IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クリスティ デジタル システムズ ユーエスエイ インコーポレイテッドの特許一覧

特許7140452デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ
<>
  • 特許-デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ 図1
  • 特許-デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ 図2
  • 特許-デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ 図3
  • 特許-デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ 図4
  • 特許-デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-12
(45)【発行日】2022-09-21
(54)【発明の名称】デジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャ
(51)【国際特許分類】
   G03B 21/14 20060101AFI20220913BHJP
   G02B 26/08 20060101ALI20220913BHJP
   H04N 5/74 20060101ALI20220913BHJP
【FI】
G03B21/14 Z
G02B26/08 E
H04N5/74 A
【請求項の数】 8
【外国語出願】
(21)【出願番号】P 2018016940
(22)【出願日】2018-02-02
(65)【公開番号】P2018156065
(43)【公開日】2018-10-04
【審査請求日】2020-12-15
(31)【優先権主張番号】15/434,635
(32)【優先日】2017-02-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】508191949
【氏名又は名称】クリスティ デジタル システムズ ユーエスエイ インコーポレイテッド
(74)【代理人】
【識別番号】100116872
【弁理士】
【氏名又は名称】藤田 和子
(72)【発明者】
【氏名】ジャクソン ジョン デイヴィッド
(72)【発明者】
【氏名】パーキンス マイケル
(72)【発明者】
【氏名】ラム マーク
(72)【発明者】
【氏名】マー ジョセフ
【審査官】石本 努
(56)【参考文献】
【文献】特開2005-241738(JP,A)
【文献】特開2007-248488(JP,A)
【文献】特開2013-250552(JP,A)
【文献】特開2015-090497(JP,A)
【文献】特開2015-090498(JP,A)
【文献】特開2017-032631(JP,A)
【文献】米国特許出願公開第2012/0206697(US,A1)
【文献】国際公開第2016/108157(WO,A1)
【文献】特開2007-163547(JP,A)
【文献】米国特許出願公開第2015/0146175(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G03B21/00-21/10
21/12-21/13
21/134-21/30
33/00-33/16
G02B 6/35
26/00-26/08
G02B 9/00-17/08
21/02-21/04
25/00-25/04
G02F 1/13
1/137-1/141
H04N 5/66-5/74
(57)【特許請求の範囲】
【請求項1】
デバイスであって、
各々がそれぞれの非法線角度で照射されて、それぞれの出力像が法線角度で反射されるように、各々が順方向構成で作動され、第1のデジタルマイクロミラーデバイス(DMD)の対象面が前記第1のDMDに平行である、前記第1のDMDおよび第2のDMDと、
前記第1のDMDと前記第2のDMDとの間の光学系であって、前記光学系は、前記第2のDMDにおける像面を前記順方向構成で照射するために前記第1のDMDから反射された光を伝えるように構成され、前記光学系は、等価なレンズ面を含み、前記等価なレンズ面は、1つ以上のレンズを含む前記光学系を仮想的にセットされた単一のレンズとして示す、光学系と、
前記第1のDMDと前記第2のDMDとの間の少なくとも1つの光デバイスであって、前記少なくとも1つの光デバイスは、前記第1のDMDの前記対象面を等価な傾いた対象面へ傾けるように構成され、前記等価なレンズ面、前記等価な傾いた対象面および前記像面がすべてシャインプルーフ交点で交差する、前記少なくとも1つの光デバイスと、
