(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-16
(45)【発行日】2022-09-28
(54)【発明の名称】予測装置、予測方法、及びプログラム
(51)【国際特許分類】
G05B 23/02 20060101AFI20220920BHJP
G06Q 10/04 20120101ALI20220920BHJP
【FI】
G05B23/02 R
G06Q10/04
(21)【出願番号】P 2018156568
(22)【出願日】2018-08-23
【審査請求日】2021-03-17
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】野村 真澄
(72)【発明者】
【氏名】筈井 祐介
(72)【発明者】
【氏名】阿野 繁
(72)【発明者】
【氏名】和田 健太
(72)【発明者】
【氏名】福本 皓士郎
【審査官】影山 直洋
(56)【参考文献】
【文献】特開2018-077823(JP,A)
【文献】特開2010-182142(JP,A)
【文献】特開2000-259223(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/02
G06Q 10/04
(57)【特許請求の範囲】
【請求項1】
装置のプロセスデータを収集するデータ収集部と、
前記データ収集部が収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築する予測モデル構築部と、
前記データ収集部が収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力する予測部と、
を備え
、
前記予測部は、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う、
予測装置。
【請求項2】
前記プロセスデータと、所定の閾値とを比較して、前記プロセスデータが異常か否かを判定する状態監視部と、
前記状態監視部が異常と判定した場合、補正後の前記予測値を改善する操作量を算出する操作量決定部と、
をさらに備える請求項
1に記載の予測装置。
【請求項3】
前記操作量決定部が算出した操作量を、前記装置の制御装置へ出力する第1出力部、
をさらに備える請求項
2に記載の予測装置。
【請求項4】
補正後の前記予測値と、前記予測モデルを可視化したグラフとを重畳して表示する第2出力部、
をさらに備える請求項1から請求項
3の何れか1項に記載の予測装置。
【請求項5】
前記予測モデル構築部は、複数の誤差の範囲を設定して、その誤差の範囲ごとに前記誤差算出モデルを構築し、
前記予測部は、前記誤差の範囲ごとの前記誤差算出モデルに基づいて補正した補正後の前記予測値の中から、最も安全ではないことを示す予測値と最も安全であることを示す予測値とを出力する、
請求項1から請求項4の何れか1項に記載の予測装置。
【請求項6】
予測装置によって実行される予測方法であって、
装置のプロセスデータを収集するステップと、
前記プロセスデータを収集するステップで収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築するステップと、
評価対象の第2の前記プロセスデータを収集するステップと、
収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力するステップと、
を有
し、
前記予測値を出力するステップでは、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う、
予測方法。
【請求項7】
コンピュータを、
装置のプロセスデータを収集する手段、
前記プロセスデータを収集するステップで収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築する手段、
評価対象の第2の前記プロセスデータを収集する手段、
収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力する手段、
として機能させ
、
前記予測値を出力する手段は、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、予測装置、予測方法、及びプログラムに関する。
【背景技術】
【0002】
