(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-15
(45)【発行日】2022-09-27
(54)【発明の名称】HVAC&Rシステムのためのエミッションキャニスタシステム
(51)【国際特許分類】
B01D 53/04 20060101AFI20220916BHJP
F25B 43/04 20060101ALI20220916BHJP
【FI】
B01D53/04 110
F25B43/04 Z
(21)【出願番号】P 2020518062
(86)(22)【出願日】2018-09-26
(86)【国際出願番号】 US2018052942
(87)【国際公開番号】W WO2019067606
(87)【国際公開日】2019-04-04
【審査請求日】2020-05-22
(32)【優先日】2017-09-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518010511
【氏名又は名称】ジョンソン コントロールズ テクノロジー カンパニー
【氏名又は名称原語表記】Johnson Controls Technology Company
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100188329
【氏名又は名称】田村 義行
(72)【発明者】
【氏名】モンティス,マックレー・ウィリアム
(72)【発明者】
【氏名】レンツ,ダニエル・ジェイ
【審査官】壷内 信吾
(56)【参考文献】
【文献】特開平07-120111(JP,A)
【文献】米国特許第05515690(US,A)
【文献】特開2001-174108(JP,A)
【文献】特開2011-133191(JP,A)
【文献】米国特許出願公開第2003/0074909(US,A1)
【文献】米国特許第06478849(US,B1)
【文献】米国特許出願公開第2012/0145006(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/02-53/12
F25B 43/00-49/04
(57)【特許請求の範囲】
【請求項1】
蒸気圧縮システムのためのパージシステムであって、
エミッションキャニスタであって、
前記エミッションキャニスタを通って流れる冷媒を吸着するように構成された吸着剤材料を備える、エミッションキャニスタと、
コントローラであって、
前記吸着剤材料の温度を指示するフィードバックを受信し、
前記吸着剤材料の前記温度と、前記吸着剤材料の飽和を指示する閾値温度との比較に基づいて前記吸着剤材料の飽和点を決定し、
前記吸着剤材料の前記温度を指示する前記フィードバックに基づいて前記エミッションキャニスタの再生サイクルを開始するか、又は終結させる、ように構成されたコントローラと、
を備える、パージシステム。
【請求項2】
前記コントローラが、前記吸着剤材料及び前記冷媒の重量を指示するフィードバックを受信するように構成され、前記コントローラが、前記吸着剤材料及び前記冷媒の前記重量と、前記吸着剤材料の飽和を指示する閾値重量との比較に基づいて前記吸着剤材料の前記飽和点を決定するように構成されている、請求項1に記載のパージシステム。
【請求項3】
方法であって、
非凝結性気体及び冷媒の流れをエミッションキャニスタ内へ誘導することと、
非凝結性気体及び冷媒の前記流れの前記冷媒を、前記エミッションキャニスタ内に配置された吸着剤材料内に吸着することと、
コントローラを介して前記吸着剤材料の温度を監視することと、
前記吸着剤材料の前記温度と、前記吸着剤材料の飽和を指示する閾値温度との比較に基づいて、
前記コントローラを介して前記吸着剤材料の飽和点を決定することと、
前記吸着剤材料の飽和を確認すると、
前記コントローラを介して前記エミッションキャニスタ内への非凝結性気体及び冷媒の前記流れを終結させることと、
非凝結性気体及び冷媒の前記流れを終結させた後に、
前記コントローラを介して前記エミッションキャニスタの再生サイクルを開始することと、
を含む方法。
【請求項4】
前記再生サイクルの間に前記吸着剤材料の前記温度を監視することと、
前記吸着剤材料の前記温度が、前記吸着剤材料が飽和していないことを指示する追加の目標温度に達すると、前記再生サイクルを終結させることと、
をさらに含む、請求項3に記載の方法。
【請求項5】
前記吸着剤材料の前記温度を監視することが、所定の時間間隔で前記吸着剤材料の前記温度の複数の温度測定値を収集することを含む、請求項3に記載の方法。
【請求項6】
前記吸着剤材料の前記温度を監視することが、前記吸着剤材料の熱エネルギーに関連する特性を検出するように構成されたセンサからのフィードバックを受信することを含み、前記センサが熱電対又は赤外線センサを含む、請求項3に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年9月27日に出願された、「EMISSION CANISTER SYSTEM FOR A HVAC&R SYSTEM」と題する、米国仮特許出願第62/564,085号からの優先権及びその利益を主張する。同出願はその全体が全ての目的のために本明細書において参照により組み込まれる。
【0002】
本開示は、概して、加熱、通気、空調、及び冷凍(heating,ventilating,air conditioning,and refrigeration、HVAC&R)システムに関する。詳細には、本開示はHVAC&Rユニットのためのエミッションキャニスタシステムに関する。
【背景技術】
【0003】
本セクションは、以下において説明され、及び/又はクレームされている本技法の様々な態様に関連し得る、様々な技術態様に読者を案内することを意図されている。本説明は、本開示の様々な態様のより深い理解を促進するための背景情報を読者に提供する助けになると考えられる。したがって、これらの陳述はこの観点から読まれるべきであり、いかなる類いの承認としても読まれるべきでないことを理解されたい。
【0004】
加熱、通気、空調、及び冷凍(HVAC&R)システムは、環境(例えば、建物、住宅、又は他の構造物)を熱的に調節する(例えば、加熱又は冷却する)ために用いられ得る。HVAC&Rシステムは、HVAC&Rシステムと環境との間で熱エネルギー(例えば、熱)を伝達する、コンデンサ及び蒸発器などの、熱交換器を含む、蒸気圧縮システムを含み得る。冷媒が蒸気圧縮システムの熱交換器内の熱伝達流体として用いられ得る。多くの場合(例えば、低圧冷媒を用いるとき)、非凝結性気体(例えば、空気、窒素)が蒸気圧縮システム内に蓄積し、冷媒と混合し得、これが蒸気圧縮システムの動作効率を低下させ得る。
【0005】
非凝結性気体を蒸気圧縮システムから除去するために、エミッションキャニスタシステムを含むパージシステムが蒸気圧縮システム内に含まれ得る。エミッションキャニスタシステムは、非凝結性気体を分離し、蒸気圧縮システムから除去するように構成され得る。すなわち、エミッションキャニスタは非凝結性気体を蒸気圧縮システムの冷媒から分離し、非凝結性気体から分離された冷媒を収集し得る。残念ながら、既存のエミッションキャニスタシステムはすぐに冷媒で飽和し得、及び/又はエミッションキャニスタ内からの冷媒の除去が非効率的になり得る。さらに、既存のエミッションキャニスタは、非凝結性気体からの冷媒の除去が非効率的になり得る。
【発明の概要】
【課題を解決するための手段】
【0006】
本開示は、エミッションキャニスタを含む蒸気圧縮システムのためのパージシステムに関する。エミッションキャニスタは、エミッションキャニスタの内部内に配置されたロードセルと、ロードセルによって支持された基台と、基台上に配置された吸着剤材料と、を含む。吸着剤材料は、エミッションキャニスタを通って流れる冷媒を吸着するように構成されており、ロードセルは、エミッションキャニスタ内の吸着剤材料及び冷媒の重量を監視するように構成されている。
【0007】
本開示はまた、蒸気圧縮システムのためのエミッションキャニスタに関する。エミッションキャニスタは、エミッションキャニスタ内に配置されたプラットフォームを含み、プラットフォームはエミッションキャニスタの内部の下面の上方に位置付けられている。複数のロードセルがプラットフォーム上に配置されており、基台が複数のロードセルによって支持されている。エミッションキャニスタはまた、基台上に配置された吸着剤材料を含み、吸着剤材料は、エミッションキャニスタを通って流れる冷媒を吸着するように構成されている。複数のロードセルは、エミッションキャニスタ内の吸着剤材料及び冷媒の重量を監視するように構成されている。
【0008】
本開示はまた、方法であって、非凝結性気体及び冷媒の流れをエミッションキャニスタ内へ誘導することと、非凝結性気体及び冷媒の流れの冷媒を、エミッションキャニスタ内に配置された吸着剤材料内に吸着することと、を含む方法に関する。本方法はまた、吸着剤材料の温度を監視することと、吸着剤材料の温度に基づいて吸着剤材料の飽和点を決定することであって、吸着剤材料の温度が、吸着剤材料の飽和を指示する目標温度に達するか、又はそれを超えると、飽和点に達する、決定することと、を含む。
【0009】
本開示の様々な態様は、以下の詳細な説明を読み、図面を参照することで、より深く理解され得る。
【図面の簡単な説明】
【0010】
【
図1】本開示の態様による、商業的環境において加熱、通気、空調及び冷凍(HVAC&R)システムを使用し得る建物の実施形態の斜視図である。
【
図2】本開示の態様による蒸気圧縮システムの斜視図である。
【
図3】本開示の態様による、
図2の蒸気圧縮システムの実施形態の概略図である。
【
図4】本開示の態様による、
図2の蒸気圧縮システムの実施形態の概略図である。
【
図5】
図5は、本開示の一実施形態に係る、エミッションキャニスタを含むパージシステムを有する蒸気圧縮システムの一実施形態の概略図である。
【
図6】
図6は、本開示の一実施形態に係る、エミッションキャニスタ内に配置された吸着剤の飽和点を決定するための方法の一実施形態のフローチャートである。
【
図7】
図7は、本開示の一実施形態に係る、
図6の方法において説明された飽和点を決定するために用いられる吸着剤の温度と重量との間の関係を示すグラフである。
【
図8】
図8は、本開示の一実施形態に係る、エミッションキャニスタ内に収集された吸着剤材料の重量を監視するように構成された重量計システムの一実施形態の断面斜視図である。
【
図9】
図9は、本開示の一実施形態に係る、パージシステム内に含まれ得る二重エミッションキャニスタシステムの一実施形態の斜視図である。
【
図10】
図10は、本開示の一実施形態に係る、エミッションキャニスタのキャッププレートを貫いて延びる複数の加熱要素の一実施形態の斜視図である。
【
図11】
図11は、本開示の一実施形態に係る、
図10のエミッションキャニスタの熱分布図である。
【
図12】
図12は、本開示の一実施形態に係る、エミッションキャニスタ内に配置されたバッフル仕切りの一実施形態の斜視図である。
【
図13】
図13は、本開示の一実施形態に係る、エミッションキャニスタの一実施形態の斜視図である。
【
図14】
図14は、本開示の一実施形態に係る、エミッションキャニスタ内に配置され得るバッフル仕切りの一実施形態の斜視図である。
【
図15】
図15は、本開示の一実施形態に係る、
図14のバッフル仕切りの一実施形態の拡大斜視図である。
【
図16】
図16は、本開示の一実施形態に係る、エミッションキャニスタに含まれ得るアクセスキャップの一実施形態の斜視図である。
【
図17】
図17は、本開示の一実施形態に係る、エミッションキャニスタのための冷却システムの一実施形態の斜視図である。
【
図18】
図18は、本開示の一実施形態に係る、エミッションキャニスタの外面の周りに配置された外部冷却通路を示す、
図17の冷却システムの一実施形態の拡大斜視図である。
【
図19】
図19は、本開示の一実施形態に係る、パージシステムに結合された集中真空ポンプを有する蒸気圧縮システムの一実施形態の概略図である。
【
図20】
図20は、本開示の一実施形態に係る、蒸気圧縮システムの一実施形態の概略図である。
【
図21】
図21は、本開示の一実施形態に係る、エミッションキャニスタを貫いて延びる加熱要素を有する蒸気圧縮システムの一実施形態の部分概略図である。
【
図22】
図22は、本開示の一実施形態に係る、ポンプ制御システムを有する蒸気圧縮システムの一実施形態の概略図である。
【
図23】
図23は、本開示の一態様に係る、エミッションキャニスタのバイラテラル再生システムの一実施形態の概略図である。
【
図24】
図24は、本開示の一態様に係る、エネルギー回収システムを有する蒸気圧縮システムの一実施形態の概略図である。
【発明を実施するための形態】
【0011】
