IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジェイディーエス ユニフェイズ コーポレーションの特許一覧

特許7143384物品の製造方法、および基板上に金属外観を生成する方法
<>
  • 特許-物品の製造方法、および基板上に金属外観を生成する方法 図1
  • 特許-物品の製造方法、および基板上に金属外観を生成する方法 図2
  • 特許-物品の製造方法、および基板上に金属外観を生成する方法 図3
  • 特許-物品の製造方法、および基板上に金属外観を生成する方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-16
(45)【発行日】2022-09-28
(54)【発明の名称】物品の製造方法、および基板上に金属外観を生成する方法
(51)【国際特許分類】
   G02B 5/20 20060101AFI20220920BHJP
   G02B 5/22 20060101ALI20220920BHJP
   G02B 5/26 20060101ALI20220920BHJP
   C09C 3/10 20060101ALI20220920BHJP
   C09C 3/06 20060101ALI20220920BHJP
【FI】
G02B5/20
G02B5/22
G02B5/26
C09C3/10
C09C3/06
【請求項の数】 9
【外国語出願】
(21)【出願番号】P 2020185990
(22)【出願日】2020-11-06
(62)【分割の表示】P 2017124430の分割
【原出願日】2017-06-26
(65)【公開番号】P2021039367
(43)【公開日】2021-03-11
【審査請求日】2020-11-30
(31)【優先権主張番号】62/355,147
(32)【優先日】2016-06-27
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】502151820
【氏名又は名称】ヴァイアヴィ・ソリューションズ・インコーポレイテッド
【氏名又は名称原語表記】Viavi Solutions Inc.
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100195017
【弁理士】
【氏名又は名称】水間 章子
(72)【発明者】
【氏名】ヨハネス ザイデル
(72)【発明者】
【氏名】マーク テヴィス
(72)【発明者】
【氏名】カンニン リャン
(72)【発明者】
【氏名】ジェフリー ジェームズ クーナ
(72)【発明者】
【氏名】ヤロスロウ ジエバ
(72)【発明者】
【氏名】ポール トーマス コールマン
【審査官】渡邊 吉喜
(56)【参考文献】
【文献】特表2004-510013(JP,A)
【文献】米国特許出願公開第2009/0311423(US,A1)
【文献】特開2016-072422(JP,A)
【文献】実公平01-036891(JP,Y2)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/20
G02B 5/22
G02B 5/26
C09C 3/10
C09C 3/06
(57)【特許請求の範囲】
【請求項1】
基板上に第1の吸収体層を堆積させるステップと;
前記第1の吸収体層上に第1の選択的光変調体層を堆積させるステップと;
前記第1の選択的光変調体層上に反射体を堆積させるステップと;
前記反射体上に第2の選択的光変調体層を堆積させるステップと;
前記第2の選択的光変調体層上に第2の吸収体層を堆積させるステップとを含み、
前記第1の選択的光変調体層および前記第2の選択的光変調体層のうちの少なくとも1つは、スロットビードコーティング、スライドビードコーティング、スロットカーテンコーティング、スライドカーテンコーティング、および引張りウェブスロットコーティングから選択される液体コーティングプロセスを使用して堆積され
前記第1の選択的光変調体層および前記第2の選択的光変調体層のうちの少なくとも1つは、(i)ホスフィンオキシドを含む光開始剤、および、(ii)少なくとも1つのアクリレートモノマーおよび少なくとも1つのアクリレートオリゴマーを含む酸素阻害緩和組成物、のうちの少なくとも1つを含む、物品の製造方法。
【請求項2】
前記第1の選択的光変調体層および前記第2の選択的光変調体層は、それぞれ独立して、カラーシフト粒子、反射顔料、量子ドット、フッ化物、またはそれらの混合物を含む選択的光変調体粒子を含む、請求項1に記載の製造方法。
【請求項3】
前記液体コーティングプロセスは、堆積された前記第1の選択的光変調体層および前記第2の選択的光変調体層のそれぞれを硬化させるステップを含む、請求項1に記載の製造方法。
【請求項4】
前記第1の選択的光変調体層および前記第2の選択的光変調体層は、それぞれ、溶媒を含み、
堆積された前記第1の選択的光変調体層および前記第2の選択的光変調体層を硬化する前に、堆積された前記第1の選択的光変調体層および前記第2の選択的光変調体層のそれぞれから前記溶媒を蒸発させるステップをさらに含む、請求項1に記載の製造方法。
【請求項5】
堆積された前記第1の選択的光変調体層および前記第2の選択的光変調体層それぞれの粘度は10~3000cPである、請求項1に記載の方法。
【請求項6】
前記第1の選択的光変調体層および前記第2の選択的光変調体層は、それぞれ、約0.1~約1000m/分の速度で堆積される、請求項1に記載の方法。
【請求項7】
溶媒の重量パーセントがより大きい堆積された前記第1の選択的光変調体層および第2の選択的光変調体層は、それぞれ、硬化膜厚さがより小さい第1選択的光変調体層および第2の選択的光変調体層をもたらす、請求項1に記載の方法。
【請求項8】
請求項1に記載の方法により製造された物品を液体媒体に加えてカラーシフト着色剤を生成するステップと;
基板の少なくとも一部に前記カラーシフト着色剤を適用するステップとを含み、
前記カラーシフト着色剤は高彩度を示す、基板上に金属外観を生成する方法。
【請求項9】
前記第1の選択的光変調体層および前記第2の選択的光変調体層は、それぞれ、ホスト材料を含む、請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願]
本出願は、2016年6月27日に出願された米国仮出願第62/355,147号に
対する優先権の利益を主張するものであり、その全開示を参照により本明細書に援用する
【背景技術】
【0002】
本開示は、概して、顔料として使用可能な、ホイル、シートおよび/またはフレークの
形態の光学デバイスなどの物品に関する。前記顔料は、(i)強い色を有することができ
、また(ii)高いフロップ性(すなわち、観察角度が変化するにつれて明度、色相また
は色度が変化する鏡面・金属的外観)を有することができる。また、前記物品の製造方法
も開示される。
【0003】
フレークなどの物品は、通貨のセキュリティ・フィーチャや光学特性を強化したコンシ
ューマ用途に使用することができる。しかしながら、蒸着法などの現行の製造方法は、フ
レークを製造するために高価で複雑な設備を必要とする。現行のより安価な方法で得られ
る顔料はセキュリティ・フィーチャ用としては品質が悪い。また、ポリマー薄膜の蒸着で
は層間接着が悪くなる。さらに、真空中での加工は、上記装置の生産性に経時的に悪影響
を及ぼす。さらに、本装置のメンテナンスは、チャンバのポンプ排水や排気を要し、これ
は非生産的で時間が非常にかかる。さらに、フレークまたはホイルの形態の光学デバイス
などの物品の製造に使用できる材料の種類は低圧下で気化できるものに限定されるため、
多くの有機材料が排除される。
【発明の概要】
【0004】
一態様では、第1の表面、および、前記第1の表面に対向する第2の表面を有する反射
体と;前記反射体の前記第1の面の外側にある第1の選択的光変調体層と;前記反射体の
前記第2の面の外側にある第2の選択的光変調体層と;前記第1の選択的光変調体層の外
側にある第1の吸収体層と;前記第2の選択的光変調体層の外側にある第2の吸収体層と
を備え、前記第1の選択的光変調体層および前記第2の選択的光変調体層は、それぞれ、
ホスト材料を含む物品が開示される。
【0005】
更なる一態様では、基板上に第1の吸収体層を堆積させるステップと;前記第1の吸収
体層上に第1の選択的光変調体層を堆積させるステップと;前記第1の選択的光変調体層
上に反射体を堆積させるステップと;前記反射体上に第2の選択的光変調体層を堆積させ
るステップと;前記第2の選択的光変調体層上に第2の吸収体層を堆積させるステップと
を含み、前記第1の選択的光変調体層および前記第2の選択的光変調体層のうちの少なく
とも1つは液体コーティングプロセスを使用して堆積される、物品の製造方法が開示され
る。
【0006】
様々な実施形態の追加の特徴および利点は、部分的には下記発説明に記載されるか、部
分的には下記説明の記載から明らかであるか、または、様々な実施形態の実施によって理
解することができる。かかる様々な実施形態の目的および他の利点は、本明細書の説明で