従来、プラントや機械装置では、監視等に役立てるために予測モデルが用いられることがある。例えば、プロセスデータを収集して、プラントが備える装置等の物理モデルや統計的手法によって、予測モデルを構築する。そして、構築した予測モデルによってプロセス量の規範となる値を求め、この値を利用して監視や制御、異常の判定を実施する。特許文献1には、種々のプロセスデータのうちの一部を選択したデータセットを複数取得し、それぞれのデータセットを用いて予測モデルを構築し、構築した複数の予測モデルによって算出した予測値を統合した値により、プラントの監視等を行う技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般に予測モデルによる予測精度には誤差があり、予測値が誤差の分だけ、安全ではない側へずれる可能性がある。そのため、予測モデルによる予測値をそのまま用いてプラントの監視や制御を行うと、望ましくない結果に至る可能性がある。
特許文献1では、複数の予測モデルのうち、誤差の小さい予測モデルから算出された予測値には大きな重みを付し、誤差の大きい予測モデルから算出された予測値には小さな重みを付してそれらの加重平均を算出することで予測値の統合を行い、予測モデルが有する誤差の影響を小さくするようにしている。しかし、例えば、適切な予測モデルが複数構築できない場合等には、特許文献1に記載の方法を用いることができない。
【0005】
そこでこの発明は、上述の課題を解決することのできる予測装置、予測方法、及びプログラムを提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明の一態様によれば、予測装置は、装置のプロセスデータを収集するデータ収集部と、前記データ収集部が収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築する予測モデル構築部と、前記データ収集部が収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力する予測部と、を備え、前記予測部は、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う。
【0007】
本発明の一態様によれば、前記予測モデル構築部は、複数の誤差の範囲を設定して、その誤差の範囲ごとに前記誤差算出モデルを構築し、前記予測部は、前記誤差の範囲ごとの前記誤差算出モデルに基づいて補正した補正後の前記予測値の中から、最も安全ではないことを示す予測値と最も安全であることを示す予測値とを出力する。
【0008】
本発明の一態様によれば、前記予測装置は、前記プロセスデータと、所定の閾値とを比較して、前記プロセスデータが異常か否かを判定する状態監視部と、前記状態監視部が異常と判定した場合、補正後の前記予測値を改善する操作量を算出する操作量決定部と、をさらに備える。
【0009】
本発明の一態様によれば、前記予測装置は、前記操作量決定部が算出した操作量を、前記装置の制御装置へ出力する第1出力部、をさらに備える。
【0010】
本発明の一態様によれば、補正後の前記予測値と、前記予測モデルを可視化したグラフとを重畳して表示する第2出力部、をさらに備える。
【0011】
本発明の一態様によれば、予測方法は、予測装置によって実行される予測方法であって、装置のプロセスデータを収集するステップと、前記プロセスデータを収集するステップで収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築するステップと、評価対象の第2の前記プロセスデータを収集するステップと、収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力するステップと、を有し、前記予測値を出力するステップでは、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う。
【0012】
本発明の一態様によれば、プログラムは、コンピュータを、装置のプロセスデータを収集する手段、前記プロセスデータを収集するステップで収集した第1の前記プロセスデータに基づいて、第1の前記プロセスデータのうち所定の入力変数を入力値、前記プロセスデータのうち所定の出力変数を出力値とする予測モデルと、前記予測モデルの予測誤差を算出する誤差算出モデルとを構築する手段、評価対象の第2の前記プロセスデータを収集する手段、収集した第2の前記プロセスデータのうち前記入力変数と前記予測モデルとに基づいて算出した前記出力変数の予測値を、前記誤差算出モデルに基づいて算出した予測誤差で補正した補正後の予測値を出力する手段、として機能させ、前記予測値を出力する手段は、補正後の前記予測値が補正前に比べ安全ではないことを示す値となるように、又は、非効率的であることを示す値となるように、前記予測値に前記予測誤差を加算又は減算して前記予測値の補正を行う。
