は、ドップラー周波数制御部521と、信号生成部526とを有する。
【0120】
光送信機53に、制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値が入力される。制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ディジタル信号処理部527に入力され、ディジタル信号処理部527に入力された衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ドップラー周波数制御部521に入力される。ドップラー周波数制御部521は、レーザ駆動電流値を、光送信部510に入力し、光送信部510に入力されたレーザ駆動電流値は、レーザ駆動電流制御部511に設定される。レーザ駆動電流制御部511は、送信レーザ部513にレーザ駆動電流値を設定し、送信レーザ部513からのレーザ光を出力させる。一方で、レーザ温度制御部512は、送信レーザ部513の温度を一定に制御する。
【0121】
光送信機53に、入力データI1およびI2が入力される。入力データI1およびI2は、ディジタル信号処理部527に入力され、ディジタル信号処理部527に入力された入力データI1およびI2は、信号生成部526に入力される。信号生成部526は、入力データI1およびI2にそれぞれ沿った2つの入力信号を生成する。2つの入力信号は、光送信部510に入力され、光送信部510に入力された2つの入力信号は、光位相変調部514に入力される。光IQ変調部514aは、信号生成部526からの2つの入力信号を元にして、送信レーザ部513から出力されるレーザ光に対し変調を行う。光IQ変調部514aからは、NRZのQPSK信号が出力される。
【0122】
QPSK信号に対して例を示したが、Mが4値以上のM-PSKや、M-QAM、M-APSKの光信号の受信にも適用可能である。
【0123】
本発明の第3の実施形態の第4の変形例に係る光空間通信システムを構成する光送信機について説明する。図30は、第3の実施形態の第4の変形例に係る光空間通信システムを構成し、単一偏波のNRZまたはRZの強度変調信号を出力する光送信機の構成図である。光送信機54は、光送信部519と、ディジタル信号処理部524とを有する。また、制御装置60は、衛星軌道情報またはドップラー周波数またはレーザ駆動電流値を、光送信機54に入力する。
【0124】
本変形例の光送信部519は、レーザ駆動電流制御部511と、レーザ温度制御部512と、送信レーザ部513と、光強度変調部515とを有する。
【0125】
また本変形例のディジタル信号処理部524は、ドップラー周波数制御部521と、信号生成部522とを有する。
【0126】
光送信機54に、制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値が入力される。制御装置60からの衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ディジタル信号処理部520に入力され、ディジタル信号処理部520に入力された衛星軌道情報またはドップラー周波数またはレーザ駆動電流値は、ドップラー周波数制御部521に入力される。ドップラー周波数制御部521は、レーザ駆動電流値を、光送信部510に入力し、光送信部510に入力されたレーザ駆動電流値は、レーザ駆動電流制御部511に設定される。レーザ駆動電流制御部511は、送信レーザ部513にレーザ駆動電流値を設定し、送信レーザ部513からレーザ光を出力させる。一方で、レーザ温度制御部512は、送信レーザ部513の温度を一定に制御する。
【0127】
光送信機54に、入力データI1が入力される。入力データI1は、ディジタル信号処理部524に入力され、ディジタル信号処理部524に入力された入力データI1は、信号生成部522に入力される。信号生成部522は、入力データI1に沿った入力信号を生成する。入力信号は、光送信部519に入力され、光送信部519に入力された入力信号は、光強度変調部515に入力される。光強度変調部515は、信号生成部522からの入力信号を元にして、送信レーザ部513から出力されるレーザ光に対し変調を行う。光強度変調部515からは、NRZの光強度変調信号が出力される。
【0128】