特に指摘する要素および組み合わせによって実現かつ達成されるであろう。
【0007】
本開示は、そのいくつかの態様および実施形態において、発明の詳細な説明および添付
の図面からより完全に理解することができる。
【0008】
本明細書および図面を通して、同様の参照番号は同様の要素を識別する。
【図面の簡単な説明】
【0009】
図1】本開示の一例に係る、例えばフレーク形態の物品の断面図である。
図2】本開示の他の一例に係る、例えばフレークの形態の他の物品の断面図である。
図3】本開示の一例に係る、基板から剥離される前の物品の断面図である。
図4】本開示の一例に係る、選択的光変調体層を堆積する段階を示す液体コーティングプロセスの断面図である。
【発明を実施するための形態】
【0010】
前述の一般的な説明および以下の詳細な説明は両方とも例示的で説明的なものに過ぎず
、本開示の教示の様々な実施形態の説明を提供することを意図していることを理解された
い。本明細書に開示された広範かつ様々な実施形態では、例えば、ホイル、シートおよび
フレークの形態の光学デバイスなどの物品、および、前記物品の製造方法が開示される。
【0011】
一態様では、図1に示すように、物品10は、第1の表面、および、第1の表面に対向
する第2の表面を有する反射体16と;反射体16の第1の面の外側にある第1の選択的
光変調体層(selective light modulator layer;SL
ML)14と;反射体16の第2の面の外側にある第2の選択的光変調体層14’と;第
1の選択的光変調体層14の外側にある第1の吸収体層12と;第2の選択的光変調体層
14’の外側にある第2の吸収体層12’とを備え、第1の選択的光変調体層14および
第2の選択的光変調体層14’は、それぞれ、ホスト材料を含む。
【0012】
いくつかの例では、物品10は光干渉を示すことができる。あるいは、いくつかの例で
は、物品10は光干渉を示すことができない。一態様では、物品10は干渉を利用して色
を生成することができる。別の一態様では、物品10は干渉を利用して色を生成すること
ができない。例えば、以下で更に詳細に説明するように、色の外観は、添加剤、選択的光
変調体粒子(selective light modulator particle
;SLMP)または選択的光変調体分子(selective light modul
ator molecule;SLMM)などの選択的光変調体システム(select
ive light modulator system;SLMS)をSLML中に含
有させることで発現させることができる。
【0013】
図1図3は、本開示の様々な例に係る、フレーク、ホイルまたはシートなどの様々な
物品を示す。これらの図は特定の順序で特定の層を示しているが、当業者は、物品10が
任意の数の層を任意の順序で含むことができることを理解するであろう。
【0014】
一態様では、図1に示すように、物品10は、物体または基板(不図示)上で使用可能
なホイルまたはフレークの形態とすることができ、液体媒体と併用してカラーシフト着色
剤を形成でき、あるいは、顔料として使用することができる。フレークは、例えば、厚さ
100nm~100μm、大きさ100nm~1mmであり得る。フレーク形態などの物
品10の使用に共通する属性としては、高色度(すなわち強い色)、観察角度に対する色
変化(ゴニオクロマティシティまたは虹彩としても知られている)、および、フロップ性
(観察角度が変化するにつれて明度、色相または色度が変化する鏡面的・金属的な外観)
などが挙げられる。さらに、フレークなどの形態の物品10は、入射光の角度または視野
角の変化によるカラーシフト特性を示すことができる。
【0015】
物品10のカラーシフト特性は、例えばフレークの形態の物品の適切な設計によって制
御することができる。フレークを形成する各層の厚さおよび各層の屈折率などのパラメー
タを変化させることにより所望の効果を得ることができる。視野角や入射光の角度の相違
による知覚される色の変化は、層を構成する材料の選択的吸収と波長依存性干渉効果とが
組み合わさった結果である。材料の吸収特性は観察される下地色(ベースカラー)に関わ
っている。多層薄膜構造内で複数回反射および透過した光波が重ね合わされて生じる干渉
効果は、角度に応じた知覚色のシフトに関わっている。
【0016】
物品10は、第1および第2の選択的光変調体層14’’,14’’’を含むことがで
きる。図2に示す態様では、物品10は4つの選択的光変調体層14,14’,14’’
,14’’’を含むことができ、そのうちの2つの選択的光変調体層14,14’は反射
体16の第1の表面および第2の表面の外側であり得る。残りの2つの選択的光変調体層
14’’,14’’’は、それぞれ、第1および第2の吸収体層12,12’の外側であ
り得る。
【0017】
図1および図2は、特定の順序の特定の層を示しているが、当業者は、物品10が任意
の数の層を任意の順序で含むことができることを理解するであろう。さらに、任意の特定
の層の組成は、他の任意の層の組成と同じであっても異なっていてもよい。2つ以上のS
LML14,14’が物品10に存在する場合、各SLMLは組成および物性に関して独
立していてもよい。例えば、第1のSLML14は、第1の屈折率を有する組成を有する
ことができるが、同じ物品内の第2のSLML14’は、異なる屈折率を有する異なる組
成を有することができる。別の例として、第1のSLML14は、第1の厚さで組成を有
することができるが、第2のSLML14’は、第1の厚さとは異なる第2の厚さで同じ
組成を有することができる。追加的または代替的に、フレーク、シートまたはホイルの形
態の物品10は、SLML14および/またはSLML14’の表面上にハードコート、
すなわち保護層を備えることもできる。いくつかの例では、これらの層(ハードコート、
すなわち保護層)は光学的品質を必要としない。
【0018】
図1図3に示すように、反射体16の少なくとも2つの表面/側面、例えば、図示す
るような右側および左側の面/側面、および/または、第1および第2の吸収体層12,
12’のそれぞれの少なくとも2つの表面/側面をSLML14,14’フリーとするこ
とができる。一態様では、物品10がフレークまたはホイルの形態である場合、反射体1
6は、図1図3に例示された4つを超える表面を含むことができる。これらの場合では
、例えば、反射体16の1つ、2つ、3つ、4つ、または5つの表面をSLML14フリ
ーとすることができる。いくつかの例では、反射体16の1つ、2つ、3つ、4つ、また
は5つの表面、よって、物品10を空気に開放することができる。一例では、開放側面、
すなわち外側のSLMLを含まない反射体16の表面はフロップ性に対する利点となり得
る。
【0019】
図1図3に示す各例において、反射体16は、広帯域反射体、例えば、スペクトルお
よびランバート反射体(例えば、白色TiO)とすることができる。本明細書で使用す
る「金属」または「金属層」という用語は、特段明記しない限り、すべての金属、金属合
金、純金属または合金含有材料、化合物、組成物および/または層を含むことが意図され
る。反射体16の材料は、金属、非金属、および/または金属合金を含むことができる。
一例では、反射体16の材料は、所望のスペクトル範囲内で反射特性を有する任意の材料
を含むことができる。例えば、所望のスペクトル範囲において5%~100%の範囲の反
射率を有する任意の材料を含むことができる。反射性材料の例は、良好な反射特性を有し
、安価であり、薄い層として形成または堆積することが容易なアルミニウムであり得る。
アルミニウムの代わりに他の反射材料を使用することもできる。例えば、銅、銀、金、白
金、パラジウム、ニッケル、コバルト、ニオブ、クロム、スズ、および、これらの金属も
しくは他の金属の組合せまたは合金を反射材料として使用することができる。一態様では
、反射体16の材料は、白色または淡色の金属とすることができる。他の有用な反射性材
料には、遷移金属、ランタニド金属およびそれらの組み合わせ、ならびに、金属炭化物、
金属酸化物、金属窒化物、金属硫化物、それらの組み合わせ、または、金属とこれらの材
料の1つ以上との混合物が含まれ得るが、これらに限定されない。
【0020】
反射体16の厚さは、約50nm~約5000nmとすることができるが、この範囲は
限定的に解釈すべきではない。例えば、反射体16が最大透過率0.8を提供するように
、より低い厚さ限定を選択することができる。追加的にまたは代替的に、アルミニウムを
含む反射体16の場合、最小光学密度(OD)は波長約550nmにおいて約0.1~約
4とすることができる。
【0021】
十分な光学密度を得るためにかつ/または所望の効果を達成するために、反射体16の
組成に応じて、より高いかまたはより低い最小厚さが必要とされ得る。いくつかの例にお
いて、上限は、約5000nm、約4000nm、約3000nm、約1500nm、約
200nm、および/または、約100nmとすることができる。一態様では、反射体1
6の厚さは、約10nm~約5000nmの範囲、例えば約15nm~約4000nm、