を備え、
前記少なくとも1つの光デバイスは、照射光を前記第1のDMDの前記対象面へ前記それぞれの非法線角度で伝えるように、そして前記それぞれの出力像をプリズムの出射面を通して伝えるように構成された前記プリズムを含み、前記出射面は、前記対象面に対してある角度を有し、前記角度は、ゼロより大きく、前記角度は、前記第1のDMDの前記対象面を前記等価な傾いた対象面へ光学的に傾けるように選択された、デバイス。
【請求項2】
前記第2のDMDにおける前記像面が前記それぞれの非法線角度で均一に焦点が合うように、前記少なくとも1つの光デバイスは、前記第1のDMDの前記対象面を前記等価な傾いた対象面へ傾けるようにさらに構成された、請求項1に記載のデバイス。
【請求項3】
前記少なくとも1つの光デバイスは、前記第1のDMDと前記第2のDMDとの間に分布した複数のウェッジプリズムを含む、請求項1に記載のデバイス。
【請求項4】
前記光学系は、前記第1のDMDからの照射光を前記第2のDMDの前記像面へ前記それぞれの非法線角度で伝えるように、そして前記第2のDMDの前記それぞれの出力像をそれぞれの出射面を通して伝えるように構成された第2のプリズムを含む、請求項1に記載のデバイス。
【請求項5】
前記光学系は、1つ以上のレンズを含む、請求項1に記載のデバイス。
【請求項6】
前記光学系は、1つ以上の開口部を含む、請求項1に記載のデバイス。
【請求項7】
前記第1のDMDは、予備変調器モードでさらに作動され、前記第2のDMDは、主変調器モードでさらに作動される、請求項1に記載のデバイス。
【請求項8】
前記第1のDMDは、第1の像データを用いて変調され、前記第2のDMDは、前記第1の像データ、目標投影像および前記デバイスの画素広がり関数のうちの1つ以上から決定された第2の像を用いて変調される、請求項7に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、一般に、デジタルマイクロミラーデバイスに関し、具体的にはデジタルマイクロミラーデバイスのための順方向対順方向高ダイナミックレンジ・アーキテクチャに関する。
【背景技術】
【0002】
高ダイナミックレンジ(「HDR:high dynamic range」)、および/または高コントラストのプロジェクタは、投影画像の黒色部分と投影画像の白色部分との間のコントラストを最大にしようと試みる。いくつかのHDRプロジェクタは、デジタルマイクロミラーデバイス(「DMD:digital micromirror device」、例えば、Digital Light ProcessingまたはDLP(登録商標))に基づき、高ダイナミックレンジは、2段階の画像化、すなわち、画像の初期「通常」コントラスト版を作り出す第1の予備変調器DMDと第2の主画像化DMDとを用いて達成され、第2の主画像化DMDは、最終画像中により黒い黒色を作り出し、結果として最終画像コントラストを増加させるために、(より高い解像度とすることができる)2回目に、第1のDMDからの画像の初期「通常」コントラスト版を再画像化する。
【0003】
かかるHDRプロジェクタの既存のアーキテクチャは、第1のDMDを逆方向構成で用い、第2のDMDを順方向構成で用いる。大部分のDMDがその構成で作動するように設計される構成である、順方向構成では、DMDは、DMDの面に対して斜めに照射され、DMDによって形成された画像は、DMDの面に対して法線方向に(垂直に)反射される。しかしながら、逆方向構成では、DMDの面は、垂直に照射され、DMDによって形成された画像は、面に対して斜めに反射される。
【0004】
HDRプロジェクタでは、第1のDMDからの光の第2のDMD上への許容可能な集束を達成するために、2つの光学面をどのような条件の下で相互に集束させることが可能であるかを記述するシャインプルーフ(Scheimpflug)の原理ゆえに、従来の投影光学系を用いるときに第1のDMDを逆方向構成で作動させることが必要であった。実際、従来の光学系を用いて第1のDMDが順方向構成で作動された場合には、狭い領域における以外、第1のDMDの対象面を第2のDMD上に集束させることができないであろう。結果として、既存のアーキテクチャのHDRプロジェクタにおいて第1のDMDは、逆方向構成で作動される。しかしながら、第1のDMDを逆方向構成で作動させることは、ブレーズド回折格子として機能するDMDミラー・アレイの回折効果に起因して、光学的に著しくより非効率的なシステムをもたらし、プロジェクタのコスト、サイズ、ノイズおよび電力消費の増加に繋がりかねない。
