(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-16
(45)【発行日】2022-09-28
(54)【発明の名称】事前曝露取得を使用したトモシンセシスデータセット生成
(51)【国際特許分類】
A61B 6/02 20060101AFI20220920BHJP
A61B 6/00 20060101ALI20220920BHJP
A61B 6/03 20060101ALI20220920BHJP
【FI】
A61B6/02 300M
A61B6/00 330Z
A61B6/00 350P
A61B6/03 310Z
A61B6/03 350Z
A61B6/02 ZDM
【外国語出願】
(21)【出願番号】P 2021079914
(22)【出願日】2021-05-10
【審査請求日】2021-06-23
(32)【優先日】2020-05-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】319011672
【氏名又は名称】ジーイー・プレシジョン・ヘルスケア・エルエルシー
(74)【代理人】
【識別番号】100105588
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100151286
【氏名又は名称】澤木 亮一
(72)【発明者】
【氏名】シルバン・バーナード
(72)【発明者】
【氏名】レミー・クラウス
(72)【発明者】
【氏名】ベロニク・フェリックス
(72)【発明者】
【氏名】ザビエル・マンカルディ
【審査官】佐野 浩樹
(56)【参考文献】
【文献】特開2016-135319(JP,A)
【文献】特表2016-533803(JP,A)
【文献】特開2014-128716(JP,A)
【文献】米国特許出願公開第2012/0063567(US,A1)
【文献】米国特許出願公開第2018/0130201(US,A1)
【文献】米国特許出願公開第2006/0269041(US,A1)
【文献】米国特許出願公開第2018/0078231(US,A1)
【文献】国際公開第2015/046248(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B6/00-6/14
(57)【特許請求の範囲】
【請求項1】
患者の器官(102)の合成2D画像を生成する方法(300、400、500)であって、
X線エネルギーに前記器官(102)を曝露することによって前記器官(102)の事前曝露画像を得ること(502)と、
取得された前記事前曝露画像に基づいて
決定されたパラメータに基づいて、前記器官(102)に対して複数の配向にX線エミッタ(120)を回転させ、複数の投影画像の各投影画像について前記エミッタ(120)から
前記事前曝露画像を得るために使用されるエネルギーレベルとは異なるエネルギーレベルのX線エネルギーを放出することによって前記器官(102)の前記複数の二次元(2D)トモシンセシス投影画像を得ること(504)と、
前記事前曝露画像および前記複数のトモシンセシス投影画像から前記器官(102)の合成2D画像を生成すること(508)と
を含む、方法(300、400、500)。
【請求項2】
前記事前曝露画像は、前記合成2D画像を生成する前に、前記複数の2D投影画像の少なくとも1つとマージされる、請求項1に記載の方法(300、400、500)。
【請求項3】
前記マージすることは、患者の動きの場合、および/または前記事前曝露画像と前記トモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される、請求項2に記載の方法(300、400、500)。
【請求項4】
ベースライン画像として取得された前記事前曝露画像を利用することと、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含む、請求項1に記載の方法(300、400、500)。
【請求項5】
ベースライン画像として取得された前記マージされた画像を利用することと、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含む、請求項2に記載の方法(300、400、500)。
【請求項6】
ベースライン画像として前記トモシンセシス投影画像の1つ
であるDBT中央投影画像を利用することと、
前記
DBT中央投影画像と前記事前曝露画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含
み、
前記DBT中央投影画像と前記事前曝露画像は、前記器官(102)に直交した同じ位置で取得される、請求項1に記載の方法(300、400、500)。
【請求項7】
前記器官(102)の前記事前曝露画像および前記器官(102)の前記複数の2Dトモシンセシス投影画像は、前記器官(102)の同じ圧迫中に得られる、請求項1に記載の方法(300、400、500)。
【請求項8】
前記複数の二次元(2D)トモシンセシス投影画像の各々を得るために使用されるX線エネルギーレベルは、前記事前曝露画像を得るために使用されるX線エネルギーレベルよりも低い、請求項
4に記載の方法(300、400、500)。
【請求項9】
患者の器官(102)の合成2D画像を生成する方法(300、400、500)であって、
X線エネルギーに前記器官(102)を曝露することによって前記器官(102)の事前曝露画像を得ること(502)と、
取得された前記事前曝露画像に基づいて
決定されたパラメータに基づいて、前記器官(102)に対して複数の配向にX線エミッタ(120)を回転させ、複数の投影画像の各投影画像について前記エミッタ(120)から
前記事前曝露画像を得るために使用されるエネルギーレベルとは異なるエネルギーレベルのX線エネルギーを放出することによって前記器官(102)の前記複数の二次元(2D)トモシンセシス投影画像を得ること(504)と、
前記2Dトモシンセシス投影画像および前記事前曝露画像を使用して3Dボリュームを再構成すること(506)と、
前記再構成された3Dボリュームから合成2D画像を生成すること(508)と
を含む、方法(300、400、500)。
【請求項10】
前記複数の2Dトモシンセシス投影画像の1つは、前記3Dボリュームを再構成して前記合成2D画像を生成する前に、前記事前曝露画像によって置き換えられる、請求項9に記載の方法(300、400、500)。
【請求項11】
前記3Dボリュームのエリアを抽出することと、
前記3Dボリュームから抽出された前記エリアで前記事前曝露画像を強調することと
をさらに含む、請求項9に記載の方法(300、400、500)。
【請求項12】
2D放射線画像を合成するためのシステム(100)であって、
X線を発生することが可能なX線エミッタ(120)であって、複数の配向に回転可能なX線エミッタ(120)と、
前記X線エミッタ(120)と少なくとも部分的に位置合わせされたX線検出器(122)と、
前記X線エミッタ(120)および前記X線検出器(122)に動作可能に接続されたプロセッサ(114)であって、前記プロセッサ(114)は、前記X線エミッタ(120)および前記検出器(122)を動作させて器官(102)の事前曝露画像を取得させ、その後、取得された前記事前曝露画像に基づいて
決定されたパラメータに基づいて、前記X線エミッタ(120)および前記検出器(122)を動作させて撮像される器官(102)の周りを回転させ、
前記事前曝露画像を得るために使用されるエネルギーレベルとは異なるエネルギーレベルのX線で前記器官(102)の複数の二次元(2D)トモシンセシス投影画像を得、前記プロセッサ(114)は、前記事前曝露画像および前記複数のトモシンセシス投影画像から2D画像を合成するプロセッサ(114)と、
前記合成2D画像を表示するためのディスプレイ(116)と
を備える、システム(100)。
【請求項13】
前記プロセッサ(114)は、ベースライン画像として取得された前記事前曝露画像を利用し、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成する、
請求項12に記載のシステム(100)。
【請求項14】
