(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-12
(45)【発行日】2022-09-21
(54)【発明の名称】ガラスコア、多層配線基板、及びガラスコアの製造方法
(51)【国際特許分類】
H05K 3/46 20060101AFI20220913BHJP
H05K 1/16 20060101ALI20220913BHJP
【FI】
H05K3/46 Q
H05K1/16 D
(21)【出願番号】P 2017229922
(22)【出願日】2017-11-30
【審査請求日】2020-10-21
【前置審査】
(73)【特許権者】
【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
(74)【代理人】
【識別番号】110000062
【氏名又は名称】特許業務法人第一国際特許事務所
(72)【発明者】
【氏名】土田 徹勇起
【審査官】齊藤 健一
(56)【参考文献】
【文献】特開2008-227177(JP,A)
【文献】特開平10-56247(JP,A)
【文献】特開2011-155043(JP,A)
【文献】特開平10-154878(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/822
H05K1/00―3/46
(57)【特許請求の範囲】
【請求項1】
ガラス板と、
前記ガラス板上に設けられた第1の金属層と、
前記第1の金属層上に設けられた第1の電解銅めっき層と、
前記第1の電解銅めっき層よりも上方に設けられた誘電体層と、
前記誘電体層上に設けられた第2の金属層と、
前記第2の金属層上に設けられたリン含有率が5質量%未満の無電解ニッケルめっき層と、
前記無電解ニッケルめっき層上に設けられた第2の電解銅めっき層と、を具備し、
前記ガラス板は貫通孔を具備し、前記貫通孔の内壁には少なくとも前記無電解ニッケルめっき層と前記第2の電解銅めっき層が順次積層され、
前記貫通孔内で前記無電解ニッケルめっき層と、前記第2の電解銅めっき層によって満たされていない前記貫通孔内の空洞部が、絶縁樹脂で充填されてお
り、
前記絶縁樹脂は、前記ガラス板の両面に張り付けられ、前記第2の電解銅めっき層を覆う樹脂層と一体である、ガラスコア。
【請求項2】
前記誘電体層は、酸化アルミニウム、タンタルオキサイド及びシリコンナイトライドの少なくとも1つを含む請求項1に記載のガラスコア。
【請求項3】
前記第1の金属層と前記第2の金属層は、チタンと銅のスパッタ積層膜である請求項1または2に記載のガラスコア。
【請求項4】
請求項1から3のいずれか1項に記載のガラスコアに対し、樹脂層と配線層とが交互に積層された多層配線基板。
【請求項5】
ガラス板上に第1の金属層を形成する工程と、
前記第1の金属層よりも上方に第1の電解銅めっき層を形成する工程と、
前記第1の電解銅めっき層上に誘電体層を形成する工程と、
前記誘電体層上に第2の金属層を形成する工程と、
前記第2の金属層上にリン含有率が5質量%未満の無電解ニッケルめっき層を形成する工程と、
前記無電解ニッケルめっき層上に第2の電解銅めっき層を形成する工程と、
不要な無電解ニッケルめっき層を酸性のエッチング剤を用いて除去する工程と、を有し、
前記ガラス板は貫通孔を具備しており、前記第2の金属層上にリン含有率が5質量%未満の前記無電解ニッケルめっき層を形成する工程において、前記貫通孔の内壁にもリン含有率が5質量%未満の前記無電解ニッケルめっき層を形成し、その後に前記貫通孔内を含む前記無電解ニッケルめっき層上に前記第2の電解銅めっき層を形成し、
前記貫通孔内で前記無電解ニッケルめっき層と、前記第2の電解銅めっき層によって満たされていない前記貫通孔内の空洞部を、絶縁樹脂で充填する
と同時に、前記絶縁樹脂と一体の樹脂層を、前記第2の電解銅めっき層を覆うようにして、前記ガラス板の両面に張り付ける、ガラスコアの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラスコア、多層配線基板、及びガラスコアの製造方法に関する。
【背景技術】
【0002】
近年、電子機器の高機能化及び小型化が進んでおり、それに伴い、電子機器に搭載される半導体モジュールの高密度化が要求されている。このような要求に応えるために、半導体チップを実装する配線基板の配線密度を高めることが検討されている。
【0003】
配線基板に含まれるコア材としては、一般的にガラスエポキシ樹脂が用いられているが、近年、コア材としてガラス板を用いた配線基板が注目されている。ガラス板は、ガラスエポキシ樹脂からなるコア材と比較して、より高い平滑度を実現できる。そのため、ガラス板を用いた配線基板では、超微細配線の形成が可能になるから、ガラス板を用いた配線基板を用いることで、高密度な実装が可能になる。また、ガラス板の20℃以上260℃以下の温度範囲における線膨張係数(CTE)は、シリコン基板を用いた半導体チップの20℃以上260℃以下の温度範囲における線膨張係数とほぼ一致する。それゆえ、ガラス板を用いた配線基板を適用すると、残留応力を抑えた実装が可能になる。さらに、ガラス板を用いた配線基板は、高速伝送に優れているという利点もある。以上のことから、ガラス板を用いた配線基板は、高性能な電子機器に搭載される半導体モジュールの配線基板の一つとして注目されている。
【先行技術文献】
【非特許文献】
【0004】
【文献】▲高▼城清著、「よくわかるプリント配線板のできるまで―第2版―」、日刊工業新聞社発行、p201-202、2008年4月
【発明の概要】
【発明が解決しようとする課題】
【0005】
ガラス板に配線を形成することにより、配線基板又はその一部が形成される。これをガラスコアという。ガラス板上に配線を形成する場合、一般的なセミアディティブ工法が適用される(非特許文献1)。このような工法を用いて、ガラス板上に導体層を形成後、絶縁樹脂層を設け、更に前記絶縁樹脂層上に導体を積層することで配線を多層化することができる。しかし、ガラス板上に誘電体層を設ける場合は、従来のセミアディティブ工法を適用することは困難である。その理由について説明する。
【0006】
例えば、ガラス板上に導体層を形成し、絶縁樹脂層を形成後、前記絶縁樹脂層上にスパッタ法又は化学気相堆積(CVD)法で誘電体層を設けようとすると、前記絶縁樹脂層の表面粗さの影響により誘電体層が不連続となる虞れがある。誘電体層が不連続となると、該誘電体層よりも下部に位置する下部電極と、該誘電体層と、該誘電体層よりも上部に位置する上部電極とで構成されるコンデンサにおいて、前記下部電極と前記上部電極間におけるショートを招くこととなる。