本開示の1つ以上の特定の実施形態が以下に説明される。これらの説明される実施形態は本開示の技法の単なる例にすぎない。加えて、これらの実施形態の簡潔な説明を提供するよう務めるために、実際の実装形態の全ての特徴は本明細書において説明されない場合がある。任意のこのような実際の実装形態の開発においては、任意の工学又は設計プロジェクトと同様に、開発者の特定の目標を達成するために、実装形態によって異なり得るシステム関連及び事業関連の制約の順守などの、数多くの実装形態固有の決定がなされなければならないことを理解されたい。さらに、このような開発努力は複雑になり、且つ時間がかかり得るが、それにもかかわらず、本開示の利益を有する当業者にとっては、設計、組み立て、及び製造の通常の作業であろうことを理解されたい。
【0012】
エミッションキャニスタシステムを含むパージシステムが蒸気圧縮システムに統合され、蒸気圧縮システム内の冷媒と混合し得る非凝結性気体を分離するために用いられ得る。エミッションキャニスタは、吸着質(例えば、冷媒)を吸着剤の細孔内に吸い込んで収集し、その一方で、非凝結性気体はエミッションキャニスタ及びベントを通って外部環境(例えば、大気)へ流れ続けるように構成された吸着剤材料を含み得る。残念ながら、エミッションキャニスタ内の吸着剤材料がいつ飽和したのか(例えば、吸着質を吸着する能力をもはや有しない)を決定することは困難であり得る。典型的なエミッションキャニスタは、時間を、エミッションキャニスタがいつ飽和したのか、及び/又は吸着質を吸着剤内から遊離させる再生サイクルをいつ開始するべきであるのかを決定するためのインジケータとして用い得る。加えて、典型的なエミッションキャニスタは、吸着のための動作可能温度に達するまでに再生サイクルの合間の相当な冷却時間を必要とし得、これは蒸気圧縮システムを一時的にシャットダウンさせ得る。実施形態によっては、パージシステムはこの冷却時間の間にエミッションキャニスタを迂回し、冷媒からの非凝結性気体の分離を低減し得、これはパージシステムの有効性を低下させ得る。
【0013】
本開示の諸実施形態は、吸着剤材料としてのシリカゲルの使用を通じて典型的なエミッションキャニスタよりも多量の吸着質を吸着し得るエミッションキャニスタシステムに関する。すなわち、エミッションキャニスタは従来のエミッションキャニスタと比べて特定の体積の吸着剤当たりより多量の吸着質を吸着し得る。エミッションキャニスタのさらなる諸実施形態は、吸着剤材料の温度及び/又は吸着剤材料の重量を用いてエミッションキャニスタの飽和点を決定するためのシステムを含み得る。さらに、パージシステムは、エミッションキャニスタが再生サイクルを経験する際に、蒸気圧縮システムが、シャットダウンすることなく連続的に動作することを可能にするための二重エミッションキャニスタシステムを含み得る。吸着剤をエミッションキャニスタの中心軸に沿って均一に加熱するための二重加熱要素がエミッションキャニスタ内に配置されていてもよく、これは再生サイクルの効率を改善し、及び/又は吸着剤の動作寿命を延ばし得る。実施形態によっては、吸着剤にわたるより均一な熱分布を促進するためのバッフル仕切りが二重加熱要素に結合されていてもよい。加えて、バッフル仕切りは、吸着剤を通る複数の流路を規定し得、これにより、吸着剤と、エミッションキャニスタを通って流れる吸着質との間の曝露時間を向上させる。本開示の諸実施形態はまた、吸着剤の検査及び/又は交換を可能にするためにエミッションキャニスタに取り外し可能に結合されたアクセスキャップを含む。本開示のさらなる諸実施形態は、再生サイクルの合間のエミッションキャニスタのための冷却時間を低減するためにエミッションキャニスタに結合され得る冷却システムを含む。本開示のなおさらなる諸実施形態は、パージシステムの動作効率を向上させ、及び/又はエミッションキャニスタの再生を促進し得る様々な配管構成及び制御システムを含む。
【0014】
ここで、図面に目を向けると、
図1は、典型的な商業的環境のための建物12における、加熱、通気、空調及び冷凍(HVAC&R)システム10のための環境の実施形態の斜視図である。HVAC&Rシステム10は、建物12を冷却するために使用され得る、冷却された液体を供給する蒸気圧縮システム14を含み得る。HVAC&Rシステム10はまた、建物12を加熱するために温かい液体を供給するためのボイラー16と、建物12を通して空気を循環させる空気分配システムとを含み得る。空気分配システムは、空気還流ダクト18、空気供給ダクト20及び/又は空気ハンドラー22も含み得る。いくつかの実施形態において、空気ハンドラー22は、ボイラー16及び蒸気圧縮システム14に導管24により接続された熱交換器を含み得る。空気ハンドラー22における熱交換器は、HVAC&Rシステム10の作動モードに依存して、加熱された液体をボイラー16から受けることができるか、又は冷却された液体を蒸気圧縮システム14から受けることができるかのいずれかである。HVAC&Rシステム10は、個別の空気ハンドラーが建物12の各フロアにある状態で示されているが、他の実施形態において、HVAC&Rシステム10は、フロア間で共有され得る空気ハンドラー22及び/又は他のコンポーネントを含み得る。
【0015】
図2及び3は、HVAC&Rシステム10において用いることができる蒸気圧縮システム14の実施形態である。蒸気圧縮システム14は、圧縮器32で開始する回路を通って冷媒を循環させ得る。回路はまた、コンデンサ34と、膨張バルブ又はデバイス36と、液体チラー又は蒸発器38とを含み得る。蒸気圧縮システム14は、アナログ・デジタル(A/D)変換器42、マイクロプロセッサ44、不揮発性メモリ46及び/又はインターフェイスボード48を有する制御パネル40をさらに含み得る。
【0016】
蒸気圧縮システム14において冷媒として使用され得る流体のいくつかの例は、ハイドロフルオロカーボン(HFC)系冷媒、例えばR-410A、R-407、R-134a、ハイドロフルオロオレフィン(HFO)、アンモニア(NH3)、R-717、二酸化炭素(CO2)、R-744又は炭化水素系冷媒などの「天然」冷媒、水蒸気又は他の任意の好適な冷媒である。いくつかの実施形態において、蒸気圧縮システム14は、R-134aなど、中圧冷媒に対して低圧冷媒とも呼ばれる、1気圧でセ氏約19度(カ氏66度)の標準沸点を有する冷媒を効率的に用いるように構成され得る。本明細書で使用される際、「標準沸点」は、1気圧で計測された沸点温度と呼ばれ得る。
【0017】
いくつかの実施形態において、蒸気圧縮システム14は、可変速駆動装置(VSD)52、モータ50、圧縮器32、コンデンサ34、膨張バルブ又はデバイス36及び/又は蒸発器38の1つ又は複数を使用し得る。モータ50は、圧縮器32を駆動することができ、可変速駆動装置(VSD)52により動力供給され得る。VSD52は、AC電源からの特定の固定された線間電圧及び固定された線間周波数を有する交流(AC)電力を受け、可変電圧及び周波数を有する電力をモータ50に供給する。他の実施形態において、モータ50は、AC又は直流(DC)電源から直接的に動力供給され得る。モータ50は、VSDにより、又はAC若しくはDC電源、例えばスイッチ式リラクタンスモータ、誘導モータ、電子整流式永久磁石モータ又は別の好適なモータから直接的に動力供給され得る任意のタイプの電気モータを含み得る。
【0018】
圧縮器32は、冷媒蒸気を圧縮するとともに、排出路を通じて蒸気をコンデンサ34に送達する。いくつかの実施形態において、圧縮器32は、遠心圧縮器であり得る。圧縮器32によりコンデンサ34に送達された冷媒蒸気は、熱をコンデンサ34における冷却液(例えば、水又は空気)に伝達し得る。冷媒蒸気は、冷却液との熱伝熱の結果として、コンデンサ34において冷媒液に凝結し得る。コンデンサ34からの液体冷媒は、膨張デバイス36を通って蒸発器38に流れ得る。
図3の図示の実施形態において、コンデンサ34は、水で冷却されるとともに、冷却液をコンデンサ34に供給する冷却タワー56に接続されたチューブ束54を含む。
【0019】
蒸発器38に送達される液体冷媒は、コンデンサ34において使用された冷却液と同じであってもなくてもよい別の冷却液からの熱を吸収することができる。蒸発器38における液体冷媒は、液体冷媒から冷媒蒸気への相変化を受け得る。
図3の図示された実施形態に示される通り、蒸発器38は、冷却負荷62に接続された供給ライン60Sと還流ライン60Rとを有するチューブ束58を含み得る。蒸発器38の冷却液(例えば、水、エチルグリコール、塩化カルシウム塩水、塩化ナトリウム塩水又は他の任意の好適な流体)は、還流ライン60Rを介して蒸発器38に入り、供給ライン60Sを介して蒸発器38を出る。蒸発器38は、チューブ束58における冷却液の温度を、冷媒との熱伝熱を介して低下させ得る。蒸発器38におけるチューブ束58は、複数のチューブ及び/又は複数のチューブ束を含み得る。いずれの場合にも、蒸気冷媒は、蒸発器38を出て、吸引ラインにより圧縮器32に戻り、サイクルを完了する。
【0020】
図4は、中間回路64がコンデンサ34と膨張デバイス36との間に組み込まれた蒸気圧縮システム14の概略図である。中間回路64は、コンデンサ34に直接的に流体接続された入口ライン68を有し得る。他の実施形態において、入口ライン68は、コンデンサ34に間接的に流体接続され得る。
図4の図示された実施形態に示される通り、入口ライン68は、中間容器70の上流に位置付けられた第1膨張デバイス66を含む。いくつかの実施形態において、中間容器70は、フラッシュタンク(例えば、フラッシュ中間冷却器)であり得る。他の実施形態において、中間容器70は、熱交換器又は「サーフェスエコノマイザー(surface economizer)」として構成され得る。
図4に示された実施形態において、中間容器70は、フラッシュタンクとして使用され、第1膨張デバイス66は、コンデンサ34から受け取った液体冷媒の圧力を低める(膨張させる)ように構成される。膨張プロセス中、液体の一部が蒸発し得、したがって、中間容器70は、第1膨張デバイス66から受け取った液体から蒸気を分離するのに使用され得る。追加的に、中間容器70は、中間容器70に入るときに液体冷媒が受ける圧力低下を理由として、(例えば、中間容器70に入るときに受ける、容積が急速に増大することを原因として)液体冷媒のさらなる膨張を提供し得る。中間容器70における蒸気は、圧縮器32の吸引ライン74を通って圧縮器32により引き込まれ得る。他の実施形態において、中間容器における蒸気は、圧縮器32の中間ステージ(例えば、吸引ステージではない)に引き込まれ得る。中間容器70において集まる液体は、膨張デバイス66及び/又は中間容器70における膨張を理由としてコンデンサ34を出る液体冷媒より低いエンタルピーであり得る。中間容器70からの液体は、次いで、ライン72内において第2膨張デバイス36を通って蒸発器38に流れ得る。
【0021】
シリカゲル吸着剤を含有する改善されたエミッションキャニスタのためのシステム
図5は、コンデンサ34と蒸発器38との間に組み込まれたパージシステム100を有する蒸気圧縮システム14の概略図である。実施形態によっては、蒸気圧縮システム14の一部分(例えば、蒸発器38)内の冷媒は、周囲圧力よりも低い圧力(例えば、14.7psi未満)で動作し得る。それゆえ、蒸気圧縮システム14内の冷媒と周囲環境との間の圧力差が生み出され得る。実施形態によっては、周囲環境からの非凝結性気体138(例えば、空気、窒素)が蒸気圧縮システム14の部分(例えば、冷凍回路又は他のコンポーネントとの間の接続部)を貫通し、冷媒と混合し得る。非凝結性気体138は、蒸気圧縮システム14の動作温度(例えば、研究室環境では達成されない蒸気圧縮システムの通常動作温度)において凝結可能でない任意の気体(例えば、空気、窒素)を含み得る。非凝結性気体138は圧縮器32を経由して蒸気圧縮システム14を通して循環させられ、コンデンサ34内に蓄積し得、これは、究極的には、蒸気圧縮システム14、圧縮器32、コンデンサ34、又はこれらの任意の組み合わせの効率を低減し得る。他の実施形態では、蒸気圧縮システム14は、追加の、又は
図5に示される実施形態よりも少数のコンポーネントを含み得ることを認識されたい。
【0022】
図5の例示の実施形態において示されるように、パージシステム100は、非凝結性気体138を蒸気圧縮システム14からパージするために用いられ得る。例えば、パージシステム100は、非凝結性気体138を蒸気圧縮システム14内の冷媒から除去及び/又は分離するように構成され得る。パージシステム100は、互いに流体連通し得る、熱交換器142(例えば、蒸発器及び/又はパージコイル)、膨張弁144、コンデンサ146、並びに/或いは圧縮器148を含み得る。圧縮器148はパージシステム100を通してパージ冷媒(例えば、中又は高圧冷媒)を誘導し得る。パージシステム100内のパージ冷媒の流路は蒸気圧縮システム14の冷媒から流体的に隔離され得る。実施形態によっては、パージ冷媒は、圧縮器148、コンデンサ146、膨張弁144、熱交換器142を通って流れ、圧縮器148に再び入り得る。別の実施形態では、パージシステム100は、追加の、又は
図5に示される実施形態よりも少数のコンポーネントを包含し得る。
【0023】