【発明の概要】
【0005】
一般に、本開示は、各々が順方向構成で作動される、第1の予備変調器デジタルマイクロミラーデバイス(「DMD」)および第2の主変調器DMDを含む高ダイナミックレンジ(「HDR」)プロジェクタのためのシステムおよび/またはデバイスに関する。システムは、第1のDMDからの光を第2のDMDへ伝える光学系、および第1のDMDの対象面を等価な傾いた対象面へ傾ける少なくとも1つの光デバイスであって、光学系の等価なレンズ面、等価な傾いた対象面および第2のDMDの像面がすべてシャインプルーフ交点で交差する、光デバイスを含む。
【0006】
本明細書では、要素は、1つ以上の機能を行う「ように構成される」か、またはかかる機能「のために構成される」として記載されてよい。一般に、機能を行うように構成されるか、または機能を行うために構成される要素は、機能を行うことができるか、または機能を行うのに適するか、または機能を行うように適合されるか、または機能を行うために作動可能であるか、または別の状況では機能を行うことが可能である。
【0007】
本明細書のために、「X、Y、およびZのうちの少なくとも1つ」および「X、Y、およびZのうちの1つ以上」の言葉は、Xのみ、Yのみ、Zのみ、または2つ以上の項目X、Y、およびZの任意の組み合わせ(例えば、XYZ、XY、YZ、XZなど)として解釈できることが理解される。「少なくとも1つの...」および「1つ以上の...」の言葉のいずれかの出現の際には2つ以上の項目に同様の論理を適用できる。
【0008】
本明細書の態様は、デバイスを提供し、デバイスは、各々がそれぞれの非法線角度で照射されて、それぞれの出力画像が法線角度で反射されるように、各々が順方向構成で作動され、第1のDMDの対象面が第1のDMDに平行である、第1のデジタルマイクロミラーデバイス(DMD)および第2のDMDと、第1のDMDと第2のDMDとの間の光学系であって、光学系は、第2のDMDにおける像面を順方向構成で照射するために第1のDMDから反射された光を伝えるように構成され、等価なレンズ面を含んだ光学系と、第1のDMDと第2のDMDとの間の少なくとも1つの光デバイスであって、少なくとも1つの光デバイスは、第1のDMDの対象面を等価な傾いた対象面へ傾け、等価なレンズ面、等価な傾いた対象面および像面がすべてシャインプルーフ交点で交差するように構成された、少なくとも1つの光デバイスと、を備える。
【0009】
いくつかの実装において、少なくとも1つの光デバイスは、第2のDMDにおける像面がそれぞれの非法線角度で均一に焦点が合うように第1のDMDの対象面を等価な傾いた対象面へ傾けるようにさらに構成される。
【0010】
いくつかの実装において、少なくとも1つの光デバイスは、第1のDMDの対象面に対して傾いた角度で出射面を有するプリズムを含む。
【0011】
いくつかの実装において、少なくとも1つの光デバイスは、第1のDMDと第2のDMDとの間に分布した複数のウェッジプリズムを含む。
【0012】
いくつかの実装において、少なくとも1つの光デバイスは、照射光を第1のDMDの対象面へそれぞれの非法線角度で伝え、それぞれの出力画像をプリズムの出射面を通して伝えるように構成されたプリズムを含み、出射面は、対象面に対してある角度を有し、角度は、ゼロより大きく、角度は、第1のDMDの対象面を等価な傾いた対象面へ光学的に傾けるように選択される。
【0013】
いくつかの実装において、光学系は、第1のDMDからの照射光を第2のDMDの像面へそれぞれの非法線角度で伝え、第2のDMDのそれぞれの出力画像をそれぞれの出射面を通して伝えるように構成されたプリズムを含む。
【0014】
いくつかの実装において、光学系は、1つ以上のレンズを含む。
【0015】
いくつかの実装において、光学系は、1つ以上の開口部を含む。
【0016】
いくつかの実装において、第1のDMDは、予備変調器モードでさらに作動され、第2のDMDは、主変調器モードでさらに作動される。いくつかの実装において、第1のDMDは、第1の画像データを用いて変調され、第2のDMDは、第1の画像データ、目標投影画像およびデバイスの画素広がり関数のうちの1つ以上から決定された第2の画像を用いて変調される。
【0017】
本明細書に記載される様々な実装をさらによく理解するため、かつそれらがどのように実行されうるかをより明確に示すために、添付図面が、例としてのみ、次に参照されることになろう。
【図面の簡単な説明】
【0018】