【発明の効果】
【0013】
本発明の予測装置、予測方法、及びプログラムによれば、予測モデルの予測誤差の影響を踏まえた予測値を出力することができる。
【図面の簡単な説明】
【0014】
【
図1】本発明に係る予測装置を用いて監視を行うプラントの一例を示す図である。
【
図2】本発明の第一実施形態における予測装置のブロック図である。
【
図4】重回帰分析による予測モデルを説明する第1の図である。
【
図5】重回帰分析による予測モデルを説明する第2の図である。
【
図6】ランダムフォレスト回帰による予測モデルを説明する図である。
【
図7】ガウス過程回帰による予測モデルを説明する図である。
【
図8】本発明の第一実施形態における予測装置による出力例である。
【
図9】本発明の第一実施形態による予測モデルの構築処理の一例を示すフローチャートである。
【
図10】本発明の第一実施形態による予測値の算出処理の一例を示すフローチャートである。
【
図11】本発明の第二実施形態における予測装置のブロック図である。
【
図12】本発明の第二実施形態による運転状態を改善する操作量を決定する処理の一例を示すフローチャートである。
【
図13】本発明の第二実施形態による運転状態の改善を支援する情報の出力処理の一例を示すフローチャートである。
【
図14】本発明の各実施形態における予測装置のハードウェア構成の一例を示す図である。
【発明を実施するための形態】
【0015】
<第一実施形態>
以下、本発明の第一実施形態による予測装置を
図1~
図10を参照して説明する。
図1は、本発明に係る予測装置を用いて監視を行うプラントの一例を示す図である。
図1に示すプラントは、ガスタービン10と、発電機15と、ガスタービン10の動作の制御や監視を行う装置20と、予測装置30と、を備えている。ガスタービン10と発電機15はロータ14で連結されている。ガスタービン10は、空気を圧縮して圧縮空気を生成する圧縮機11と、圧縮空気中で燃料ガスを燃焼させ高温の燃焼ガスを生成する燃焼器12と、燃焼ガスにより駆動するタービン13と、を備えている。なお、燃焼器12は、複数の燃焼器を含んでいてもよい。燃焼器12は、燃焼器12に燃料を供給する各系統(メイン系統、パイロット系統、トップハット系統)ごとにそれぞれの燃料供給装置(図示せず)と接続されている。燃料供給装置と燃焼器12の間には、メイン系統の燃料の流量を調節する燃料流量調整弁16A、パイロット系統の燃料の流量を調節する燃料流量調整弁16B、トップハット系統の燃料の流量を調節する燃料流量調整弁16Cが設けられている。装置20は、1台又は複数台のコンピュータで構成された制御装置等である。装置20は、IGV(IGV:inlet guide vane)17の角度制御により圧縮機11に流入する空気の流量を調節したり、燃料流量調整弁16A~16Cの開度制御によって燃焼器12への燃料ガスの供給量を制御したりして、燃焼器12の燃焼振動レベルやタービン13から排出される排ガスのNox、Co等を許容範囲に抑えつつ、ガスタービン10を運転して発電機15を稼働させる。
【0016】
予測装置30は、現在のガスタービン10から種々のプロセスデータを取得し、取得したプロセスデータと予測モデルに基づいて、ガスタービン10の運転状態を予測する。例えば、予測装置30が予測する値は、所定時間だけ未来のガスタービン10の運転状態を表すプロセスデータの値でもよいし、直接計測できない値を推定するための推定値であってもよい。ここで、プロセスデータとは、例えば、ガスタービン10や発電機15の各所に設けられたセンサが計測した温度、圧力などの計測データである。計測データには、ガスタービン10の内部に取り込まれ、実際の運転に用いられる燃料ガスや大気などの物性データ、大気温度や湿度などの運転環境の計測データが含まれる。計測データには、各センサの識別情報、計測値、計測時刻等が含まれている。また、プロセスデータには、装置20が、ガスタービン10を制御するために生成した制御値(燃料流量調整弁16A~16Cの開度指令値など)が含まれる。また、プロセスデータには、取得したプロセスデータを変換した値や、複数のプロセスデータから演算された値が含まれる。本実施形態の予測装置30は、一般的な予測装置が予測モデルによる予測値を出力するのに対し、予測モデルが有する予測誤差を考慮し、より安全側に補正された予測値を出力することができる。次に予測装置30について説明する。
【0017】
図2は、本発明の第一実施形態における予測装置のブロック図である。
