IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エスピーティーエス テクノロジーズ リミティドの特許一覧

<>
  • 特許-材料を堆積させる方法及び装置 図1
  • 特許-材料を堆積させる方法及び装置 図2
  • 特許-材料を堆積させる方法及び装置 図3
  • 特許-材料を堆積させる方法及び装置 図4
  • 特許-材料を堆積させる方法及び装置 図5
  • 特許-材料を堆積させる方法及び装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-13
(45)【発行日】2022-09-22
(54)【発明の名称】材料を堆積させる方法及び装置
(51)【国際特許分類】
   C23C 14/34 20060101AFI20220914BHJP
   C23C 14/06 20060101ALI20220914BHJP
   H05H 1/24 20060101ALI20220914BHJP
【FI】
C23C14/34 T
C23C14/06 A
H05H1/24
【請求項の数】 17
【外国語出願】
(21)【出願番号】P 2016070211
(22)【出願日】2016-03-31
(65)【公開番号】P2016194155
(43)【公開日】2016-11-17
【審査請求日】2019-02-18
【審判番号】
【審判請求日】2021-01-27
(31)【優先権主張番号】1505578.3
(32)【優先日】2015-03-31
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】512221197
【氏名又は名称】エスピーティーエス テクノロジーズ リミティド
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】スティーブン アール バーゲス
(72)【発明者】
【氏名】ロンダ ハインドマン
(72)【発明者】
【氏名】アミット ラストギ
(72)【発明者】
【氏名】エドゥアルド パウロ リマ
(72)【発明者】
【氏名】クライブ エル ウィディックス
(72)【発明者】
【氏名】ポール リッチ
(72)【発明者】
【氏名】スコット ヘイモア
(72)【発明者】
【氏名】ダニエル クック
【合議体】
【審判長】河本 充雄
【審判官】関根 崇
【審判官】後藤 政博
(56)【参考文献】
【文献】特開2002-69636(JP,A)
【文献】国際公開第2008/136504(WO,A1)
【文献】特開2009-149953(JP,A)
【文献】特開平7-138753(JP,A)
【文献】国際公開第2011/007830(WO,A1)
【文献】Aluminium Nitride Films on Glass,2014 IEEE 9TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE,2014,PP.92-95
(58)【調査した分野】(Int.Cl.,DB名)
C23C14/34
(57)【特許請求の範囲】
【請求項1】
1つ又はそれより多くの一次磁場を作り出すパルスDCマグネトロンデバイスによるパルスDCマグネトロンスパッタリングにより、チャンバー中の基板上に誘電性材料を堆積させる方法であって、
ターゲットからスパッタリング材料がスパッターされ、ターゲットと基板が2.5~10cmの間隔で離間しており、チャンバーの外周の周囲に配置されたコイルにDC電流を印加する電磁石によって、チャンバーの壁と基板との間の領域において、チャンバー中で概して軸方向に広がる二次磁場がチャンバー内で作り出され、該二次磁場が、パルスDCマグネトロンデバイスにより作り出されたプラズマをチャンバーの1つ又はそれより多くの壁に向けて広げる、方法。
【請求項2】
基板の幅が、150mm以上である、請求項1に記載の方法。
【請求項3】
ターゲットが幅を有し、基板が幅を有し、ターゲットの幅が基板の幅より大きい、請求項1又は2に記載の方法。
【請求項4】
電磁石の全てが、マグネトロンデバイスにより作り出されたプラズマをチャンバーの1つ又はそれより多くの壁に向けて広げるように、電磁石が、単一の電磁石又は極性が揃った一連の電磁石である、請求項3に記載の方法。
【請求項5】
二次磁場が、基板の外周部分において堆積した誘電性材料の厚みを増加させるように作り出される、請求項1~4のいずれか1項に記載の方法。
【請求項6】
二次磁場が、イオンを基板の外周部分から離す、請求項1~5のいずれか1項に記載の方法。
【請求項7】
Ar+イオンを基板の外周部分から離す、請求項6に記載の方法。