図1】高ダイナミックレンジ・プロジェクタとともに用いるためのデバイスの概略側面図を図示し、デバイスは、非限定の実装による、各々が順方向構成で作動される、2つのDMDと、第2のDMDにおける像面を順方向構成で照射するために第1のDMDから反射された光を伝える光学系と、第1のDMDと第2のDMDとの間の少なくとも1つの光デバイスであって、少なくとも1つの光デバイスは、第1のDMDの対象面を等価な傾いた対象面へ傾け、光学系の等価なレンズ面、等価な傾いた対象面および像面がすべてシャインプルーフ交点で交差するように構成された少なくとも1つの光デバイスとを含む。
図2】非限定の実装による、図1のデバイスの具体的な実装を図示する。
図3】非限定の実装による、図2のデバイスの光学系の展開版をデバイスを通るレイトレース図とともに図示する。
図4】非限定の実装による、図1のデバイスの別の具体的な実装を図示する。
図5】非限定の実装による、図4のデバイスの光学系の展開版を図示する。
【発明を実施するための形態】
【0019】
図1は、デバイス10を図示し、デバイス10は、各々がそれぞれの非法線角度で照射されて、それぞれの出力画像が法線角度で反射されるように、各々が順方向構成で作動され、第1のDMD11の対象面13が第1のDMD11に平行である、第1のデジタルマイクロミラーデバイス(DMD)11および第2のDMD12、第1のDMD11と第2のDMD12との間の光学系14であって、光学系14は、第2のDMD12における像面15を順方向構成で照射するために第1のDMD11から反射された光を伝えるように構成され、等価なレンズ面16を含んだ光学系14、ならびに第1のDMD11と第2のDMD12との間の少なくとも1つの光デバイス17であって、少なくとも1つの光デバイス17は、第1のDMD11の対象面13を等価な傾いた対象面18へ傾け、等価なレンズ面16、等価な傾いた対象面18および像面15がすべてシャインプルーフ交点19で交差するように構成された、少なくとも1つの光デバイス17を備える。
【0020】
言い換えれば、等価なレンズ面16、等価な傾いた対象面18および像面15は、第1のDMD11からの光が第2のDMD12においておよび/または像面15において均一に焦点が合うかおよび/または実質的に均一に焦点が合うように、シャインプルーフ条件を満たす。別の言い方をすれば、等価なレンズ面16、等価な傾いた対象面18および像面15は、第1のDMD11から、第2のDMD12上へ画像化された光が第2のDMD12にわたって均一な画素広がり関数(PSF:pixel spread function)を有するように、シャインプルーフ条件を満たす。
【0021】
少なくとも1つの光デバイス17は、シャインプルーフ条件を満たすことができるように、第1のDMD11の対象面13を、光学系14および/または第2のDMD12に対して傾いて見えるように傾ける効果を有する。実際、光学的に、第1のDMD11は、少なくとも1つの光デバイス17の内部に位置する仮想的なDMD21によって示されるように、等価な傾いた対象面18に位置するように「見える」。
【0022】
図示されるように、少なくとも1つの光デバイス17は、第1のDMD11の対象面13に対して傾いた角度で出射面を有するプリズムを含む。結果は、第2のDMD12における像面15がそれぞれの非法線角度で均一に焦点が合うかおよび/または実質的に均一に焦点を合う(例えば、第2のDMD12にわたってPSFが均一である)ように、少なくとも1つの光デバイス17が第1のDMD11の対象面13を等価な傾いた対象面18へ傾けるということである。
【0023】
さらに別の言い方をすれば、少なくとも1つの光デバイス17がなければ、対象面13は、光学系14の等価なレンズ面16におよそ平行であり、シャインプルーフ条件を満たすことが不可能なので、第1のDMD11の対象面13を第2のDMD12上へ均一に集束させることができないであろう(例えば、不均一なPSF)。しかしながら、第1のDMD11を順方向構成で作動させるためには、第1のDMD11の対象面13が光学系14の等価なレンズ面16におよそ平行でなければならない。それゆえに、シャインプルーフ条件を満たすことができるように少なくとも1つの光デバイス17が両方のDMD11、12の順方向構成での使用を可能にする。
【0024】
図示されるように、光学系14は、単一のレンズを含む、しかしながら、かかる図示が光学系14の簡略図であり、そのうえ、デバイス10がプロジェクタに用いられるデバイスの簡略図であることが分かる。
【0025】