図2に示すように予測装置30は、データ収集部31と、データ格納部32と、データ抽出部33と、予測モデル構築部34と、予測部35と、出力部36と、記憶部37とを備える。
データ収集部31は、監視対象のプラントや機械装置からプロセスデータを収集する。
データ格納部32は、データ収集部31が収集したプロセスデータを記憶部37に格納する。
データ抽出部33は、データ収集部31が収集したプロセスデータから予測モデルの構築に必要なデータを抽出する。例えば、データ抽出部33は、予測モデルの構築に必要な種類のデータの抽出や、必要な範囲の値の抽出(外れ値の除去など)を行う。予測モデルの構築に必要な種類のデータとは、燃焼器12の燃焼振動を予測する予測モデルの場合、例えば、燃焼器12内部の燃焼空気の振動を計測した振動データ(あるいは、振動データを高速フーリエ解析により周波数解析したデータ)、燃料流量調整弁16A~16Cの開度指令値、タービン13の入口温度、IGV17の角度などである。
【0018】
予測モデル構築部34は、重回帰分析、ガウス過程回帰などの統計的手法、ランダムフォレストなどの機械学習、ニューラルネットワークなどの深層学習などによりプラントや機械装置の運転状態を予測する予測モデルを構築する。また、予測モデル構築部34は、構築した予測モデルの誤差(予測のばらつき、不確かさ)を算出する誤差算出モデルを構築する。例えば、予測モデル構築部34は、データ抽出部33が抽出したプロセスデータのうち所定の入力変数の値を入力値とし、所定の出力変数を出力値として両者の関係を学習して予測モデル、誤差算出モデルを構築する。入力変数は、例えば、燃料流量調整弁16A~16Cの開度指令値、タービン13の入口温度、IGV17の角度、大気温度、大気湿度、ガスタービン10の出力、車室圧力などである。出力変数は、例えば、燃焼器12内部の燃焼空気の燃焼振動のレベルやNox、Co等のエミッション、出力効率等の性能指標等である。例えば、予測モデル構築部34は、データ抽出部33が抽出したプロセスデータのうち所定の入力変数(燃料流量調整弁16A~16Cの開度指令値、タービン13の入口温度、IGV17の角度)の値を入力値とし、所定の出力変数(燃焼振動の振動データ)を出力値として両者の関係を規定する燃焼振動についての予測モデル(関数など)を構築する。また、誤差算出モデルとは、例えば、教師データとして与えたプロセスデータと予測値の二乗平均の差分のような統計量を算出する計算式である。また、予測モデルが回帰分析の場合には予測値の信頼区間を利用してもよいし、ガウス過程回帰であれば、ガウス過程回帰手法により直接的に求められる誤差を利用してもよい。予測モデル、誤差算出モデルの例は、後に
図3~
図7を用いて説明する。
【0019】
予測部35は、データ収集部31が収集したプロセスデータのうちの入力変数と、予測モデルと、誤差算出モデルに基づいて、所定の出力変数についての予測誤差を踏まえた出力値を予測する。このとき、予測部35は、予測モデルが予測する出力変数の値を、出力変数の値に対する予測誤差値で補正して最終的な予測値を生成する。より具体的には、予測部35は、補正後の値が補正前の値よりも安全ではないことを示す値となるように、あるいは、補正後の値が補正前の値よりも非効率的であることを示す値となるように、予測値に予測誤差を加算、又は減算する。予測部35は、加算後、又は減算後(補正後)の予測値を最終的な予測値として出力する。このようにして、予測部35は、予測誤差を用いて、設備保護上、あるいは契約上の安全側の予測値を求めるようにする。例えば出力変数が、燃焼振動、NOxやCoの排出量であれば、予測部35は、予測値に予測誤差を加算して増加させる方向で補正する。また、出力変数が効率に関する変数であれば、予測部35は、予測値から予測誤差を減算して減少させる方向で補正して、最終的な予測値を算出する。
出力部36は、予測結果を出力する。
記憶部37は、プロセスデータ、予測モデル、誤差算出モデル等を記憶する。
【0020】
ここで、予測モデル、誤差算出モデルについて説明する。
図3は、予測誤差の算出に用いる表の一例である。
図3にt値の分布表を示す。
図3の表の縦軸は自由度(標本数-1)、横軸は信頼度、表中の値はt値である。例えば、自由度が10で信頼度が0.900の場合のt値は1.812、自由度が25で信頼度が0.950(2σ相当)の場合のt値は2.060である。