【請求項8】
二次磁場が、チャンバーの1つ又はそれより多くの壁に向けて電子を引きつけて、基板の外周部分からイオンを離すドリフト電場を作り出す、請求項6又は7に記載の方法。
【請求項9】
AlNが堆積する、請求項1~のいずれか1項に記載の方法。
【請求項10】
負のバイアス電圧が、基板が配置された基板支持体に印加される、請求項1~のいずれか1項に記載の方法。
【請求項11】
基板が、シリコン基板等の半導体基板である、請求項1~10のいずれか1項に記載の方法。
【請求項12】
パルスDCマグネトロンスパッタリングにより、基板上に誘電性材料を堆積させるPVD装置であって、装置が、
チャンバーと、
スパッタリング材料をスパッターすることのできるターゲットを含む、1つ又はそれより多くの一次磁場を作り出すパルスDCマグネトロンデバイスと、
チャンバー中に配置された基板支持体と、
使用中に、ターゲットと基板を2.5~10cmの間隔で離間させるように構成され、チャンバーの外周の周囲に配置されたコイルと、コイルにDC電流を印加する電気的供給部とを含みチャンバー内にチャンバーの壁と基板との間の領域において、チャンバー中で概して軸方向に広がる二次磁場を作り出す電磁石を含む二次磁場製造デバイスと、
誘電性材料が堆積する間に二次磁場がチャンバー内に作り出されるように、二次磁場製造デバイスを制御するように構成されたコントローラーとを含み、該二次磁場が、チャンバーの1つ又はそれより多くの壁に向けて電子を誘導して、基板の外周部分からイオンを離すドリフト電場を作り出す、装置。
【請求項13】
基板支持体が、幅が150mm以上である基板を支持するように構成された、請求項1に記載の装置。
【請求項14】
ターゲットが幅を有し、基板支持体が、幅を有する基板を支持するように構成されており、ターゲットの幅が基板の幅より大きい、請求項1又は1に記載の装置。
【請求項15】
電磁石の全てが、チャンバーの1つ又はそれより多くの壁に向けて電子を誘導して、基板の外周部分からイオンを離すドリフト電場を作り出す磁場を作り出すように、電磁石が、単一の電磁石又は極性が揃った一連の電磁石である、請求項1に記載の装置。
【請求項16】
さらに基板を含む、請求項12~15のいずれか1項に記載の装置。
【請求項17】
請求項1に記載の方法により、基板上に誘電性材料を堆積させることを含む、バルク弾性波デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マグネトロンスパッタリングにより、チャンバー中の基板上に材料を堆積させる方法、及び関連する装置に関する。
【発明の概要】
【0002】
マグネトロンスパッタリングは、PVD(物理的蒸着)のよく知られた例である。マグネトロンスパッタリングは、種々の基板上に種々の膜を堆積させるために用いられる。例えば、パルスDCマグネトロンスパッタリングによりAlN膜を堆積させることが知られる。圧電特性を生じさせる規定された結晶配向を有するAlN膜を堆積させることができる。堆積した膜は、したがって、ある種の規定されたRF周波数バンドにおいて、共鳴構造を形成することができる。この型の膜は、例えば、RF周波数に関するフィルターとして用いられるバルク弾性波(BAW)デバイスの製造での応用性がある。典型的には、数mm2の表面積を有するBAWデバイスは、円状のシリコン基板上に作製される。シリコン基板は、直径200mmであってよい。圧電性AlN膜の共鳴周波数は、フィルム厚みとその弾性特性の1階関数である。したがって、基板に亘るAlN厚みの不均一性は、フィルターが正確なRFフィルター周波数バンドで働くために、極めて低いのがよい。典型的に、AlN厚みの不均一性(NU%)は、1%未満であるのがよい。
【0003】
基板の放射方向で最も外側の部分の上に堆積した膜の厚みが著しく小さいことは、AlNのPVDに関して知られる問題である。直径200mmのシリコンウェハーに関して、ウェハーの放射方向で最も外側の15mmは特に影響を受けやすく、AlN膜の厚みが著しく減少する。この減少は、追加のプロセス工程を実施して、フィルム厚みにおけるこの固有の変動を調節しない限り、ウェハーのこの部分からBAWフィルターを作製することができないようなものである。図1は、第一の1及び第二の2ウェハー上への堆積に関し、他に対して90°におけるシリコンウェハーの半径(mm)の1つの関数としてのAlN膜の厚み(オングストローム)の2つのライン走査を示す。膜厚みの減少は、ウェハーの外側の20mmにおいて目立つようになり、ウェハーの最も外側の15mmにおいて特に顕著である。ウェハーの最も外側の15mmは、全表面積が314cm2である直径200mmのウェハーに関して87cm2の面積を表す。これは、処理に関して利用できるシリコンの28%の損失を表す。