いずれの場合も、冷媒及び非凝結性気体138の気体混合物は入口管152を経由して蒸気圧縮システム14のコンデンサ34からパージシステム100の熱交換器142へ流れ得る。実施形態によっては、冷媒及び非凝結性気体138の混合物は熱サイフォンを経由して熱交換器142内へ流れ得る。追加的に、又は代替的に、(例えば、流入する冷媒が熱交換器142内で凝結した時に)部分真空が熱交換器142内に生み出され得る。コイル155が熱交換器142内に配置され得、パージ冷媒を流すように構成され得、これにより、パージ冷媒は熱(例えば、熱エネルギー)をエミッションキャニスタ164内の冷媒及び非凝結性気体138の混合物から吸収する。それゆえ、冷媒は液体状態に凝結し得、非凝結性気体138は気体状態のままとどまり得る。液体冷媒は出口管154を経由してパージシステム100の熱交換器142から蒸気圧縮システム14の蒸発器38へ排出され得る。弁156が出口管154に結合されており、熱交換器142から出てくる冷媒の流れを制御し得る。他の実施形態では、出口管154は、蒸発器38ではなく、コンデンサ34に結合されていてもよいことに留意されたい。したがって、液体冷媒は熱交換器142からコンデンサ34へ排出されてもよい。
【0024】
冷媒の分圧が低いときなど、場合によっては、熱交換器142内の冷媒の一部分が凝結せず、それゆえ、気体状態のままとどまることがある。排出弁158及び排出導管160が、冷媒及び非凝結性気体138の気体混合物をパージシステム100の熱交換器142から除去するように構成され得る真空ポンプ162に結合され得る。真空ポンプ162は混合物を、気体状態の冷媒を非凝結性気体138からさらに分離するように構成され得るエミッションキャニスタ164内へ誘導し得る。
【0025】
例えば、吸着剤166がエミッションキャニスタ164内に配置されており、吸着質(例えば、冷媒)を吸着するように構成され得る。吸着剤166は、吸着質との電気化学親和力を有し得る(例えば、高い比表面積を有する)多孔性材料であり得る。本明細書においてさらに詳細に説明されるように、吸着剤166はシリカゲルであり得る。吸着質は吸着剤166の細孔内に吸い込まれて収集され得、その一方で、非凝結性気体138はエミッションキャニスタ164を通って流れ続け得る。それゆえ、エミッションキャニスタ164は、冷媒の実質的に全てをエミッションキャニスタ164内の非凝結性気体138から分離するように構成され得る。その後、非凝結性気体138は排気ベント167の排気弁168を経由して周囲環境中へ放出され得る。
【0026】
吸着質が吸着剤166の大部分の細孔を満たすと、エミッションキャニスタ164の吸着剤166は飽和し得る。実施形態によっては、吸着剤166が飽和すると、エミッションキャニスタ164は再生され得る。例えば、エミッションキャニスタ164内への吸着質の流れが停止され得、エミッションキャニスタ164が、再生サイクルを経験するよう加熱され得る。排気弁168は、再生サイクルの間は、吸着質が周囲環境中へ逃げるのを防止するために閉鎖され得る。実施形態によっては、エネルギーが吸着剤166及び吸着質に(例えば、圧力の減少、温度の増大、又はその両方を介して)印加されてもよく、これにより、吸着質は吸着剤166の細孔から遊離させられ得る。例えば、エミッションキャニスタ164内の1つ以上の加熱要素がエミッションキャニスタ164内の吸着剤166及び/又は吸着質を加熱し、吸着質を吸着剤166から遊離させ得る。遊離させられた吸着質(例えば、冷媒)はエミッションキャニスタ164から排出又は誘導され、(例えば、エミッションキャニスタ164と蒸気圧縮システム14との間の圧力差のゆえに)出口導管169を経由して蒸気圧縮システム14に向かって還流し得る。実施形態によっては、追加の真空ポンプが出口導管169と流体連通していてもよく、遊離させられた吸着質をエミッションキャニスタ164からコンデンサ34に向けて誘導するように構成されていてもよい。
図5の例示の実施形態では、出口導管169はコンデンサ34に結合されているように示されているが、他の実施形態では、出口導管169は、蒸発器38、又は蒸気圧縮システム14の任意の他の好適な部分に流体結合され得ることに留意されたい。いずれにせよ、実施形態によっては、複数の再生サイクルが、吸着質を吸着剤166から遊離させるために用いられ得る。他の実施形態では、再生サイクルに加えて、又はその代わりに、飽和したエミッションキャニスタ164が、飽和していないエミッションキャニスタ164と交換されてもよい。
【0027】
以上において説明されたように、一実施形態では、シリカゲルが、活性炭又は活性木炭などの、従来の材料の代わりに吸着剤166として用いられ得る。シリカゲルは、従来の吸着剤166の材料よりも高い材料密度を含み得、それゆえ、従来の吸着剤166の材料と比べて、増大した質量のシリカゲルが固定体積(例えば、エミッションキャニスタ164)内に配置され得る。非限定例として、シリカゲルの材料密度は、10ポンド/立方フィート(lb/ft3)~150lb/ft3、20lb/ft3~100lb/ft3、又は30lb/ft3~50lb/ft3であり得る。それゆえ、シリカゲルをエミッションキャニスタ164内の吸着剤166として用いることは、吸着剤166が、固定体積での比較において、従来の材料よりも高い比表面積(例えば、吸着剤166の質量単位当たりの利用可能な表面積)を有することを可能にし得る。より高い比表面積は、シリカゲルが従来の吸着剤材料よりも相当に多くの吸着質(例えば、冷媒)を吸着することを可能にし得、エミッションキャニスタ164の効率を改善し得る。例えば、シリカゲルは、エミッションキャニスタ164が、再生サイクルを経験することを必要とされるまでに、より長い期間にわたって動作することを可能にし得る。
【0028】
温度を用いてエミッションキャニスタの飽和点を決定するためのシステム及び方法
実施形態によっては、再生サイクルをいつ経験するべきであるのかを決定することが有用になり得る。例えば、エミッションキャニスタ164内の吸着剤166(例えば、シリカゲル)がいつ吸着質(例えば、冷媒)で飽和したのかを決定することが望ましくなり得る。エミッションキャニスタを有する典型的なシステムは、時間を、吸着質の残りの吸着容量を決定する際のインジケータとして用い得る。例えば、設定時間量が第1の再生サイクルから経過した後に第2の再生サイクルが開始されてもよい。残念ながら、時間は飽和の正確な指示になり得ず、このため、温度などの異なるインジケータを、吸着剤166がいつ飽和点に達したのかを決定するために用いることが、エミッションキャニスタ164の効率を増大させ得る。
【0029】
例えば、
図6は、温度を飽和のインジケータとして用いて、吸着剤166の飽和点、及びそれゆえ、再生サイクルをいつ開始するべきであるのかを決定するために用いられ得る方法170の一実施形態のブロック図である。ブロック172において、吸着剤166の初期温度を測定し得る。実施形態によっては、1つ以上の熱電対がエミッションキャニスタ164に結合されており、吸着剤166の温度及び/又はエミッションキャニスタ164の全体温度を測定するように構成され得る。他の実施形態では、吸着剤の温度は、赤外線(infra-red、IR)センサなどの、他の好適な温度センサを用いて測定されてもよい。吸着剤166の温度は、連続的又は(例えば、所定の時間間隔の経過後に)断続的に測定され得る。ブロック174において、エミッションキャニスタ164内への吸着質の流入を開始し得、これにより、エミッションキャニスタ164内へ流入する吸着質(例えば、冷媒)は吸着剤166(例えば、シリカゲル)に付着し、及び/又はそれによって吸着され得る。
【0030】
ブロック176及び178は、エミッションキャニスタ164内の吸着剤166が吸着質を吸着したときの、吸着剤166の重量を吸着剤166の温度と比較するために用いられるグラフ180の一実施形態を含む、
図7に関連する。吸着剤166の重量は、吸着剤166が吸着質を吸着するにつれて経時的に増大し得る。加えて、エミッションキャニスタ164の温度も、吸着剤166が吸着質を吸着するにつれて増大し得る。それゆえ、吸着剤166の重量及び吸着剤166の温度は、
図7の線182によって示されるように、線形相関を含み得る。他の実施形態では、吸着剤166の重量及び吸着剤166の温度は、互いに対する、指数、対数、又は他の好適な相関を含み得る。いずれの場合も、吸着剤166の温度を測定することは、吸着剤166の飽和点が推定されることを可能にし得、それゆえ、飽和点がエミッションキャニスタ164の温度に基づいて決定された時に、再生サイクルが開始され得る。
【0031】
例えば、吸着剤166の温度及び重量(例えば、
図7のグラフ180に示されるものなど)を測定するための試験室試験が、重量計及び熱電対を用いて行われ得る。測定は、吸着剤166内に吸着された吸着剤166(例えば、シリカゲル)の温度と吸着質(例えば、冷媒)の重量又は量との間の相関(例えば、線182)を決定するために用いられ得る。それゆえ、吸着剤166の飽和点が実験データを通じて決定され得る。したがって、相関は、指定の第1の量の吸着剤166が、第1の量の吸着質を吸着し、特定の温度に達した後に、飽和点に達したこと(例えば、吸着質をこれ以上取り込むことができないこと)を決定し得る。それゆえ、
図7のグラフ180などの、グラフが、吸着剤166がいつ飽和点に達したのかを決定するために用いられ得る。
【0032】
特定の温度値は、エミッションキャニスタ164内の吸着剤166が飽和点にいつ達したのかを決定するために用いられ得る。すなわち、吸着剤166は、吸着剤166の測定温度が、吸着剤166が飽和したことを指示する目標温度を満たすか、又はそれを超えたときに、飽和し得る。目標温度は実験試行を用いて決定され得る。非限定例として、上述された実験データは、第1の量の吸着剤166は飽和点においてカ氏100度に達し得ると決定し得る。本例では、第1の量の吸着剤166がカ氏100度に達するか、又はカ氏100度を超えると、操作者(例えば、人間の操作者、コンピュータシステム)は、飽和点に達したと決定し得る。
【0033】
次に、
図6のブロック184及び186に戻ると、吸着剤166が飽和点に達すると、パージシステム100からエミッションキャニスタ164内への吸着質の流入を阻止し得る。吸着質を吸着剤166から除去するための再生サイクルを開始し得る。実施形態によっては、再生サイクルの間に遊離させられた吸着質(例えば、冷媒)は蒸気圧縮システム14内に再び誘導され得る。実施形態によっては、方法170は、追加的に、再生サイクルがいつ完了したのかを決定するために用いられ得る。例えば、方法170は、吸着剤166内に吸着された吸着質の十分な量が吸着剤166からいつ遊離させられたのかを決定するために用いられ得る。エミッションキャニスタ164が、吸着質が吸着剤166内に実質的に存在しないことを指示する閾値温度に達すると、再生サイクルは完了し得る(例えば、再生サイクルは終結され得る)。この閾値温度は、上述された技法を用いて導出された実験データを通じて決定され得る。それゆえ、方法170は、再生サイクルを最適化し、再生サイクルを実行し、及び/又は吸着剤166の寿命を延ばすために必要とされる電力消費を減少させるために用いられ得る。
【0034】
重量を用いてエミッションキャニスタの飽和点を決定するためのシステム
図8は、
図6の方法170に加えて、又はその代わりに、エミッションキャニスタ164内に配置された吸着剤166の飽和点を決定するために同様に用いられ得る重量計システム190の一実施形態の断面である。実施形態によっては、吸着質(例えば、冷媒)の流れは、(
図5に示されるように)排出導管160を通ってエミッションキャニスタ164に入り得る。以上において説明されたように、吸着剤166は蒸気圧縮システム14のパージングの間に吸着質を吸着し、より多くの吸着質が吸着されるのに従い、重量が増大し得る。実施形態によっては、吸着剤166は、1つ以上のロードセル194に結合された基台192上に配置され得る。特定の諸実施形態では、ロードセル194はエミッションキャニスタ164の中心軸の周りに均等に(例えば、対称的に)配置されている。ロードセル194は吸着剤166の重量を監視し、重量に関するデータを制御システム196へ送信し得る。本明細書においてさらに詳細に説明されるように、制御システム196は、ロードセル194及び/又は他の好適なセンサ(例えば、熱電対)から受信されたフィードバックに基づいて再生サイクルを開始し、及び/又は終結させ得る。
【0035】
一実施形態では、基台192は、ロードセル194を、吸着剤166が飽和及び/又は再生サイクルの間に経験し得る温度変動から隔離し得る熱絶縁材料を含み得る。基台192とエミッションキャニスタ164の内面201(例えば、円周壁)との間の間隙200が基台192と内面201との間の摩擦を低減し得る。例えば、間隙200は、基台192と内面201との間の摩擦のゆえにロードセル194によって検出され得るノイズ(例えば、ロードセル194によって測定された重量データにおける異常)を低減し得る。ロードセル194はプラットフォーム202によって支持され得、締結具204(例えば、ボルト、ねじ、接着剤、又は他の好適な結合デバイス)を介してプラットフォーム202に結合され得る。プラットフォーム202は、エミッションキャニスタ164の底面207に結合された支持部206によって支持され得る。支持部206は表面207とプラットフォーム202との間の空間108を形成し得る。実施形態によっては、空間208は、ロードセル194をエミッションキャニスタ164内の熱変動からさらに絶縁し得る熱絶縁メッシュ205によって占有されていてもよい。実施形態によっては、冷媒はロードセル194に摩耗を被らせ得る。それゆえ、熱絶縁メッシュ205は、さらに、ロードセル194を冷媒との接触から隔離し得る。