前記プロセッサ(114)は、前記複数の2Dトモシンセシス投影画像からのデータを使用してトモシンセシス曝露中に取得された投影画像を強調し、
前記強調された投影画像を使用することによって前記器官(102)の合成2D画像を生成する、
請求項12に記載のシステム(100)。
【請求項15】
前記プロセッサ(114)は、前記2Dトモシンセシス投影画像および前記事前曝露画像を使用して3Dボリュームを再構成し、
前記再構成された3Dボリュームから合成2D画像を生成する、
請求項12に記載のシステム(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される主題の実施形態は、事前曝露(pre-exposure)取得を使用したトモシンセシスおよびトモシンセシスデータセット生成の分野、より詳細には、トモシンセシス投影画像および事前曝露X線画像を使用した2D放射線画像の合成に関する。
【背景技術】
【0002】
医療業界では、人体における対象物体を非侵襲的に検査するための様々な放射線撮像技法が貴重になっており、画像コンテンツ、画像タイプの利用可能性、および画質における改善が引き続き望まれている。例えば、マンモグラフィは、乳がんを検出および診断するための一般的かつ標準的なスクリーニング手法である。標準の二次元(2D)マンモグラムは、X線源(エミッタ)と検出器との間に乳房を位置決めし、線源から放出されて乳房組織を通過するX線に検出器を曝露し、検出器によって受け取られたデータから2D画像を生成することを伴う。しかし、結果として得られる標準の(またはフルフィールド)2Dマンモグラム画像は、撮像された組織内の異常が異常の上および/または下の組織によってマスクされる可能性がある組織の重ね合わせによって制限される場合がある。
【0003】
デジタル乳房トモシンセシス(DBT)は、一連のスライスまたは層として検討可能な乳房組織の三次元(3D)(ボリューム)表現を提供する放射線撮像技法である。スライスは、例えば、円弧全体でターゲット物体およびその下の検出器上でX線エミッタ(X線源)を移動させることによって得られる、様々な角度で撮影された対象物体の投影から再構成される。トモシンセシス(または単に、DBT)を使用して生成された3Dスライスは、再構成された3Dボリュームの複数の層(スライス)を検討し、例えば、撮像された物体内の特に関心のあるエリアを見つけることによって、撮像された物体をよりよく検査する能力を医師に提供する。しかし、DBT画像は、一般に、少なくとも部分的には幾何学的レイアウトのために、従来のマンモグラフィ法を使用して生成された2D画像と直接比較することはできない。
【0004】
前述のように、2D画像はフルボリュームの投影であるが、DBTはボリューム全体を通したスライスのセットを生成する。DBTでは、放射線技師はかなりの数の画像(すべての層)を観察する必要があるが、2D画像では1つの画像しか観察されない。これにより、読み取り時間が大幅に増加する(2倍以上)。もう1つの制限は、患者が以前の単純な2D画像を医療専門家に提示するとき、DBTによって入手されたスライスのセットと比較することが難しいことであり、また、比較のために2D画像を再度取得する必要があるため、患者に追加の照射が行われる。これらおよび他の理由により、DBT技法が改善され、DBT技術が医師によってより一般的に採用および使用されるようになったとしても、医療専門家および放射線技師は、よりよく知られている2Dマンモグラフィ画像の提供を依然として望んでいる。
【0005】
比較的最近利用可能なトモシンセシス画像の提供に加えて、2Dマンモグラムの要望に対処するために、画像の組み合わせ取得を実施することができる。すなわち、2Dマンモグラム画像と3Dデジタル乳房トモシンセシス画像の両方が、同じ対象物体に対して取得される。しかし、トモシンセシス撮像からの平均線量は従来のマンモグラム2D撮像よりも高いかほぼ同じであるため、2DマンモグラムとDBTの組み合わせに必要な放射線曝露は、いずれかの方法のみの場合の約2倍になる可能性がある。したがって、総X線線量を低減および最小限に抑えるために、2つの検査を効果的に実施せずに、DBT画像に加えて既知の2Dマンモグラムの情報を生成または取得する必要がある。
【0006】
したがって、トモシンセシスを使用して2Dマンモグラム画像を合成するための方法、およびトモシンセシスデータセットを生成し、ターゲット物体によって受け取られるX線線量を最小限に抑えながら品質が改善された合成2D画像を得るための方法が望まれている。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【0008】
一態様では、本開示は、検出器に面するX線源を備えるシステムを使用して、対象物体の少なくとも1つの強調された画像を得るための方法を対象とする。例示的な実施形態では、患者の器官の合成2D画像を生成する方法は、X線エネルギー(x-ray energization)に器官を曝露することによって器官の事前曝露画像を得ることと、取得された事前曝露画像に基づいて、器官に対して複数の配向にX線エミッタを回転させ、複数の投影画像の各投影画像についてエミッタからX線エネルギーを放出することによって器官の複数の二次元(2D)(またはトモシンセシス)投影画像を得ることと、事前曝露画像および複数のトモシンセシス投影画像から器官の合成2D画像を生成することとを含む。
【0009】
一態様では、方法は、事前曝露画像をソース位置に最も近いトモシンセシス投影画像の少なくとも1つとマージしてマージされた事前曝露画像を作成することをさらに含み、ソース位置は、事前曝露画像が得られる位置である。
【0010】
一態様では、マージすることは、患者の動きの場合、および/または事前曝露画像とトモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される。
【0011】
一態様では、方法は、ベースライン画像として取得された事前曝露画像を利用することと、トモシンセシス投影画像の情報でベースライン画像を強調することによって器官の合成2D画像を生成することとをさらに含む。
【0012】
一態様では、方法は、ベースライン画像としてトモシンセシス投影画像の1つを利用することと、トモシンセシス投影画像と事前曝露画像の情報でベースライン画像を強調することによって器官の合成2D画像を生成することとをさらに含む。
【0013】
一態様では、方法は、ディスプレイに合成2D画像を表示することをさらに含む。
【0014】
一態様では、器官の事前曝露画像および器官の複数の2D(トモシンセシス)投影画像は、器官の同じ圧迫中に得られる。
【0015】
一態様では、複数の二次元(2D)(トモシンセシス)投影画像の各々を得るために使用されるX線エネルギーレベルは、事前曝露画像を得るために使用されるX線エネルギーレベルよりも低い。
【0016】
例示的な実施形態では、患者の器官の合成2D画像を生成する方法は、X線エネルギーに器官を曝露することによって器官の事前曝露画像を得ることと、取得された事前曝露画像に基づいて、器官に対して複数の配向にX線エミッタを回転させ、複数の投影画像の各投影画像についてエミッタからX線エネルギーを放出することによって器官の複数の二次元(2D)(またはトモシンセシス)投影画像を得ることと、トモシンセシス投影画像および事前曝露画像を使用して3Dボリュームを再構成することと、再構成された3Dボリュームから合成2D画像を生成することとを含む。
【0017】
一態様では、事前曝露画像は、3Dボリュームを再構成して合成2D画像を生成する前に、複数の2D(トモシンセシス)投影画像に含まれる。
【0018】
一態様では、複数の2D(トモシンセシス)投影画像の1つは、3Dボリュームを再構成して合成2D画像を生成する前に、事前曝露画像によって置き換えられる。
【0019】
一態様では、複数の2D投影画像の1つは、3Dボリュームを再構成して合成2D画像を生成する前に、事前曝露画像と組み合わされる。
【0020】
一態様では、合成2D画像は、少なくとも再構成されたスライスのサブセットを使用して事前曝露画像を強調することによって得られる。
【0021】