それゆえに、次に、高ダイナミックレンジ(「HDR」)プロジェクタとともに用いるかおよび/またはそれに組み込むことができるデバイス100を各々が図示する、図2および図3に注意が向けられる。図2は、光学系例を含んだ、デバイス100の概略側面図を図示し、図3は、デバイス100の光学系が展開されたデバイス100の概略側面図(例えば、ミラーおよび/または反射表面からの反射が明確さのために削除され、デバイス100を通る光路が反射なしに図示される)、ならびに第1のDMD101における3点に関してデバイス100を通るレイトレース図を図示する。そのうえ、デバイス100は、図2または図3のいずれにおいても縮尺通りに図示されていないことが理解される。デバイス100は、一般に、デバイス10より複雑であるが、以下に記載されるように、デバイス100は、一般に、デバイス10と同じ原理に従って作動する。
【0026】
そのうえ、図2では、デバイス100を通る光路125が図示され、図3ではDMD101、DMD102間の展開された光路225が概略的に図示される。
【0027】
図2および図3の両方を参照すると、デバイス100は、一般に、各々がそれぞれの非法線角度で照射されて、それぞれの出力画像が法線角度で反射されるように、各々が順方向構成で作動され、第1のDMD101の対象面113が第1のDMD101に平行である、第1のDMD101、第2のDMD102、第1のDMD101と第2のDMD102との間の光学系114であって、光学系114は、第2のDMD102における像面115を順方向構成で照射するために第1のDMD101から反射された光を伝えるように構成され、等価なレンズ面116を含んだ光学系114、ならびに第1のDMD101と第2のDMD102との間の少なくとも1つの光デバイス117であって、少なくとも1つの光デバイス117は、第1のDMD101の対象面113を等価な傾いた対象面118へ傾け、等価なレンズ面116、等価な傾いた対象118および像面115がすべてシャインプルーフ交点(図示されないが、それでもなお、例えば、図3のページから外れて、存在することが想定される)で交差するように構成された、少なくとも1つの光デバイス117を備える。
【0028】
対象面113、等価なレンズ面116、等価な傾いた対象面118および像面115の相対的な位置は、図3では(図2におけるような)介在する反射表面なしに図示されることが分かる。例えば、図3におけるデバイス100の展開図では、ミラーおよび/または反射表面に起因する反射が削除されているので、対象面113、等価なレンズ面116、等価な傾いた対象面118および像面115の間の相対角度がいっそう明確である。等価なレンズ面116が図3に図示されるが、明確さのために、図2には図示されない。
【0029】
少なくとも1つの光デバイス17と同様に、少なくとも1つの光デバイス117は、第2のDMD102における像面115がそれぞれの非法線角度で均一に集束されるように第1のDMD101の対象面113を等価な傾いた対象面118へ傾けるようにさらに構成される。
【0030】
図示されるように、少なくとも1つの光デバイス117は、第1のDMD101の対象面に対して傾いた角度130で出射面129を有するプリズムを含む。
【0031】
図2および図3では、第1のDMD101が、経路125によって示されるように、例えば、プロジェクタ(図示されない)などの光源(図示されない)から、第1のDMD101上に入射するそれぞれの照射光によって照射されることがさらに想定される。照射光は、一般に、第1のDMD101のアスペクト比と同様のアスペクト比を有する白色光、赤色光、緑色光、青色光、赤外光、紫外光などのうちの1つ以上を備える。いくつかの実装において、照射光は、第1のDMD101を順次に照射する照射光の一連の色、例えば、赤色光、緑色光および青色光のうちの2つ以上を備える。例えば、デバイス100は、単一チップ画像化プロジェクタ(例えば、各々1つの予備変調器DMD(例えば、第1のDMD101)および主変調器DMD(例えば、第2のDMD102))、2チップ画像化プロジェクタ(例えば、各々2つの予備変調器DMDおよび主変調器DMD)、ならびに3チップ画像化プロジェクタ(例えば、各々3つの予備変調器DMDおよび主変調器DMD)の構成要素とすることができる。
【0032】
そのうえ、第1のDMD101および第2のDMD102の各々のアスペクト比は、同じかまたは異なるようにすることができる。例えば、第1のDMD101が全面照射されないときに異なるアスペクト比を用いることができる。
【0033】