【0036】
図8の例示の実施形態に示されるように、密閉管継手209がエミッションキャニスタ164に結合され得る。密閉管継手209は、吸着質がエミッションキャニスタ164の外へ漏れることを阻止しつつ、ロードセル194に結合されたワイヤ198がエミッションキャニスタ164に入ることを可能にし得る。制御システム196はロードセル194からのデータを受信して分析し、基台192の上方に配置された吸着剤166及び吸着質の重量を決定し得る。実施形態によっては、実験データは、吸着剤166(例えば、シリカゲル)の特定の物理及び/又は化学特性を決定するために用いられ得る。例えば、実験重量データは、吸着剤166がいつ吸着剤(例えば、冷媒)で飽和したのかを指示する吸着剤166の閾値重量を含み得る。それゆえ、重量計システム190は、エミッションキャニスタ164内の指定量の吸着剤166がいつ吸着質で飽和したのかを決定するために用いられ得る。
【0037】
二重エミッションキャニスタを用いて蒸気圧縮システムをパージするためのシステム
図9は、以上において説明されたパージシステム100のエミッションキャニスタ164に加えて、又はその代わりに用いられ得る二重エミッションキャニスタシステム210の一実施形態の斜視図である。実施形態によっては、エミッションキャニスタ164が再生サイクルを経験している間に、蒸気圧縮システム14をパージすること(例えば、非凝結性気体138を冷媒から除去し、及び/又は分離すること)が望ましくなり得る。パージシステム100は、エミッションキャニスタ164が再生サイクルを経験している間には、エミッションキャニスタ164を迂回し得、それゆえ、非凝結性気体138及び冷媒の分離を低減する。換言すれば、パージシステム100の有効性が低下し得る。
【0038】
実施形態によっては、蒸気圧縮システム14は、エミッションキャニスタ164の再生サイクルが遂行される際に、一時的にシャットダウンされ得る。それゆえ、蒸気圧縮システム14は、再生サイクルの間は冷却能力を提供することができなくなり得る。したがって、二重エミッションキャニスタシステム210は、複数のエミッションキャニスタを用いることによって、冷媒と非凝結性気体138との間の分離量を増大させ、及び/又は蒸気圧縮システム14の一時的シャットダウンを回避し得る。例えば、第1のエミッションキャニスタ212は、第2のエミッションキャニスタ214が再生サイクルを経験する間に、吸着質を吸収し得る。それゆえ、二重エミッションキャニスタシステム210は、一方のエミッションキャニスタ212及び/又は214が蒸気圧縮システム14をパージし、これにより、蒸気圧縮システム14が連続的に稼働し得るようにすることを可能にし得る。
【0039】
実施形態によっては、二重エミッションキャニスタシステム210は、単一のエミッションキャニスタ164の代わりに
図5のパージシステム100内に含まれ得る。二重エミッションキャニスタシステム210をパージシステム100内に後付けすることを促進するために、二重エミッションキャニスタシステム210は、排出導管160、出口導管169、及び排気ベント167をそれぞれ受け入れる、パージシステム100の既存の配管に結合し得る、単一の入口216、単一の出口218、及び単一のベント220を含み得る。二重エミッションキャニスタ210の接続部はまた、1つを超えるエミッションキャニスタを有する既存のシステムと比べて、パージシステム100の組み立てを促進し、及び/又はパージシステム100の全体コストを低減し得る。さらに、二重エミッションキャニスタシステム210の構成は、2つのエミッションキャニスタ212、214を有する二重エミッションキャニスタシステム210を、単一のエミッションキャニスタ164を含むように以前に構成されたシステムに結合することを促進し得る。後述されるように、
図9の例示の実施形態においては、2つのエミッションキャニスタ212、214が示されているが、二重エミッションキャニスタシステム210は、3つ、4つ、5つ、6つ、又は6つを超えるエミッションキャニスタを含むように構成されていてもよい。
【0040】
冷媒及び非凝結性気体138の気体混合物の流路は二重エミッションキャニスタシステム210の配管システム215の弁によって制御され得る。配管システム215は気体混合物の流路を入口216から出口218へ、及び/又はベント220へ誘導し得る。実施形態によっては、エミッションキャニスタ212、214の各々は、入口216、出口218、及びベント220にそれぞれ結合された、入口弁222、出口弁224、及び/又はベント弁226を含み得る。
【0041】
入口216は、パージシステム100の熱交換器142からの冷媒及び非凝結性気体138の気体混合物を受け入れ得る。配管システム215の弁は、第2のエミッションキャニスタ214が再生サイクルを経験する間に、第1のエミッションキャニスタ212が吸着質を吸着し得るよう、又はその逆に、配管システム215を通して気体混合物を誘導し得る。例えば、弁222、224、226は、気体混合物が第1のエミッションキャニスタ212に向かって流れるのを阻止し、第1のエミッションキャニスタ212が再生サイクルを経験することを可能にし、その一方で、第2のエミッションキャニスタ214がパージシステム100の熱交換器142からの気体混合物を受け入れ、吸着質(例えば、冷媒)を吸着するように位置付けられ得る。第1のエミッションキャニスタ212の再生サイクルの間に、弁222、224、226は、吸着質が蒸気圧縮システム14内へ戻るよう誘導され得るように位置付けられ得る。それゆえ、第2のエミッションキャニスタ214が飽和すると、弁は、今度は第1のエミッションキャニスタ212が吸着質を受け入れ、その一方で、第2のエミッションキャニスタ214が再生サイクルを経験するように位置変更され得る。
【0042】
上述されたように、実施形態によっては、二重エミッションキャニスタシステム210は2つを超えるエミッションキャニスタを含み得る。非限定例として、二重エミッションキャニスタシステム210は、4つの個々のエミッションキャニスタを有する四重エミッションキャニスタシステムを含み得る。実施形態によっては、4つのエミッションキャニスタは、飽和サイクル、再生サイクル、冷却サイクル、及び休止若しくは待機サイクルにおいて順次に動作するように構成され得る。本明細書で使用するとき、冷却サイクルは、エミッションキャニスタ164が、上昇した再生温度から周囲温度まで、又は上昇した再生温度よりも低い目標温度まで冷却し得る、再生サイクルの完了後の期間を指す。休止若しくは待機サイクルは、エミッションキャニスタ164が、エミッションキャニスタ164が吸着質及び非凝結性気体を受け入れない、周囲温度まで、又は上昇した再生温度よりも低い目標温度まで冷却した後の期間(例えば、冷却サイクルの完了後の期間)を指す。換言すれば、エミッションキャニスタ164は、休止若しくは待機サイクルの間には、実質的にアイドル又は非活動状態である。休止若しくは待機サイクルの後、次に、エミッションキャニスタ164は飽和サイクルを経験し、吸着質及び非凝結性気体138の新たな流れを受け入れ得る。
【0043】
四重エミッションキャニスタシステムの上述の例では、第1のエミッションキャニスタが飽和サイクルを経験し得、その一方で、第2のエミッションキャニスタが再生サイクルを経験し得、第3のエミッションキャニスタが冷却サイクルを経験し得、第4のエミッションキャニスタが休止若しくは待機サイクルを経験し得る。第1のエミッションキャニスタが飽和すると、熱交換器142からの吸着質及び非凝結性気体138の気体流は(例えば、休止若しくは待機サイクルを以前に経験した)第4のエミッションキャニスタに向けて誘導され得、その一方で、第1のエミッションキャニスタへの気体流は一時停止される。したがって、第1のエミッションキャニスタは再生サイクルを開始し得、その一方で、第2、第3、及び第4のエミッションキャニスタは、冷却サイクル、休止若しくは待機サイクル、及び飽和サイクルをそれぞれ経験する。エミッションキャニスタを上述のシーケンスで動作させることは、特定のエミッションキャニスタの飽和サイクルの合間の時間間隔が増大されることを確実にし得、これにより、エミッションキャニスタが、連続した飽和サイクルの合間に周囲温度又は目標温度まで十分に冷却することを可能にする。したがって、四重エミッションキャニスタシステムは、特定のエミッションキャニスタが後続の再生サイクルにおいて吸着質を吸着する能力を向上させ得る。
【0044】
エミッションキャニスタの再生サイクルの間における改善された加熱のためのシステム
既存のシステムでは、エミッションキャニスタ164は、エミッションキャニスタ164の中心内に(例えば、エミッションキャニスタ164の中心軸に沿って)配置された加熱要素を含み得る。加熱要素はエミッションキャニスタ164内の吸着剤166を貫いて延び、エネルギー(例えば、熱)を吸着剤166に供給し得る。供給されたエネルギーは、再生サイクルの間に吸着剤166の細孔内に埋まった吸着質を遊離させるために用いられ得る。一実施形態では、吸着剤166は天然絶縁材料であり、熱の伝導性伝達に抵抗し得る。それゆえ、加熱要素から最も遠くに配置された吸着質の部分を十分に加熱するには、相当量の熱が加熱要素によって供給されなければならない。この熱は、加熱要素に最も近い吸着剤166を過熱させ得、その一方で、加熱要素から最も遠くの吸着剤166の部分は、適切に再生するために十分な温度の増大を経験し得ない。これは、非効率的な再生サイクル、及び/又は吸着剤166の早期の劣化を招き得る。
【0045】
したがって、本開示のいくつかの実施形態では、二重加熱要素230が、
図10及び
図11に示されるように、再生サイクル(例えば、熱再生サイクル)の間に吸着剤166内の均一な温度分布を生成するために用いられ得る。例えば、二重加熱要素230は、エミッションキャニスタ164の中心内に配置された加熱要素を含む既存のシステムと比べて、吸着剤166全体を通してよりバランスのとれた温度分布を生成し得る。
図10は、エミッションキャニスタ164の中心軸236の周りに均等に離間され得る、本明細書においてまとめて二重加熱要素232、234と呼ばれる、第1の加熱要素232及び第2の加熱要素234を含み得るエミッションキャニスタ164の一実施形態を示す。すなわち、二重加熱要素232、234はエミッションキャニスタ164の中心軸236からほぼ等距離に配置され得る。二重加熱要素232、234の部分がエミッションキャニスタ164のキャップ238を貫いて延びており、吸着剤166を加熱するための電力を1つ以上の電源から受電し得る。
図10の例示の実施形態では、2つの加熱要素が示されているが、エミッションキャニスタ164は、中心軸236の周りに(例えば、その周りに円周方向に)離間された任意の好適な量の加熱要素を含み得ることに留意されたい。例えば、エミッションキャニスタ164は、中心軸236の周りに配置された、2つ、3つ、4つ、5つ、6つ、又は6つを超える加熱要素を含み得る。
【0046】
図11は、第1の加熱要素232及び第2の加熱要素234によって生じる熱分布を示す熱分布マップの一実施形態を示す。
図11の例示の実施形態に示されるように、二重加熱要素232、234は熱を中心軸236の周りに均一に分布させ得、これは、加熱要素232、234により接近して位置付けられた吸着剤166の部分を過熱することなく、吸着剤166の実質的に全てが再生を経験することを可能にし得る。加えて、中心軸236の周りに配置された単一の加熱要素と比べて、吸着剤166のより大きな部分が、再生を経験するために十分に加熱され得る。
【0047】
例えば、単一の加熱要素を用いる従来のエミッションキャニスタ164の場合など、中心軸236の近くで熱を供給する代わりに、二重加熱要素232、234は、エミッションキャニスタ164の内面239により接近して熱を供給し得る。それゆえ、供給された熱エネルギーが熱源(例えば、第1の加熱要素232、第2の加熱要素234)から吸着剤166まで、及び/又は熱源からエミッションキャニスタ164の内面239まで伝わる距離が短くなる。それゆえ、二重加熱要素232、234は、単一の加熱要素と比べて、実質的に同じ量の電力を、吸着剤166を加熱するために利用しながら、吸着剤166のより大きな部分を再生温度まで加熱し得る。加えて、二重加熱要素232、234は吸着剤166を過熱せず、これにより、吸着剤166の動作寿命を向上させる。
【0048】
加えて、二重加熱要素232、234は、従来のシステム(例えば、中心軸236と一致するように配置された単一の加熱要素)と比べて、熱が吸着剤166へより迅速に伝達することを可能にし得る。上述されたように、二重加熱要素232、234は、熱が、吸着剤166の実質的に全てを加熱するためにエミッションキャニスタ164内で伝達し得る距離を減少させる。それゆえ、二重加熱要素232、234は、既存のシステムと比べて、吸着剤166のより効率的でより高速な再生サイクルをもたらし得る。
【0049】