1つの例示的な実施形態では、2D放射線画像を合成するためのシステムは、X線を発生することが可能なX線エミッタであって、複数の配向に回転可能なX線エミッタと、X線エミッタと少なくとも部分的に位置合わせされたX線検出器と、X線エミッタおよびX線検出器に動作可能に接続されたプロセッサであって、プロセッサは、X線エミッタおよび検出器を動作させて器官の事前曝露画像を取得させ、その後、取得された事前曝露画像に基づいて、X線エミッタおよび検出器を動作させて撮像される器官の周りを回転させ、器官の複数の二次元(2D)(またはトモシンセシス)投影画像を得、プロセッサは、事前曝露画像および複数のトモシンセシス投影画像から2D画像を合成するプロセッサと、合成2D画像を表示するためのディスプレイとを含む。
【0022】
一態様では、プロセッサは、事前曝露画像をトモシンセシス投影画像の少なくとも1つとマージしてマージされた事前曝露画像を作成し、トモシンセシス投影画像の情報でマージされた事前曝露画像を強調することによって器官の合成2D画像を生成する。
【0023】
一態様では、マージすることは、患者の動きの場合、および/または事前曝露画像とトモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される。
【0024】
一態様では、プロセッサは、ベースライン画像として取得された事前曝露画像を利用し、トモシンセシス投影画像の情報でベースライン画像を強調することによって器官の合成2D画像を生成する。
【0025】
一態様では、プロセッサは、複数の2D(トモシンセシス)投影画像からのデータを使用してトモシンセシス曝露中に取得された投影画像を強調し、強調された投影画像を使用することによって器官の合成2D画像を生成する。
【0026】
一態様では、複数の二次元(2D)(トモシンセシス)投影画像の各々を得るために使用されるX線エネルギーレベルは、事前曝露画像を得るために使用されるX線エネルギーレベルよりも低い。
【0027】
一態様では、プロセッサは、2D(トモシンセシス)投影画像および事前曝露画像を使用して3Dボリュームを再構成し、再構成された3Dボリュームから合成2D画像を生成する。
【0028】
上記の簡単な説明は、詳細な説明でさらに説明される概念の選択を簡略化した形で紹介するために提供されていることを理解されたい。特許請求される主題の重要なまたは本質的な特徴を特定することは意図されておらず、その主題の範囲は詳細な説明に続く特許請求の範囲によって一義的に定義される。さらに、特許請求される主題は、上記のまたは本開示の任意の部分に記載の欠点を解決する実施態様に限定されない。
【0029】
本発明は、添付の図面を参照しながら、以下の非限定的な実施形態の説明を読むことからよりよく理解されるであろう。
【図面の簡単な説明】
【0030】
【
図1】デジタル乳房トモシンセシス画像の取得、および事前曝露取得情報を使用したトモシンセシスデータセット生成のための例示的な医療撮像システムの概略図である。
【
図2】いくつかの実施形態による、事前曝露撮像のための位置合わせ、およびDBT放射線画像を取得するための物体の周りの撮像装置の回転を図示する図である。
【
図3】事前曝露画像取得、およびターゲット物体のDBT画像を取得するための曝露のパラメータの決定を伴う方法の例示的な実施形態のフローチャートである。
【
図4】トモシンセシスを使用して患者の器官を撮像し、事前曝露画像情報を使用して撮像された器官の2D画像を合成する方法の例示的な実施形態を図示するフローチャートである。
【
図5】トモシンセシスを使用して器官を撮像し、トモシンセシス投影のセットならびにトモシンセシス投影を取得するためのパラメータの決定に使用される事前曝露画像を使用して3Dボリュームを再構成する方法の例示的な実施形態のフローチャートである。
【発明を実施するための形態】
【0031】
以下の説明は、デジタル乳房トモシンセシス(DBT)を使用して2D X線画像を合成し、連続スイープ中に取得された投影画像(またはDBTシーケンスを含む複数の画像)と組み合わせて、第1の別個の曝露(または事前曝露)から取得された投影画像を使用して合成2D画像を提供するためのシステムおよび方法の様々な実施形態に関する。方法は、複数のDBT画像を取得するためのパラメータを確立するために使用される事前曝露画像を利用して、改善および強調された合成2D放射線画像を提供する。
【0032】
本出願は、マンモグラフィの場面で提示および説明されているが、他の放射線用途ならびに他の器官および器官系の撮像が、本明細書に開示されるシステムおよび方法を使用して実施されてもよいことを理解されたい。
【0033】
概要として、
図1は、実施形態による2D放射線画像を合成するための例示的なシステムを示す。
図2は、
図1に示したシステムの一部を示しており、事前曝露画像は、デジタル乳房トモシンセシス(DBT)の一連の画像、およびDBTの連続スイープまたは異なる投影角度での一連の画像に着手する前に取得される。
図3は、事前曝露画像取得、および(後続の)DBT投影についての曝露のパラメータの決定を伴う例示的な方法のフローチャートを提供する。
図4および
図5は、DBT投影からの情報を使用して撮像されたターゲット物体の2D画像と、後続のDBTシーケンスのパラメータを決定するために取得された事前曝露画像を合成する例示的な方法のフローチャートを提供する。
【0034】
図1には、デジタル乳房トモシンセシス画像の取得、および事前曝露取得情報を使用したトモシンセシスデータセット生成のための医療撮像システム100の例示的な実施形態の概略図が示されている。例示的なシステム100は、画像取得ユニット112、画像処理ユニット114、任意選択でメモリ記憶ユニット130、グラフィックディスプレイ116、ならびに/または(図示せず)外部記憶および表示のためのネットワーク(例えば、画像保管通信システムすなわちPACS)への接続を含む。画像取得ユニット112は、cアーム118を含む。cアーム118は、両端に、X線エミッタ120およびX線検出器122を含む。
【0035】
システム100は、下部支持体124と、圧迫プレート126(圧迫パドル126と呼ばれることもある)とを含む。撮像される器官、例えば、患者の乳房は、下部支持体124上に載置される。下部支持体124は、X線エミッタ120とX線検出器122との間のcアーム118との相対的な軸方向の位置合わせで器官を保持する。圧迫支持体126が、下部支持体124と圧迫プレート126との間で器官102を圧迫するために下げられる。
【0036】
概して、支持体126と124との間などの器官の圧迫は、特に2Dのみのマンモグラフィでは、撮像品質を改善するために重要である。圧迫は、一般に、乳房の正常な線維腺(またはより密度の高い)組織を広げるのに役立ち、医師/放射線技師が乳房組織を区別し、場合によっては上にある(または重ねられた)組織によって隠されている場合がある異常を検出するのを容易にする。乳房が十分に圧迫されていない場合、重複する組織が現れ、腫瘤または異常として解釈される可能性がある。DBTは、前述のように、重ね合わせの問題に対する改善を提供する。その結果、DBTの場面では、器官の圧迫は主に乳房の厚さを減らすために使用され、したがって撮像、およびDBT取得シーケンス中に器官を固定化するために必要な照射を低減する。
【0037】
器官の放射線画像を取得する際、X線エミッタ120は、器官(またはターゲット物体)102の方向に投影されるX線を発生するように動作する。X線は、器官102を通過して検出器122に到達する。例示的な実施形態では、撮像システム100はまた、散乱防止グリッド128を備えていてもよい。散乱防止グリッド128は、cアーム118の動きに平行な方向に、互いに平行に配置された複数の不透明な構成要素を含み得る。このような散乱防止グリッドは、典型的には、患者の体内で放出されたX線の広がりの影響を制限するために使用される。
【0038】
cアーム118は、例えば、下部支持体124と圧迫支持体126との間に例示的に保持される圧迫位置で器官102と同軸に位置合わせされ得、cアーム118は、この位置に保持される器官102の周りを回転するように動作可能である。cアーム118の回転中、散乱防止グリッド128および検出器122は、cアーム118と共に回転するかどうかにかかわらず、回転することができる。いくつかの実施形態では、画像検出器122は、DBTスイープの中、固定されたままである。すなわち、いくつかの実施形態では、器官102および検出器122は、DBTスイープ/シーケンス中、エミッタ120が器官102(および検出器122)に対して移動する間は互いに固定された位置合わせのままである。いくつかの実施形態では、アセンブリ全体(画像取得ユニット)112は、同時に回転し、患者の解剖学的構造に対して投影を変更することができる(例えば、垂直、横方向など)。