約20nm~約3000nm、約25nm~約2000nm、約30nm~約1000n
m、約40nm~約750nm、または、約50nm~約500nm、例えば、約60n
m~約250nmもしくは約70nm~約200nmの範囲とすることができる。
【0022】
図1図3のフレーク、シートまたはホイルの形態の物品10は、第1の選択的光変調
体層(SLML)14および第2の選択的光変調体層14’を備えることができる。SL
MLは、約0.2μm~約20μmの範囲の波長を有する電磁放射のスペクトルの様々な
選択領域において光強度を変調(吸収および/または放出)することを目的とする複数の
光学機能を備える物理層である。
【0023】
SLML14,14’,14’’,14’’’(および/またはSLML14,14’
,14’’,14’’’内の材料)は、それぞれ、光を選択的に変調することができる。
例えば、SLMLは特定の波長における透過量を制御することができる。いくつかの例で
は、SLMLは、特定の波長(例えば、可視領域および/または非可視領域)のエネルギ
ーを選択的に吸収することができる。例えば、SLML14,14’,14’’,14’
’’は、「着色層」および/または「波長選択性吸収層」とすることができる。いくつか
の例では、吸収された特定の波長は、フレーク形態などの物品10に特定の色を発現させ
ることができる。例えば、SLML14,14’,14’’,14’’’は人間の目には
赤色に見え得る(例えば、SLMLは約620nm以下の光の波長を吸収し、したがって
赤色に見えるエネルギーの波長を反射または透過することができる)。これは、着色剤(
例えば、有機および/または無機顔料および/または染料)であるSLMPを、ホスト材
料、例えば誘電材料など(ポリマーを含むがこれに限定されない)に添加することによっ
て達成することができる。例えば、いくつかの例では、SLMLは着色プラスチックとす
ることができる。
【0024】
いくつかの例では、吸収される特定の波長の一部または全部を可視範囲内にすることが
できる(例えば、SLMLは可視領域全体にわたって吸収するが、赤外領域は通過し得る
)。フレーク形態などの得られた物品10は黒く見えるが、赤外領域の光を反射する。上
述のいくつかの例では、物品10および/またはSLML14,14’,14’’,14
’’’の吸収波長(および/または特定の可視色)は、少なくとも部分的にSLML14
,14’,14’’,14’’’の厚さに依存し得る。追加的または代替的に、SLML
14,14’,14’’,14’’’によって吸収されるエネルギーの波長(および/ま
たはこれらの層および/またはフレークに現れる色)は、SLML14,14’,14’
’,14’’’に添加するものに部分的に依存し得る。特定の波長のエネルギーを吸収す
ることに加えて、SLML14,14’,14’’,14’’’は、劣化に対して反射体
16を補強すること;基板からの剥離を可能にすること;サイジングを可能にすること;
反射体16に使用されるアルミニウムまたは他の金属および材料の酸化などの、環境劣化
に対する若干の耐性を提供すること;および、SLML14,14’,14’’,14’
’’の組成および厚さに基づく、高い光の透過性能、反射性能および吸収性能、のうちの
少なくとも1つを達成することができる。
【0025】
いくつかの例では、特定波長のエネルギーおよび/または可視光の波長を選択的に吸収
するSLML14,14’,14’’,14’’’に加えて、またはこれに代えて、シー
ト形態などの物品10のSLML14,14’,14’’,14’’’は、屈折率を制御
することができるか、かつ/または、屈折率を制御することができるSLMPを含むこと
ができる。SLML14,14’,14’’,14’’’の屈折率を制御することができ
るSLMPは、吸収制御SLMP(例えば、着色剤)に加えて、またはこれに代えて、ホ
スト材料に含有させることができる。いくつかの例では、SLML14,14’,14’
’,14’’’中、ホスト材料に吸収制御SLMPおよび屈折率制御SLMPの両方を組
み合わせることができる。いくつかの例では、同じSLMPが吸収および屈折率の両方を
制御することができる。
【0026】
各態様では、例えば図1図2に示すように、SLML14,14’,14’’,14
’’’は、透明層または着色層とすることができる。
【0027】
SLML14,14’,14’’,14’’’の性能は、SLMLSLML14,14
’,14’’,14’’’に存在する材料の選択に基づいて決定することができる。SL
ML14,14’,14’’,14’’’は、SLML14,14’,14’’,14’
’’の各組成に基づいて、光の透過、反射、吸収において高い性能を達成することができ
ると考えられる。一態様では、SLML14,14’,14’’,14’’’は、SLM
L14,14’,14’’,14’’’の光学性能の制御を高めるように構成されたより
広い範囲の材料を可能にする組成物を含むことができる。一態様では、SLML14,1
4’,14’’,14’’’は、フレークハンドリング性、腐食、位置合わせ、および、
物品10内の任意の他の層(例えば、反射体16および/または第1および第2の吸収体
12,12’)の環境性能のうちの少なくとも1つの特性を改善することができる。
【0028】
SLML14,14’,14’’,14’’’は、それぞれ独立して、ホスト材料のみ
を、または選択的光変調体システム(SLMS)と組み合わされたホスト材料を含むこと
ができる。一態様では、第1のSLML14および第2のSLML14’のうちの少なく
とも1つがホスト材料を含む。別の一態様では、第1のSLML14および第2のSLM
L14’のうちの少なくとも1つがホスト材料およびSLMSを含む。別の一態様では、
第1のSLML14はホスト材料とSLMSとを含み、第2のSLML14’はホスト材
料を含む。SLMSは、選択的光変調体分子(SLMM)、選択的光変調体粒子(SLM
P)、添加剤、またはそれらの組み合わせを含むことができる。一態様では、第1および
第2のSLML14,14’のうちの少なくとも1つはSLMSをさらに含む。第1のS
LML14内のSLMSは第2のSLML14’内のSLMSと異なっていてもよい。一
態様では、第1のSLML14内のSLMSは第2のSLML14’内のSLMSと同じ
であってもよい。
【0029】
SLML14,14’,14’’,14’’’の組成物は、約0.01%~約100%
、例えば約0.05%~約80%、また更なる例として約1%~約30%の範囲の固形分
を有することができる。いくつかの態様では、固形分は3%よりも大きくすることができ
る。いくつかの態様では、SLML14,14’,14’’,14’’’の組成物は、約
3%~約100%、例えば約4%~50%の範囲の固形分を有することができる。
【0030】
SLML14,14’,14’’,14’’’の各々のホスト材料は、独立して、コー
ティング液として塗布され、かつ、光学的・構造的な機能を果たすフィルム形成材料とす
ることができる。ホスト材料は、追加の光変調特性を物品10に付与するために選択的光
変調体システム(SLMS)などのゲストシステムを必要に応じて導入するためのホスト
(マトリックス)として使用することができる。
【0031】
ホスト材料は誘電材料とすることができる。追加的または代替的に、ホスト材料は、有
機ポリマー、無機ポリマー、および、複合材料のうちの少なくとも1つとすることができ
る。有機ポリマーの非限定的な例には、ポリエステル、ポリオレフィン、ポリカーボネー
ト、ポリアミド、ポリイミド、ポリウレタン、アクリル、アクリレート、ポリビニルエス
テル、ポリエーテル、ポリチオール、シリコーン、フルオロカーボン、および、それらの
種々のコポリマーなどの熱可塑性プラスチック;エポキシ、ポリウレタン、アクリレート
、メラミンホルムアルデヒド、尿素ホルムアルデヒド、フェノールホルムアルデヒドなど
の熱硬化性樹脂;および、アクリレート、エポキシ、ビニル、ビニルエステル、スチレン
、シランなどのエネルギー硬化性材料が含まれる。無機ポリマーの非限定的な例には、シ
ラン、シロキサン、チタン酸塩、ジルコン酸塩、アルミン酸塩、ケイ酸塩、ホスファザン
、ポリボラジレン、ポリチアジルが含まれる。
【0032】
SLML14,14’,14’’,14’’’は、それぞれ、約0.001重量%~約
100重量%のホスト材料を含むことができる。一態様では、ホスト材料は、SLMLの
約0.01重量%~約95重量%、例えば約0.1重量%~約90重量%、また更なる例
として、約1重量%~約87重量%の範囲の量でSLML中に存在することができる。S
LML14,14’,14’’,14’’’の各々におけるホスト材料は、それぞれ互い
に独立していても同じであってもよい。例えば、第1のSLML14内のホスト材料は第
2のSLML14’内のホスト材料と異なっていてもよい。別の例では、第1のSLML
14内のホスト材料は第2の第2のSLML14’内のホスト材料と同じであってもよい
【0033】
SLMSは、ホスト材料と共にSLML14,14’,14’’,14’’’で使用す