【0007】
よって、誘電体層は前記下部電極上に絶縁樹脂層を介さずに形成しなければならないという制限がある。これに対し、ガラス板上にシード層を設け、前記シード層上に電解銅めっき層を設け、不要なシード層をエッチングし、前記電解銅めっき層上に誘電体層を設け、更に前記誘電体層上に更なる電解銅めっき層を設けるという工法も考えられる。かかる工法によれば、絶縁樹脂層を介さず誘電体層を設けることができるが、前記不要なシード層をエッチングした際に生じる、ガラス板上に形成したシード層を介した電解銅めっき層のアンダーカットが原因で、前記誘電体層上に電解銅めっき層が形成できないという新たな課題が生じた。
【0008】
これに対し、ガラス板上に、スパッタによる金属層と、無電解ニッケルめっき層からなるシード層を形成し、前記無電解ニッケルめっき層上に電解銅めっき層を形成し、前記ガラス板上に形成した電解銅めっき層上に誘電体層を設け、更に、前記誘電体層上に更なる電解銅めっき層を設けるという別な工法も考えられる。かかる工法により、電解銅めっき層のアンダーカットを抑制することができる。
【0009】
しかしながら、前記無電解ニッケルめっき層のリン含有率が高い場合、不要な無電解ニッケルめっき層をエッチングする際にアルカリ性のエッチング剤を用いることが必要になるが、その場合、アルカリ性のエッチング剤によってガラス板に生じたダメージに起因して、製造過程でガラス板が割れるという問題が生じた。また、アルカリ性のエッチング剤を用いた場合においても、前記ガラス板上にシード層を介して形成した電解銅めっき層のアンダーカットが原因で、誘電体層上での電解銅めっき層の形成不良が生じることがあった。
【0010】
更に、ガラス板に多層配線用の貫通孔を設けた場合、該貫通孔内に無電解ニッケルめっき層からなるシード層を形成すると、不要なシード層をエッチングする際に、ガラス厚が薄ければ該貫通孔内に銅の応力が蓄積し、ガラスクラックが生じるという問題もある。かかる問題を回避するためには、貫通孔内に電解銅めっき層を形成した後に、直ちに絶縁樹脂層によって、ガラス板にかかる銅の応力を緩和してクラックを防ぐ必要があり、したがって貫通孔内に電解銅めっき層を形成した後に直ぐに絶縁樹脂層を設けられるような工程が必要で、製造工程の煩雑さを招いていた。
【0011】
上記課題にかんがみて、本発明は、銅配線を適切に行えるとともに、クラック等を抑制できるガラスコア、多層配線基板、及びガラスコアの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の一態様によれば、ガラスコアは、
ガラス板と、
前記ガラス板上に設けられた第1の金属層と、
前記第1の金属層上に設けられた第1の電解銅めっき層と、
前記第1の電解銅めっき層よりも上方に設けられた誘電体層と、
前記誘電体層上に設けられた第2の金属層と、
前記第2の金属層上に設けられたリン含有率が5質量%未満の無電解ニッケルめっき層と、
前記無電解ニッケルめっき層上に設けられた第2の電解銅めっき層と、を具備し、
前記ガラス板は貫通孔を具備し、前記貫通孔の内壁には少なくとも前記無電解ニッケルめっき層と前記第2の電解銅めっき層が順次積層され、
前記貫通孔内で前記無電解ニッケルめっき層と、前記第2の電解銅めっき層によって満たされていない前記貫通孔内の空洞部が、絶縁樹脂で充填されており、
前記絶縁樹脂は、前記ガラス板の両面に張り付けられ、前記第2の電解銅めっき層を覆う樹脂層と一体である。
【0013】
本発明の一態様によれば、ガラスコアの製造方法は、
ガラス板上に第1の金属層を形成する工程と、
前記第1の金属層よりも上方に第1の電解銅めっき層を形成する工程と、
前記第1の電解銅めっき層上に誘電体層を形成する工程と、
前記誘電体層上に第2の金属層を形成する工程と、
前記第2の金属層上にリン含有率が5質量%未満の無電解ニッケルめっき層を形成する工程と、
前記無電解ニッケルめっき層上に第2の電解銅めっき層を形成する工程と、
不要な無電解ニッケルめっき層を酸性のエッチング剤を用いて除去する工程と、を有し、
前記ガラス板は貫通孔を具備しており、前記第2の金属層上にリン含有率が5質量%未満の前記無電解ニッケルめっき層を形成する工程において、前記貫通孔の内壁にもリン含有率が5質量%未満の前記無電解ニッケルめっき層を形成し、その後に前記貫通孔内を含む前記無電解ニッケルめっき層上に前記第2の電解銅めっき層を形成し、
前記貫通孔内で前記無電解ニッケルめっき層と、前記第2の電解銅めっき層によって満たされていない前記貫通孔内の空洞部を、絶縁樹脂で充填すると同時に、前記絶縁樹脂と一体の樹脂層を、前記第2の電解銅めっき層を覆うようにして、前記ガラス板の両面に張り付ける。
【発明の効果】
【0014】
本発明によれば、銅配線の形成を適切に行えるとともに、クラック等を抑制できるガラスコア、多層配線基板、及びガラスコアの製造方法を提供できる。
【図面の簡単な説明】
【0015】
【
図1】本発明の一態様に係るガラスコア1を概略的に示す断面図である。
【
図2】本発明の一態様に係る貫通孔を具備したガラスコア2を概略的に示す断面図である。
【
図3】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3を概略的に示す断面図である。
【