図12は、二重加熱要素232、234に結合されており、二重加熱要素232、234と吸着剤166との間の熱伝達を促進し得るバッフル仕切り240の一実施形態の斜視図である。バッフル仕切り240は、エミッションキャニスタ164の長さ、又は長さの一部分に沿って延び得る。バッフル仕切り240は、エミッションキャニスタ164の中心軸236から半径方向に延びる1つ以上のフィン242を含む。特定の諸実施形態では、フィン242はエミッションキャニスタ164の内面239に当接又は接触し得、これにより、エミッションキャニスタ164の内部を複数のチャンバ244に仕切る。したがって、各チャンバ244は吸着剤166の一部分を収容し得る。しかし、他の実施形態では、半径方向の間隙がフィン242とエミッションキャニスタ164の内面239との間に延びていてもよい。したがって、間隙を介したチャンバ244の間の吸着質及び/又は非凝結性気体の流れを阻止するために、ガスケットがフィン242の半径方向縁部とエミッションキャニスタ164の内面239との間に配置されていてもよい。
【0050】
いずれの場合も、バッフル仕切り240はチャネル246の対を含み得、各チャネル246は、第1の加熱要素232及び第2の加熱要素234のうちの一方を受け入れるように構成されている。実施形態によっては、チャネル246の各々はバッフル仕切り240のそれぞれのフィン242内に一体的に形成されていてもよい。チャネル246の内径は二重加熱要素232、234のそれぞれの加熱要素の外径に実質的に等しくてもよい。したがって、二重加熱要素232、234は、チャネル246内に配置されたときに、バッフル仕切り240に物理的に接触し得、これにより、二重加熱要素232、234とバッフル仕切り240との間の伝導熱伝達を可能にする。特定の諸実施形態では、熱伝導性ゲル又はペーストが、二重加熱要素232、234とチャネル246との間に形成され得る任意の隙間空間内に配置されており、それゆえ、それらの間の熱伝達を促進し得る。
【0051】
バッフル仕切り240は、アルミニウム、銅、ステンレス鋼等などの、任意の好適な熱伝導性材料で構築され得る。したがって、二重加熱要素232、234によって発生された熱エネルギーは伝導を介してバッフル仕切り240のフィン242全体にわたって分布し得る。加えて、バッフル仕切り240のフィン242に分布した熱エネルギーは、伝導熱伝達を介して、又は対流熱伝達を介してチャンバ244内の吸着剤166に伝達し得る。このように、フィン242は吸着剤166にわたる熱エネルギーの均一な分布をさらに促進し得る。上述されたように、熱エネルギーを吸着剤166に均一に分布させることは、吸着剤166の特定の部分を過熱する可能性を軽減するか、又は実質的に低減し、それゆえ、吸着剤166の動作寿命を向上させ得る。加えて、バッフル仕切り240は、吸着剤166の実質的に全てを再生の間に十分な温度まで加熱するのに関与する期間を低減し得る。
【0052】
図12の例示の実施形態では、バッフル仕切り240が5つのフィン242を含むが、バッフル仕切り240は任意の他の好適な量のフィン242を含み得ることに留意されたい。すなわち、バッフル仕切り240は、エミッションキャニスタ164の中心軸236から延びる、又は任意の他の好適な構成で配置された、1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、又は8つを超えるフィン242を含み得る。加えて、バッフル仕切り240は、任意の数の加熱要素を受け入れるように構成された任意の好適な量のチャネル246を含み得る。例えば、バッフル仕切り240は、1つ、2つ、3つ、4つ、5つ、又は5つを超える加熱要素をそれぞれ受け入れるように構成された、1つ、2つ、3つ、4つ、5つ、又は5つを超えるチャネル246を含み得る。さらに、特定の諸実施形態では、バッフル仕切り240の単一のフィン242は1つを超えるチャネル246を含み得る。すなわち、単一のフィン242が、エミッションキャニスタ164のそれぞれの加熱要素を受け入れるように構成された2つを超えるチャネル246を含み得る。
【0053】
エミッションキャニスタ内における改善された吸着質曝露のためのシステム
図13は、曝露時間、及び/又は吸着質が、吸着剤166と相互作用する間に接触し得る表面積を増大させるように構成され得るエミッションキャニスタ164の一実施形態の斜視図である。例えば、エミッションキャニスタ164は、半径方向寸法250(例えば、直径)及び鉛直方向寸法252(例えば、高さ若しくは長さ)を含み得る。エミッションキャニスタ164の高さ(例えば、鉛直方向寸法252)と直径(例えば、半径方向寸法250)との比を増大させることは、吸着剤166が吸着質を吸着する能力を改善し得る。例えば、実施形態によっては、エミッションキャニスタ164の高さと直径との比は3:1~4:1であり得る。他の実施形態では、高さと直径との比は、吸着質の十分な吸着を可能にする任意の好適な比であり得る。
【0054】
高さと直径との比を増大させることは、相当量の吸着質に接触し得ないエミッションキャニスタ164内の吸着剤166の量を減少させる。例えば、エミッションキャニスタ164の端部256における縁部254(例えば、キャップ238の内周)の近位に配置された吸着剤166は、エミッションキャニスタ164の中心軸236に沿って配置された吸着剤166、及び/又はエミッションキャニスタ164の吸着質入口247と軸方向に整列した吸着剤166よりも少量の吸着質に接触し、及び/又はそれを受け入れ得る。全体的に、吸着質が吸着剤166に接触する表面積は、エミッションキャニスタ164の高さと直径との比を増大させることによって、増大され得る。
【0055】
加えて、鉛直方向寸法252と半径方向寸法250との比を増大させることは、吸着剤166によって生じる熱抵抗がより小さくなるがゆえに(例えば、エミッションキャニスタ164の半径方向に延びる吸着剤166の幅が実質的に小さくなり得る)、エミッションキャニスタ164内に配置された単一の加熱要素及び/又は二重加熱要素232、234を通じた吸着剤166のより効果的な加熱を可能にし得る。例えば、二重加熱要素232、234から放出された熱が、エミッションキャニスタ164の内面239の近位に位置付けられた吸着剤166を加熱するために中心軸236から伝わる距離がより短くなり得る。
【0056】
図14はバッフル仕切り240の一実施形態の斜視図である。上述されたように、バッフル仕切り240はエミッションキャニスタ164の内部を、エミッションキャニスタ164の鉛直方向寸法252(例えば、高さ)に沿って延び得る、チャンバ244に分割し得る。実施形態によっては、バッフル仕切り240は、吸着質及び非凝結性気体138の混合物を、チャンバ244の各々を直列に通るように誘導し、それゆえ、気体流混合物と吸着剤166との間の曝露時間を増大させるように構成され得る。加えて、バッフル仕切り240は、気体がエミッションキャニスタ164を通って流れる際に気体流混合物によって接触される吸着剤166の表面積を増大させ得る。したがって、バッフル仕切り240は、吸着剤166と、エミッションキャニスタ164を通って流れる吸着質との間の相互作用を向上させ得る。すなわち、バッフル仕切り240は、非凝結性気体138からの吸着質の分離を促進することによって、エミッションキャニスタ164の有効性を向上させ得る。
【0057】
例えば、複数のチャンバ244のうちの第1のチャンバ264は、エミッションキャニスタ164の入口導管266からの吸着質及び非凝結性気体138の流れを受け入れるように構成され得る。明確にするために、第1のチャンバ264は複数のフィン242のうちの第1のフィン268及び第2のフィン270(例えば、隣接したフィン)によって規定されることに留意されたい。吸着質及び非凝結性気体138は、エミッションキャニスタ164の第1の端部部分272(例えば、入口導管266の近位の端部部分)から、エミッションキャニスタ164の、第1の端部部分272と反対の、第2の端部部分274に向かって中心軸236に沿って第1の方向276に流れ得る。このように、吸着質は、第1のチャンバ264内に配置された吸着剤166の実質的に全てと相互作用し得る。
【0058】
例示の実施形態に示されるように、第1のアパーチャ278が、エミッションキャニスタ164の第2の端部部分274の付近において、第2のフィン270内に画定されている。第1のアパーチャ278は、第1のチャンバ264とチャンバ244のうちの第2のチャンバ280との間に延び、第1のチャンバ264をチャンバ244のうちの第2のチャンバ280に流体結合するように構成されている。第1のチャンバ264と同様に、第2のチャンバ280は第2のフィン270と第3のフィン282(例えば、中心軸236周り反時計方向284に第2のフィン270に隣接したフィン)との間に規定される。したがって、吸着質及び非凝結性気体138の気体流が第1のアパーチャ278を介して第1のチャンバ264から第2のチャンバ280へ流れ得る。第1のフィン268はアパーチャを含まず、これにより、第1のフィン268を通した第1のチャンバ264からの気体流は阻止されることに留意されたい。
【0059】
第2のチャンバ280内へ入ると、吸着質及び非凝結性気体138は第2の端部部分274からエミッションキャニスタ164の第1の端部部分272へ中心軸236に沿って第2の方向286(例えば、第1の方向276と反対の方向)に流れ得る。したがって、吸着質及び非凝結性気体138は、第2のチャンバ280内に配置された吸着剤166の実質的に全てと相互作用し得る。第3のフィン282は、第2のチャンバ280を第3のチャンバ290(例えば、反時計方向284に第2のチャンバ280に隣接したチャンバ)に流体結合するように構成された第2のアパーチャ288を含む。したがって、吸着質及び非凝結性気体138は第3のチャンバ290を通って第1の方向276に流れ得る。各フィン(第1のフィン268を除く)は、その内部に画定されたアパーチャを含み、これにより、吸着質及び非凝結性気体138が第1のチャンバ264からチャンバ244の各々を直列に通って反時計方向284に流れることを可能にすることに留意されたい。具体的には、後続のフィンのアパーチャは、隣接したフィンのアパーチャが位置付けられたエミッションキャニスタ164の端部部分272、274の反対にあるエミッションキャニスタ164の端部部分272、274の付近に位置し得る。このように、吸着質及び非凝結性気体138は、第1のチャンバ264から、中心軸236の周りに、エミッションキャニスタ164の鉛直方向寸法252沿ってつづら折りパターンでチャンバ244の各々を通って順次に横断する。それゆえ、非凝結性気体138は、チャンバ244のうちの第5のチャンバ294(例えば、最後のチャンバ、末端チャンバ)に結合された出口導管292を介してエミッションキャニスタ164から排出し得る。吸着質及び非凝結性気体138の流れを、チャンバ244を通して直列に誘導することは、吸着質の実質的に全てが吸着剤166によって吸着されることを可能にする。他の実施形態では、フィン242はアパーチャを含まなくてもよく、吸着質及び非凝結性気体138はチャンバ244を並列に通って流れてもよいことに留意されたい。
【0060】
図15は、エミッションキャニスタ164の第1の端部部分272の付近における、バッフル仕切り240の一実施形態の拡大斜視図である。実施形態によっては、フィン242内のアパーチャ(例えば、第1のアパーチャ278、第2のアパーチャ288等)の直径296は、約0.5ミリメートル(mm)(例えば、この10%以内、この5%以内、若しくはこの1%以内)~約5mm、約1mm~約4mm、又は約3mmであり得る。他の実施形態では、アパーチャの直径296は0.5mm未満又は5mm超であり得る。特定の諸実施形態では、フィン242の各々は、その内部に配置された複数のアパーチャを含み得る。さらに、実施形態によっては、アパーチャは非円形断面を含み得る。例えば、アパーチャは、四辺形スロット、卵形、又は任意の他の好適な幾何プロファイルを有する開口部を含み得る。
【0061】
エミッションキャニスタの保守を促進するためのシステム
典型的なエミッションキャニスタは、多くの場合、エミッションキャニスタのハウジングに(例えば、接着剤、ろう着、溶接、及び/又は圧着接続を介して)固定して取り付けられたエンドプレート(例えば、キャッププレート)を含む。したがって、エミッションキャニスタ内に配置されたコンポーネントへのアクセスを得るために従来のエミッションキャニスタのエンドプレートを取り外すには、相当な期間が必要となり得る。
【0062】
図16は、エミッションキャニスタ164に取り外し可能に結合され、それゆえ、エミッションキャニスタ164内に配置されたコンポーネントに対して保守作業を遂行することを促進し得る、エンドプレート、又はアクセスキャップ300の一実施形態の斜視図である。アクセスキャップ300は、エミッションキャニスタ164のハウジング306の周りに配置された雄ねじ304と係合するように構成された雌ねじ302を含み得る。このように、アクセスキャップ300はハウジング306に螺合又は螺脱され得、これにより、エミッションキャニスタ164の内部308へのアクセスを促進する。他の実施形態では、アクセスキャップ300が雄ねじを含み得、その一方で、エミッションキャニスタ164のハウジング306が雌ねじを含むことに留意されたい。