るために、選択的光変調体粒子(SLMP)、選択的光変調体分子(SLMM)、添加剤
、または、それらの組み合わせをそれぞれ独立して含むことができる。SLMSは他の材
料を含むこともできる。SLMSは、選択領域または対象の全スペクトル範囲(0.2μ
m~20μm)において電磁放射の振幅を(吸収、反射、蛍光などにより)変調すること
ができる。
【0034】
SLML14,14’,14’’,14’’’は、それぞれ独立してSLMS中にSL
MPを含むことができる。SLMPは、ホスト材料と組み合わされて光変調を選択的に制
御する任意の粒子とすることができ、限定されないが、カラーシフト粒子、染料、着色剤
が含まれ、着色剤は染料、顔料、反射顔料、カラーシフト顔料、量子ドット、および、選
択的反射体の1つ以上を含む。SLMPの非限定的な例としては、有機顔料、無機顔料、
量子ドット、ナノ粒子(選択的に反射および/または吸収するもの)、ミセルなどが挙げ
られる。ナノ粒子は、高屈折率(波長約550nmにおいてn>1.6)の有機材料およ
び金属有機材料;TiO、ZrO、In、In-SnO、SnO、F
(xおよびyはそれぞれ独立して0より大きい整数)、WOなどの金属酸化物
;ZnS、Cu(xおよびyはそれぞれ独立して0より大きい整数である)などの
金属硫化物;カルコゲニド、量子ドット、金属ナノ粒子;カーボネート;フッ化物;およ
び、それらの混合物を含むことができるが、これらに限定されない。
【0035】
SLMMの例には、有機染料、無機染料、ミセル、および、発色団を含む他の分子系が
含まれるが、これらに限定されない。
【0036】
いくつかの態様では、各SLML14,14’,14’’,14’’’のSLMSは、
硬化剤、および、コーティング助剤などの少なくとも1つの添加剤を含むことができる。
【0037】
硬化剤は、ホスト材料の硬化、ガラス化、架橋または重合を開始することができる化合
物または材料とすることができる。硬化剤の非限定的な例としては、溶媒、ラジカル発生
剤(エネルギーまたは化学物質による)、酸発生剤(エネルギーまたは化学物質による)
、縮合開始剤、および、酸/塩基触媒が挙げられる。
【0038】
コーティング助剤の非限定的な例としては、レベリング剤、湿潤剤、消泡剤、接着促進
剤、酸化防止剤、UV安定剤、硬化阻害緩和剤、防汚剤、腐食防止剤、光増感剤、二次架
橋剤、および、赤外線乾燥の強化のための赤外線吸収剤が挙げられる。一態様では、酸化
防止剤は、SLML14,14’,14’’,14’’’の組成物中に約25ppm~約
5重量%の範囲の量で存在することができる。
【0039】
SLML14,14’,14’’,14’’’は、それぞれ独立して、溶媒を含むこと
ができる。溶媒の非限定的な例には、酢酸エチル、酢酸プロピル、酢酸ブチルなどの酢酸
エステル;アセトン;水;ジメチルケトン(DMK)、メチルエチルケトン(MEK)、
sec-ブチルメチルケトン(SBMK)、tert-ブチルメチルケトン(TBMK)
、シクロペンタノン、アニソールなどのケトン;プロピレングリコールメチルエーテル、
プロピレングリコールメチルエーテルアセテートなどのグリコールおよびグリコール誘導
体;イソプロピルアルコール、ジアセトンアルコールなどのアルコール;マロン酸エステ
ルなどのエステル;n-メチルピロリドンなどの複素環式溶媒;トルエン、キシレンなど
の炭化水素;グリコールエーテルなどの凝集溶媒;および、それらの混合物が挙げられる
。一態様では、溶媒は、SLML14,14’,14’’,14’’’のそれぞれにおい
て、SLML14,14’,14’’,14’’’の総重量に対して、約0重量%~約9
9.9重量%、例えば約0.005重量%~約99重量%、また更なる例として約0.0
5重量%~約90重量%の範囲の量で存在することができる。
【0040】
いくつかの例では、第1および第2のSLML14,14’,14’’,14’’’は
、それぞれ、(i)光開始剤、(ii)酸素阻害緩和組成物、(iii)レベリング剤、
および(iv)消泡剤のうちの少なくとも1つを有する組成物を含むことができる。
【0041】
酸素阻害緩和組成物は、フリーラジカルプロセスの酸素阻害を緩和するために使用する
ことができる。分子状酸素は、光開始剤/増感剤の三重項状態を消滅させたり、フリーラ
ジカルを捕捉することができるため、コーティング特性の低減および/または未硬化液体
表面が生じる。酸素阻害緩和組成物は、酸素阻害を低減させ、SLML14,14’,1
4’’,14’’’の硬化を改善することができる。
【0042】
酸素阻害組成物は、2つ以上の化合物を含むことができる。酸素阻害緩和組成物は、少
なくとも1つのアクリレート、例えば少なくとも1つのアクリレートモノマーおよび少な
くとも1つのアクリレートオリゴマーを含むことができる。一態様では、酸素阻害緩和組
成物は、少なくとも1つのアクリレートモノマーおよび2つのアクリレートオリゴマーを
含むことができる。酸素阻害緩和組成物に使用するためのアクリレートの非限定的な例と
しては、アクリレート;メタクリレート;変性エポキシアクリレートなどのエポキシアク
リレート;酸官能性ポリエステルアクリレート、4官能性ポリエステルアクリレート、変
性ポリエステルアクリレート、生物由来ポリエステルアクリレートなどのポリエステルア
クリレート;アミン官能性アクリレート共開始剤および第3級アミン共開始剤を含む、ア
ミン変性ポリエーテルアクリレートなどのポリエーテルアクリレート;芳香族ウレタンア
クリレート、変性脂肪族ウレタンアクリレート、脂肪族ウレタンアクリレート、脂肪族ア
ロファネート系ウレタンアクリレートなどのウレタンアクリレート;および、それらのモ
ノマーおよびオリゴマーが挙げられる。一態様では、酸素阻害緩和組成物は、少なくとも
1つのアクリレートオリゴマー、例えば2つのオリゴマーを含むことができる。少なくと
も1つのアクリレートオリゴマーは、メルカプト変性ポリエステルアクリレートおよびア
ミン変性ポリエーテルテトラアクリレートなどの、ポリエステルアクリレートおよびポリ
エーテルアクリレートから選択することができる。酸素阻害緩和組成物はまた、1,6-
ヘキサンジオールジアクリレートなどの少なくとも1つのモノマーを含むことができる。
酸素阻害緩和組成物は、第1、第2、第3および/または第4のSLML14,14’,
14’’,14’’’中、SLML14,14’,14’’,14’’’中の総重量に対
して、約5重量%~約95重量%、例えば約10重量%~約90重量%、また更なる例と
して約15重量%~約85重量%の量で存在することができる。
【0043】
いくつかの例では、SLML14,14’,14’’,14’’’のホスト材料は、カ
チオン系などの非ラジカル硬化系を使用することができる。カチオン系は、フリーラジカ
ルプロセスの酸素阻害の緩和の影響を受けにくいため、酸素阻害緩和組成物を必要としな
くてよい。一例では、モノマーである3-エチル-3-ヒドロキシメチルオキセタンの使
用は酸素緩和組成物を必要としない。
【0044】
一態様では、SLML14,14’,14’’,14’’’の組成物は、それぞれ独立
して、少なくとも1つの光開始剤を含むことができ、例えば、2つまたは3つの光開始剤
を含むことができる。光開始剤は、短波長用に使用することができる。光開始剤は、化学
線波長に対して活性であり得る。光開始剤は、タイプI光開始剤またはタイプII光開始
剤とすることができる。該組成物は、タイプI光開始剤のみを、タイプII光開始剤のみ
を、または、タイプI光開始剤およびタイプII光開始剤の両方の組み合わせを含むこと
ができる。光開始剤は、SLML14,14’,14’’,14’’’の組成物の総重量
に対して、約0.25重量%~約15重量%、例えば約0.5重量%~約10重量%、ま
た更なる例として約1重量%~約5重量%の範囲の量で、SLML14,14’,14’
’,14’’’の組成物中に存在することができる。
【0045】
光開始剤はホスフィンオキシドとすることができる。ホスフィンオキシドは、モノアシ
ルホスフィンオキシドおよびビスアシルホスフィンオキシドを含むことができるが、これ
らに限定されない。モノアシルホスフィンオキシドは、ジフェニル(2,4,6-トリメ
チルベンゾイル)ホスフィンオキシドとすることができる。ビスアシルホスフィンオキシ
ドは、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドとするこ
とができる。一態様では、少なくとも1つのホスフィンオキシドがSLML14,14’
,14’’,14’’’の組成物中に存在することができる。例えば、2つのホスフィン
オキシドがSLML14,14’の組成物中に存在することができる。
【0046】
増感剤がSLML14,14’,14’’,14’’’の組成物中に存在することがで
き、タイプI光開始剤および/またはタイプII光開始剤の増感剤として作用することが
できる。増感剤はタイプII光開始剤としても作用することができる。一態様では、増感
剤は、SLML14,14’,14’’,14’’’の組成物の総重量に対して、約0.