図4A】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4B】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4C】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4D】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4E】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4F】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4G】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4H】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4I】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4J】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4K】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4L】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4M】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4N】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4O】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4P】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4Q】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図4R】本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3の製造工程を概略的に示す断面図である。
【
図5】本発明の実施例に係るガラスコア4を概略的に示す断面図である。
【
図6A】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6B】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6C】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6D】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6E】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6F】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6G】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6H】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図6I】本発明の実施例に係るガラスコア4の製造工程を概略的に示す断面図である。
【
図7A】本発明の比較例に係るガラスコアの製造工程を概略的に示す断面図である。
【
図7B】本発明の比較例に係るガラスコアの製造工程を概略的に示す断面図である。
【
図7C】本発明の比較例に係るガラスコアの製造工程を概略的に示す断面図である。
【発明を実施するための形態】
【0016】
以下、本発明の態様について、図面を参照しながら説明する。なお、以下の説明において、同一要素又は同一機能を有する各部分には、同一符号を用いて、重複する説明は省略する。
なお、本明細書において、「上方(上)」とは、ガラス板から離れる方向をいうものとし、「下方(下)」とは、ガラス板に近づく方向をいうものとする。
【0017】
図1は、本発明の一態様に係るガラスコア1を概略的に示す断面図である。
【0018】
図1に示すガラスコア1は、ガラス板10と、第1の金属層20と、第1の電解銅めっき層30と、誘電体層40と、第2の金属層50と、無電解ニッケルめっき層60と、第2の電解銅めっき層70からなる。
【0019】
ガラス板10は、典型的には光透過性を有する。ガラス板10を構成するガラス材料の成分、及びその配合比率は特に限定されない。ガラス板10としては、例えば、無アルカリガラス、アルカリガラス、ホウ珪酸ガラス、石英ガラス、サファイアガラス、及び感光性ガラスなど、ケイ酸塩を主成分とするガラスを用いることができる。ガラス板10としては、半導体パッケージ及び半導体モジュールに用いられるという観点からは、無アルカリガラスを用いることが望ましい。無アルカリガラスに含まれるアルカリ成分の含有率は、0.1質量%以下であることが好ましい。
【0020】
ガラス板10の厚さは、1mm以下であることが好ましい。ガラス板10の厚さは、製造時のハンドリング性を考慮すると、0.1mm以上0.8mm以下の範囲内にあることがより好ましい。
【0021】
ガラス板10の製造方法としては、例えば、フロート法、ダウンドロー法、フュージョン法、アップドロー法、及びロールアウト法などが挙げられる。ガラス板10は、いずれの方法によって作製されたものを用いてもよい。
【0022】
ガラス板10の線膨張係数(CTE:Coefficient of Thermal Expansion)は、20℃以上260℃以下の温度範囲において、0.5×10-6/K以上15.0×10-6/K以下の範囲内にあることが好ましく、1.0×10-6/K以上8.0×10-6/K以下の範囲内にあることがより好ましく、1.0×10-6/K以上4.0×10-6/K以下の範囲内にあることが更に好ましい。ガラス板10の線膨張係数がこの範囲内にあると、コア基板1上に表面実装されるシリコン基板を用いた半導体チップの線膨張係数との差が小さい傾向にある。なお、線膨張係数とは、温度の上昇に対応して長さが変化する割合を意味している。
【0023】
ガラス板10の少なくとも一方の主面は、機能層を備えていてもよい。機能層としては、例えば、微粒子を含む反射防止層、赤外線吸収剤を含む赤外線遮蔽層、ハードコート材料を含む強度付与層、帯電防止剤を含む帯電防止層、着色剤を含む着色層、光学薄膜を含む光学フィルタ層、光散乱膜を含むテクスチャ制御層及びアンチグレア層など挙げることができる。このような機能層は、例えば、蒸着法、スパッタ法、又はウエット方式などの表面処理技術によって形成することができる。
【0024】
第1の金属層20と、第2の金属層50は典型的には、スパッタ法又は化学気相堆積(CVD)法によって形成される。
【0025】