【0063】
いずれの場合も、アクセスキャップ300を取り外すと、サービス技術者はバッフル仕切り240を(例えば、中心軸236に沿って)第1の方向276にスライドさせ、バッフル仕切り240及び吸着剤166をエミッションキャニスタ164から取り外し得る。したがって、サービス技術者は吸着剤166を検査し、及び/又は吸着剤166を新しい吸着剤と交換し得る。加えて、サービス技術者は、バッフル仕切り240内に配置された二重加熱要素232、234、或いはエミッションキャニスタ164のハウジング306及び/又は内部308内に配置された任意の他のコンポーネントを検査し、及び/又は交換し得る。特定の諸実施形態では、ガスケット310がエミッションキャニスタ164のハウジング306とアクセスキャップ300との間に配置されている。ガスケット310は、アクセスキャップ300がハウジング306上に螺合され、トルク締めされたときに、ハウジング306とアクセスキャップ300との間の流体シール(例えば、流体密封シール)の形成を促進し得る。アクセスキャップ300は、エミッションキャニスタ164の第1の端部部分272、エミッションキャニスタ164の第2の端部部分274、又はその両方の内部に含まれ得ることに留意されたい。
【0064】
エミッションキャニスタのより急速な冷却のためのシステム
図17は、エミッションキャニスタ164内の吸着剤166及び/又は吸着質を熱的に調節するために用いられ得る冷却システム320の一実施形態を示す。実施形態によっては、吸着剤166は、吸着剤166及び/又は吸着質が、低下した温度にある時に、吸着質をより効果的に吸着し得る。再生サイクルの間に、エミッションキャニスタ164の内部温度は大幅に上昇し得(例えば、カ氏200度以上)、このような温度は、吸着剤166が吸着質(例えば、再生サイクルの完了後に蒸気圧縮システム14からエミッションキャニスタ164に入ってくる新たな吸着質)を吸着する能力を低下させ得る。通例、エミッションキャニスタ164は、再生サイクルが完了した後、及び吸着剤166が吸着質の吸着を開始する前に、冷却相を経験し得る。エミッションキャニスタ164は絶縁されていてもよく、したがって、エミッションキャニスタ164を吸着のために十分な動作温度まで冷却するまでには相当量の時間が経過し得る。それゆえ、冷却システム320をエミッションキャニスタ164に結合することが望ましくなり得、これは、再生後のエミッションキャニスタ164の冷却時間を減少させ得る。
【0065】
冷却システム320は、エミッションキャニスタ164の第1の端部部分272から第2の端部部分274へ延びる1つ以上の冷却通路322(例えば、内部冷却通路)を含み得る。明確にするために、冷却通路322は、エミッションキャニスタ164の第1及び第2の端部部分272、274の間に延びるそれぞれの冷却導管333(例えば、配管、管系等)によって規定され得ることに留意されたい。実施形態によっては、冷却通路322はエミッションキャニスタ164のキャップ238(例えば、アクセスキャップ300)を貫いて延び得、エミッションキャニスタ164内に配置された吸着剤166内に埋まり得る。さらに、冷却流体(例えば、空気)を、冷却通路322を通してエミッションキャニスタ164の第1の端部部分272から第2の端部部分274へ誘導するためのファン324が冷却通路322の第1の端部部分272に結合されていてもよい。冷却流体は熱エネルギー(例えば、熱)をエミッションキャニスタ164及び/又は吸着剤166から吸収し、熱エネルギーを周囲環境へ伝達し得る。それゆえ、冷却通路322は再生後のエミッションキャニスタ164の冷却時間を低減し得る。
図13の例示の実施形態には、4つの冷却通路322が示されているが、冷却システム320は、1つ、2つ、3つ、5つ、又はそれより多くの冷却通路322を含み得る。実施形態によっては、冷却通路322は、冷却通路322がエミッションキャニスタ164内の熱エネルギーを吸収する能力を(例えば、冷却通路322の熱伝達表面積を増大させることによって)改善し得る内部及び/又は外部フィンを含み得る。
【0066】
図18は、
図17に示される冷却通路322に加えて、又はその代わりに用いられ得る外部冷却通路326の一実施形態の拡大斜視図である。外部冷却通路326は、エミッションキャニスタ164の外面328の周りに円周方向に配置され得る。他の実施形態では、外部冷却通路326とエミッションキャニスタ164の外面328との間の熱エネルギー伝達を向上させるための絶縁層が外部冷却通路326の上に配置されていてもよい。実施形態によっては、外部冷却通路326はエミッションキャニスタ164のキャップ238及び/又は吸着剤166を貫いて延びていなくてもよい。いずれの場合も、ファン324は、再生サイクルの間は、エミッションキャニスタ164内の熱を維持するためにスイッチを切られてもよい。それゆえ、冷却通路322、326は冷却流体の流れを受け入れなくてもよく、再生の間は熱をエミッションキャニスタ164から除去しないことになる。
【0067】
任意の好適な冷却流体が、熱エネルギーを、エミッションキャニスタ164及びその内部に配置された吸着剤166から除去するために、冷却通路322、326を通して誘導され得ることに留意されたい。例えば、特定の諸実施形態では、ファン324は、冷却通路322、326の導管333を通して液体(例えば、水)を誘導するように構成されたポンプ(例えば、遠心ポンプ)又は他の流れ発生デバイスを含み得る。したがって、液体は熱エネルギーをエミッションキャニスタ164から吸収し得る。別の例として、導管333は、蒸気圧縮システム14からの冷媒を流し、これにより、冷媒が熱エネルギーをエミッションキャニスタ164及び吸着剤166から吸収し得るように構成され得る。さらに、バッフル仕切り240を有するエミッションキャニスタ164の諸実施形態では、冷却通路322はフィン242のうちの1つ以上の内部に(例えば、それらと一体的に)形成され得る。したがって、冷却通路322を通って流れる好適な冷却流体が熱エネルギーをバッフル仕切り240から吸収し、これにより、バッフル仕切り240の外部の周りに配置された吸着剤166を冷却し得る。
【0068】
エミッションキャニスタの真空再生のためのシステム
従来のパージシステムは、概して、パージシステムの動作を駆動するように構成された1つ以上の真空ポンプを含む。例えば、従来のパージシステムは、蒸気圧縮システム14の冷媒からの非凝結性気体138の除去及び/又は分離を可能にするために熱交換器142を通して冷媒及び非凝結性気体138の混合物を吸うように構成された第1の真空ポンプを備え得る。第2の真空ポンプが、エミッションキャニスタ164が冷媒(例えば、吸着質)で飽和したときにエミッションキャニスタ164の再生を促進するように構成され得る。例えば、エミッションキャニスタ164が飽和すると、典型的なパージシステムは第2の真空ポンプを活動化してエミッションキャニスタ164内の圧力を大幅に低減し、吸着質を吸着剤166から除去し、吸着質を最終的に蒸気圧縮システム14内へ誘導して戻す。残念ながら、複数の真空ポンプをパージシステム100内に含むことは、パージシステム100の組み立てコスト、運転コスト、及び/又は保守コストを増大させ得る。
【0069】
図19は、真空再生を介したエミッションキャニスタ164からの吸着質の除去を促進するように構成された集中真空ポンプ330(例えば、単一の真空ポンプ)を含む、パージシステム100の一実施形態の概略図である。特定の諸実施形態では、集中真空ポンプ330はまた、熱交換器142内の冷媒の凝結を介して生み出される熱サイフォン効果に加えて、又はその代わりに、パージシステム100の熱交換器142内への冷媒の吸い込みも支援し得る。したがって、パージシステム100は、複数の真空ポンプの代わりに、単一の真空ポンプを用いて動作させられ得る。
【0070】
例示の実施形態に示されるように、集中真空ポンプ330はエミッションキャニスタ164の排気ベント167と流体連通している。パージシステム100はまた、集中真空ポンプ330と蒸発器38との間に延び、集中真空ポンプ330を蒸発器38に流体結合する出口導管332を含む。出口弁334が出口導管332に結合されており、エミッションキャニスタ164から出口導管332を通る流体の流れを可能又は不能にするように構成されている。したがって、排出弁158、排気弁168、出口弁334、及び集中真空ポンプ330は、パージシステム100が、蒸気圧縮システム14をパージするためのパージモードで動作すること(例えば、飽和サイクル)を可能にするとともに、エミッションキャニスタ164が真空再生を介した吸着剤166からの吸着質の除去を促進すること(例えば、真空再生サイクル)を可能にするよう協働し得る。
【0071】
例えば、パージモード(例えば、飽和サイクル)では、排出弁158及び排気弁168は開放位置になっており、その一方で、出口弁334は閉鎖位置になっている。したがって、集中真空ポンプ330は入口管152を介して冷媒及び非凝結性気体138の混合物を熱交換器142内に吸い込み、混合物を、排出導管160を通してエミッションキャニスタ164内へ誘導し得る。上述されたように、吸着剤166は冷媒の実質的に全てを冷媒及び非凝結性気体138の混合物から吸着し得る。それゆえ、集中真空ポンプ330は非凝結性気体138を誘導し、エミッションキャニスタ164の排気ベント167を介してパージシステム100から排出し得る。
【0072】
エミッションキャニスタ164が飽和すると、集中真空ポンプ330は、真空再生を介したエミッションキャニスタ164内の吸着剤166からの吸着質の除去を促進し得る。例えば、真空再生モードでは、排出弁158及び排気弁168は(例えば、制御パネル40を介して)閉鎖位置に調整され、その一方で、出口弁334は(例えば、制御パネル40を介して)開放位置に調整される。したがって、集中真空ポンプ330は真空をエミッションキャニスタ164内に発生し得る、或いは、換言すれば、エミッションキャニスタ164内の圧力を(例えば、周囲環境、及び/又は蒸気圧縮システム14の一部分の圧力に対して)実質的に低減し得る。実施形態によっては、エミッションキャニスタ164内の圧力を低減することは、吸着質に相変化を経験させ得(例えば、沸騰させる)、これにより、吸着質を吸着剤166の細孔から遊離させる。集中真空ポンプ330は、遊離させられた吸着質を(例えば、集中真空ポンプ330の吸引側を介して)取り込み、吸着質を、集中真空ポンプ330の出口を通して出口導管332内へ強制的に送り込み得る。したがって、吸着質は出口導管332を通って蒸気圧縮システム14の蒸発器38内へ流れ込み得る。このように、集中真空ポンプ330は、連続した飽和サイクルの合間に、吸着剤166によって以前に吸着された吸着質を遊離させるべく真空再生を遂行するために利用され得る。
【0073】
実施形態によっては、蒸気圧縮システム14の圧縮器32は、集中真空ポンプ330に加えて、又はその代わりにエミッションキャニスタ164の真空再生を促進する用いられ得る。例えば、
図20は、エミッションキャニスタ164と流体連通した圧縮器32を有するパージシステム100の一実施形態の概略図を示す。例示の実施形態に示されるように、出口導管332は圧縮器32(例えば、圧縮器32の吸引側)をエミッションキャニスタ164に流体結合する。したがって、圧縮器32は、エミッションキャニスタ164の真空再生サイクルの間にエミッションキャニスタ164を減圧する(例えば、その内部の圧力を低減する)ために用いられ得る。すなわち、エミッションキャニスタ164の真空再生の間に、排出弁158及び排気弁168は(例えば、制御パネル40を介して)閉鎖位置に調整され得、その一方で、出口弁334は(例えば、制御パネル40を介して)開放位置に調整される。したがって、圧縮器32の動作は、エミッションキャニスタ164の内部308を減圧し、エミッションキャニスタ164が真空再生を経験することを可能にするためにも用いられ得る。
【0074】
実施形態によっては、複合再生サイクルが、エミッションキャニスタ164の再生速度を向上させるために用いられ得る。例えば、複合再生サイクルは、エミッションキャニスタ164の1つ以上の加熱要素を、集中真空ポンプ330、圧縮器32、エミッションキャニスタ164を減圧するように構成された別の好適な真空ポンプ、又はこれらの任意の組み合わせと並行して動作させることを含み得る。すなわち、複合再生サイクルはエミッションキャニスタ164の同時の熱再生及び真空再生を含み得る。
【0075】
例えば、
図21は、エミッションキャニスタ164の並行した真空再生及び熱再生を可能にするように構成されたパージシステム100の一部分338の一実施形態の概略図である。この複合再生サイクルでは、集中真空ポンプ330がエミッションキャニスタ164を減圧する間に、二重加熱要素232、234が、熱エネルギー(例えば、熱)をエミッションキャニスタ164に供給するために用いられ得る。上述されたように、吸着剤166を加熱することは、吸着剤166の細孔内に配置された吸着質を遊離させることを促進し得る。したがって、エミッションキャニスタ164を同時に減圧しつつ吸着剤166を加熱することは、吸着質が吸着剤166から遊離する速度を向上させ得る。このように、複合再生サイクルを用いて再生を行うための期間は低減され得る。