いずれにしても、第1のDMD101は、予備変調器モードでさらに作動できて、第2のDMD102は、主変調器モードでさらに作動できることが想定される。言い換えれば、第1のDMD101および第2のDMD102の各々を同様の画像データを用いて変調できる。例えば、高ダイナミックレンジを達成するために、第1のDMD101を第1の画像データを用いて変調でき、第2のDMD102を第2の画像データを用いて変調できて、第2の画像データは、投影のために生成される画像の暗いエリアに対応する第2のDMD102の領域が明るさの同様のレベルを有する第1のDMD101からの光によって照射されるように、第1の画像を備えることができる。例えば、DMD101、102は、第2のDMD102の非白色画素を第1のDMD101からの対応する非白色光で照射するため、および/または第2のDMD102の黒色画素を照射しないために、作動される。主変調器モードで作動される第2のDMD102を変調するために用いられる画像データは、(実効的に第2のDMD102を照射するための光源である)予備変調器モードで作動される第1のDMD101を規定するデータのみならず、投影されることになる目標画像を用いて計算されうる。非HDR投影では、予備変調器がなく(例えば、第1のDMD101がなく)、主変調器(例えば、第2のDMD102)に対する照射光は、均一であることが想定される。HDR投影では、非常に黒いHDR黒色を達成するために主変調器(例えば、第2のDMD102)への入力光は、意図的に均一ではない。従って、この不均一性を所与として、予備変調器モードで作動される第1のDMD101を変調するために用いられる画像データは、(照射光が第1のDMD101に均一に集束されるかおよび/または実質的に均一に集束されることを想定して)投影されることになる目標画像を生じさせるために何であれ必要なものに決定される。数学的に、主画像データを生じさせるために目標画像が予備画像データで割られ、これを数学的に以下のように表すことができて、
【0034】
【数1】
【0035】
ここでOutImageは、投影されることになる目標画像であり、PremodImageは、予備変調器モードで作動される第1のDMD101に提供されることになる画像であり、PSFは、デバイス100の画素広がり関数であり、PrimeImageは、主変調器モードで作動される第2のDMD102に提供されることになる画像である。それゆえに、目標画像(例えば、OutImage)、およびPSFを所与として、目標とソース画像との間の誤差を最小限に抑えるように主および予備モード画像を計算できる。
【0036】
図2および図3をさらに参照すると、第1のDMD101は、照射光が第1のDMD101の対象面113において非法線角度で受光されて、それぞれの出力画像が第1のDMD101から法線角度で反射される(例えば、光路125は、矢印138で表されるように、第1のDMD101の面に対して法線方向および/または垂直であり、および/または対象面113は、第1のDMD101の面に平行である)ように、順方向構成で作動される。少なくとも1つの光デバイス117のプリズム(例えば、内部全反射(TIR:total internal reflection)プリズム)は、照射光を第1のDMD101の対象面113へ非法線角度で伝え、それぞれの出力画像を少なくとも1つの光デバイス117のプリズムの出射面129を通して伝えるように構成される。
【0037】
少なくとも1つの光デバイス117のプリズムは、光を第1のDMD101へ伝え、さらに第1のDMD101の対象面113を等価な傾いた対象面118へ傾けるように構成されるが、他の実装では、光を第1のDMD101へ、およびそれから離れた所へ伝えるためにプリズム(例えば、TIRプリズム)を用いることができて、少なくとも1つの光デバイス117をかかるプリズムとは別個の構成要素とすることができることがさらに分かる。例えば、デバイス100は、対象面113に平行な出射面を有するTIRプリズムと、第1のDMD101の対象面113を等価な傾いた対象面118へ傾けるように構成された、出射面の後に位置する別個のウェッジプリズムとを含むことができる。代わりに、等価なレンズ面116、等価な傾いた対象面118および像面115がすべてシャインプルーフ交点で交差する限り、かかるウェッジプリズムが光学系114内に位置することができる。
【0038】
出射面129は、対象面113に対してある角度130にあり、角度130は、ゼロより大きい(例えば、第1のDMD101の対象面113に平行ではない)。角度130は、デバイス10の作動と同様に、DMD101の対象面113を等価な傾いた対象面118へ傾けるように選択される。第2のDMD102も、シャインプルーフ条件を満たすために、像面115が等価な傾いた対象面118および光学系114の等価なレンズ116と交差するように順方向構成で作動される。