【0039】
図1に図示されるシステム100は、エミッタ120と検出器122が位置合わせされて維持されるようにエミッタ120と連動して回転可能なX線検出器122を示しているが、医療撮像システムの追加の実施形態では、検出器122は、例えば、X線検出器122を下部支持体124に位置することによって(
図2に示すように)、器官102に対して固定位置に保持され得ることが認識されるであろう。
【0040】
また、
図1に示すように、画像処理ユニット114は、非一時的コンピュータ可読媒体を備え得るメモリユニット130に接続され得るか、または組み込むことができる。メモリユニット130は、プロセッサ114の内側または外側に位置することができる。プロセッサ114は、メモリユニット130との間で情報を読み書きするように動作することができる。メモリユニット130は、ハードディスクもしくはSSD、または任意の他の書き換え可能および/もしくは取り外し可能な記憶媒体、例えばUSBフラッシュドライブ、メモリカードなどを備えてもよい。メモリユニット130は、プロセッサ114のROM/RAMメモリ、フラッシュメモリ、および/または遠隔に位置するサーバ上のメモリであり得る。メモリは、プロセッサ114によってアクセス可能であり、かつプロセッサ114によって実行可能であり、本明細書に開示されるように取得ユニット制御、画像処理、ならびに表示機能および動作ならびに方法を実施する1つまたは複数のプログラム、ルーチン、アルゴリズム、またはサブルーチンを具体化するコンピュータ可読命令/コードでさらにプログラムすることができる。いくつかの実施形態では、画像処理ユニット114は、前述のように、外部記憶および表示のためのネットワーク(例えば、画像保管通信システムすなわちPACS)への接続を備え得、画像処理ユニット114は、システム100によってもたらされた画像を記憶、検索、提示、および/または共有することを可能にするように適合される。
【0041】
図2は、事前曝露取得およびDBT画像取得中のX線エミッタ120の例示的な相対的位置決め200を示している。特に、
図2は、事前曝露画像を取得するための例示的な位置合わせと、DBTシーケンスを実施して事前曝露画像取得に続いてDBT放射線画像を取得するための器官(ターゲット物体)102に対するX線エミッタ120の例示的な移動を図示する。示すように、エミッタ120は、検出器122に垂直(直交)(または実質的に垂直であり、約0°の所定の許容範囲内、例えば、+/-0.5°の所定の許容範囲内)である軸202に沿ってゼロ(「0°」)または中心(または「中央」)位置204に位置合わせ可能であり得る。軸202は、示すように、器官(ターゲット物体)102および検出器122の一方または両方に実質的に直交し得る。一実施形態では、直交または中心位置204は、所定の許容範囲内で、事前曝露画像が取得される位置を表し、これは事前曝露画像が取得されるソース位置とも呼ばれ、後続のDBTシーケンスの曝露(またはDBTスイープ)に必要なパラメータを確立する。後続のDBTシーケンスに必要なパラメータの決定には、検査される特定のターゲット物体102について、同等の放射線厚さの決定、検査される幅の組成の推定、ならびに曝露の構成および曝露のmA.s(すなわち、陽極電流と曝露時間の積)の確立が含まれ得る。
【0042】
事前曝露画像は、事前曝露画像に対して患者の照射を大幅に増加させないように十分に小さく維持されるX線の量を除いて、標準のフルフィールドデジタルマンモグラフィ(FFDM)(または従来の2Dマンモグラフィ)画像と同様であり得る。現在の技術水準では、事前曝露のX線線量は、(その後に得られる)DBTシーケンスで得られたDBT投影画像の1つに使用されるX線線量に匹敵する可能性がある。さらに、事前曝露画像は、エミッタ120が下部支持体124と実質的に垂直に(直交して)延びる軸202(またはゼロもしくは中央投影軸)に沿って実質的に整列し、示すように、表面206およびその上で圧迫されたターゲット物体(器官)102に実質的に垂直である状態で、標準のFFDM画像と同様に事前曝露画像が前述の直交または中心位置204で取得され得る限り、標準のFFDMと同様であり得る。事前曝露画像は、
図2に示すように、検出器122に実質的に垂直な角形成(ソース位置)で得られると説明することができるが、事前曝露画像は、検出器および/または物体に実質的に垂直ではない可能性があるソース位置で得ることができることに留意されたい。例えば、いくつかの実施形態では、角形成は、実質的に直交する必要はなく、最大13°まで直交以外であり得る。すなわち、
図2は0°位置、例えば、検出器122によって形成される平面に対して(軸202に沿って)垂直から+/-0.5°での投影位置204を示しているが、事前曝露画像の投影位置204のソース位置は、いくつかの実施形態では、検出器に対して垂直から最大13°であり得る。
【0043】
事前曝露画像取得は、DBTスイープを開始する前に実施される第1の別個の曝露を含み、物体102の減衰性質を決定するために使用される。一実施形態では、複数の位置を通る、例えば210から208へのスイープの前に、事前曝露画像は、撮像される物体102との実質的に垂直または準垂直な位置合わせ202(および検出器122に実質的に垂直)など、可能な限り中央またはゼロ投影位置204に近い角形成で得られる。別段の指定がない限り、本明細書で使用される「実質的に」という用語は、参照値の5%以内を意味し、特定の角度または投影角形成を指す「実質的に」という用語は、参照値または関係から5度以内を意味する。
【0044】
一実施形態では、事前曝露におけるX線線量は、複数または連続のDBTスイープの取得パラメータの正確な決定に必要な線量よりも低くなく、DBT中央投影を取得するために使用される線量よりも高くてもよい。以前に設計されたシステムでは、必要な減衰性質が決定され、DBTスイープのパラメータが確立されると、通常、事前曝露画像は破棄され、次に対応する放射線線量がその後の患者の(DBT)撮像に使用される。本明細書に記載の方法の様々な実施形態において、事前曝露画像は廃棄されず、代わりに2D放射線画像の合成のためにDBT投影と共に使用され、したがって、事前曝露画像情報は、DBT画像と共に、DBT撮像シーケンスを実施するために必要なパラメータを決定するための使用に加えて、患者を撮像するために使用される。事前曝露画像とトモシンセシス投影画像の1つまたは複数の両方を使用して2D画像を合成することによって実現され得る利点は、記載されたシステムおよび方法のいくつかの実施形態の実践において、検査される(患者の)器官による放射線曝露のX線線量バジェット内で得られる改善された画質、および/またはX線線量バジェットの対応する増加のない改善された画質、および/または合成2D画像を得るためのX線線量バジェットを最小限に抑えた改善された画質である。
【0045】
事前曝露画像は、3D DBT画像をもたらすために取得された各投影と比較して、異なるX線強度で取得され得る。一般に、事前曝露画像の強度レベルは、どの投影よりも高くなる。DBT画像の場合、例えば、ゼロ(または中央)投影を含む9つの異なる投影ビューがあり得、これらはすべて、検出器122の中心を向いている。例えば、
図2に示す位置210、204、および208の3つのビューを含む9つの異なる投影ビューでは、各DBT投影は、例えば、DBTシーケンス全体の放射線線量バジェットの1/9を使用し得る。したがって、すべてのDBT投影画像は、既知の(標準または従来の)2Dマンモグラム(またはFFDM画像)に必要な線量よりも何倍も低い低線量で(各々が)取得される。低線量は、標準の2D(FFDM)画像と比較して、特定のDBT投影の画質を低下させる。しかし、9つのトモシンセシス投影のDBTシーケンスを含み、個々のDBT投影のX線線量(または完全なDBTシーケンスのX線線量バジェットの1/9)に匹敵する(またはほぼ同じ)事前曝露画像のX線線量を使用する上記の例を続けると、事前曝露画像の利用は、合成2D画像の11%(または1/9*100%)の追加の画像情報を提供し得る。N個のトモシンセシス投影およびDBTシーケンスについての線量バジェットの1/Nの事前曝露画像に使用されるX線線量を含むDBTシーケンスに上記の例を実施すると、事前曝露画像の利用は、トモシンセシス投影のみを使用して2D画像を合成するための既存の方法と比較して、合成2D画像の改善に使用可能な1/N×100パーセント(1/N*100%)の追加の画像データ/情報を提供することができる。