図31は、単一偏波のNRZの光強度変調信号を受信し復調する光受信機の一例の構成図である。光受信機14は、広帯域バランス型光検出器241cと、データ復元部310cを備えたディジタル信号処理部124とを有する。広帯域バランス型光検出器241cは主信号O1を出力する。ディジタル信号処理部124に入力された主信号O1は、データ復元部310cに入力される。データ復元部310cは、主信号O1を元に出力データD1を復元して出力する。図31に示す光受信機14が、単一偏波のNRZまたはRZの光強度変調信号を受信し、データを復元する。
【0129】
上記に示した光送信機50から出力される、2値位相変調信号やMが4値以上のM-PSKや、M-QAM、M-APSKを含む光信号は、ディジタルコヒーレント光通信方式の光受信機15でも受信できる。図32は、単一偏波のディジタルコヒーレント光通信方式の光受信機の構成図である。図32に示すように、光受信機15は、コヒーレント光検出部130と、ディジタル信号処理部125を備える。コヒーレント光検出部130は、局発光源260と、光周波数混合器270と、バランス型光検出器240cと、アナログ・ディジタル変換器236を備える。光周波数混合器270は、2値位相変調信号を局発光源260からのレーザ光(局発光)と干渉させた後、2分岐した2つの光信号の一方を1ビット分遅延させて干渉させて、バランス型光検出器240cおよび240dにそれぞれ2つの光信号を出力する。バランス型光検出器240cは、光周波数混合器270から出力された2つの光信号を電気信号に変換し、それらを元に主信号O1に変換してアナログ・ディジタル変換器236に出力する。バランス型光検出器240dは、光周波数混合器270から出力された2つの光信号を電気信号に変換し、それらを元に主信号O2に変換してアナログ・ディジタル変換器236に出力する。アナログ・ディジタル変換器236は、バランス型光検出器240cおよび240dから出力された主信号O1およびO2をディジタル信号に変換して出力する。ディジタル信号処理部125は、入力された主信号O1およびO2を元に出力データD1およびD2を復元して出力する。
【0130】
なお光送信機50を偏波多重構成に適用した場合でも、図32に示すディジタルコヒーレント光通信方式の光受信機10を偏波多重用に適用させることで、2値位相変調信号やMが4値以上のM-PSKや、M-QAM、M-APSKを含む光信号を受信できる。
【0131】
本発明の第3の実施形態に係る、光空間通信システムは、波長多重構成に適用させることもできる。N(Nは2以上)個の光送信機50から送信される、N本の異なる波長の光信号を光合波部で合波させて波長多重光信号にし、波長多重光信号を光分波部で分波させてN本の異なる波長の光信号にし、N本の異なる波長の光信号をN個の光受信機10で受信する構成にすることで、波長多重構成に適用できる。
【0132】
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2018年11月29日に出願された日本出願特願2018-223133を基礎とする優先権を主張し、その開示の全てをここに取り込む。
【0133】
<付記>
上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における光受信機などの概略を説明する。但し、本発明は、以下の構成に限定されない。
(付記1)
光位相変調信号を受信する光受信機であって、
前記光位相変調信号を分岐した2つの光信号間の遅延を1ビット分に制御して干渉させた第1の光信号および第2の光信号を出力する光遅延干渉計と、前記第1の光信号と前記第2の光信号との差動光検出を行い、第1の主信号を出力する第1の光検出器と、前記第1の光信号と前記第2の光信号との差動光の強度を示すピーク信号を出力するピーク信号検出部と、を有する差動光検出部と、
前記ピーク信号のレベル変動周波数成分を抑圧するレベル変動周波数抑圧部と、前記レベル変動周波数成分が抑圧されたピーク信号を元にオーバドライブ増幅された光遅延干渉制御信号を生成し前記光遅延干渉計に印加する光遅延干渉制御部と、前記光検出器からの前記第1の主信号を元に出力データを復元するデータ復元部と、を有するディジタル信号処理部と、
を有する光受信機。
(付記2)
前記光遅延干渉制御信号におけるオーバドライブ増幅のパルス幅とオーバドライブ増幅率を設定するオーバドライブ係数設定部を有する付記1記載の光受信機。
(付記3)
前記レベル変動周波数成分が抑圧されたピーク信号の信号分岐を行う信号分岐部と、