図3に示す分布表を用いて信頼区間を算出する方法が一般に知られている。例えば、プロセスデータの95%が含まれる範囲を算出するためには、信頼係数=0.950の列の自由度に応じたt値を用いて信頼区間95%を算出する。なお、信頼区間95%の場合のばらつき(誤差)を2σ、表には記載しない信頼区間68%の場合のばらつきをσと記載する。また、ここでは信頼区間を両側で評価しているが、片側で評価しても良い。
【0021】
図4は、回帰分析による予測モデルを説明する第1の図である。
重回帰分析の場合、予測値yは複数の説明変数x1、x2、・・・を用いた式で表される。説明の便宜のため単回帰で考えると、予測値yは説明変数xを用いて、以下の式で求められる。
y=α+βx ・・・(1)
このときyの予測値のバラつき(誤差)σ
e^は、次式(2)で推定される。
【0022】
【0023】
ここで、ハット(^)は推定値を、nはデータ数を、iはデータの番号を意味する。
従って、予測値(平均値)とそのばらつき(誤差)の分布は
図4のようになり、各x座標でのバラつきは同じとなる。横軸にx、縦軸に予測値yを取ると、次の
図5に示すグラフのようになる。
なお、予測モデルとして多変量対応型回帰スプライン、フィードフォワード型のニューラルネットワーク等を用いた場合も同様の考え方になる。
【0024】
図5は、回帰分析による予測モデルを説明する第2の図である。
図5の横軸は予測モデルの入力値、縦軸は予測モデルの出力値を示す。
図5のグラフの四角印の点はプロセスデータ、グラフ5bは予測モデル、グラフ5a、5cは誤差算出モデルを示している。予測モデル構築部34は、プロセスデータを回帰分析して、式(1)の予測モデルと式(2)の誤差算出モデルを構築する。
図5は、これらのモデルをグラフとして可視化したものである。ここで、例えば、説明変数xをトップハット系統の燃料の流量比、予測値yを燃焼振動とする。予測部35は、説明変数xとしてxaを入力すると、予測モデルに基づいて予測値ya1を算出し、誤差算出モデルに基づいて誤差ya2を算出し、ya1にya2を加算してya3を最終的な予測値として生成する。ya1にya2を加算するのは、予測誤差を考慮すると、燃焼振動のレベルがya2だけ予測値ya1より高い可能性があり、燃焼振動をya3(ya1+ya2)として予測した方が、安全にプラントを運転することができるためである。出力部36は、最終的な予測値ya3を、予測装置30に接続されたディスプレイ等に表示する。
【0025】
図6は、ランダムフォレスト回帰による予測モデルを説明する図である。
予測モデル構築部34がランダムフォレスト回帰により予測モデルを構築した場合、予測モデル構築部34は、
図6に示すようにある説明変数X1に対し、階段状の予測値Y(グラフ6b)とYを中心とする2σのばらつき(誤差)を示すグラフ6a、6cで可視化される予測モデルおよび誤差算出モデルを算出する。予測部35は、
図5で説明した例と同様に、予測モデル(グラフ6b)に基づいて予測値を算出し、誤差算出モデル(グラフ6a、6c)に基づいて予測誤差を算出する。そして、例えば、燃焼振動やNox、Coの排出量を予測する場合、予測値に予測誤差を加算して最終的な予測値を算出する。一方、運転効率などを算出する場合には、予測部35は、予測値から予測誤差を減算して控えめな効率を最終的な予測値として算出する。
【0026】
図7は、ガウス過程回帰による予測モデルを説明する図である。
予測モデル構築部34がガウス過程回帰により予測モデルを構築した場合、予測モデル構築部34は、予測モデルを示すグラフ7bに対して、ばらつきを示すグラフ7a、7cを算出することができる。ガウス過程回帰の場合、図示するように説明変数X1の大きさに応じて異なる誤差を算出することができる。
なお、ガウス過程回帰の場合、応答曲面の分布f(x)は、データD(説明変数xと出力yの組の集合)から以下の式(3)のように得られる。
p(f(x)|D)=N(k
t(K+σ
2I
N)
-1y,
K
0-k
t(K+σ
2I
N)
-1k)・・・(3)
ここで、σは観測ノイズの分散で、σ
Pを予測対象の事前分布の分散、θをスケーリングパラメータとすると、p(y|x,σ
2),K
0,k,K(x,x´)は以下の通りである。
p(y|x,σ
2)=N(y|f(x),σ
2) ・・・(4)
K
0=K(x,x),k=(K(x,x
1),・・・,K(x,x
N))
t
・・・(5)
【0027】
【0028】
このとき、例えば予測値y(グラフ7b)と予測値y±2σ(y+2σはグラフ7a、y-2σはグラフ7c)は、ある説明変数x1に対し、
図7のように表される。
以上、
図3~
図7で示すように様々な予測モデルとその予測誤差を本実施形態の予測モデル、誤差算出モデルとして用いることができる。何れのモデルの場合にも、ガスタービン10の運転状態について安全側に評価することができる。