これら第1の金属層20と、第2の金属層50は、例えば、銅(Cu)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、金(Au)、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、Al-Si系合金、Al-Si-Cu系合金、Al-Cu系合金、Ni-Fe系合金、酸化インジウムスズ(ITO)、インジウム酸化亜鉛(IZO)、活性酸化亜鉛(AZO)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)、窒化チタン(TiN)、Cu3N4、Cu合金の単体又はこれらの混合物か、単層膜又は積層膜からなる。
【0026】
第1の金属層20は、チタンと銅のスパッタ積層膜、すなわちスパッタによりチタン層と銅層を個別に積層したものであることが好ましい。チタン層は、ガラス板10との密着性を向上させることができ、また、銅層はチタン層と電解銅めっき層30の密着性を向上させることができる。すなわち、金属層20をチタンと銅のスパッタ積層膜とすることで、ガラス板10上に密着性が良好な第1の電解銅めっき層30を形成することが出来る。
【0027】
第2の金属層50についても、第1の金属層20と同様に、チタンと銅のスパッタ積層膜とすることが好ましい。チタン層は、誘電体層40との密着性を向上させることができ、また、チタン層上に、チタン層と密着性が良好な銅層を設けることで、該銅層上に無電解ニッケルめっき層60を設けることができる。
【0028】
前記第1の金属層20と第2の金属層50がチタンと銅のスパッタ積層膜である場合、チタン層の厚さは、0.01μm以上0.1μm以下の範囲内であることが好ましい。銅層の厚さは、0.09μm以上0.5μm以下の範囲内であることが好ましい。いずれも前記下限値を下回ると、基材に対する膜の付き回り性が低下し、ピンホールを伴うため好ましくない。また、前記上限値を超えた場合においては、特に性能面での向上が認められないため、コストの面で好ましくない。
【0029】
第1の電解銅めっき層30と誘電体層40の間には、例えばチタンなどのスパッタ層を密着層として設けてもよい。
【0030】
無電解ニッケルめっき層60の皮膜は、リン(P)を含有している。めっき皮膜中に含まれるリン含有率は、0.1質量%以上5質量%未満であると好ましく、さらには0.5質量%以上5質量%未満であるとより好ましいが、0質量%を超えていれば足りる。
【0031】
無電解ニッケルめっき層60の皮膜に含まれるリン含有率が0.1質量%以上5質量%未満のとき、製造過程で不要となる無電解ニッケルめっき層をエッチングする際に、酸系のエッチング剤を用いることができる。こうすることで、エッチング時のガラス腐食や誘電体層のダメージを防止できる。一方、リン含有率が5質量%以上の場合、製造過程で不要となる無電解ニッケルめっき層をエッチングする際には、高温条件下でアルカリ系のエッチング剤を用いなければならなくなる。そのため、エッチング時にガラス腐食や、誘電体層へのダメージが生じたりする。よって、ガラスの割れ防止とコンデンサ特性を得るために、無電解ニッケルめっき層60の皮膜に含まれるリン含有率は、0.1(好ましくは0.5)質量%以上5質量%とするのが好ましい。
【0032】
無電解ニッケルめっき層60の皮膜に含まれるリン含有率は、例えば、エネルギー分散型X線分析法(EDX)などの蛍光X線元素分析法(XRF)により得ることができる。
【0033】
無電解ニッケルめっき層60の皮膜には、ニッケル及びリン以外にも、硫黄(S)、鉛(Pb)及びビスマス(Bi)などの他の成分を含んでいてもよい。
【0034】
無電解ニッケルめっき層60の厚さは、典型的には1μm以下であり、望ましくは0.4μm以下であり、より望ましくは0.3μm以下であり、更に望ましくは0.1μm以下である。電解ニッケルめっき層24の厚みが薄いと、これら無電解ニッケルめっき層60の形成及びエッチングに要する時間が短くなり、製造が容易である。
【0035】
これら無電解ニッケルめっき層60の厚さは、例えば、蛍光X線元素分析法により得ることができる。
【0036】
第2の金属層50と無電解ニッケルめっき層60の界面には、パラジウム、もしくはパラジウムとスズが含まれている。これらのパラジウムやスズは無電解ニッケルめっきを成膜する際の触媒として働く。また、第2の金属層50と前記パラジウムを含んでなる界面には、無電解ニッケルめっき層60と第2の金属層50の密着性を向上させるための更なる密着層を備えていてもよい。
【0037】
無電解銅めっき層を無電解ニッケルめっき層60の代替皮膜として用いることはできない。これは、無電解銅めっき浴はpHが約12と高く、誘電体層上に設ける場合、誘電体層にダメージを及ぼすためである。また、無電解銅めっき層はガラスとの密着性も悪く、ガラス端部に析出した無電解銅めっき皮膜が無電解銅めっき浴中で剥離し、無電解銅めっき浴の分解を促すため好ましくない。
【0038】
第1の電解銅めっき層30及び第2の電解銅めっき層70の厚さは、それぞれ1μm以上20μm以下の範囲内にあることが好ましく、3μm以上18μm以下の範囲内にあることがより好ましい。
【0039】
誘電体層40は、例えば、無機化合物を含んでいる。無機化合物としては、例えば、アルミニウム、チタン、タンタル、クロム、ランタン、サマリウム、イッテルビウム、イットリウム、ガドリニウム、ジルコニウム、ニオブ、ハフニウム、ガリウム、セリウム、及びシリコンからなる群より選ばれる少なくとも1種の元素を含む酸化物、炭化物、窒化物及びホウ化物を挙げることができる。
【0040】
誘電体層40は、シリコンナイトライド、酸化タンタル(タンタルオキサイド)及び酸化アルミニウムの少なくとも一つを含んでいることが望ましい。シリコンナイトライド、酸化タンタル(タンタルオキサイド)及び酸化アルミニウムは、誘電率が低く、絶縁性に優れている。
【0041】
誘電体層40は、典型的には、スパッタ法又は化学気相堆積(CVD)法によって形成される。
【0042】
図1に示す第1の金属層20と、第1の電解銅めっき層30と、誘電体層40と、第2の金属層50と、無電解ニッケルめっき層60と、第2の電解銅めっき層70はガラス主面10a側としたが、ガラス主面10aと対向するガラス主面10b側に設けられていてもよく、またガラス主面10a、10bの両側に設けられていてもよい。
【0043】
誘電体層40よりも下層の第1の金属層20と第1の電解銅めっき層30からなる導体層と、誘電体層40と、誘電体層40上の第2の金属層50と無電解ニッケルめっき層60と、第2の電解銅めっき層からなる導体層はコンデンサを形成する。
【0044】