【0046】
DBTシーケンスを実施する際、エミッタ120が器官の周りを回転するとき、エミッタ120は、器官102を通して検出器122に放出されたX線を向けるビーム成形(図示せず)をさらに含み得る。
図2に図示される実施形態では、検出器122は、下部支持体124に統合されて示されている。エミッタ120は、器官102の周りで、器官102に対して複数の配向に回転可能である。例示的かつ非限定的な実施形態では、エミッタ120は、器官102に対して全体として30°の円弧にて回転することができ、または器官102に対して各方向(時計回りおよび反時計回り)に30°回転することができる。これらの回転の円弧は単なる例示であり、実施形態で使用され得る角形成の範囲を限定することを意図するものではない。
【0047】
ここで
図3に目を向けると、事前曝露画像取得、およびターゲット物体のDBT画像を取得するための曝露のパラメータの決定を伴う例示的な方法300のフローチャートである。事前曝露画像取得および後続のDBTシーケンスに必要なパラメータの決定のための様々な方法を、使用することができる。
図3の310に示すように、従来、放射線学では、いわゆる構成を形成する選択された焦点トラック(二重焦点トラックを有するデバイスの場合)、使用されるフィルタ、管に適用される電圧(kV)、グリッドの有無、接触の拡大、および陽極電流と曝露時間の積(mA.s)などの曝露のパラメータは、グリッドの有無および接触の拡大のパラメータについてのユーザの選択から、ならびにユーザの選択の関数として、パラメータkV、焦点トラック、フィルタ、およびmA.sについてのパラメータの自動最適化(AOP)のテーブル312から最初に決定される。306において、次に検査される器官部分は低いmA.s値の事前曝露を受け、308において、検査される器官部分の特性、特に同等の放射線厚さを決定し、そして曝露のパラメータがこれらの特性から調整される。
【0048】
306において、事前曝露の際、自動曝露制御(AEC)セルを使用することができ、同等の放射線厚さは、AECセルの信号から決定することができる。同等の放射線厚さの合理的な推定値を得るために、多数の異なるパラメータがAEC校正セルを使用することによって決定される。次に、検査される器官部分の組成の推定、および曝露のパラメータ(構成)の調整がmA.sの初期推定で行われる。以前に決定された構成による検査される器官部分の曝露中、AECセルは、mA.s値を継続的に更新する。
【0049】
米国特許第6,292,536号明細書に記載されているように、デジタル放射線学において、特定の校正セルの使用を必要とせず、少数のパラメータのみを必要とする構成の調整のための方法が提供され、方法は、事前曝露画像を形成し、そこから平均事前曝露検出器信号レベルを導出し、そのレベルを事前曝露線量レベルに変換し、同等の放射線厚さを決定し、検査される幅の組成を推定し、曝露の構成および曝露のmA.sを確立することを含む。
【0050】
事前曝露画像取得は、米国特許第6,556,655号明細書にも記載されている。記載された様々な実施形態によれば、DBT投影のための事前曝露画像取得およびパラメータの決定は、以下を含む方法ステップのいくつかまたはすべてを含み得る:302において、パラメータの自動最適化(AOP)のテーブル312、検査される器官部分の所与の理論的組成314および推定放射線厚さ316から、ならびに検査される器官部分の組織の区別に十分な品質の事前曝露画像を得るための低線量であるが十分な線量のX線について事前曝露のパラメータを確立すること、304において、検査される器官部分の所定の機械的厚さから最小線量レベルおよび最大線量レベルを確立し、これらの線量レベルを検出器によって読み取り可能な最小閾値信号レベルおよび最大信号閾値レベルに変換すること、306において、検査される器官部分を事前曝露して事前曝露画像を得ること、および308において、DBTシーケンスのX線によって検査される器官部分の曝露のパラメータを確立すること。
【0051】
前述のように、本明細書に記載の方法は主に乳房の検査に関連して与えられるが、記載される方法は、他のタイプの組織およびX線の様々な減衰係数を有する組織からなる任意の他の器官に適用されてもよい。マンモグラフィに関連するため、検査中の乳房は、脂肪組織および腺組織(乳腺)を含む。放射線検査では、検査される乳房の領域は腺組織で構成されているため、腺組織を含む対象領域に最も適合した乳房のX線への曝露のパラメータを確立することができることは、特に興味深い。
【0052】
パラメータの自動最適化のテーブル312、乳房の所与の理論的組成314および乳房の推定放射線厚さ316から、ならびに乳房組織の腺組織の区別に十分な品質の事前曝露画像を得るための低線量であるが十分な線量のX線の線量について(302において)事前曝露のパラメータを確立した後、(304において)デジタル画像X線デバイスには、デバイスの検出器によって読み取り可能な最小閾値信号レベルおよび最大閾値信号レベルに変換される、乳房の所定の機械的厚さからのX線照射の最小線量レベルおよび最大線量レベルが確立される。ビームのパラメータには、とりわけ、X線管に適用される電圧(kV)、陽極電流と曝露時間の積(mA.s)、使用される焦点トラック、フィルタ、およびビームの位置決め(角形成)が含まれる。
【0053】
乳房の所与の理論的組成314は、例えば、検査される乳房が約50%の線維性組織および50%の腺組織を含むという理論的推論として選択され得る。乳房の所与の理論的組成314を選択すると、乳房の機械的厚さに乳房の理論的組成のX線の減衰係数を掛けたものに対応して、乳房の推定放射線厚さ316を決定することができる。一例として、上記の選択により、推定放射線厚さ316は、0.93×機械的厚さであり得、低い事前曝露線量を維持するために、mA.sは低く、例えば1~4の値で選択される。
【0054】
事前曝露画像を得るための306での器官の事前曝露の後、DBTシーケンスのパラメータ/構成を確立すること(308における)は、例えば、事前曝露画像のフィールドの対象ゾーンの作成、ならびにセルの行および列の観点からの画像の検討を含み得、各セルは、基準点に関してインデックス付けされ、検出器の所定のピクセル数の最小閾値レベルと最大閾値レベルとの間の信号レベルを表し、さらに、十分な画質および検査される器官組織の区別に必要な絶対最小信号レベルを決定することを含み得る。
【0055】
次に、
図4は、トモシンセシスを使用して患者の器官を撮像し、トモシンセシス撮像シーケンスに必要なパラメータ(構成)の決定のために取得された事前曝露画像情報を使用して撮像された器官の2D画像を合成する方法400の例示的な実施形態を図示するフローチャートである。患者の器官を撮像する方法の例示的な実施形態は、402において、X線エネルギーレベルを使用して、(例えば、ゼロもしくは中央投影角形成、またはソース位置で)事前曝露画像を得て(404において)必要な曝露パラメータを確認し、その後(406において)、器官に対して複数の配向にX線エミッタ(エミッタ120など)を回転させ、複数の投影画像についてエミッタからX線エネルギーレベルを放出することによって器官の複数の二次元(2D)投影画像を得ることを含む。一実施形態では、器官の事前曝露X線画像は、第1のX線エネルギーレベルで得られ、X線エネルギーレベルは、複数のトモシンセシス投影画像に使用され、これは、多くの場合、事前曝露画像の取得に使用されるX線エネルギーレベルよりも低い。
【0056】