【0004】
マグネトロンスパッタリングにより均一に堆積した膜厚みを達成することが、概して望ましいことが理解される。なぜなら、製造プロセスが均一な結果を与えることは概して望ましいからである。したがって、本発明はAlN膜の堆積に制限されない。
【0005】
本発明は、その実施態様の少なくとも幾つかにおいて、上記の課題に対処する。
【0006】
本発明の第一の側面によれば、1つ又はそれより多くの一次磁場を作り出すパルスDCマグネトロンデバイスによるパルスDCマグネトロンスパッタリングにより、チャンバー中の基板上に誘電性材料を堆積させる方法であって、ターゲットからスパッタリング材料がスパッターされ、ターゲットと基板が2.5~10cmの間隔で離間しており、二次磁場がチャンバー内で作り出され、該二次磁場が、パルスDCマグネトロンデバイスにより作り出されたプラズマを、チャンバーの1つ又はそれより多くの壁に向けて広げる、方法が提供される。
【0007】
基板の幅は、150mm以上であってよい。
【0008】
ターゲットは幅を有してよく、基板は幅を有してよい。ターゲットの幅は、基板の幅より大きくてよい。これらの例において、プラズマの幅は基板の幅より大きく、プラズマをさらに広げることが利点である場合があることは直観に反する。典型的には、ターゲット及び基板の幅は、各半径である。原理上は、ターゲット及び基板は異なる形状であってよく、その幅は、1つ又はそれより多くの異なる線状の寸法(linear dimensions)に対応してよい。
【0009】
二次磁場は、電磁石を用いて作り出してよい。二次磁場は、コイルにDC電流を印加することにより作り出してよい。コイルは、チャンバーの外周の周囲に配置されてよい。典型的には、マグネトロンデバイスはチャンバーの上部の領域に位置し、コイルはチャンバーの上部の領域の下にあるチャンバーの本体部分の周囲に配置される。コイルは、原理的にはチャンバー内に配置されてよい。しかし、これは実用性に乏しい配置であると考えられる。
【0010】
電磁石の全てが、マグネトロンデバイスにより作り出されたプラズマをチャンバーの1つ又はそれより多くの壁に向けて広げるように、電磁石は、単一の電磁石又は極性が揃った一連の電磁石であってよい。
【0011】
または、二次磁場は、永久磁石を用いて作り出してよい。しかし、電磁石を用いることは、二次磁場を微調整して最適性能を生み出すことがより容易であるため、有利であることができる。
【0012】
概して、二次磁場は、基板の外周部分において堆積した材料の厚みを増加させるように作り出される。
【0013】
二次磁場は、イオンを基板の外周部分から離すことができる。二次磁場は、チャンバーの1つ又はそれより多くの壁に向けて電子を引き付けて、基板の外周部分からイオンを離すドリフト電場を作り出してよい。
【0014】
二次磁場は、チャンバーの壁と基板との間の領域において、チャンバー中で該して軸方向に広がってよい。
【0015】
材料を、パルスDCマグネトロンスパッタリングにより堆積させてよい。本発明は、パルスDCマグネトロンスパッタリング又は高密度のイオンを作り出す任意の他のマグネトロンスパッタリング技術と併用して用いる際に特に有効であると考えられる。
【0016】
材料は、反応性スパッタリングにより堆積させてよい。
【0017】
堆積した誘電性材料は、AlNであってよい。堆積した誘電性材料は、酸化ケイ素であってよい。
【0018】
負のバイアス電位は、基板が配置された基板支持体に印加されてよい。
【0019】
プラズマは、アルゴンを含むガス混合物中で作り出されてよい。他の不活性ガスが企図されてよい。
【0020】
Ar+イオンが基板の外周部分から離されてよい。
【0021】
基板は、半導体ウェハー等の半導体基板であってよい。基板は、シリコン基板であってよい。基板は、200mm又は300mmの半径を有するウェハーであってよい。
【0022】
本発明の第二の側面によれば、パルスDCマグネトロンスパッタリングにより、基板上に誘電性材料を堆積させるPVD装置であって、装置が、
チャンバーと、
スパッタリング材料をスパッターすることのできるターゲットを含む、1つ又はそれより多くの一次磁場を作り出すパルスDCマグネトロンデバイスと、
チャンバー中に配置された基板支持体と、
使用中に、ターゲットと基板を2.5~10cmの間隔で離間させるように構成された二次磁場製造デバイスと、