【0076】
特定の諸実施形態では、エミッションキャニスタ164を再生するために真空ポンプ(例えば、集中真空ポンプ330)及び加熱要素(例えば、二重加熱要素232、234)の両方を協働して動作させることは、真空ポンプ及び/又は加熱要素が、従来の真空再生サイクルの間における真空ポンプの動作能力単独、及び従来の熱再生サイクルの間における加熱要素の動作能力単独と比べて、低減された能力で動作することを可能にし得る。すなわち、集中真空ポンプ330及び二重加熱要素232、234の両方が複合再生サイクルの間に並行して動作するため、集中真空ポンプ330及び二重加熱要素232、234は、エミッションキャニスタ164の再生に関与するエネルギーの全てを個々に供給する代わりに、エミッションキャニスタ164の再生に関与するエネルギーの一部分を各々供給し得る。したがって、集中真空ポンプ330上の摩耗(例えば、材料疲労)を低減することによって、集中真空ポンプ330の動作寿命が増大され得る。同様に、二重加熱要素232、234によって供給される熱エネルギー量の低下が低減され得、これは吸着剤166の動作寿命を向上させ得る。
【0077】
パージシステムのためのポンプ制御システム
既存のパージシステムは、通例、熱交換器142、及び/又は蒸気圧縮システム14の部分内の圧力にかかわらず、蒸気圧縮システム14をパージするために真空ポンプ162を活動化する。同様に、典型的なパージシステムは、概して、エミッションキャニスタ164、及び/又は蒸気圧縮システム14の部分内の圧力に関係なく、エミッションキャニスタ164の真空再生の間に追加の真空ポンプを動作させる。残念ながら、熱交換器142内の圧力、エミッションキャニスタ164内の圧力、及び/又は蒸気圧縮システム14の部分内の圧力にかかわらずパージシステム100の1つ以上の真空ポンプを動作させることは、パージシステム100の非効率的な動作をもたらし得る。
【0078】
図22は、蒸気圧縮システム14(例えば、センサ、制御パネル40、又は蒸気圧縮システム14の他のコントローラ)から受信されたフィードバックに基づいて真空ポンプ162を非活動化するように構成されたポンプ制御システム340を有するパージシステム100の一実施形態の概略図である。より具体的には、コンデンサ34と周囲環境又はエミッションキャニスタ164との間の圧力差が、真空ポンプ162からの支援を受けずに、冷媒及び非凝結性気体138を、コンデンサ34から熱交換器142及びエミッションキャニスタ164を通って流れるよう強制するために十分であるときには、ポンプ制御システム340は真空ポンプ162を非活動化し得る。例えば、コンデンサ34内の圧力が、蒸気圧縮システム14を包囲する周囲環境(例えば、大気)の圧力(例えば、排気ベント167における圧力)よりも目標百分比だけ大きいときには、ポンプ制御システム340は真空ポンプ162を非活動化し得る。本明細書においてさらに詳細に説明されるように、ポンプ制御システム340は、パージシステム100の特定の動作期間の間、真空ポンプ162の動作を低減し、それゆえ、パージシステム100の効率を向上させ得る。
【0079】
図22の例示の実施形態に示されるように、ポンプ制御システム340は、蒸気圧縮システム14及び/又はパージシステム100の特定のコンポーネントを制御するために用いられ得る、コントローラ342(例えば、制御パネル40若しくは別個のコントローラ)、又は複数のコントローラを含む。例えば、ワイヤ、ケーブル、無線通信デバイス、及び同様のものなどの、1つ以上の制御伝達デバイスが、圧縮器32(例えば、モータ50若しくはVSD52)、真空ポンプ162(例えば、真空ポンプ162のモータ)、排出弁158、排気弁168、出口弁334、又は蒸気圧縮システム14及び/又はパージシステム100の任意の他の好適なコンポーネント(単数又は複数)をコントローラ342に通信可能に結合し得る。コントローラ342は、蒸気圧縮システム14及び/又はパージシステム100のコンポーネントを制御するためのソフトウェアを実行し得る、マイクロプロセッサなどの、プロセッサ344を含み得る。さらに、プロセッサ344は、複数のマイクロプロセッサ、1つ以上の「汎用」マイクロプロセッサ、1つ以上の専用マイクロプロセッサ、及び/又は1つ以上の特定用途向け集積回路(application specific integrated circuit、ASIC)、或いはこれらの何らかの組み合わせを含み得る。
【0080】
例えば、プロセッサ344は1つ以上の縮小命令セット(reduced instruction set、RISC)プロセッサを含み得る。コントローラ342はまた、制御ソフトウェア、ルックアップテーブル、構成データ等などの情報を記憶し得るメモリデバイス346を含み得る。メモリデバイス346は、ランダムアクセスメモリ(random access memory、RAM)などの揮発性メモリ、及び/又はリードオンリーメモリ(read-only memory、ROM)などの不揮発性メモリを含み得る。メモリデバイス346は種々の情報を記憶し得、様々な目的のために用いられ得る。例えば、メモリデバイス346は、蒸気圧縮システム14及び/又はパージシステム100のコンポーネントを制御するための命令などの、プロセッサ344が実行するためのファームウェア又はソフトウェアを含むプロセッサ実行可能命令を記憶し得る。実施形態によっては、メモリデバイス346は、プロセッサ344が実行するための機械可読命令を記憶し得る有形の非一時的機械可読媒体である。メモリデバイス346は、ROM、フラッシュメモリ、ハードドライブ、又は任意の他の好適な光学、磁気、又は固体記憶媒体、或いはこれらの組み合わせを含み得る。メモリデバイス346は、データ、命令、及び任意の他の好適なデータを記憶し得る。
【0081】
実施形態によっては、コントローラ342は、コントローラ342に、コンデンサ34内の圧力(例えば、冷媒圧力)を指示するフィードバックを提供するように構成された第1の圧力センサ350に通信可能に結合され得る。加えて、コントローラ342は、コントローラ342に、周囲大気の圧力(例えば、排気ベント167における圧力)を指示するフィードバックを提供する構成された第2の圧力センサ352に通信可能に結合され得る。コントローラ342は、パージシステム100の動作中にコンデンサ34内の圧力を周囲環境の圧力と比較し得る。実施形態によっては、コントローラ342は、コンデンサ34内の圧力が周囲環境の圧力を閾値量(例えば、0.05バール、0.1バール、0.5バール、2バール)又は百分比(例えば、10%超、20%超、30%超)だけ超えた場合に、真空ポンプ162を非活動化し得る。すなわち、パージシステム100がパージモードで動作しており(例えば、飽和サイクル)、コンデンサ34内の冷媒と周囲環境との圧力差が、冷媒及び非凝結性気体138をコンデンサ34から熱交換器142内へ強制的に送り込むために十分である場合には、コントローラ342は、真空ポンプ162を非活動化するか、その速度を低減するか、又はそれをシャットダウンし得る。同様に、熱交換器142とコンデンサ34との自然圧力差(例えば、熱交換器142内の凝結冷媒を介して発生された圧力差)が、冷媒及び非凝結性気体138をコンデンサ34から熱交換器142内へ強制的に送り込むために十分である場合には、コントローラ342は、真空ポンプ162を非活動化するか、又は真空ポンプ162の速度を低減し得る。したがって、コンデンサ34と周囲環境及び/又はコンデンサ34と熱交換器142との圧力差は冷媒及び非凝結性気体138をパージシステム100に強制的に通し得、これにより、エミッションキャニスタ164内の吸着剤166は冷媒(例えば、吸着質)を吸着し、非凝結性気体138が排気ベント167を介して周囲環境中へ排出することを可能にし得る。このように、ポンプ制御システム340は真空ポンプ162の非効率的な動作を低減し得る。
【0082】
特定の諸実施形態では、コントローラ342は、真空ポンプ162の動作を調整した(例えば、真空ポンプを非活動化した、その速度を低減した、又はシャットダウンした)後に、コンデンサ34内の気体(例えば、冷媒及び非凝結性気体138)と周囲環境との間の圧力差を連続的又は断続的に評価し得る。コンデンサ34内の圧力が周囲圧力を下回るか、又は周囲圧力の閾値範囲内に入った場合には、コントローラ342は、コンデンサ34からの冷媒及び非凝結性気体138をパージシステム100内へ吸い込むべく真空ポンプ162を再活動化するか、又はその速度を増大させるための信号を送信し得る。したがって、コントローラ342は、冷媒及び非凝結性気体138の流れを、熱交換器142を通してエミッションキャニスタ164内へ誘導するために十分である、コンデンサ34と熱交換器142との間の圧力差を維持し得る。
【0083】
図22の例示の実施形態では、第1の圧力センサ350が、コンデンサ34内の圧力を監視するように構成されているが、ポンプ制御システム340は、第1の圧力センサ350に加えて、又はその代わりに、追加のセンサに通信可能に結合されていてもよいことに留意されたい。追加のセンサは、蒸気圧縮システム14及び/又はパージシステム100の様々な他のコンポーネント内の圧力を測定するように構成され得る。例えば、ポンプ制御システム340は、圧縮器32、蒸発器38、熱交換器142、エミッションキャニスタ164、蒸気圧縮システム14及び/又はパージシステム100の1つ以上の導管、或いは蒸気圧縮システム14及び/又はパージシステム100の任意の他の好適なコンポーネント(単数又は複数)の圧力を監視するように構成された1つ以上の圧力センサに通信可能に結合され得る。実施形態によっては、コントローラ342は、これらの追加の圧力センサによって提供されたフィードバックに基づいて真空ポンプ162を非活動化するために適した動作期間を決定し得る。例えば、コントローラ342は、圧縮器32、蒸発器38、熱交換器142、及び/又はエミッションキャニスタ164内の圧力が周囲環境の圧力を閾値量だけ超えたときに、真空ポンプ162を非活動化するように構成され得る。
【0084】
実施形態によっては、ポンプ制御システム340は、エミッションキャニスタ164内の圧力に基づいて再生サイクルの間にエミッションキャニスタ164から排出する吸着質の流路を調整するように構成され得る。例えば、上述されたように、エミッションキャニスタ164内の温度がエミッションキャニスタ164の再生サイクル間に増大され得る。実施形態によっては、温度のこの増大は、飽和サイクルの間に吸着剤166内に捕捉された吸着質を遊離させ得、これにより、エミッションキャニスタ164内の圧力を増大させる。ポンプ制御システム340は、例えば、第3の圧力センサ354を用いて、エミッションキャニスタ164内の圧力を監視し得る。コントローラ342は、エミッションキャニスタ164内の圧力を蒸発器38内の冷媒の圧力と比較するように構成され得る。エミッションキャニスタ164内の圧力が蒸発器38内の圧力を閾値量(例えば、0.05バール、0.1バール、0.5バール、2バール)だけ超えた場合には、コントローラ342は出口弁334を閉鎖位置に調整し、第2の出口弁356を開放位置に調整し得る。
図22の例示の実施形態に示されるように、第2の出口弁356は、蒸発器38と出口導管332との間に延び、蒸発器38を出口導管332に流体結合する第2の出口導管358に結合されている。したがって、エミッションキャニスタ164から遊離させられた吸着質は、出口導管332の一部分を通り、第2の出口導管358を通り、蒸気圧縮システム14の蒸発器38内へ流れ得る。すなわち、吸着質は、圧縮器32、集中真空ポンプ330、又は同様のものなどの、専用の真空ポンプを用いることなく、エミッションキャニスタ164から蒸発器38内へ流れ得る。
【0085】
コントローラ342は、エミッションキャニスタ164の再生サイクル全体を通じてエミッションキャニスタ164と蒸発器38との間の圧力差を監視し得る。コントローラ342は、エミッションキャニスタ164内の圧力が蒸発器38内の圧力を下回るか、又は蒸発器38内の圧力の閾値範囲内に入った場合に、出口弁334を開放位置に調整し、第2の出口弁356を閉鎖位置に調整し得る。したがって、圧縮器32は真空をエミッションキャニスタ164内に発生し、これにより、吸着質をエミッションキャニスタ164から蒸気圧縮システム14内へ吸い込むことを促進し得る。追加的に、又は代替的に、コントローラ342は真空ポンプ(例えば、集中真空ポンプ330)を活動化し、エミッションキャニスタ164からの吸着質を、蒸発器38、又は蒸気圧縮システム14の任意の他の好適なコンポーネントへ誘導することを促進し得る。上述された諸技法を利用することによって、コントローラ342は、エミッションキャニスタ164からの吸着質を蒸発器38へ伝達するために十分な圧力差が維持されることを確実にし得る。
【0086】
エミッションキャニスタのためのバイラテラル再生システム