408において、(406における)DBTシーケンス中に得られた中央投影画像(またはソース位置投影画像に最も近い投影画像)は、DBT投影からのデータと事前曝露画像からのデータの両方を使用して強調され、強調された中央(またはソース位置)投影画像を提供する。例えば、DBTスイープからのゼロまたは中央投影画像(または事前曝露に使用されるソース位置に最も近い投影)は、合成2D画像のベースラインまたはプライマリビューとして使用することができる。事前曝露画像に存在する画像の詳細を抽出してベースライン投影にコピーすることにより、ベースライン投影を強調することができる。同様に、他のDBT投影に存在する画像の詳細を抽出してベースライン投影にコピーすることにより、ベースライン投影を強調することができる。事前曝露画像は(個別のDBT投影のいずれよりも)高いX線線量を使用して取得することができるため、事前曝露画像は、個々の(より低いX線線量の)DBT投影では利用することができない特定の詳細を含む場合がある。他方、様々な個々のDBT投影に存在する画像の詳細は、重ね合わせのために事前曝露画像において隠される可能性があり、いくつかのDBT投影画像からのそのような詳細は、事前曝露画像と共に使用して、(DBT)ベースライン投影画像を強調することができる。したがって、望ましい有利な結果は、(DBTスイープの)他のビュー/投影からの情報を使用して(DBTスイープからの)ベースライン投影を強調することによって生成された合成2D画像、ならびにトモシンセシス撮像シーケンスのパラメータおよび構成を決定するために使用される事前曝露画像である。次に、合成2D画像は、システムユーザまたは医師によるレビューのために(422において)表示され得る(例えば、ディスプレイ116に)。
【0057】
一態様では、本開示は、検出器に面するX線源を備えるシステムを使用して、対象物体の少なくとも1つの強調された画像を得るための方法を対象とする。方法は、402において、ソース位置またはゼロもしくは中央投影に近い角形成で事前曝露画像を取得し、404において、後続のDBTシーケンスのX線パラメータを決定することと、406において、複数の配向で対象物体の複数の2D(またはトモシンセシス)投影画像を取得することを含む、DBTシーケンスを実施することと、次に410において、DBTシーケンス中に取得されたゼロまたは中央投影(または事前曝露画像に使用されるソース位置に最も近い投影)の代わりにベースライン画像として取得された事前曝露画像を利用して、DBT中央(またはソース位置)投影を事前曝露画像に効果的に置き換えることと、416において、DBTシーケンス中に取得された投影画像と組み合わせて、第1の別個の曝露(すなわち、事前曝露)から取得された投影画像を使用して合成2D画像を生成することと、422において、ディスプレイ116などのディスプレイに合成2D投影画像を表示することとを含む。
【0058】
2D画像を合成するステップ416は、事前曝露画像(トモシンセシスシーケンス中に得られる中央(またはソース位置)投影の代わりにベースライン画像として)と他のトモシンセシス投影画像の少なくとも1つからの情報の両方を使用することを含み得る。事前曝露画像とDBT投影画像(の少なくとも1つ)の両方からのデータを使用してトモシンセシス中央(またはソース位置)投影を強調することを対象とするステップ408および414を伴う方法と同様に、情報は、結果として得られる合成2D画像の内容および品質を改善するために、トモシンセシス投影画像(例えば、ステップ410で事前曝露画像に置き換えられた中央(またはソース位置)投影を含む)の少なくとも1つから抽出され、事前曝露画像にコピーされ得る。結果として得られる2D画像は、例えばディスプレイ116などのディスプレイを介して対象物体をレビューするための合成2D画像をヘルスケア専門家に提供する。
【0059】
患者の器官を撮像する方法の別の例示的な実施形態は、第1のX線エネルギーレベルを使用して、事前曝露X線画像を得て必要な曝露パラメータを確認し、その後、器官に対して複数の配向にX線エミッタを回転させ、複数の投影画像の各投影画像についてエミッタから第2のX線エネルギーレベル(または第1のレベルとは異なるレベル)を放出することによって器官の複数の二次元(2D)投影画像を得ることを含む。器官の事前曝露X線画像は、第1のX線エネルギーレベルで得られ、事前曝露は、第1の別個の曝露であり、第1の別個の曝露は、画像レセプタまたは検出器に垂直もしくは準垂直な方向に沿って、または事前曝露画像が得られるソース位置を定義する方向に沿って取得される。第2のX線エネルギーレベル(または後続のDBT投影の各々で使用されるレベル)は、多くの場合、第1のX線エネルギーレベルよりも低くなる。次に、418において、事前曝露画像は、検出器に垂直に最も近い(または事前曝露画像取得に使用されるソース位置に最も近い)(DBTスイープ)投影の少なくとも1つとマージされる。マージすることは、動きの場合、および/または取得角度の差を補償する場合に(412において)登録アルゴリズムを使用して実施され得る。次に、420において、(マージされた)事前曝露画像を(DBTシーケンスからの)トモシンセシス投影画像のセットに含まれる情報で強調することによって、合成2D画像が生成される。結果として得られる合成2D画像は、次に、422において、ディスプレイ116などに表示され得る。
【0060】
器官および撮像セッションの同じ圧迫中に取得されるDBT投影画像および事前曝露画像のために、実施形態では、同じエミッタおよび検出器を使用してDBT投影画像と事前曝露画像の両方を取得し、事前曝露画像は、ゼロまたは中央位置に最も近い角形成で取得されたDBT投影と位置的に実質的に一致する。一実施形態では、動き(患者の移動、検出器および/またはエミッタの動きなど)の場合、または事前曝露画像に使用される角度と事前曝露に使用される角度に最も近いトモシンセシス投影の角度の(おそらくわずかな)差の場合に、識別子を登録アルゴリズムで使用することができる。識別子は、例えば、線源から各ピクセルへの光線に沿って見出される最大強度ボクセル(再投影演算子としても知られている)を含み得る。これらの識別子は、コンピュータ可読メモリに記憶することができる。これらの識別子は、事前曝露画像(および/またはその後合成された2D、および/またはDBT投影を使用して再構成された関連3Dボリューム)の各ピクセルを、このピクセルが由来する関連再構成スライスまたはDBT投影画像に接続する。
【0061】
任意選択の例示的な実施形態では、事前曝露画像は、事前曝露画像と事前曝露画像がマージされる1つまたは複数のDBT投影画像との間の登録のために、ゼロまたは中央投影に最も近い(またはソース位置に近い)少なくとも1つのDBT投影に登録され得る。一実施形態では、事前曝露画像およびDBT投影画像は乳房の単一の圧迫の下で取得されるので、画像間のより大きな対応のために、登録プロセスを単純化することができる。
【0062】
図5に目を向けると、トモシンセシスを使用して器官を撮像し、トモシンセシス投影のセットならびにトモシンセシス投影を取得するためのパラメータの決定に使用される事前曝露画像の両方を使用して3Dボリュームを再構成する方法500の例示的な実施形態のフローチャートである。患者の器官を撮像する方法の一実施形態は、502において、第1のX線エネルギーレベルを使用して、事前曝露X線画像を得て必要な曝露パラメータを確認し、その後504において、器官に対して複数の配向にX線エミッタを回転させ、複数の投影画像の各投影画像についてエミッタから第2のX線エネルギーレベル(または第1のレベルとは異なるレベル)を放出することによって器官の複数の二次元(2D)投影画像を得ることを含む。器官の事前曝露X線画像は、第1のX線エネルギーレベルで得られる。第2のX線エネルギーレベル(または第1レベルとは異なるレベル)は、多くの場合、第1のX線エネルギーレベルよりも低くなる。次に、506において、器官の三次元(3D)ボリュームが、事前曝露画像と共に複数の投影画像から再構成される。508において、次に合成2D画像が再構成されたボリュームから生成され、これは、510において、例えばディスプレイ116などのディスプレイに表示され得る。
【0063】
事前曝露画像は、502において、例示的な方法300などの前述の図のいずれかに関して説明したように得ることができ、DBT投影画像は、504において、前述のように得ることができる。
【0064】