誘電性材料が堆積する間に二次磁場がチャンバー内に作り出されるように、二次磁場製造デバイスを制御するように構成されたコントローラーとを含み、該二次磁場が、チャンバーの1つ又はそれより多くの壁に向けて電子を誘導して、基板の外周部分からイオンを離すドリフト電場を作り出す、装置を提供する。
【0023】
基板支持体は、幅が150mm以上である基板を支持するように構成されてよい。
【0024】
ターゲットは、幅を有してよい。基板支持体は、幅を有する基板を支持するように構成されてよい。ターゲットの幅は、基板の幅より大きくてよい。
【0025】
二次磁場製造デバイスは、電磁石であってよい。電磁石の全てが、チャンバーの1つ又はそれより多くの壁に向けて電子を誘導する磁場を作り出して、基板の外周部分からイオンを離すドリフト電場を作り出すように、電磁石は、単一の電磁石又は極性が揃った一連の電磁石であってよい。
【0026】
二次磁場製造デバイスは、チャンバーの外周の周囲に配置されたコイルと、コイルにDC電流を供給する電気的供給部とを含んでよい。
【0027】
パルスDCマグネトロンデバイスは、平衡マグネトロン又は非平衡マグネトロンであってよい。
【0028】
装置は、さらに基板を含んでよい。
【0029】
本発明の第三の側面によれば、本発明の第一の側面に従う方法により、基板上に誘電性材料を堆積させることを含む、バルク弾性波デバイスの製造方法が提供される。
【0030】
本発明が上記で記載されている一方、それは、上記若しくは以下の詳細な説明、図面又は特許請求の範囲に記載された特徴の任意の発明の組み合わせに拡張される。
【0031】
本発明に従う装置及び方法の実施態様は、添付の図面を参照して記載される。
【図面の簡単な説明】
【0032】
図1図1は、従来技術の堆積プロセスに関する、ウェハー動径位置の関数としてのAlN膜厚みを示す。
図2図2は、AlNの堆積に用いられる従来技術のDCマグネトロンシステムの部分の半概略断面図である。
図3図3は、本発明のPVD装置を示す。
図4図4は、AlNの堆積に用いられる本発明のDCマグネトロンシステムの部分の半概略断面図である。
図5図5は、DCコイル中の複数のDC電流値に関して、ウェハー動径位置の関数としてのAlN膜の厚みを示す。
図6図6は、DCコイル中の複数のDC電流値に関して、ウェハー内の堆積したAlN膜の不均一性を示す。
【発明を実施するための形態】
【0033】
図3は、概して30にて示される本発明のPVD装置を示す。装置30は、DCマグネトロンデバイス34と、マグネトロンデバイス34により材料をスパッターするターゲット36と、所望の材料を堆積する基板(示されていない)を支持する基板支持体38とを含む、チャンバー32を含む。装置30は、さらにチャンバー32の本体部分の周囲に配置されたコイル40を含む。図3に示される実施態様において、チャンバーは柱状であるが、原理的には他のチャンバー形状、及び他のコイル断面形状を用いてよい。簡易な表記のために、ガス吸気口及び排気口等のマグネトロンスパッタリングの他の一般的な側面は、図3に示されない。
【0034】
パルスDC電力は、DC電力供給42からターゲット36に印加される。印加電流を変化させることのできるコイルDC電気的供給部46により、コイル40にDC電力が印加される。RF電力は、基板支持体に負のバイアスをかけるために、RF電力供給44から基板支持体38に印加される。典型的には、基板支持体38は、慣例外の13.56MHzにて運転されるが、本発明はこの点に関して制限されない。電力供給42、44、46の動作は、コントローラー48により制御される。コントローラー48は、好適なグラフィカルユーザーインターフェースを有するコンピュータであってよい。
【0035】
AlN等の材料の堆積と関連する膜の均一性に関する課題は、上記に記載されている。本発明者らは、ウェハーの外周において堆積したAlN膜の減少した厚みの理由を見出したと考えている。任意の特定の理論又は推測によりとらわれることを望むことなく、ウェハーの外周において減少した膜厚みは、正に帯電したイオンによるスパッタリングによるものであると考えられる。このことは、蓋部分として働くターゲットバッキングプレート20aを有するチャンバー20を含むDCマグネトロンシステムの部分を示す図2に示される。ターゲット22は、ターゲットバッキングプレート20aに結合される。回転可能なマグネット24の対は、ターゲット22から離れてターゲットバッキングプレートの面と反対側に位置する。ウェハー26は、負のDCバイアスを作り出すようにRF運転をすることのできるプラテン28上に位置する。アルゴン及び窒素の混合物は、チャンバー中に導入され、パルスの負の高いDC電圧は、ターゲットバッキングプレート20a/ターゲット22に印加され、これによってそれはカソードとして働く。これは、ArとAlNイオンを含む高密度のプラズマを作り出す。ウェハー26は、マグネット24の回転パスにより決定されるカソードの主要な浸食痕の内側にある。イオンのある割合は、プラズマの負のグローを避け、プラテン28に向かって動くと考えられる。また、プラテン28への負のバイアスは、Ar+等の正に帯電したイオンをウェハー26の端へ引きつけるように働き、堆積したAlN膜を、この領域においてスパッターエッチングにより薄くすると考えられる。Al及びNカチオンは、同様に幾らかのスパッターエッチングを引き起こす場合がある。