図2は、本発明の一態様に係る貫通孔を具備したガラスコア2を概略的に示す断面図である。
【0045】
図2に示すガラスコア2は、ガラス板10と、貫通孔THと、第1の金属層20と、第1の電解銅めっき層30と、誘電体層40と、第2の金属層50と、無電解ニッケルめっき層60と、第2の電解銅めっき層70からなる。
【0046】
貫通孔THの軸線方向断面の形状は、長方形であってもよく、Xシェイプ、すなわち貫通孔THの一端径及び他端径に対して、中央部の径がより小さい形状であってもよく、テーパ状、すなわち貫通孔THの一端径に対して他端径がより小さい形状であってもよく、Oシェイプ、すなわち貫通孔THの一端径及び他端径に対して、中央部の径がより大きい形状であってもよく、その他の形状であってもよい。また、貫通孔THの軸線方向に対して直交する断面の形状は、円形であってもよく、楕円形であってもよく、多角形であってもよい。
【0047】
貫通孔TH内に、無電解ニッケルめっき層60と第2の電解銅めっき層70とからなる導体層を設けることで、ガラス主面10aと、これに対向するガラス主面10bとを導通化することができる。貫通孔TH内はその一部が第1の金属層によって被覆されていてもよい。
【0048】
貫通孔THの内壁と無電解ニッケルめっき層60の間には、パラジウム、もしくはパラジウムとスズが含まれている。これらのパラジウムやスズは無電解ニッケルめっき時の触媒として働く。また、貫通孔THの内壁と前記パラジウムを含んでなる界面には、無電解ニッケルめっき層60と貫通孔TH内のガラスとの密着性を向上させるための更なる密着層を備えていてもよい。
【0049】
図3は、本発明の一態様に係る貫通孔を具備したガラスコア2を具備した多層配線基板3を概略的に示す断面図である。
【0050】
図3に示す多層配線基板3は、
図2のガラスコア2をベースとし、ガラス板10と、第1の金属層20と、第1の電解銅めっき層30と、誘電体層40と、第2の金属層50と、無電解ニッケルめっき層60と、第2の電解銅めっき層70と、第1の樹脂層80と、第2の樹脂層90と、樹脂からなるプラグPLと、ソルダーレジスト層100と、ビア80Vと、ビア90Vと、シード層80sと、シード層90sと、電解銅めっき層80Cと、電解銅めっき層90Cと、表面処理層110と、はんだ層120とを備える。
【0051】
第1の樹脂層80と、第2の樹脂層90は、エポキシ樹脂、ポリイミド樹脂、マレイミド樹脂、ポリエチレンテレフタラート、ポリフェニレンオキシド、液晶ポリマー及びこれらの複合材料を用いることができる。樹脂としては、電気特性や製造容易性の観点から、フィラーを含有したエポキシ樹脂を使用するが望ましい。フィラーとしては、例えば、シリカ、硫酸バリウム、酸化チタン又はこれらの混合物を用いることができる。なお、樹脂としては、導電性ペースト又は導電性樹脂を用いてもよい。
【0052】
プラグPLは、貫通孔TH内で無電解ニッケルめっき層60と、第2の電解銅めっき層70によって満たされていない貫通孔TH内の空洞部を、絶縁樹脂で充填することにより形成され、第1の樹脂層80と一体的に形成されている。
【0053】
ビア80Vと、ビア90Vは、第1の樹脂層80と、第2の樹脂層90が非感光性材料の場合はレーザーなどによって加工され、感光性材料の場合はフォトリソグラフィーによって加工される。
【0054】
シード層80sとシード層90sは好ましくは無電解ニッケルめっき皮膜、もしくは無電解銅めっき皮膜であるが、例えばスパッタ法によりニッケルや銅を成膜してもよい。
【0055】
表面処理層110には、スズめっき、スズ合金めっき、無電解Ni-P/無電解Pd-P/Auめっき、又は無電解Ni-P/Auめっきなどのめっき皮膜を用いることができる。これら表面処理層110は、めっき皮膜を用いる代わりに、有機皮膜を用いてもよい。有機皮膜としては、プレソルダー処理皮膜、又は、OSP(Organic Solderability Preservative)などのプレフラックス処理皮膜を挙げることができる。
【0056】
はんだ層120は、表面処理層110上に設けられている。はんだ層120は、スズ、銀、銅、ビスマス、鉛、亜鉛、インジウム、アンチモン又はこれらの混合物を含んでいる。
【0057】
図4A~
図4Rに、本発明の一態様に係る貫通孔を具備したガラスコア2を用いた多層配線基板3の製造工程を概略的に示す。
【0058】
まず、
図4Aに示す貫通孔THを具備したガラス板10の主面10aと、ガラス主面10aと対向する他方のガラス主面10bに、ガラス側から順に第1金属層20としてチタン層20Aと銅層20Bのスパッタ積層膜を形成する。第1金属層20は貫通孔TH内の一部を被覆していてもよい。
【0059】
次に、
図4Bに示すように、ガラス主面10a側の銅層20B上にロールラミネート装置などを用いてドライフィルムレジストをラミネートし、フォトリソグラフィーにより、開口部RE1Aを有する第1レジスト層RE1を形成する。また、同様の方法により、ガラス主面10b側には第2レジスト層RE2を形成する。
【0060】
第1レジスト層RE1もしくは第2レジスト層RE2は以降の工程で剥離するため、この段階で、貫通孔TH内に、第1レジスト層RE1もしくは第2レジスト層RE2が充填されていてもよい。
【0061】
次に
図4Cに示すように、
図4Bに示すレジスト開口部RE1A内に電解銅めっき層30を形成する。電解銅めっきは安価で管理が容易な硫酸銅めっき浴中で行うのが望ましいが、例えばピロリン酸銅めっき浴中で行ってもよい。
【0062】
次に
図4Dに示すように、水酸化ナトリウム溶液やTMAH溶液中などで、第1レジスト層RE1と第2レジスト層RE2を剥離する。
【0063】
次に
図4Eに示すように、ガラス板10の主面10a上に、密着層40adと、誘電体層40と、第2金属層50としてチタン層50Aと銅層50Bをスパッタ法又はCVD法により順次積層させる。
【0064】
密着層40adはチタン層とすることが好ましいが、設けなくてもよい。
【0065】
次に
図4Fに示すように、ロールラミネート装置などを用いてドライフィルムレジストをラミネートし、フォトリソグラフィーにより、銅層50B上に第3レジスト層RE3と銅層20B上に第4レジスト層RE4を設ける。この第3レジスト層RE3は目的とする箇所以外がエッチングされるのを防ぐ保護膜として働く。
【0066】
次に