05%~約10%、例えば約0.1%~約7%、また更なる例として約1重量%~約5重
量%の量で、SLML14,14’,14’’,14’’’の組成物中に存在できる。増
感剤は、1-クロロ-4-プロポキシチオキサントンなどのチオキサントンとすることが
できる。
【0047】
一態様では、SLML14,14’,14’’,14’’’はレベリング剤を含むこと
ができる。レベリング剤はポリアクリレートとすることができる。レベリング剤は、SL
ML14,14’,14’’,14’’’の組成物のクレーター化を排除することができ
る。レベリング剤は、SLML14,14’,14’’,14’’’の組成物の総重量に
対して、約0.05重量%~約10重量%の範囲、例えば約1重量%~約7重量%、また
更なる例では約2重量%~約5重量%の範囲の量で、SLML14,14’,14’’,
14’’’の組成物中に存在することができる。
【0048】
SLML14,14’,14’’,14’’’は消泡剤を含むこともできる。消泡剤は
表面張力を低下させることができる。消泡剤はシリコーンを含まない液状有機ポリマーと
することができる。消泡剤は、SLML14,14’,14’’,14’’’の組成物の
総重量に対して、約0.05重量%~約5重量%、例えば約0.2重量%~約4重量%、
また更なる例として約0.4重量%~約3重量%の範囲の量で、SLML14,14’,
14’’,14’’’の組成物中に存在することができる。
【0049】
SLML14,14’,14’’,14’’’は、それぞれ独立して、約1.5より大
きいかまたは小さい屈折率を有することができる。例えば、各SLML14,14’,1
4’’,14’’’は、約1.5の屈折率を有することができる。各SLML14,14
’,14’’,14’’’の屈折率は、必要とされるカラートラベル度が得られるように
選択することができる。カラートラベルは、L色空間において測定される色相
角の観察角度による変化として定義することができる。いくつかの例では、各SLML1
4,14’,14’’,14’’’は、約1.1~約3.0、約1.0~約1.3、また
は、約1.1~約1.2の範囲の屈折率を有することができる。いくつかの例では、各S
LML14,14’,14’’,14’’’の屈折率は、約1.5未満、約1.3未満、
または、約1.2未満とすることができる。いくつかの例では、SLML14,14’,
14’’,14’’’は、実質的に等しい屈折率、または、互いに異なる屈折率を有する
ことができる。
【0050】
これらのSLML14,14’,14’’,14’’’は、それぞれ、約1.0~約3
.0の範囲の屈折率、例えば、約1.8より大きい、例えば2.0より大きい、また更な
る例として2.5より大きい屈折率を有することができる。高屈折率(>1.8)のSL
ML14,14’,14’’,14’’’を使用すると、干渉条件が角度により変化しに
くくなると考えられる。高屈折率のSLML14,14’,14’’,14’’’は、角
度によるカラートラベルの量を低減することができる。例えば、図2に示すフレークでは
、追加のSLML14’’,14’’’は、反射体16と第1および第2の吸収層12,
12’との間のキャビティにおける反射光の角度変化の量を低減し得ることが期待される
。追加のSLML14’’,14’’’は、第3および第4の吸収体層などの追加の吸収
体層がなくても干渉のための追加キャビティとして機能することができるため、図2のフ
レークは効果的な2キャビティ・デザインになる。
【0051】
SLML14,14’,14’’,14’’’は、それぞれ独立して、約1nm~約1
0000nm、約10nm~約1000nm、約20nm~約500nm、約1nm~約
100nm、約10nm~約1000nm、約1nm~約5000nmの厚さを有するこ
とができる。一態様では、フレーク形態の光学デバイスなどの物品10は、1:1~1:
50のアスペクト比(厚さ:幅)を有することができる。一例では、第1のSLML14
の厚さは第2のSLML14’の厚さと異ってもよい。別の一例では、第1のSLML1
4の厚さは第2の14’の厚さと同じであってもよい。
【0052】
本明細書に記載の物品10の利点の1つは、いくつかの例では、光学的効果が厚さの変
動に対して比較的影響を受けないと思われることである。したがって、いくつかの態様で
は、各SLML14,14’,14’’,14’’’は、独立して、約5%未満の光学厚
さ変動を有し得る。一態様では、各SLML14,14’,14’’,14’’’は、独
立して、層全体で約3%未満の光学厚さ変動を有し得る。一態様では、各SLML14,
14’,14’’,14’’’は、独立して、厚さ約50nmの層全体で約1%未満の光
学厚さ変動を有し得る。
【0053】
第1および第2の吸収体層12,12’は、それぞれ、対応するSLML14,14’
上に配置することができる。どのような構成であろうと、第1および第2の吸収体層12
,12’は、それぞれ独立して、金属または金属合金を含むことができる。一例では、第
1および第2の吸収体層12,12’の材料は、選択的吸収材料および非選択的吸収材料
の両方を含む、任意の吸収材料を含むことができる。例えば、第1および第2の吸収体層
12,12’は、それぞれ独立して、層が少なくとも部分的に吸収性であるかまたは半不
透明である厚さに堆積された非選択的吸収金属材料で形成することができる。非選択的吸
収材料の例は、クロムまたはニッケルなどの灰色の金属であり得る。選択的吸収材料の例
は銅または金であり得る。一態様では、吸収材料はクロムとすることができる。適切な吸
収体材料の非限定的な例としては、クロム、アルミニウム、銀、ニッケル、パラジウム、
白金、チタン、バナジウム、コバルト、鉄、スズ、タングステン、モリブデン、ロジウム
、ニオブ、銅などの金属性吸収体や、炭素、グラファイト、シリコン、ゲルマニウム、サ
ーメット、酸化第二鉄または他の金属酸化物、誘電体マトリックス中で混合された金属、
および、可視スペクトルにおいて均一なまたは選択的な吸収剤として作用することができ
る他の物質などの他の吸収剤が挙げられる。上記の吸収体材料の様々な組み合わせ、混合
物、化合物または合金を使用して、第1および第2の吸収体層12,12’を形成しても
よい。
【0054】
上記吸収体材料の好適な合金の例には、インコネル(Ni-Cr-Fe)、ステンレス
鋼、ハステロイ(Ni-Mo-Fe、Ni-Mo-Fe-Cr、Ni-Si-Cu)、お
よび、チタン系合金、例えば、炭素混合チタン(Ti/C)、タングステン混合チタン(
Ti/W)、ニオブ混合チタン(Ti/Nb)、シリコン混合チタン(Ti/Si)、お
よびそれらの組み合わせが含まれる。第1および第2の吸収体層12,12’に適した化
合物の他の例には、ケイ化チタン(TiSi)、ホウ化チタン(TiB)、およびそ
れらの組み合わせなどのチタン系化合物が含まれるが、これらに限定されない。あるいは
、第1および第2の吸収体層12,12’は、それぞれ独立して、Tiのマトリックス中
に配置されたチタン系合金、または、チタン系合金のマトリックス中に配置されたTiか
ら構成することができる。例えば、図1図2に示すように、第1および第2の吸収体層
12,12’はクロムを含むことができる。
【0055】
第1および第2の吸収体層12,12’はまた、独立して、コバルトニッケル合金など
の磁性材料で形成することができる。これにより、必要な材料数を減らすことによって磁
性カラーシフトデバイスまたは構造体の製造を単純化することができる。
【0056】
第1および第2の吸収体層12,12’は、当該吸収体層材料の光学定数および所望の
ピークシフトに依存して、約1nm~約50nm、例えば約5nm~約10nmの範囲の
物理的厚さを有するように形成することができる。第1および第2の吸収体層12,12
’は、それぞれ同一材料または異なる材料で構成することができ、また、各層は同一のま
たは異なる物理的厚さを有することができる。
【0057】
一態様では、フレーク、ホイルまたはシートの形態の光学デバイスなどの物品10は、