例示的な実施形態では、3D再構成されたボリュームは、フィルタ補正逆投影(FBP)再構成技法または逐次近似再構成技法を使用して再構成され、これらは両方とも当業者に知られている。3Dボリュームは、得られた事前曝露画像ならびに少なくともいくつかのDBT投影画像を使用して例示的に再構成され得る。さらなる例示的な実施形態では、修正されたフィルタ補正逆投影再構成技法が使用され得、ここでは、複数のDBT投影画像の寄与よりも再構成において事前曝露画像により大きな重みが与えられる。
【0065】
506での3D再構成は、上述の再構成技法の前に、得られたDBT投影画像と事前曝露画像を組み合わせることを含み得、組み合わせは、様々な方法、または組み合わせ方法で達成され得る。これらの組み合わせ方法の各々において、事前曝露画像は、撮像される器官に直交する位置、例えば回転の0°(ゼロ度)で、または直交からオフセットされ得るソース位置で取得されたと見なされる一方、複数のDBT投影画像は、直交に対して複数の角度で取得され、これは、回転の0°(ゼロ度)でもしくはそれに近い、またはソース位置(事前曝露画像が取得された位置)に近い投影角形成での1つまたは複数の投影(DBTシーケンスではゼロまたは中央投影と呼ばれる)を含み得る。本明細書に開示される例示的な実施形態は物体に直交して取得される事前曝露画像の場面で説明され得るが、事前曝露画像は、本開示の範囲内に留まりながら別の角度で取得することができ、例えば、方法400の410において、事前曝露画像は、ゼロからの所定のオフセットであるソース位置で得られ、所定のオフセットのまたはその近くのDBT投影の代わりに使用され得ることが認識されるであろう。
【0066】
第1の組み合わせ方法では、事前曝露画像が3D再構成のためにDBT中央投影画像と組み合わされ、例えば、事前曝露画像とDBT中央投影画像は、再構成の前に共に組み合わされる(すなわち、共に追加される)。第2の組み合わせ方法では、事前曝露画像が3D再構成のためにDBT中央(またはソース位置)投影とマージされ、例えば、事前曝露は、再構成前に、方法ステップ418(すなわち、事前曝露画像と、ゼロに最も近い、または事前曝露画像に使用される角形成に最も近いDBT投影をマージする)ならびに/または方法ステップ412(すなわち、動きの場合または画像角度の差の場合に登録アルゴリズムを使用する)および418のように、ゼロに最も近い(またはソース位置に最も近い)DBT投影とマージされ得る。第3の組み合わせ方法では、DBT中央投影画像(または事前曝露画像に使用される角形成に最も近い投影)が、3D再構成のために事前曝露画像に置き換えられる。第4の組み合わせ方法では、例えば、複数のDBT投影画像が中央または直交画像を含まない場合、事前曝露画像がDBT画像を補完する。したがって、例示的な実施形態では、3Dボリュームの再構成の前に、例えば上述の技法のいずれかにおいて、事前曝露X線画像が2D(トモシンセシス)投影画像のセットに追加される。次に、本明細書でさらに詳細に説明されるように、3Dボリュームが、事前曝露画像と2D(トモシンセシス)投影画像のセットの組み合わせから作成(再構成)され得、その後、合成2D画像が再構成されたボリュームから作成され得る。
【0067】
前述のように、器官が事前曝露画像と後続の複数のDBT投影画像の両方で同じ圧迫下にあるため、器官に直交する位置からの3D再構成されたボリュームの合成2D画像は、事前曝露画像(器官に直交して取得)に対応する。508でそのような合成2D画像を作成する際、再構成された3Dボリュームから2D画像を合成するための様々な既知の方法を使用することができる。トモシンセシス投影画像を使用した画像処理および2D画像の合成のための例示的な方法は、米国特許第9,842,415号明細書に記載されている。方法は、例えば、506で3Dボリュームを再構成する一部として、2D投影画像(504で取得)にフィルタを適用し、対象物体のフィルタリングされた投影画像を得ることを含み得る。フィルタリングは、撮像される対象物体(器官)の厚さに基づいて決定されるカットオフ周波数を有するハイパスタイプフィルタを使用して、および/またはノイズを低減するためにローパスタイプフィルタを使用して画像を処理することを含み得る。次に、対象物体のフィルタリングされた再構成されたボリュームは、フィルタリングされた投影(の少なくとも2つ)から対象物体のスライスを再構成することによって生成され得る。次に、方法は、決定された配向方向に従って再構成されたスライスを再投影して対象物体の中間2D画像を得、再投影によって得られた中間2D画像と、取得された複数の2D投影画像または決定された配向に対応する事前曝露画像の少なくとも1つのピクセル間の線形組み合わせを使用して、対象物体の最終2D画像を得ることを含むことができる。例示的な実施形態では、決定された配向方向は、事前曝露画像に使用される角形成であり得、対象物体の最終2D画像は、トモシンセシス投影画像と、トモシンセシス投影画像のパラメータを決定するために使用される事前曝露画像の両方を利用する合成2D画像を含む。
【0068】
上記の説明では、特定の用語が、簡潔さ、明瞭性、および理解のために使用されている。このような用語は、説明のために使用されており、広義に解釈されることを意図したものであるため、従来技術の要件を超えて、そこから不必要な限定が推論されてはならない。本明細書に説明されている異なるシステムおよび方法ステップは、単独で、または他のシステムおよび方法と組み合わせて使用することができる。添付の特許請求の範囲内で、様々な均等例、代替例、および修正例が可能であることは当然である。
【0069】
図に示されている機能ブロック図、操作シーケンス、および流れ図は、本開示の新規な態様を実施するための例示的なアーキテクチャ、環境、および方法論を表す。説明の簡略化のために、本明細書に含まれる方法論は、機能図、操作シーケンス、または流れ図の形態であってもよく、一連の動作として説明することができるが、いくつかの動作は、それに従って、異なる順序で、および/または本明細書に示され記載された他の動作と同時に行なわれるため、方法論は動作の順序によって制限されないことを理解および認識されたい。例えば、当業者であれば、方法論は、状態図のような、相互に関係する一連の状態または事象として代替的に表すことができることを理解および認識するであろう。さらに、方法論に示されたすべての動作は、新規の実施態様に必要でなくてもよい。
【0070】
本明細書で使用する場合、単数形で列挙され、「1つの(a)」または「1つの(an)」という単語に続けられる要素またはステップは、除外することが明示的に述べられない限り、複数の前記要素またはステップを除外しないと理解されたい。さらに、本発明の「一実施形態」への言及は、列挙された特徴をも組み込む追加の実施形態の存在を除外するものとして解釈されることを意図しない。また、明示的に反対の記載がない限り、特定の性質を有する要素または複数の要素を「備える(comprising)」、「含む(including)」、または「有する(having)」実施形態は、その性質を有さない追加のそのような要素を含むことができる。「含む(including)」および「そこにある(in which)」という用語は、それぞれの用語「備える(comprising)」および「そこで(wherein)」の平易な言葉での同等物として使用される。さらに、「第1の」、「第2の」、および「第3の」などの用語は、単にラベルとして使用され、それらの対象物に数値的要件または特定の位置的順序を課すことを意図しない。
【0071】
本明細書は、最良の態様を含む本発明を開示するため、およびどのような当業者も、任意のデバイスまたはシステムの作製および使用ならびに任意の組み込まれた方法の実施を含む本発明の実践を可能にするために、実施例を使用している。本発明の特許可能な範囲は、特許請求の範囲によって定義され、当業者が想到する他の実施例を含むことができる。そのような他の実施例は、特許請求の範囲の文言と異ならない構造要素を有する場合、または特許請求の範囲の文言と実質的な差のない等価の構造要素を含む場合、特許請求の範囲内にあることが意図されている。
【0072】
[実施態様1]
患者の器官(102)の合成2D画像を生成する方法(300、400、500)であって、
X線エネルギーに前記器官(102)を曝露することによって前記器官(102)の事前曝露画像を得ること(502)と、