【0029】
図8は、本発明の第一実施形態における予測装置による出力例である。
図8に出力部36による最終的な予測値の表示例を示す。出力部36は、
図5~
図7で例示したような予測モデルとその予測誤差を可視化したグラフと重畳して、予測部35が予測した特定の説明変数Xと最終的な予測値Yの関係を表示してもよいが、
図8に例示するように複数の説明変数X1、X2と予測値Yとの関係を2次元空間に表示することが可能である。例えば、ガスタービン10の場合、複数の燃焼器12を搭載することから、精度の良い予測モデルを構築するためには、各燃焼器の個体差を勘案した予測モデルを構築する必要がある。そのためには、個体差を区別する複数のパラメータが必要になる。また、燃焼振動は、振動の周波数ごとに特性が異なることが分かっている。従って、燃焼振動の予測モデルを構築する場合には、振動の周波数に応じて予測モデルを分ける必要がある。この場合、燃焼振動は、複数の予測モデルで全体の特性を示すことになる。例えば、
図8は、燃焼振動レベルの管理値Zと、燃焼振動に関係する入力変数X1、X2の関係を示している。等高線のようにして表示されるグラフC1~C3は、ある大きさの燃焼振動レベルが生じるときの説明変数X1、X2の関係を示している。いちばん外側のグラフC3は、管理値Z(許容できる最大の振動レベル)に対して100%の燃焼振動レベルに対応している。また、グラフC2は、管理値Zに対して75%の燃焼振動レベルに対応している。グラフC1は、管理値Zに対して50%の燃焼振動レベルに対応している。つまり、X1とX2の値をグラフC1内部の点が示すような値に制御できれば、燃焼振動は管理値Zの50%以下に抑えられることを意味する。
図8に示すグラフは、2つの説明変数X1、X2と予測値Yの関係を規定する予測モデル(すり鉢状の3次元で可視化される)、誤差算出モデルを構築し、Z軸方向の管理値Zの値の100%、75%、50%に相当する深さにおける説明変数X1、X2の関係式を、2次元に投影することで得られる。出力部36は、このような過程で
図8に例示するマップ状のグラフを表示した画像を生成することができる。
【0030】
なお、
図8に例示するグラフC1~C3は、予測値について2σ分の誤差を加算した範囲を示している。例えば、予測モデル構築部34は、誤差の範囲をσ、2σ、nσなどに切り替えて誤差算出モデルを構築し、出力部36を介して予測モデルに誤差の範囲を加算したグラフを表示しても良い。また、
図5~
図7に例示したグラフについても、予測モデル構築部34は、誤差の範囲をσ、2σなど段階的に切り替えて誤差算出モデルを構築し、出力部36は、例えば、y±σ、y±2σのグラフを切り替えて、それぞれに最終的な予測値を重畳した画像を表示しても良い。例えば、予測モデルの精度(予測誤差)が定かでないような場合、誤差の範囲を切り替えて最終的な予測値を生成し、最も安全側に評価した予測値と、楽観的に評価した予測値とを出力するようにしてもよい。
【0031】
次に本実施形態の予測モデルの構築処理の流れについて説明を行う。
図9は、本発明の第一実施形態による予測モデルの構築処理の一例を示すフローチャートである。
まず、データ収集部31が予測モデルの構築に必要な入力変数と出力変数の値を含んだプロセスデータを取得する(ステップS11)。次にデータ格納部32は、取得したプロセスデータを記憶部37に格納する(ステップS12)。次にデータ抽出部33が所定の予測モデルについて必要なプロセスデータを記憶部37から抽出して読み出し、予測モデル構築部34へ抽出したプロセスデータを出力する(ステップS13)。予測モデル構築部34は、抽出されたプロセスデータから入力変数と出力変数を設定する(ステップS14)。予測モデル構築部34は、重回帰分析、ランダムフォレスト回帰、ガウス過程回帰、ニューラルネットワークなどの手法を用いて、例えば、
図5~
図7で例示した予測モデル、誤差算出モデルを構築する(ステップS15)。なお、
図5~
図7では、入力変数と出力変数が、それぞれ1変数ずつの例を挙げたが、入力変数は複数種類設定されていてよい。予測モデル構築部34は、構築した予測モデル、誤差算出モデルを記憶部37に格納する。
【0032】
図10は、本発明の第一実施形態による予測値の算出処理の一例を示すフローチャートである。