図3に示すように、基板20および剥離層22を備えることもできる。一態様では、剥離
層22は、基板20と第1または第2の吸収体層12,12’との間に配置することがで
きる。
【0058】
本明細書で説明される光学デバイスなどの物品10は、任意の手法で製造することがで
きる。例えば、フレーク(例えば、図1および図2の物品10)を製造し、次いで、分離
、破壊、粉砕等して、光学デバイスを形成するより小さな断片にすることができる。いく
つかの例では、フレーク(例えば、図1および図2の物品10)は、下記および/または
図4を参照して説明するプロセスなどの液体コーティングプロセスによって製造すること
ができるが、これらのプロセスに限定されない。
【0059】
また、基板上に第1の吸収体層を堆積させるステップと;前記第1の吸収体層上に第1
の選択的光変調体層を堆積させるステップと;前記第1の選択的光変調体層上に反射体を
堆積させるステップと;前記反射体上に第2の選択的光変調体層を堆積させるステップと
;前記第2の選択的光変調体層上に第2の吸収体層を堆積させるステップとを含み、前記
第1の選択的光変調体層および前記第2の選択的光変調体層のうちの少なくとも1つは液
体コーティングプロセスを使用して堆積される、物品の製造方法が開示される。
【0060】
図1図3に示す態様に関しては、実際には、物品10を製造するために、第1の吸収
体層12を基板20上に堆積させることができる。基板20は剥離層22を有することが
できる。基板20は可撓性材料で作製することができる。第1の吸収体層12は、従来の
堆積プロセスによって基板20上に堆積させることができる。第1の吸収体層12を基板
20上に堆積させた後、基板20および堆積させた第1の吸収体層12を堆積装置から取
り出すことができる。次いで、基板20および堆積させた第1の吸収体層12を、スロッ
トダイ装置などの液体コーティング装置に導入して、第1の吸収体層12の表面上に第1
のSLML14を堆積させることができる。第1のSLML14を堆積および硬化させた
ら、従来の堆積プロセスで反射体16を第1のSLML14上に堆積させることができる
。その後、上記のプロセスを逆の順序で繰り返す。例えば、液体コーティングプロセスを
使用して、第2の吸収体層12’を反射体16の表面上に堆積させることができる。第2
のSLML14’を硬化させたら、基板20およびすべての堆積層を従来の堆積プロセス
装置に移して第2の吸収層12’を堆積させることができる。
【0061】
別の一態様では、基板20上に第3のSLML14’’を堆積させ、第3のSLML1
4’’上に第1の吸収体層12を堆積させ、第1の吸収体層12上に第1のSLML14
を堆積させ、第1のSLML14上に反射体16を堆積させ、反射体16上に第2のSL
ML14’を堆積させ、第2のSLML14’上に第2の吸収体層12’を堆積させ、そ
して、第2の吸収体層12’上に第4のSLML14’’’を堆積させることにより、物
品10を製造することができ、ここで、第1、第2、第3および第4のSLML14,1
4’,14’’,14’’’は、それぞれ独立して、液体コーティングプロセスにより堆
積される。液体コーティングプロセスには、スロットビードコーティング、スライドビー
ドコーティング、スロットカーテンコーティング、スライドカーテンコーティング、単層
・多層コーティング、引張りウェブスロットコーティング、グラビアコーティング、ロー
ルコーティングなどの液体コーティングプロセスおよび印刷プロセスが含まれるが、これ
らに限定されない。これらのプロセスでは、液体を基板上に塗布して液体層またはフィル
ムを形成し、その後、乾燥および/または硬化して最終的なSLML層とする。
【0062】
いくつかの例では、反射体16、第1の吸収体層12、第2の吸収体層12’の少なく
とも1つは、それぞれ独立して、物理蒸着法、化学蒸着法、薄膜堆積法、原子層堆積法な
どの任意の既知の従来の堆積プロセスによって各層に付与することができ、これは、プラ
ズマ増強したものや流動床などの改良技術を含む。
【0063】
基板20は、堆積された層を受容できる任意の適切な材料とすることができる。適切な
基板材料の非限定的な例としては、ポリエチレンテレフタレート(PET)などのポリマ
ーウェブ、ガラスホイル、ガラスシート、ポリマーホイル、ポリマーシート、金属ホイル
、金属シート、セラミックホイル、セラミックシート、イオン性液体、紙、シリコンウェ
ーハなどが挙げられる。基板20の厚さは変動し得るが、例えば、約2μm~約100μ
m、また更なる例として約10μm~約50μmの範囲とすることができる。
【0064】
次いで、例えば図1および図2に示されるように、物品10を製造するために、基板2
0を堆積層から剥離することができる。一態様では、基板20を冷却して剥離層を脆化す
ることができる。他の一態様では、例えば、加熱および/または光子もしくは電子ビーム
エネルギーによる硬化によって架橋度を高くして剥離層を脆化することができ、これによ
り剥離が可能となる。次に、表面を鋭利に曲げたりブラッシングするなどして、堆積され
た層を機械的に剥がすことができる。剥離された層を既知の技術を用いて切断し、フレー
ク、ホイル、またはシートの形態の光学デバイスなどの物品10とすることができる。
【0065】
別の一態様では、堆積層を基板20から別の表面に移送することができる。堆積層は、
打ち抜きまたは切断して、十分に規定された大きさおよび形状を有する大きなフレークを
製造することができる。
【0066】
上述したとおり、第1、第2、第3および第4のSLML14,14’,14’’,1
4’’’は、スロットダイプロセスなどの液体コーティングプロセスによって堆積させる
ことができる。しかしながら、スロットダイプロセスなどの液体コーティングプロセスは
、例えば約50nm~約700nmの光学厚さでは安定稼働できないと以前は考えられて
いた。特に、薄いウェットフィルムは、溶媒が蒸発するにつれて固体が毛細管力によって
周囲の薄い領域から吸い取られてなる厚い領域の島部を一般的に形成する。この網状外観
は光学コーティングに適合しない。厚さが変動すると広範囲の光路長(広範囲の色など)
となる可能性があり、斑点/凹凸外観となることや、光学コーティングの色均一性が低下
したり色度が低下するからである。
【0067】
本開示の一態様では、SLML14,14’,14’’,14’’’は、スロットダイ
プロセスなどの液体コーティングプロセスを使用して形成することができる。一態様では
、液体コーティングプロセスには、スロットビードコーティング、スライドビードコーテ
ィング、スロットカーテンコーティング、スライドカーテンコーティング、単層・多層コ
ーティング、引張りウェブスロットコーティング、グラビアコーティング、ロールコーテ
ィングなどの液体コーティングプロセスおよび印刷プロセスが含まれるが、これらに限定
されない。これらのプロセスでは、液体を基板上に塗布して液体層またはフィルムを形成
し、その後、乾燥および/または硬化して最終的なSLML層とする。液体コーティング
プロセスは、蒸着法などの他の堆積技術と比較して、より速い速度でSLML14,14
’,14’’,14’’’組成物の移送を可能とすることができる。
【0068】
さらに、液体コーティングプロセスによれば、シンプルな装置セットアップでより多様
な材料をSLML14,14’,14’’,14’’’に使用することができる。開示さ
れた液体コーティングプロセスを使用して形成されたSLML14,14’,14’’,
14’’’は、改善された光学性能を示すことができると考えられる。
【0069】
図4は、液体コーティングプロセスを使用したSLML14,14’,14’’,14
’’’の形成を示す。SLMLの組成物(液体コーティング組成物)はスロットダイ32
0に挿入され、次いで基板340上に堆積されて、ウェットフィルムが得られる。上述の
プロセスを参照すると、基板340は、基板20;図3に示すように、剥離層22を有す