前記信号分岐部で分岐された前記レベル変動周波数成分が抑圧されたピーク信号の収束時間を元に前記オーバドライブ増幅率を調整するオーバドライブ増幅率調整部と、
を有する付記2に記載の光受信機。
(付記4)
前記ピーク信号検出部は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換器と、
前記第1の電気信号と第2の電気信号との差動信号を出力する差動検出部と、
前記差動信号を増幅して前記ピーク信号を出力する信号増幅部と、
を有する光検出器と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し線形領域で前記ピーク信号を出力する利得値を、前記信号増幅部に設定する利得設定部と、
を有する付記1から3のいずれかに記載の光受信機。
(付記5)
前記ピーク信号検出部は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換器と、
前記第1の電気信号と第2の電気信号との差動信号を前記ピーク信号として出力する差動検出部と、
を有する光検出器を有する付記1から3のいずれかに記載の光受信機。
(付記6)
前記ピーク信号検出部は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換器と、
前記第1の電気信号と第2の電気信号との差動検出を行い第2の主信号を出力する差動検出部と、
前記第2の主信号を増幅し、前記第2の主信号を元に前記ピーク信号を出力する信号増幅部と、
を有する光検出器と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し出力が線形に変化する線形領域で前記信号増幅部が動作する利得値を、前記信号増幅部に設定する利得設定部と、
を有する付記1から3のいずれかに記載の光受信機。
(付記7)
前記ピーク信号検出部は、
前記第1の光信号および前記第2の光信号を光電変換した第1の電気信号および第2の電気信号を出力する光電変換器と、
前記第1の電気信号および前記第2の電気信号の差動検出を行い第2の主信号を出力し、前記第1の電気信号と第2の電気信号との差動信号を前記ピーク信号として出力する差動検出部と、
前記第2の主信号を増幅する信号増幅部と、
を有する光検出器と、
前記光位相変調信号の光入力パワーの範囲内で、前記光入力パワーに対し出力が線形に変化する線形領域で前記信号増幅部が動作する利得値を、前記信号増幅部に設定する利得設定部と、
を有する付記1から3のいずれかに記載の光受信機。
(付記8)
前記レベル変動周波数抑圧部は、
前記ピーク信号の前記レベル変動周波数成分を抑圧するフィルタ帯域を設定するフィルタ帯域設定部と、
前記ピーク信号に前記フィルタ帯域のフィルタ処理を行うフィルタ処理部と、
を有する付記1から7のいずれかに記載の光受信機。
(付記9)
前記レベル変動周波数抑圧部は、
前記ピーク信号を周波数スペクトルに変換する周波数領域変換部と、
前記周波数スペクトルから前記レベル変動周波数成分を検出するレベル変動周波数検出部と、
前記レベル変動周波数検出部が検出した前記レベル変動周波数成分を元にして、前記レベル変動周波数成分を抑圧するフィルタ帯域を設定するフィルタ帯域設定部と、
前記ピーク信号に前記フィルタ帯域でフィルタ処理を行うフィルタ処理部と、
を有する付記1から7のいずれかに記載の光受信機。
(付記10)
前記レベル変動周波数抑圧部は、
前記ピーク信号を前記周波数スペクトルに変換する周波数領域変換部と、
前記周波数スペクトルから前記レベル変動周波数成分を検出し、検出した前記レベル変動周波数成分の除去を行う前記レベル変動周波数検出部と、
前記レベル変動周波数成分が除去された前記周波数スペクトルを時間領域に変換し、前記レベル変動周波数成分が抑圧された前記ピーク信号を出力する時間領域変換部と、
を有する付記1から7のいずれかに記載の光受信機。
(付記11)
前記レベル変動周波数抑圧部は、
前記ピーク信号の前記レベル変動周波数成分を抑圧するための平均化数情報を設定する平均化数設定部と、
前記平均化数情報を元に平均化処理を行う平均化処理部と、
を有する付記1から7のいずれかに記載の光受信機。
(付記12)
付記1から付記11のいずれかの光受信機を有する光受信装置と、前記光位相変調信号を送信する光送信装置と、を有する光空間通信システムにおいて、
前記光送信装置は、前記光位相変調信号を出力する光送信機と、前記光位相変調信号の捕捉追尾を行う捕捉追尾装置と、を有し、