【0039】
図示されるように、デバイス100、光学系114は、(図3において最も良く分かるように)第1のDMD101からの(例えば、等価な傾いた対象面118からの)照射光を第2のDMD102の像面115へそれぞれの非法線角度で伝え、(図2において最も良く分かり、第2のDMD102からプリズム142を通して離れた所へ反射される光路125によって表されるように)第2のDMD102のそれぞれの出力画像をプリズム142のそれぞれの出射面149を通して伝えるように構成されたプリズム142を含む。
【0040】
図示されないが、各々の経路125、225に沿った光は、オン状態光に関し、オフ状態光は、デバイス100外へおよび/またはそれぞれの光ダンプ・デバイス(optical dump device)(例えば、DMD101、DMD102ごとに1つ)中へ反射されることが想定される。言い換えれば、図示されないが、デバイス100は、かかる光ダンプ・デバイスを含むことができて、少なくとも1つの光デバイス117およびプリズム142は、DMD101、102の各々からのそれぞれのオフ状態光をそれぞれの光ダンプ・デバイスへ伝えるように適合されうることが想定される。
【0041】
DMD101、102間の光学系114は、1つ以上のレンズ、開口部などを備えることができる。図示されるように、光学系114は、5つのレンズおよび1つの開口部を備える。ともかく、等価なレンズ面116を有する、図1に図示される光学系14と同様のレンズを用いて光学系114を有効にモデリングできることが分かる。
【0042】
そのうえ、レンズは、一般に、像面115におけるデバイス100のPSFが全般的に均一であるように等価な傾いた対象面118を像面115上へ画像化する。随意的に、光学系114は、光を等価な傾いた対象面においてコリメートできる。
【0043】
一般に、角度130および光学系114は、両方がシャインプルーフ条件を満たし、デバイス100が統合されるプロジェクタの物理的制約条件を満たすようにさらに選択される。
【0044】
角度130および光学系114を選択する際には第2のDMD102の照射角度が考慮されることがさらに分かる。言い換えれば、DMDは、一般に、所与の角度で照射光を用いて順方向構成で作動されるように設計される。例えば、DLP(登録商標)ベースのDMDが約24°の照射角度を有し、一方では他のDLP(登録商標)ベースのDMDが約34°の照射角度を有するが、他の所与の角度も本開示の範囲内にある。実際、角度130の選択、ならびに光学系114の選択の際にはデバイス100とともに用いるために選択されるDMDの所与の照射角度が一般に用いられる。実際、DMD101、102の各々は、同じ照射角度を有することができ、またはDMD101、102の各々は、互いに異なる照射角度を有することができる。しかしながら、DMD101、102の各々の照射角度に係わらず、DMD101、102の各々の位置と、角度130を含めて、少なくとも1つの光デバイス117の位置と、光学系114とは、シャインプルーフ条件が満たされるように選択される。
【0045】
実際、デバイス100のパラメータは、角度130を含めて、デバイス100の構成要素の所望の物理的構成を用いた光学モデリング・ソフトウェアを用いてさらに選択されうる。例えば、デバイス100が所与の物理的フットプリントを有するか、および/またはDMD101、102の各々が(以下には限定されないが、順方向構成での照射の角度を含めて)作動条件の所与のセットを有しうるような、光学系114の特定の構成が望ましいことがある。
【0046】
いずれにしても、デバイス100のかかる構成によって、第1のDMDを逆方向構成で用いる同様のプロジェクタと比較して、DMD101、102の両方を、デバイス100が組み込まれるプロジェクタが一般により効率的な作動をすることができる、順方向構成で作動できる。
【0047】
デバイス10、100は、第1のDMDの対象面を等価な傾いた対象面へ傾けるように構成された1つだけの光デバイスを含むが、なおさらなる実装では、第1のDMDの対象面を等価な傾いた対象面へ傾けるために1つより多い光デバイスを用いうることがなおさらに分かる。
【0048】
例えば、次に、高ダイナミックレンジ(「HDR」)プロジェクタとともに用いるかおよび/またはそれに組み込むことができるデバイス400を各々が図示する、図4および図5に注意が向けられる。図4は、光学系例を含んだデバイス400の概略側面図を図示し、図5は、デバイス400の光学系が展開されたデバイス400の概略側面図を図示する(例えば、ミラーおよび/または反射表面からの反射が明確さのために削除され、デバイス400を通る光路が反射なしに図示される)。そのうえ、デバイス400は、図4または図5のいずれにおいても縮尺通りに図示されていないことが理解される。デバイス400は、一般に、デバイス10より複雑であるが、以下に記載されるように、デバイス400は、一般に、デバイス10と同じ原理に従って作動する。