まず、データ収集部31が所定の入力変数を含む評価対象のプロセスデータを取得する(ステップS21)。データ格納部32は取得したプロセスデータを記憶部37に格納する。次にデータ抽出部33が、記憶部37から予測値の算出に必要なプロセスデータを抽出して読み出す。次に予測部35が、評価対象の予測値を予測する所定の予測モデルと誤差算出モデルとを記憶部37から読み出す。予測部35は、プロセスデータを予測モデルに入力して予測値を算出する(ステップS22)。また、予測部35は、予測値やプロセスデータを誤差算出モデルに入力して予測誤差を算出する(ステップS23)。なお、予測モデルの構築手法がガウス過程回帰の場合、予測モデルにプロセスデータを入力することで、プロセスデータの値に応じた予測値と予測誤差が同時に得られる。予測部35は、予測値と予測誤差を加算または減算して、最終的な予測値を算出する(ステップS24)。このとき、予測部35は、最終的な予測値に加え、補正前の予測値と、予測誤差を出力してもよい。
【0033】
本実施形態によれば、複数のプロセスデータ(学習データ)から、予測値と共に予測誤差を算出するモデルを構築することができる。また、評価対象のプロセスデータを構築したモデルに入力することで、予測モデルの予測誤差の影響を最大限に考慮したとしても、プラント等を安全に運転できる補正後の予測値(最終的な予測値)を得ることができる。また、1つの予測値を得るために複数の予測モデルを構築する必要が無い。
【0034】
<第二実施形態>
第二実施形態の予測装置30Aは、予測部35が予測した予測値が所定の許容範囲内かどうかを判定し、許容範囲内でなければ、予測値を許容範囲内へ収束させる操作量や、そのような操作量の決定を支援する情報を提供するいわば運転支援装置である。
図11は、本発明の第二実施形態における予測装置のブロック図である。
本発明の第二実施形態に係る構成のうち、本発明の第一実施形態に係る予測装置30を構成する機能部と同じものには同じ符号を付し、それらの説明を省略する。第二実施形態に係る予測装置30Aは、第一実施形態の構成に加え、状態監視部38と、操作量決定部39とを備える。
状態監視部38は、プロセスデータを監視する。具体的には、状態監視部38は、プロセスデータと、プロセスデータごとに設定された閾値とを比較して、プロセスデータが閾値を逸脱していれば、異常と判定する。なお、判定に用いる閾値は、予測モデル構築部34が構築した予測モデルに基づいて設定されたものであってもよい。また、状態監視部38は、プロセスデータに基づいて予測部35が予測した最終的な予測値を監視対象として閾値判定を行ってもよい。
操作量決定部39は、状態監視部38が異常と判定した場合に、異常を回避するためのプラントや機械装置の操作量、制御値を決定する。例えば、操作量決定部39は、燃焼振動のレベルが高い場合、燃焼振動のレベルを低下させる方向の操作量(例えば、燃料流量調整弁16Aの開度をどの程度絞るか、又は、開くかなど)を決定する。また、例えば、NoxやCoの排出量が多い場合、操作量決定部39は、それらの排出量を低減する操作量を決定する。また、例えば、ガスタービン10の出力効率が低い場合、操作量決定部39は、出力効率を向上する操作量である。なお、後述するように操作量の決定には、それらの操作量または操作量に関するプロセスデータ(例えば、操作量が燃料流量調整弁16Aの開度の場合のメイン系統から供給される燃料流量)を説明変数(入力変数)とする予測モデルを用いることができる。
出力部36は、操作量決定部39が決定した操作量を装置20へ出力する。あるいは、出力部36は、操作量決定部39が決定した操作量を予測装置30Aのディスプレイ等に表示する。
【0035】
図12は、本発明の第二実施形態による運転状態を改善する操作量を決定する処理の一例を示すフローチャートである。
まず、データ収集部31が所定の入力変数を含む評価対象のプロセスデータを取得する(ステップS31)。データ収集部31は、プロセスデータを状態監視部38へ出力する。状態監視部38は、複数のプロセスデータのそれぞれを対応する閾値と比較する(ステップS32)。閾値を逸脱するプロセスデータが存在する場合(ステップS33;Yes)、状態監視部38は、異常の検出を操作量決定部39へ通知する。操作量決定部39は、異常が検出された入力変数を含むプロセスデータ(ステップS31で取得されたプロセスデータ)を取得し、安全な操作量を決定する(ステップS34)。例えば、操作量決定部39は、予測部35へ最終的な予測値の出力を指示する。予測部35は、ステップS31で取得されたプロセスデータを入力モデルへ入力し、予測値を出力する。ここで、