前記光送信機は、
衛星軌道上で発生するドップラー周波数を相殺する光波長になるレーザ駆動電流値を出力する送信制御部と、入力データを元にして入力信号を生成する信号生成部と、クロック信号を生成するクロック生成部と、を備えるディジタル信号処理部と、
前記レーザ駆動電流値に基づいてレーザ駆動電流の制御を行うレーザ駆動電流制御部と、前記レーザ駆動電流でレーザ光を出力する送信レーザ部と、前記レーザ光に対して、前記入力信号および前記クロック信号を元にして変調を行い、前記光位相変調信号を出力する光変調部と、を備える光送信部と、
を有する光空間通信システム。
(付記13)
前記レーザ駆動電流値にフィルタ処理を行うフィルタ処理部を有し、
前記レーザ駆動電流制御部は、前記フィルタ処理により滑らかになったレーザ駆動電流値に基づいてレーザ駆動電流の制御を行う、
付記12に記載の光空間通信システム。
(付記14)
前記送信制御部は、
衛星軌道情報を格納する衛星軌道情報設定部と、
前記衛星軌道情報を元にして、前記ドップラー周波数を算出するドップラー周波数算出部と、
前記ドップラー周波数を元にして前記レーザ駆動電流値を算出するレーザ駆動電流算出部と、
を有する付記12または13に記載の光空間通信システム。
【産業上の利用可能性】
【0134】
本発明は、例えば、衛星間の光空間通信システムや、地上衛星間の光空間通信システム、地上の光空間通信システムに利用可能である。
【符号の説明】
【0135】
10、11、12、13、14、15、16 光受信機
20 低雑音光増幅器
30a、30b 光捕捉追尾装置
40 高出力光増幅器
50、51、52、53、54 光送信機
60、60a、60b 制御装置
70 光空間通信用光送信装置
80 光空間通信用光受信装置
100 光空間通信システム
110、111 差動光検出部
120、121、122、123、124、125、126 ディジタル信号処理部
130 コヒーレント光検出部
210 光遅延干渉計
210a、210b 光遅延干渉計
211 光遅延素子
212 光位相調整部
213 温度調整素子
214 温度モニタ素子
220a、220b、220c、220d、220e 光分岐部
230、230a、230b、230c、230d、230e ピーク信号検出部
231、231a バランス型光検出器
232a、232b 光電変換器
233 差動検出部
234 信号増幅部
235 利得設定部
236 アナログ・ディジタル変換器
237 終端部
240、240a、240b 広帯域バランス型光検出器
240c、240d バランス型光検出器
241、241a、241c 広帯域バランス型光検出器
242a、242b 広帯域光電変換器
243、243a 広帯域差動検出部
244 広帯域信号増幅部
250、250a、250b 温度制御部
260 局発光源
270 光周波数混合器
310、310a、310b、310c データ復元部
320、320a、320b、320c、320d、320e レベル変動周波数抑圧部
321、321a フィルタ帯域設定部
322 フィルタ処理部
323 周波数領域変換部
324 レベル変動周波数検出部
325 時間領域変換部
326 平均化数設定部
327 平均化処理部
330、330a、333、333a、334 光遅延干渉制御部
331 制御信号生成部
332 ディジタル・アナログ変換器
340、340a、341、341a オーバドライブ係数設定部
350、350a、350b 信号分岐部
360、360a、360b オーバドライブ増幅率調整部
510 光送信部
511 レーザ駆動電流制御部
512 レーザ温度制御部
513 送信レーザ部
514 光位相変調部
514a 光IQ変調部
515、515a 光強度変調部
516、517、518、519 光送信部
520 ディジタル信号処理部
521、521a ドップラー周波数制御部
522 信号生成部
523 クロック生成部
524、525、527 ディジタル信号処理部
526 信号生成部
610 衛星軌道情報設定部
620 ドップラー周波数算出部
630 レーザ駆動電流算出部
5141 光分岐部
5142 光合波部
5143、5144 光位相変調部
5145 光位相調整部
5211 レーザ駆動電流設定部
5212 フィルタ処理部
5213 フィルタ帯域設定部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35