【0036】
図4は、図2に示された従来技術の装置の特徴の多くを共有する本発明の装置の部分を示す。したがって、これらの共有の特徴を記載するために、同じ数字が図4で用いられている。図4に示される本発明の実施態様は、さらにチャンバー20の本体セクションの周囲に位置する複数ターンコイル29を含む。コイル29は、DC電気的供給部(示されていない)からDC電流が供給される。図4は、エネルギーを与えられたコイル29により生じた二次磁場線も示す。チャンバー20の内部において生じた磁場21線が、概してチャンバーに沿って軸方向に、本体セクションのチャンバー壁に近接して広がることを理解することができる。コイル29により生じた二次磁場の効果は、チャンバー20の本体セクションの壁に向けてプラズマの広がりを引き起こすことである。任意の特定の理論又は推測によりとらわれることを望むことなく、二次磁場は、カソードからの電子を引きつけ、それは、次にウェハー26の端からイオンを離すドリフト電場を作り上げると考えられる。これは、ウェハーの端におけるスパッターエッチングを低減する。したがって、本発明は、チャンバー壁に向けてこれらの正のイオンを誘導することにより、ウェハー端に向かって動く正のイオンの数を減らすことができる(そうでなければ正イオンはウェハーの端領域をスパッターエッチングする)と考えられる。ウェハーの端領域に影響を与える正のイオンの数が減る際、イオン照射により引き起こされる、ウェハーのこの領域における局所的に薄くなる効果も低減すると考えられる。このことは、改善した堆積膜の均一性をもたらす。
【0037】
実験は、図2と4による装置を用いて実施され、AlN膜をシリコン基板に堆積させた。堆積プロセス条件は、表1に示されるものを用いた。
【0038】
【表1】
【0039】
種々のDC電流が二次磁場を製造するコイル(図4及び3に示されたコイル29及び40に各々対応する)に印加された。より具体的には、0A、10A及び20Aの電流が33ターンコイルとあわせて用いられた。図5は、これらのDC電流を用いて堆積した膜に関して、ウェハー上の動径位置の関数としてのAlN堆積膜の厚みを示す。線50は電流が印加されなかったときの膜厚みを示し、線52は10Aの電流での膜厚みを示し、線54は20Aの電流での膜厚みを示す。20Aの電流を用いて二次磁場を生成させたときは、シリコンウェハーの端におけるAlN膜の厚みの減少がなかったことを理解することができる。図6は、二次磁場を生成するコイルに印加されたDCコイル電流の関数としての3、5及び10mmのエッジエクスクルージョン(ee)に関して、49点の極性測定に関する1シグマ%標準偏差として表されたウェハー内の(WIW)膜厚みの不均一性を示す。線60、62、64は、3、5及び10mmのエッジエクスクルージョンに各々対応する。図6は、DC電流が印加されない際、不均一性が3及び5mmのエッジエクスクルージョンにおいて高いことを示す。このことは、ウェハー端における膜厚みの減少によるものである。20Aの印加DC電流において、ウェハー内の不均一性は、3、5及び10mmのエッジエクスクルージョンに関して本質的に同じである。これらの実験に関連するシステム及びプロセス条件に関して、最適な二次磁場が、約20Aの印加DC電流によって生成されることを理解することができる。また、優れた結果が達成されたことを理解することもできる。実際、3mmのエッジエクスクルージョンに対する処理は、最先端のものであると考えられる。最適な結果を達成するために、場の強さを容易に変化させることを可能にするため、二次磁場を生成する電磁石の使用は有利である。本開示に与えられた例において、最適な磁場は33×20=660アンペアターンである。任意の与えられた実施に関して、最適な磁場は、本開示に与えられた原理を用いて容易に導き出すことができる。
【0040】
本発明は、広範なPVDシステムに適用することができる。本発明を具体化するあつらえたシステムを作り出すことが可能であり、また既存のPVDシステムに容易に組み込むことも可能である。
図1
図2
図3
図4
図5
図6