図8を参照する。予測値がP3で閾値が管理値Z(グラフC3)に設定されていたとする。すると、操作量決定部39は、予測値がグラフC3の境界からなるべく遠い位置(より燃焼振動レベルが低くなる側、例えば、管理値Zの50%に対応するグラフC1の内側であって、グラフC1の境界線からなるべく遠い位置)になるような操作量を決定する。
図8のP3の場合であれば、説明変数X1に対応する操作量が同じ値で、説明変数X2を現在のY1からY2へと変化させたときの説明変数X2に対応する操作量を決定する。説明変数X2がバルブの開度等であれば、操作量決定部39は、決定した操作量Y2を、出力部36を介して、装置20へ出力する(ステップS35)。説明変数X2が燃料流量などのプロセスデータであれば、操作量決定部39は、変更後Y2の燃料流量を実現する弁開度を算出して、その値を装置20へ出力する。装置20では、取得した操作量に基づいて、機器を制御する。例えば、変化のあった操作量Y2が、燃料流量調整弁16Cの開度指令値であれば、装置20は、燃料流量調整弁16Cの開度をY2とするよう制御してもよい。あるいは、出力部36が操作量Y2をディスプレイに表示し、監視員が、この表示を参考にして、装置20へ燃焼振動レベルを低下させる操作量を入力するようにしてもよい。
なお、ステップS33の判定で閾値内に収まっていた場合、次のプロセスデータに対してステップS31からの処理を繰り返す。
【0036】
図13は、本発明の第二実施形態による運転状態の改善を支援する情報の出力処理の一例を示すフローチャートである。
図13を用いて、予測装置30Aが、操作量の代わりに運転状態を改善する操作量の決定を支援する支援情報を表示する処理について説明する。
図13のフローチャートのステップS43までは、
図12の処理と同様である。つまり、データ収集部31が評価対象のプロセスデータを取得する(ステップS41)。そして、状態監視部38は、プロセスデータの値と閾値とを比較する(ステップS42)。そして、閾値を逸脱する場合(ステップS43;Yes)、状態監視部38は、異常の検出を予測部35へ通知する。予測部35は、異常が検出された入力変数を含むプロセスデータを取得して予測モデルへ入力し、最終的な予測値を出力する。そして、出力部36は、操作量の決定を支援する支援情報を出力する(ステップS44)。例えば、出力部36は、予測値と、予測モデルを可視化したグラフやマップとを重ね合わせた画像を生成する。出力部36は、生成した画像をディスプレイに出力し、表示させる(ステップS44)。ここで、予測値と、予測モデルを可視化したグラフとを重ね合わせた画像とは、
図5~
図8の上に予測部35による予測結果を表示した画像である。予測結果は、最終的な予測値のみを表示しても良いし、予測モデルによる予測値と誤差算出モデルによる予測誤差とを表示してもよい。例えば、
図8に例示する支援情報の表示を行った場合、監視員は、
図8のP3と矢印を参考にして、運転状態を正常化する操作量を決定することができる。
【0037】
本実施形態によれば、第一実施形態の効果に加え、予測部35が予測した予測モデルの不確かさを踏まえた安全側の予測値に基づいて操作量決定部39が決定した操作量や、出力部36が出力した支援情報によって、プラントや機械装置を安定して運転することができる。
【0038】
図14は、本発明の各実施形態における予測装置のハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える例えばPC(Personal Computer)やサーバ端末装置である。上述の予測装置30、30Aは、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶部37に対応する記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
【0039】
なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、入出力インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、当該プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
【0040】
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。出力部36は、第1出力部と第2出力部の一例である。
【符号の説明】
【0041】
30、30A・・・予測装置
31・・・データ収集部
32・・・データ格納部
33・・・データ抽出部
34・・・予測モデル構築部
35・・・予測部
36・・・出力部
37・・・記憶部
38・・・状態監視部
39・・・操作量決定部