図4Fのガラス主面10a側で第3レジスト層RE3によって覆われていない領域の銅層50Bを第1エッチング剤で、チタン層50Aを第2エッチング剤で、誘電体層40をドライエッチングで、密着層40adを順次除去し、
図4Gに示す基板を得る。密着層40adがチタンからなる場合は、第2エッチング剤でエッチングする。
【0067】
第1エッチング剤としては、pHが0.5以上2以下の範囲内にある酸性水溶液を用いることが好ましい。酸性水溶液は、硫酸及び過酸化水素水の少なくとも一方を含んでいることが好ましく、双方を含んでいることがより好ましい。
【0068】
この第1エッチング剤の温度は、20℃以上40℃以下の範囲内とすることが好ましく、25℃以上35℃以下の範囲内とすることがより好ましい。
【0069】
第2エッチング剤としては、pHが7以上12以下の範囲内にある弱アルカリ性水溶液を用いることが好ましく、pHが8以上10以下の範囲内にある弱アルカリ性水溶液を用いることがより好ましい。弱アルカリ性水溶液としては、アンモニア水と過酸化水素水との混合物を用いることが好ましい。
【0070】
この第2エッチング剤の温度は、20℃以上40℃以下の範囲内とすることが好ましく、25℃以上35℃以下の範囲内とすることが好ましい。
【0071】
第1エッチング剤と第2エッチング剤は酸から弱アルカリ領域であるとともに、室温付近で使用可能なため、ガラスへのダメージがない。
【0072】
次に、第3レジスト層RE3と第4レジスト層RE4を、
図4Hに示すように水酸化ナトリウム溶液やTMAH溶液中などで剥離し、貫通孔TH内を含め、基板全体に無電解ニッケルめっき層60を形成する。この無電解ニッケルめっき層60が、
図4J記載の第2の電解銅めっき層70のシード層となる。
【0073】
無電解ニッケルめっき液は、ニッケルを含む金属塩と還元剤とを含んでいる。ニッケルを含む金属塩としては、例えば、硫酸ニッケル、塩化ニッケル又はこれらの混合物を挙げることができる。無電解ニッケルめっき液に含まれるニッケルを含む金属塩の濃度は、10g/L以上50g/L以下の範囲内にあることが好ましく、15g/L以上45g/L以下の範囲内にあることがより好ましく、20g/L以上30g/L以下の範囲内にあることが更に好ましい。
【0074】
還元剤は、ニッケルを含む金属塩を還元する。還元剤としては、例えば、ホルマリン、ヒドラジン、次亜リン酸、次亜リン酸ナトリウム、水素化ホウ素ナトリウム又はこれらの混合物を挙げることができるが、次亜リン酸、次亜リン酸ナトリウム又はこれらの混合物を使用するのが望ましい。無電解ニッケルめっき液に含まれる還元剤の濃度は、10g/L以上50g/L以下の範囲内にあることが好ましく、15g/L以上45g/L以下の範囲内にあることがより好ましく、20g/L以上30g/L以下の範囲内にあることが更に好ましい。
【0075】
無電解ニッケルめっき液は、金属系添加剤、有機系添加剤、錯化剤、pH調整剤、緩衝剤又はこれらの混合物を更に含んでいてもよい。
【0076】
金属系添加剤は、無電解ニッケルめっき液の安定性を高める。金属系添加剤は、例えば、鉛、ビスマス又はこれらの混合物を含んでいる。
【0077】
有機系添加剤は、ニッケルの析出を促す。有機系添加剤は、例えば、硫黄を含んでいる。
【0078】
錯化剤としては、例えば、水酸化アンモニウム、クエン酸ナトリウム、エチレングリコール又はこれらの混合物を挙げることができる。無電解ニッケルめっき液に含まれる錯化剤の濃度は、10g/L以上50g/L以下の範囲内にあることが好ましく、10g/L以上40g/L以下の範囲内にあることがより好ましく、20g/L以上30g/L以下の範囲内にあることが更に好ましい。
【0079】
pH調整剤としては、例えば、水酸化ナトリウム、アンモニア、硫酸又はこれらの混合物を挙げることができる。
【0080】
緩衝剤としては、例えば、クエン酸ナトリウム、ホウ酸、炭酸又はこれらの混合物を挙げることができる。
【0081】
また、無電解ニッケルめっき液は、塩化アンモニウムを含んでいてもよい。無電解ニッケルめっき液に含まれる塩化アンモニウムの濃度は、10g/L以上50g/L以下の範囲内にあることが好ましく、10g/L以上40g/L以下の範囲内にあることがより好ましく、20g/L以上30g/L以下の範囲内にあることが更に好ましい。
【0082】
無電解めっき処理に際しては、無電解ニッケルめっき液のpHは6以上10以下の範囲内とすることが好ましく、8.0以上9.5以下の範囲内とすることがより好ましい。
【0083】
また、無電解ニッケルめっき液の温度は、例えば、30℃以上60℃以下の範囲内とすることが好ましい。
【0084】
上述した無電解ニッケルめっき液の処方により、リン含有率が0.5質量%以上5質量%未満の無電解ニッケルめっき皮膜が得られる。
【0085】
次に、
図4Iに示すように、ロールラミネート装置などを用いてドライフィルムレジストをラミネートし、フォトリソグラフィーにより、無電解ニッケルめっき層60上に開口部RE5A、RE5Bを有する第5レジスト層RE5と開口部RE6Aを有する第6レジスト層RE6を設ける。
【0086】
次に、
図4Jに示すように、前記開口部RE5A、RE5B、RE6A内に第2の電解銅めっき層70を形成する。
【0087】
次に、
図4Jの基板を、水酸化ナトリウム溶液やTMAH溶液中などで第5レジスト層RE5と第6レジスト層RE6を剥離し、無電解ニッケルめっき層60と銅層20Bを前記第1エッチング剤にて、チタン層20Aを前記第2エッチング剤にてエッチングし、
図4Kに示す基板を得る。
【0088】
次に、
図4Lに示すように、絶縁層80を真空プレスラミネーターによってガラス主面10a側とガラス主面10bの両側から張り合わせ、貫通孔TH内に樹脂プラグPLを設け、レーザーなどによって、ビア80Vを設ける。
【0089】
次に、
図4Mに示すように、無電解ニッケルめっき皮膜、もしくは無電解銅めっき皮膜によりシード層80sを設ける。
【0090】
次に、
図4Nに示すように、上記と同様の方法で、開口部RE7Aを有する第7レジスト層RE7と、第8レジスト層RE8を設け、開口部RE7A内に電解銅めっき層80Cを形成する。
【0091】
次に、水酸化ナトリウム溶液やTMAH溶液中などで第7レジスト層RE7と第8レジスト層RE8を剥離し、
図4Oに示すように、不要なシード層80sをエッチングする。
【0092】
次に
図4Lから
図4Oの工程を繰り返すことで、