るか有さない基板20および堆積させた第1の吸収体層12;または、剥離層22を有す
るか有さない基板と、反射体16、第1の吸収体層12、第2の吸収体層12’および/
または1つ以上のSLML層などの堆積層の任意の組み合わせとを含むことができる。ス
ロットダイ320の底部から基板340までの距離は、スロットギャップGである。図4
からわかるように、液体コーティング組成物は、ドライフィルム厚Hよりも大きいウェッ
トフィルム厚Dで堆積させることができる。ウェットフィルムを基板340上に堆積させ
た後、ウェットフィルム中に存在する全ての溶媒を蒸発させることができる。液体コーテ
ィングプロセスは、ウェットフィルムの硬化が続き、正しい光学厚さH(約50nm~約
700nmの範囲)を有する硬化された自己平坦化SLML14,14’,14’’,1
4’’’が得られる。SLML14,14’,14’’,14’’’の自己平坦化能によ
り、層全体で光学厚さの変動が低減した層が得られると考えられる。最終的に、自己平坦
化されたSLML14,14’,14’’,14’’’を備える、光学装置などの物品1
0は、向上した光学精度を示すことができる。理解を容易にするために、「ウェットフィ
ルム」および「ドライフィルム」という用語は、SLML14,14’,14’’,14
’’’を生じる液体コーティングプロセスの様々な段階での組成物を指すために使用され
る。
【0070】
液体コーティングプロセスは、所定の厚さDを有するウェットフィルムを達成するため
に、コーティング速度およびスロットギャップGの少なくとも1つを調整するステップを
含むことができる。SLML14,14’,14’’,14’’’は、約0.1μm~約
500μm、例えば約0.1μm~約5μmの範囲のウェットフィルム厚Dで堆積できる
。開示された範囲内のウェットフィルム厚Dで形成されたSLML14,14’,14’
’,14’’’は、安定した(すなわち、畝織り模様やスジなどの破損や欠陥がない)S
LML層をもたらすことができる。一態様では、ウェットフィルムは、最大約100m/
分のコーティング速度のスロットダイビードモードを使用して安定したウェットフィルム
を得る場合、約10μmの厚さを有することができる。別の一態様では、ウェットフィル
ムは、最大約1200m/分のコーティング速度のスロットダイカーテンモードを使用し
て安定したウェットフィルムを得る場合、約6μm~7μmの厚さを有することができる
【0071】
液体コーティングプロセスでは、約0.1~約1000m/分の速度において、ウェッ
トフィルム厚Dに対するスロットギャップGの比を約1~約100とすることができる。
一態様では、当該比は約100m/分のコーティング速度において約9である。一態様で
は、当該比は約50m/分のコーティング速度において約20とすることができる。液体
コーティングプロセスでは、スロットギャップGを約0μm~約1000μmの範囲とす
ることができる。スロットギャップGを小さくすると、ウェットフィルムの厚さを低減す
ることができる。スロットビードモードでは、10μmよりも大きいウェットフィルム厚
さでより速いコーティング速度を達成することができる。
【0072】
液体コーティングプロセスでは、コーティング速度を約0.1~約1000m/分、例
えば約25m/分~約950m/分、例えば約100m/分~約900m/分、また更な
る例として約200m/分~約850m/分とすることができる。一態様では、コーティ
ング速度は約150m/分よりも速く、更なる例では約500m/分よりも速い。
【0073】
一態様では、ビードモード液体コーティングプロセスのコーティング速度は、約0.1
m/分~約600m/分、例えば約50~約150m/分の範囲とすることができる。別
の一態様では、カーテンモード液体コーティングプロセスのコーティング速度は、約20
0m/分~約1500m/分の範囲、例えば、約300m/分~約1200m/分とする
ことができる。
【0074】
ウェットフィルムは溶媒を含み得る。図4に示すように、例えばウェットフィルムの硬
化前に、ウェットフィルムから溶媒を蒸発させることができる。一態様では、SLML1
4,14’,14’’,14’’’の硬化前に、溶媒の約100%、例えば約99.9%
を、また更なる例としては約99.8%を、SLML14,14’,14’’,14’’
’の組成物から蒸発させることができる。更なる一態様では、微量の溶媒が硬化/乾燥S
LML14,14’,14’’,14’’’中に存在することができる。
【0075】
一態様では、溶媒がより多く残存したウェットフィルムは、フィルム厚Hが低減したド
ライフィルムをもたらすことができる。特に、高い重量パーセントの溶媒を有し、かつ、
大きいウェットフィルム厚Dで堆積されたウェットフィルムからは、ドライフィルム厚H
が小さいSLML14,14’,14’’,14’’’が得られる。なお、溶媒蒸発後は
、ウェットフィルムは液体のままであり、そのため、皮張り(スキニング)や、液体コー
ティングプロセスにおけるその後の硬化ステップ中の島形成などの問題が回避される。
【0076】
ウェットフィルムの動的粘度は、約0.5~約50cP、例えば約1~約45cPの範
囲、また更なる例として約2~約40cPの範囲とすることができる。粘度測定温度は2
5℃であり、レオロジーは、0.025mmのギャップ設定で角度0.3°の直径40m
mのコーン/プレートを使用した、溶媒トラップを備えたAnton Paar MCR
101レオメーターで測定した。
【0077】
一態様では、SLML14,14’,14’’,14’’’の組成および溶媒は、液体
コーティングプロセスを使用してSLMLを精密コーティングするために、ウェットフィ
ルムがニュートン挙動を示すように選択することができる。ウェットフィルムは、最大1
0,000s-1以上のニュートン挙動せん断速度を示すことができる。一態様では、液
体コーティングプロセスのせん断速度は、最大25m/分のコーティング速度では100
0s-1、例えば、最大100m/分のコーティング速度では3900s-1、また更な
る例として最大200m/分のコーティング速度では7900s-1とすることができる
。厚さ1μmなど、非常に薄いウェットフィルム上で最大せん断速度が生じ得ることが理
解されるであろう。ウェットフィルムの厚さが増加するにつれて、せん断速度は減少する
と予想され、例えば10μmのウェットフィルムでは15%減少、また更なる例として2
0μmのウェットフィルムでは30%減少すると予想される。
【0078】
ウェットフィルムからの溶媒の蒸発は、擬塑性挙動への粘度挙動の変化を引き起こすこ
とができ、これは、精密SLML14,14’,14’’,14’’’を得るのに有益で
あり得る。溶媒蒸発後の堆積されたSLML14,14’,14’’,14’’’の動的
粘度は、約10cP~約3000cP、例えば約20cP~約2500cP、また更なる
例として約30cP~約2000cPの範囲とすることができる。溶媒が存在する場合、
ウェットフィルムから蒸発させると、擬塑性挙動まで粘度が増加し得る。擬塑性挙動はウ
ェットフィルムの自己平坦化を可能にすることができる。
【0079】
一態様では、上記方法は、既知の技術を用いてウェットフィルム中に存在する溶媒を蒸
発させるステップを含むことができる。溶媒の蒸発に要する時間は、ウェブ/基板の速度
および乾燥機の能力に依存し得る。一態様では、乾燥機(図示せず)の温度は、約120
℃未満、例えば約100℃未満、また更なる例として約80℃未満とすることができる。
【0080】
液体コーティングプロセスを用いて堆積されたウェットフィルムは、既知の技術を用い
て硬化させることができる。一態様では、ウェットフィルムは、紫外線、可視光線、赤外
線、または、電子ビームを使用して硬化させることができる。硬化は、不活性または周囲
雰囲気中で進行することができる。一態様では、硬化ステップは、波長約395nmの紫
外線光源を利用する。紫外線光源は、約200mJ/cm~約1000mJ/cm
例えば約250mJ/cm~約900mJ/cm、また更なる例として300mJ/