【0049】
図4および図5の両方を参照すると、デバイス400は、一般に、各々がそれぞれの非法線角度で照射されて、それぞれの出力画像が法線角度で反射されるように、各々が順方向構成で作動され、第1のDMD401の対象面413が第1のDMD401に平行である、第1のDMD401、第2のDMD402、第1のDMD401と第2のDMD402との間の光学系414であって、光学系414は、第2のDMD402における像面415を順方向構成で照射するために第1のDMD401から反射された光を伝えるように構成され、等価なレンズ面416を含んだ光学系414、ならびに第1のDMD401と第2のDMD402との間の複数の光デバイス417-1、417-2であって、複数の光デバイス417-1、417-2は、第1のDMD401の対象面413を等価な傾いた対象面418へ傾け、等価なレンズ面416、等価な傾いた対象面418および像面415がすべてシャインプルーフ交点(図示されないが、それでもなお、例えば、図5のページから外れて、存在することが想定される)で交差するように構成された、複数の光デバイス417-1、417-2を備える。
【0050】
デバイス400は、照射光をそれぞれのDMD401、402へ伝え、それぞれの出力画像をそれぞれのDMD401、402から離れた所へ伝えるように構成されたそれぞれのTIRプリズム450-1、450-2をDMD401、402の各々にさらに備える(例えば、第2のDMD402のための照射光は、第1のDMD401のそれぞれの出力画像を備える)。TIRプリズム450-1、450-2の各々は、光学系414の構成要素とすることができる。
【0051】
そのうえ、光学系414は、別の状況ではDMD401、402間の光路に沿って対称的に配置された8つのレンズを備え、この場合もやはり、等価なレンズ面416を有する、デバイス10におけるような単一のレンズを用いて光学系414をモデリングできることが分かる。
【0052】
対象面413、等価なレンズ面416、等価な傾いた対象418面および像面415が図5に図示されるが、明確さのために、図4には図示されないことが分かる。例えば、デバイス400の展開図では、ミラーおよび/または反射表面に起因する反射が削除されているので、対象面413、等価なレンズ面416、等価な傾いた対象面418および像面415の間の相対角度がいっそう明確である。
【0053】
少なくとも1つの光デバイス17と同様に、複数の光デバイス417-1、417-2は、第2のDMD402における像面415がそれぞれの非法線角度で均一に焦点が合うかおよび/または実質的に均一に焦点が合うように第1のDMD401の対象面413を等価な傾いた対象面418へ傾けるようにさらに構成される。
【0054】
図示されるように、複数の光デバイス417-1、417-2は、第1のDMD401と第2のDMD402との間に分布した複数のウェッジプリズムを含む。例えば、光デバイス417-1は、対象面418に対して角度をなす出射面429-1を有する第1のウェッジプリズムを備え、光デバイス417-2は、対象面418に対してやはり角度をなす出射面429-2を有する第2のウェッジプリズムを備える。第1のウェッジプリズム(例えば、光デバイス417-1)は、光学系414の前(およびTIRプリズム450-1の後)に位置し、第2のウェッジプリズム(例えば、光デバイス417-2)は、光学系414(114)の後(およびTIRプリズム450-2の前)に位置するが、対象面413に対する2つのウェッジプリズムの総合効果は、像面415に対して、第1のDMD401の対象面413を等価な傾いた対象面418へ傾けることであることがわかる。
【0055】
実際、デバイス400は、等価な傾いた対象面、等価なレンズ面および像面がシャインプルーフ交点で交差するか、および/またはシャインプルーフ条件を満たすように、順方向構成で作動される第1のDMDの対象面を、等価な傾いた対象面へ傾けるために、任意の数の光デバイスを用いうることを実証する。
【0056】
さらにより多くの可能な代わりの実装および変更があり、上記の例は、1つ以上の実装の説明に過ぎないことが当業者には分かるであろう。範囲は、それゆえに、添付の特許請求の範囲によってのみ限定されるものである。
図1
図2
図3
図4
図5