図4Pに示すように、樹脂層90とビア90Vとシード層90sと、電解銅めっき層90Cを備えた基板を得る。
【0093】
次に、
図4Qに示すように、開口部100Aを有するソルダーレジスト層100を設ける。ソルダーレジストは液状レジストの場合はロールコーターで塗布後、ドライフィルム形状の場合はラミネーターで形成後、フォトリソグラフィーによって開口部を形成する。
【0094】
次に、
図4Rに示すように、前記ソルダーレジスト層に設けた開口部100A内に表面処理層110を設け、はんだ層120を設ける。はんだ層120は、スクリーン印刷法、半田ボール振込み搭載法及び電解めっき法など公知の方法により形成できる。
【0095】
以上のようにして、ガラスコア2(
図2)を備えた
図3に示す多層配線基板3を得ることができる。
【0096】
本実施形態によれば、誘電体層40よりも上方に、第2の電解銅めっき層70を確実に形成することが出来、これにより多層配線基板を形成できる。
【0097】
また、第1の電解銅めっき層30の形成と同時に貫通孔TH内に電解銅めっき層を形成する場合と比較して、貫通孔TH内への電解銅めっき層70の形成工程を、貫通孔TH内への樹脂プラグPLの直前に実行することで、貫通孔THにかかる銅の応力の経時蓄積を緩和することができ、ガラス割れのリスクを低減することができる。
【0098】
また、一例によると、非接触型干渉顕微鏡を用いて得られた、ガラス板10の表面の粗さは、製造開始前では0.5nmであり、製造後においては、0.55nmであった。したがって、このような製造方法によれば、ガラスへのダメージを抑えることができ、すなわち製造過程でのガラス割れのリスクを低減することができる。
【0099】
また、誘電体層40のドライエッチングは、出来るだけパターン密度が疎な状態で行うのが好ましい。本実施形態では、貫通孔TH周辺の第2電解銅めっき層の形成をドライエッチング後に行うため、ドライエッチング時にはガラス表面上のパターン密度が疎な状態となり、よりドライエッチングがしやすい基板の表面構成となるから、ドライエッチング不良を低減することができる。
【0100】
以上述べたように本実施形態によれば、ガラスコアの上方に設けられた誘電体層上での電解銅めっき層の形成不良を防止することができる。また、無電解ニッケルめっき皮膜のリン含有率を5質量%未満にすることにより酸性のエッチング剤を用いることで、ガラス割れを有効に防止するとともに、ガラスの貫通孔における応力蓄積を緩和することにより、製造過程における貫通孔内でのクラックの抑制を図ることができる。
【0101】
なお、本発明は上述の実施形態及び変形例に限定されるものではない。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【実施例】
【0102】
以下、本発明の実施例について説明する。
【0103】
<実施例1>
図5に示すガラスコア4を、
図6A~6Iに示す製造工程に従って製造した。
【0104】
まず、
図6Aに示すように、貫通孔THを備えたサイズ500mm×500mm、厚さ200μmのガラスパネル1000(EAGLE XG;コーニング社製)を準備した。非接触型干渉顕微鏡により測定されたガラス板1000の表面の粗さは、0.5nmであった。
【0105】
また、ガラス板1000に設けられた貫通孔THの径は、ガラス板1000の一方の主面では80μmであり、ガラス板1000の他方の主面では60μmであった。ただし、図では径を同じとしている。
【0106】
次に、ガラス板1000の一方の主面に、スパッタ法により第1の金属層200として50nmのチタン層200Aと300nmの銅層200Bを、この順序で成膜した。
【0107】
次に、
図6Bに示すように、前記銅層200B上にロールラミネート装置を用いて、感光性ドライフィルムレジストをラミネートすることにより、第1レジスト層RE10と第2レジスト層RE20を形成し、サイズ500μm×500μmの開口部RE10Aを設け、電解めっき法により、前記開口部RE10A内に、厚みが10μmになるように第1の電解銅めっき層300を設けた。
【0108】
次に、
図6Bで得られた基板を50℃、5%水酸化ナトリウムの水溶液中に浸漬して、第1レジスト層RE10と第2レジスト層RE20を剥離して、
図6Cの基板を得た。
【0109】
次に、
図6Dに示すように、ガラス主面上に密着層400adとして厚さ50nmのチタン層、誘電体層400として厚さ200nmの酸化アルミニウム層、第2の金属層500として厚さ50nmのチタン層500A、厚さ300nmの銅層500Bをこの順序で成膜した。
【0110】
次に、
図6Eに示すように第1の電解銅めっき層30の電極サイズ500μm×500μmよりも小さいサイズ400μm×400μmのレジスト層RE30を、感光性ドライフィルムレジストを用いて前記ラミネート法とフォトリソグラフィー法により形成した。ガラス主面1000aと対向する主面1000bは、一面にドライフィルムレジスト層RE40を形成した。
【0111】
次に、
図6Fに示すように、ガラス主面に対し、レジスト層RE30で保護されていないガラス主面上に形成された厚さ300nmの銅層500Bと、厚さ50nmのチタン層500Aと、厚さ200nmの誘電体層400としての酸化アルミニウム層と、厚さ50nmのチタン層400adを、順次エッチングした。銅層500Bのエッチングは、第1のエッチング剤である硫酸と過酸化水素との混合溶液(pH1、温度25度)を用いて行い、チタン層500Aとチタン層400adのエッチングは、第2エッチング剤である過酸化水素水とアンモニア水との混合溶液(pH9、温度25度)を用いて行い、厚さ200nmの誘電体層400としての酸化アルミニウム層は、ドライエッチングによって除去した。
【0112】
次に、
図6Fに示す基板を50℃、5%水酸化ナトリウムの水溶液中に浸漬して、レジスト層RE30とドライフィルムレジスト層RE40を剥離後のガラスコアを、パラジウムを含む溶液で触媒化処理をした後、以下の無電解ニッケルめっき液Aに浸漬し、無電解ニッケルめっき層600を形成し、
図6Gに示す基板を得た。
【0113】
無電解ニッケルめっき液Aの浴構成は以下の通りである。
浴組成:硫酸ニッケル:20g/L、次亜リン酸ナトリウム:25g/L、乳酸:30g/L、鉛イオン:1ppm(残分は純水)
pH:8.5
温度:40℃
【0114】