従来のエミッションキャニスタは、通例、エミッションキャニスタの再生サイクルの間に、排出された吸着質が放出されることを可能にするように構成された単一の出口導管を含む。例えば、伝統的なエミッションキャニスタは、エミッションキャニスタの上端部分の付近に配置された出口導管を含み得る。したがって、再生サイクルの間に、エミッションキャニスタの下端部分の付近で吸着剤166から遊離させられた吸着質は、出口導管を通って排出するまでに、エミッションキャニスタのほぼ全長(例えば、上端部分と下端部分との間の距離)に沿って横断する。残念ながら、この構成は、吸着質をエミッションキャニスタから排出するための所要時間を増大させ、これにより、パージシステム100の動作効率を低下させ得る。さらに、遊離させられた吸着質をエミッションキャニスタの単一の出口導管から排出することは、エミッションキャニスタからの流体排出が制限されるため、エミッションキャニスタの再生サイクルを促進するために用いられるポンプ又はヒータにかかる負担を増大させ得る。
【0087】
上述のことを念頭に置きつつ、
図23は、エミッションキャニスタ164の再生サイクルの間におけるエミッションキャニスタ164の第1の端部部分272(例えば、上端部分)及び第2の端部部分274(例えば、下端部分)からの吸着質の並行した排出を可能にするバイラテラル排出システム370の一実施形態の概略図である。例えば、バイラテラル排出システム370は、エミッションキャニスタ164の第1の端部部分272及び第2の端部部分274にそれぞれ結合された第1の接続導管372及び第2の接続導管374を含む。したがって、第1及び第2の接続導管372、374はエミッションキャニスタ164の内部308への流体の進入又はそこからの排出を可能にする。例示の実施形態に示されるように、バイラテラル排出システム370は、排出導管160、排気ベント167、及び出口導管332を流体結合する中間導管376を含む。バイラテラル排出システム370はまた、排出導管160と出口導管332との間に延びる中間導管376の一部分に沿って配置された再生弁378を含む。
【0088】
エミッションキャニスタ164の飽和サイクルの間に、排出弁158及び排気弁168は開放位置になっており、その一方で、出口弁334及び再生弁378は閉鎖位置になっている。したがって、冷媒及び非凝結性気体138の気体混合物は、熱交換器142から、排出導管160を通り、下側の接続導管374を通り、エミッションキャニスタ164内へ流れ込み得る。それゆえ、吸着剤166は冷媒を気体流混合物から吸着し得、これにより、非凝結性気体138は第1の接続導管372及び排気ベント167を経由して周囲環境中へ排出し得る。再生弁378が閉鎖位置になっているため、熱交換器142からの気体流混合物はエミッションキャニスタ164を迂回することができない。
【0089】
エミッションキャニスタ164の再生サイクルにおいて、排出弁158及び排気弁168は閉鎖位置になっており、その一方で、出口弁334及び再生弁378は開放位置になっている。したがって、エミッションキャニスタ164の再生の間に遊離させられた吸着質は、第1の接続導管372及び第2の接続導管374をそれぞれ経由してエミッションキャニスタ164の第1及び第2の端部部分272、274から並行して排出し得る。遊離させられた吸着質は、その後、中間導管376に沿って流れ、出口導管332を通り、蒸発器38(又は蒸気圧縮システム14の別の好適なコンポーネント)内へ流れ込む。実施形態によっては、吸着質をエミッションキャニスタ164の第1及び第2の端部部分272、274から同時に排出することは、遊離させられた吸着質をエミッションキャニスタ164から除去するための所要時間、及びそれゆえ、再生サイクルの所要時間を大幅に低減し得る。したがって、バイラテラル排出システム370はパージシステム100の動作効率を向上させ得る。バイラテラル排出システム370は、本明細書において説明されるパージシステム100の諸実施形態及び/又は特徴のうちの任意のものに組み込まれ得ることを理解されたい。
【0090】
エミッションキャニスタのための熱エネルギー回収システム
上述されたように、エミッションキャニスタ164は、エミッションキャニスタ164の熱再生サイクル及び/又は複合再生サイクルの間に熱エネルギー(例えば、熱)を吸着剤166に供給するように構成された1つ以上の加熱要素(例えば、電気加熱要素)を含み得る。これらの加熱要素は、概して、蒸気圧縮システム14の電源及び/又はパージシステム100の電源から供給される電気エネルギーを用いて動作させられる。パージシステム100のシステムの電力消費は、蒸気圧縮システム14からの未利用の熱エネルギーを回収し、回収された熱エネルギーを利用してエミッションキャニスタ164の再生サイクルの間に吸着剤166を加熱することによって、低減され得る。
【0091】
上述のことを念頭に置きつつ、
図24は、蒸気圧縮システム14からの廃熱エネルギーを回収するように構成されたエネルギー回収システム400を含むパージシステム100の一実施形態の概略図である。具体的には、エネルギー回収システム400は、回収された熱エネルギーを、エミッションキャニスタ164の再生サイクルの間に吸着質をエミッションキャニスタ164から除去するために伝達するように構成されている。例示の実施形態に示すように、エネルギー回収システム400は、回収導管406を介して蒸発器38及び回収熱交換器404に流体結合された流れ発生デバイス402(例えば、遠心ポンプ)を含む。回収導管406はまた、回収熱交換器404を、エミッションキャニスタ164内に配置されているか、又はさもなければ、それと熱的に連通した回収コイル408に流体結合する。回収導管406はまた、回収コイル408を圧縮器32(例えば、圧縮器32の吸引側)及び蒸発器38に流体結合する。回収システム400は、回収導管406の様々な区分と流体連通した、第1の回収弁420、第2の回収弁422、及び第3の回収弁424、及び第4の回収弁426を含み得る。以下において詳細に説明されるように、第1、第2、第3、及び第4の回収弁420、422、424、及び426は、エミッションキャニスタ164の飽和サイクルの間には回収コイル408への加熱された冷媒の流れを阻止し、エミッションキャニスタ164の再生サイクルの間には回収コイル408への加熱された冷媒の流れを可能にするよう協働し得る。
【0092】
例えば、エミッションキャニスタ164の飽和サイクルの間に、コントローラ342は、第1の回収弁420、第3の回収弁424、及び第4の回収弁426をそれぞれの閉鎖位置に調整し得、その一方で、第2の回収弁422は開放位置に調整される。コントローラ342は、その後、流れ発生デバイス402(例えば、流れ発生デバイス402のモータ)を活動化し得る。したがって、流れ発生デバイス402は冷媒を蒸発器38から吸い出し、冷媒を回収熱交換器404に向けて誘導し得る。回収熱交換器404は、圧縮器32のモータ50、圧縮器32のVSD52、又は蒸気圧縮システム14の動作の間に熱エネルギー(例えば、熱)を放出するように構成された任意の他の好適な圧縮器コンポーネントと熱的に連通し得る。このように、回収熱交換器404を通って循環する冷媒は、例えば、圧縮器32のモータ50からの、熱エネルギーを吸収し得る。回収熱交換器404を出た加熱された冷媒は、回収導管406、第2の回収弁422を通り、圧縮器32(例えば、圧縮器32の吸引側)に向かって流れ得、これは、冷媒を、蒸気圧縮システム14を通して再利用のために再循環させる。このように、回収システム400は、蒸気圧縮システム14の動作の間に圧縮器32を冷却する(例えば、熱エネルギーをそれから除去する)ために用いられ得る。
【0093】
実施形態によっては、コントローラ342は、エミッションキャニスタ164が再生サイクルにあるとの指示を(例えば、再生サイクルの開始時に)受信すると、第1の回収弁420及び第3の回収弁424をそれぞれの開放位置に移行させ得る。コントローラ342はまた、第2の回収弁422を部分閉鎖位置又は完全閉鎖位置に移行させ得る。したがって、流れ発生デバイス402は、回収熱交換器404から排出する加熱された冷媒の一部分、又は加熱された冷媒の全てを、エミッションキャニスタ164内に配置されているか、又はさもなければ、それと熱的に連通した回収コイル408に向けて誘導し得る。すなわち、回収コイル408は吸着剤166と熱的に連通し得る。したがって、吸着剤166は、回収コイル408を通って流れる加熱された冷媒から熱エネルギーを吸収し得る。実施形態によっては、回収熱交換器404内の冷媒は、相を変化させる(例えば、沸騰する)ために十分な熱エネルギーを吸収し得、これにより、冷媒は高温の気相で回収熱交換器404から排出し得ることに留意されたい。このような実施形態では、圧縮器32は、流れ発生デバイス402に加えて、又はその代わりに、回収熱交換器404からの冷媒を回収コイル408内へ吸い込むことを促進し得る。すなわち、圧縮器32は、回収熱交換器404から排出する気体冷媒を、(例えば、吸引を介して)回収コイル408を通して吸うための圧力差を回収導管406内に発生させ得る。
【0094】
いずれの場合も、加熱された冷媒はエミッションキャニスタ164の内部を通って流れ、熱エネルギーを、エミッションキャニスタ164内に配置された吸着剤166に伝達し得る。すなわち、吸着剤166は、回収コイル408を通って流れる加熱された冷媒から熱(例えば、熱エネルギー)を吸着し得る。実施形態によっては、回収コイル408内で冷媒によって供給される熱エネルギーは、エミッションキャニスタ164の再生を可能にし、吸着質を吸着剤166から遊離させるために十分になり得る。したがって、遊離させられた吸着質は出口導管332を経由して蒸発器38に向けて誘導され得る。このように、エネルギー回収システム400は、二重加熱要素232、234などの、追加の加熱要素を用いることなく、エミッションキャニスタ164が熱再生を経験することを可能にし得る。回収コイル408を出た、冷却された、又は部分的に冷却された気体冷媒は、回収導管406、第3の回収弁424を通り、圧縮器32に向かって流れ得、これは、冷媒を、蒸気圧縮システム14を通して再利用のために再循環させる。他の実施形態では、回収コイル408を出た、冷却された、又は部分的に冷却された冷媒は蒸気圧縮システム14の任意の他の好適なコンポーネントに向かって流れ得る。
【0095】
例えば、実施形態によっては、エミッションキャニスタ164内の吸着剤166は十分な熱エネルギーを冷媒から吸収し得、これにより、冷媒は液体状態に相を変化させるか、又は凝結し得る。このような実施形態では、第3の回収弁424は(例えば、コントローラ342を介して)閉鎖位置に調整され得、その一方で、第4の回収弁426は(例えば、コントローラ342を介して)開放位置に調整される。したがって、回収コイル408を出た、凝結された冷媒、又は部分的に凝結された冷媒は、圧縮器32の代わりに、蒸気圧縮システム14の蒸発器38へ誘導され得る。
【0096】
実施形態によっては、コントローラ342は、エミッションキャニスタ164が再生サイクルにあるとの指示を受信した時にのみ、流れ発生デバイス402を活動化し得る。すなわち、流れ発生デバイス402は、例えば、エミッションキャニスタ164の飽和サイクルの間は、非活動状態のままとどまり、再生サイクルの開始時に(例えば、コントローラ342によって送信された信号を介して)活動化し得る。実施形態によっては、コントローラ342は、二重加熱要素232、234に、エネルギー回収システム400の回収コイル408と並行して熱エネルギーをエミッションキャニスタ164に供給するよう命令し得る。例えば、コントローラ342は、(例えば、流れ発生デバイス402の初始動後に)回収コイル408を通って循環する冷媒が、エミッションキャニスタ164の熱再生を単独で可能にするには不十分である温度を有するときには、再生サイクルの初始動の間に二重加熱要素232、234を活動化し得る。実施形態によっては、コントローラ342は、コントローラ342に、回収導管406及び/又は回収コイル408を通って循環する冷媒の温度を指示するフィードバックを提供するように構成された1つ以上のセンサに通信可能に結合され得る。それゆえ、コントローラ342は、回収コイル408を通って循環する冷媒が、エミッションキャニスタ164の熱再生サイクルを単独で援助するために十分な温度であると決定すると、二重加熱要素232、234を非活動化し得る。このように、エネルギー回収システム400は、エミッションキャニスタ164の再生を促進するために用いられる従来の電気ヒータの電力消費を低減し、それゆえ、パージシステム100の動作効率を改善し得る。
【0097】
エミッションキャニスタ164の上述の諸実施形態は、蒸気圧縮システム14及び/又はパージシステム100上で別個に、或いは上述された諸実施形態のうちの1つ以上と組み合わせて用いられ得る。加えて、上述された特定の諸実施形態は例として示されており、これらの実施形態は様々な変更及び代替形態の余地があり得ることを理解されたい。請求項は、開示された特定の形態に限定されることを意図されておらず、むしろ、本開示の趣旨及び範囲に含まれる全ての変更、同等物、及び代替例を網羅することを意図されていることをさらに理解されたい。