cm~約850mJ/cmの範囲の線量でウェットフィルムに適用することができる
【0081】
ウェットフィルムは公知の技術によって架橋することができる。非限定的な例としては
、フリーラジカル重合、分光増感光誘起フリーラジカル重合、光誘起カチオン重合、分光
増感光誘起カチオン重合、光誘起付加環化などの光誘起重合;電子ビーム誘起フリーラジ
カル重合、電子ビーム誘起カチオン重合、電子ビーム誘起付加環化などの電子ビーム誘起
重合;および、熱誘起カチオン重合などの熱誘起重合が挙げられる。
【0082】
液体コーティングプロセスを使用して形成されたSLML14,14’,14’’,1
4’’’は改善された光学性能を示すことができる。すなわち、SLML14,14’,
14’’,14’’’は精密SLMLであり得る。いくつかの例では、精密SLML14
,14’,14’’,14’’’は、層全体で約3%未満の光学厚さ変動を有するSLM
Lを意味すると理解することができる。
【0083】
一態様では、本明細書に開示された物品を液体媒体に加えてカラーシフト着色剤を生成
するステップと;基板の少なくとも一部に前記カラーシフト着色剤を適用するステップと
を含み、前記カラーシフト着色剤は、高彩度および高フロップのうちの少なくとも1つを
示す、基板上に金属外観を生成する方法も開示される。
【0084】
フレークなどのカラーシフト物品をサイジングした後、それらを他のフレークとブレン
ドして、所望の結果を達成するために異なる色相、色度および明度のフレークを加えるこ
とによって必要な色を達成することができる。次いで、カラーシフトフレークは、塗料、
インク、または他の高分子顔料ビヒクルなどの高分子媒体中に、従来の方法で使用するた
めに分散させることができる。同時に、他の種類の添加剤を顔料ビヒクルと混合して最終
的な所望の効果を得ることができる。これらの添加剤としては、アルミニウムフレーク、
グラファイト、カーボンアルミニウムフレーク、マイカフレークなどのラメラ状顔料や、
アルミニウム粉末、カーボンブラックなどの非ラメラ状顔料、および、二酸化チタンなど
の他の有機・無機顔料などが含まれる。これを行うことにより、高い色度の耐久性のある
塗料またはインクが使用できる状態となる。
【0085】
本発明のカラーシフトフレークは、非シフト性の高色度プレートレットと組み合わせて
ユニークな色効果を生みだすことができる。さらに、このカラーシフトフレークは、Mg
/アルミニウム/MgFプレートレットなどの高反射性プレートレットと組み合わ
せて、さらなる色効果を生じさせることができる。
【0086】
一例として、本発明による干渉フレークを利用して達成され得る色は、金から緑、緑か
らマゼンタ、青から赤、緑から銀、マゼンタから銀などのカラーシフトを呈し得る。
【0087】
本開示のカラーシフトフレークは、様々な用途の塗料やインクなどの着色剤に容易にか
つ経済的に利用することができる。このカラーシフトフレークを使用した着色剤は、多く
の種々の物体および紙に適用することができる。このような物体および紙の例には、電動
車両、通貨およびセキュリティ文書、家電製品、建築構造物、フローリング、布地、電子
パッケージング/ハウジング、おもちゃなどが含まれる。
【0088】
本明細書に開示される方法で使用するための従来の堆積プロセスには、物理蒸着法(P
VD)、機械的振動粒子床上へのスパッタリング、金属有機化合物の熱分解による分解、
CVD流動床が含まれるが、これらに限定されない。
【0089】
一例では、SLMLは、SLMMとして溶剤染料を使用する脂環式エポキシ樹脂ホスト
を含み、反射体はアルミニウムを含む。
【0090】
一例では、SLMLは、SLMPとしてジケトピロロピロール不溶性赤色染料を使用す
る脂環式エポキシ樹脂ホストを含み、反射体はアルミニウムを含む。
【0091】
一例では、SLMLは、SLMPとして白色顔料(チタニア)を使用するアクリレート
オリゴマー樹脂ホストを含む。
【0092】
一例では、SLMLは、SLMLとして黒色の赤外線(IR)透過顔料を使用するアク
リレートオリゴマー樹脂ホストを含み、反射体はアルミニウムを含む。
【0093】
前記選択的光変調体システムは、選択的光変調体分子、選択的光変調体粒子、および、
添加物を含む、請求項6に記載の物品。
【0094】
前記選択的光変調体分子は、有機顔料、無機顔料、量子ドット、TiO、ZrO
In、In-SnO、SnO、Fe、WO、ZnS、Cu
、ミセル、カルコゲニド、カーボネート、フッ化物、および、それらの混合物を含む、請
求項11に記載の物品。請求項1に記載の物品と、液体媒体とを含む、カラーシフト着色
剤。
【0095】
基板上に第1の吸収体層を堆積させるステップと;前記第1の吸収体層上に第1の選択
的光変調体層を堆積させるステップと;前記第1の選択的光変調体層上に反射体を堆積さ
せるステップと;前記反射体上に第2の選択的光変調体層を堆積させるステップと;前記
第2の選択的光変調体層上に第2の吸収体層を堆積させるステップとを含み、前記第1の
選択的光変調体層および前記第2の選択的光変調体層のうちの少なくとも1つは液体コー
ティングプロセスを使用して堆積される、物品の製造方法。前記液体コーティングプロセ
スは、前記堆積された第1および第2の選択的光変調体層のそれぞれを硬化させるステッ
プを含む、請求項14に記載の方法。前記第1および第2の選択的光変調体層は、それぞ
れ、溶媒を含み、前記堆積された第1および第2の選択的光変調体層を硬化する前に、前
記堆積された第1および第2の選択的光変調体層のそれぞれから前記溶媒を蒸発させるス
テップをさらに含む、請求項14に記載の方法。前記堆積された第1および第2の選択的
光変調体層それぞれの粘度は10~3000cPである、請求項14に記載の方法。前記
第1および第2の選択的光変調体層は、それぞれ、約0.1~約1000m/分の速度で
堆積される、請求項14に記載の方法。溶媒の重量パーセントがより大きい前記第1およ
び第2の選択的光変調体層は、それぞれ、硬化膜厚さがより小さい第1および第2の選択
的光変調体層をもたらす、請求項14に記載の方法。
【0096】
請求項1に記載の物品を液体媒体に加えてカラーシフト着色剤を生成するステップと;
基板の少なくとも一部に前記カラーシフト着色剤を適用するステップとを含み、前記カラ
ーシフト着色剤は、高彩度および高フロップを示す、基板上に金属外観を生成する方法。
【0097】
前述の説明から、当業者は、本教示が様々な形態で実施できることを理解することがで
きる。したがって、これらの教示は、特定の実施形態およびその実施例に関連して説明し
たが、本教示の真の範囲はそれに限定されるべきではない。本明細書の教示の範囲から逸
脱することなく、様々な変更および修正を行うことができる。
【0098】
この範囲の開示は、広く解釈されるべきである。本開示は、本明細書で開示されるデバ
イス、活動および機械的動作を達成するための均等物、手段、システムおよび方法を開示
することを意図する。開示された各デバイス、物品、方法、手段、機械的要素または機構
について、本開示はまた、その開示および教示において、本明細書に開示される多くの態
様、機構およびデバイスを実施する均等物、手段、システムおよび方法を教示することが
意図される。さらに、本開示は、コーティングおよびその多くの態様、特徴および要素に
関する。このようなデバイスは、その使用および動作において動的であり得るが、本開示
は、当該デバイスおよび/または光学デバイスならびにその多くの態様の均等物、手段、
システムおよびその使用方法、ならびに、本明細書に開示した説明および作用・機能の精
神と一致する多くのその態様を包含する。本出願の特許請求の範囲も同様に広義に解釈さ
れるべきである。
【0099】
本発明の多くの実施形態の説明は、事実上単なる例示であり、したがって、本発明の要
旨を逸脱しない変形形態は、本発明の範囲内にあることが意図される。そのような変形は
、本発明の精神および範囲からの逸脱と見なすべきではない。
図1
図2
図3
図4