これらの無電解ニッケルめっき層の厚みを測定したところ、その厚さは0.1μmであった。また、この無電解ニッケルめっき層のリン含有率について、上述した方法により測定したところ、その含有率は4質量%であった。
【0115】
次に、
図6Hに示すようにガラス主面、及び対向する主面に前記と同じ方法で、開口部RE50A、RE50B、RE60Aを有する感光性ドライフィルムレジスト層RE50,RE60を形成し、電解めっき法により第2の電解銅めっき層700を形成した。このときの第2の電解銅めっき層700の厚みは約10μmであった。
【0116】
次に、
図6Iに示すように、レジスト層RE50、レジスト層RE60を50℃、5%水酸化ナトリウムの水溶液中で剥離し、無電解ニッケルめっき層600と、銅層200Bを第1のエッチング剤である硫酸と過酸化水素との混合溶液(pH1、温度25度)を用いてエッチングし、チタン層200Aを第2エッチング剤である過酸化水素水とアンモニア水との混合溶液(pH9、温度25度)を用いてエッチングした。このようにして、
図5に示すガラスコア4を得た。
【0117】
<実施例2>
本実施例2では、前記実施例1記載の無電解ニッケルめっきAの浴構成において、pHを9、温度を50℃としたこと以外は、実施例1と同様の方法でガラスコアを作製した。めっき時間は、無電解ニッケルめっき層の厚みが0.1μmとなるように調整した。
【0118】
本実施例で作製した無電解ニッケルめっき層の厚みを測定したところ、その厚さは0.1μmであった。また、この無電解ニッケルめっき層のリン含有率について、上述した方法により測定したところ、その含有率は1質量%であった。
【0119】
<比較例1>
本比較例1では、無電解ニッケルめっき液に下記の無電解ニッケルめっき液Bを用いてリン含有率が6質量%の無電解ニッケルめっき層を形成したこと以外は、前記実施例1と同様の方法でガラスコアを作製した。また、無電解ニッケルめっき層のエッチング剤には、以下の第3エッチング剤を用いた。
【0120】
無電解ニッケルめっき液Bの浴構成は以下の通りである。
浴組成:硫酸ニッケル:20g/L、次亜リン酸ナトリウム:25g/L、乳酸:30g/L、鉛イオン:1ppm(残分は純水)
pH:4.6
温度:80℃
【0121】
第3エッチング剤は、25%の水酸化ナトリウムを含む溶液からなる(pH14、80℃)。
【0122】
<比較例2>
実施例1と同じガラス板を用い、ガラス1000上に、チタン層200Aと銅層200Bと無電解ニッケルめっき層600を順次積層し、また、貫通孔TH内に無電解ニッケルめっき層600を形成し、レジストを前記実施例1と同じ方法で設け、前記無電解ニッケルめっき層600上に電解銅めっき層300を形成して、前記レジスト層を剥離して
図7Aに示す基板を得た。無電解ニッケルめっき液には、前記無電解ニッケルめっき液Aを用いた。
【0123】
次に実施例1と同様の方法で、ガラス主面1000a上に密着層400adとして厚さ50nmのチタン層、誘電体層400として厚さ200nmの酸化アルミニウム層、第2の金属層500として50nmのチタン層500A、300nmの銅層500Bをこの順序で成膜し、所定の箇所をレジストで保護した。さらに、レジスト層で保護されていない不要な厚さ300nmの銅層500Bと、厚さ50nmのチタン層500Aと、誘電体層として厚さ200nmの酸化アルミニウム層400と、厚さ50nmのチタン層400adを順次エッチングした。銅層500Bのエッチングは、第1のエッチング剤である硫酸と過酸化水素との混合溶液(pH1、温度25度)を用いて行い、チタン層500Aとチタン層400adのエッチングは、第2エッチング剤である過酸化水素水とアンモニア水との混合溶液(pH9、温度25度)を用いて行い、200nmの酸化アルミニウム層400はドライエッチングによって除去した。こうして
図7Bに示す基板を得た。
【0124】
次に実施例1と同様の方法で、銅層500B上に電解銅めっき層700を設け、
図7Cに示す基板を得た。
【0125】
<評価>
前記実施例および比較例で製造したガラスコアの各々について、以下の方法により、誘電体層上での電解銅めっき層の形成可否と、ガラスに設けられた貫通孔のクラックの有無と、ガラスパネルの割れの有無を評価した。
【0126】
[誘電体層上での電解銅めっき層の形成可否]
前記実施例および比較例で製造したガラスコアについて、実体顕微鏡により、誘電体層上に所望の導体パターンが形成されているかを確認した(サンプル数N=100)。
【0127】
[貫通孔のクラック有無]
記実施例および比較例で製造したガラスコアについて、断面観察により、貫通孔内部のガラスクラックの有無を確認した(サンプル数N=100)。
【0128】
[ガラスパネルの割れ有無]
前記実施例および比較例で製造したガラスパネルについて、ガラスパネル平面上の割れとクラックの状況を確認した(サンプル数N=10)。
【0129】
表1は、実施例1と実施例2と比較例1と比較例2について、上記の評価結果をまとめたものである。ここで、評価の結果、合格率が100%の場合を○、合格率が100%未満の場合を×と定義し、(不良数/サンプル数)とともに示した。
【0130】
【0131】
表1に示すように、本実施例1と実施例2にかかるガラスコアは、誘電層上で電解銅めっき層が100%の確率で形成できることが確認された。また、貫通孔内部のガラスクラックやガラスパネル平面上の割れやクラックは認められなかった。
【0132】
これに対して、比較例1のガラスコアは、貫通孔内部でのガラスクラックとガラスパネル平面上にクラックが確認された。また、比較例2のガラスコアは、ガラスパネル平面上の割れは認められなかったが、貫通孔内部でのガラスクラックが認められた。
【符号の説明】
【0133】
1・・・ガラスコア、TH・・・貫通孔、PL・・・樹脂プラグ、RE1、RE2、RE3、RE4、RE5、RE6、RE10、RE20、RE30、RE40、RE50、RE60・・・レジスト層、10・・・ガラス板、20、200・・・第1の金属層、30・・・第1の電解銅めっき層、40、400・・・誘電体層、40ad、400ad・・・密着層、50、500・・・第2の金属層、60、600・・・無電解ニッケルめっき層、70、700・・・第2の電解銅めっき層、80V、90V・・・ビア、80C、90C・・・電解銅めっき層、80s、90s・・・シード層、100・・・ソルダーレジスト層、110・・・表面処理層、120・・・はんだ層