取得された前記事前曝露画像に基づいて、前記器官(102)に対して複数の配向にX線エミッタ(120)を回転させ、複数の投影画像の各投影画像について前記エミッタ(120)からX線エネルギーを放出することによって前記器官(102)の前記複数の二次元(2D)トモシンセシス投影画像を得ること(504)と、
前記事前曝露画像および前記複数のトモシンセシス投影画像から前記器官(102)の合成2D画像を生成すること(508)と
を含む、方法(300、400、500)。
[実施態様2]
前記事前曝露画像は、前記合成2D画像を生成する前に、前記複数の2D投影画像の少なくとも1つとマージされる、実施態様1に記載の方法(300、400、500)。
[実施態様3]
前記マージすることは、患者の動きの場合、および/または前記事前曝露画像と前記トモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される、実施態様2に記載の方法(300、400、500)。
[実施態様4]
ベースライン画像として取得された前記事前曝露画像を利用することと、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含む、実施態様1に記載の方法(300、400、500)。
[実施態様5]
ベースライン画像として取得された前記マージされた画像を利用することと、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含む、実施態様2に記載の方法(300、400、500)。
[実施態様6]
ベースライン画像として前記トモシンセシス投影画像の1つを利用することと、
前記トモシンセシス投影画像と前記事前曝露画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成することと
をさらに含む、実施態様1に記載の方法(300、400、500)。
[実施態様7]
ディスプレイ(116)に前記合成2D画像を表示すること(510)をさらに含む、実施態様1に記載の方法(300、400、500)。
[実施態様8]
前記器官(102)の前記事前曝露画像および前記器官(102)の前記複数の2Dトモシンセシス投影画像は、前記器官(102)の同じ圧迫中に得られる、実施態様1に記載の方法(300、400、500)。
[実施態様9]
前記複数の二次元(2D)トモシンセシス投影画像の各々を得るために使用されるX線エネルギーレベルは、前記事前曝露画像を得るために使用されるX線エネルギーレベルよりも低い、実施態様1に記載の方法(300、400、500)。
[実施態様10]
患者の器官(102)の合成2D画像を生成する方法(300、400、500)であって、
X線エネルギーに前記器官(102)を曝露することによって前記器官(102)の事前曝露画像を得ること(502)と、
取得された前記事前曝露画像に基づいて、前記器官(102)に対して複数の配向にX線エミッタ(120)を回転させ、複数の投影画像の各投影画像について前記エミッタ(120)からX線エネルギーを放出することによって前記器官(102)の前記複数の二次元(2D)トモシンセシス投影画像を得ること(504)と、
前記2Dトモシンセシス投影画像および前記事前曝露画像を使用して3Dボリュームを再構成すること(506)と、
前記再構成された3Dボリュームから合成2D画像を生成すること(508)と
を含む、方法(300、400、500)。
[実施態様11]
前記複数の2Dトモシンセシス投影画像の1つは、前記3Dボリュームを再構成して前記合成2D画像を生成する前に、前記事前曝露画像によって置き換えられる、実施態様10に記載の方法(300、400、500)。
[実施態様12]
前記事前曝露画像は、前記3Dボリュームを再構成して前記合成2D画像を生成する前に、前記複数の2D投影画像の少なくとも1つとマージされる、実施態様11に記載の方法(300、400、500)。
[実施態様13]
前記マージすることは、患者の動きの場合、および/または前記事前曝露画像と前記トモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される、実施態様12に記載の方法(300、400、500)。
[実施態様14]
前記合成2D画像は、少なくとも再構成されたスライスのサブセットを使用して前記事前曝露画像を強調することによって得られる、実施態様10に記載の方法(300、400、500)。
[実施態様15]
前記3Dボリュームのエリアを抽出することと、
前記3Dボリュームから抽出された前記エリアで前記事前曝露画像を強調することと
をさらに含む、実施態様10に記載の方法(300、400、500)。
[実施態様16]
2D放射線画像を合成するためのシステム(100)であって、
X線を発生することが可能なX線エミッタ(120)であって、複数の配向に回転可能なX線エミッタ(120)と、
前記X線エミッタ(120)と少なくとも部分的に位置合わせされたX線検出器(122)と、
前記X線エミッタ(120)および前記X線検出器(122)に動作可能に接続されたプロセッサ(114)であって、前記プロセッサ(114)は、前記X線エミッタ(120)および前記検出器(122)を動作させて器官(102)の事前曝露画像を取得させ、その後、取得された前記事前曝露画像に基づいて、前記X線エミッタ(120)および前記検出器(122)を動作させて撮像される器官(102)の周りを回転させ、前記器官(102)の複数の二次元(2D)トモシンセシス投影画像を得、前記プロセッサ(114)は、前記事前曝露画像および前記複数のトモシンセシス投影画像から2D画像を合成するプロセッサ(114)と、
前記合成2D画像を表示するためのディスプレイ(116)と
を備える、システム(100)。
[実施態様17]
前記プロセッサ(114)は、前記事前曝露画像を前記トモシンセシス投影画像の少なくとも1つとマージしてマージされた事前曝露画像を作成し、
前記トモシンセシス投影画像の情報で前記マージされた事前曝露画像を強調することによって前記器官(102)の前記合成2D画像を生成する、
実施態様16に記載のシステム(100)。
[実施態様18]
前記マージすることは、患者の動きの場合、および/または前記事前曝露画像と前記トモシンセシス投影の少なくとも1つの取得角度の差を補償する場合に登録アルゴリズムを使用して実施される、実施態様17に記載のシステム(100)。
[実施態様19]
前記プロセッサ(114)は、ベースライン画像として取得された前記事前曝露画像を利用し、
前記トモシンセシス投影画像の情報で前記ベースライン画像を強調することによって前記器官(102)の合成2D画像を生成する、
実施態様16に記載のシステム(100)。
[実施態様20]
前記プロセッサ(114)は、前記複数の2Dトモシンセシス投影画像からのデータを使用してトモシンセシス曝露中に取得された投影画像を強調し、
前記強調された投影画像を使用することによって前記器官(102)の合成2D画像を生成する、
実施態様16に記載のシステム(100)。
[実施態様21]
前記複数の二次元(2D)トモシンセシス投影画像の各々を得るために使用されるX線エネルギーレベルは、前記事前曝露画像を得るために使用されるX線エネルギーレベルよりも低い、実施態様16に記載のシステム(100)。
[実施態様22]
前記プロセッサ(114)は、前記2Dトモシンセシス投影画像および前記事前曝露画像を使用して3Dボリュームを再構成し、
前記再構成された3Dボリュームから合成2D画像を生成する、
実施態様16に記載のシステム(100)。
【符号の説明】
【0073】
100 医療撮像システム
102 器官、ターゲット物体
112 画像取得ユニット
114 画像処理ユニット、プロセッサ
116 グラフィックディスプレイ
118 cアーム
120 X線エミッタ
122 X線検出器、画像検出器
124 下部支持体
126 圧迫プレート、圧迫パドル、圧迫支持体
128 散乱防止グリッド
130 メモリ記憶ユニット、メモリユニット
200 相対的位置決め
202 軸、位置合わせ
204 中心位置、ゼロ投影位置
206 表面
208 位置
210 位置
300 方法
302 方法ステップ
304 方法ステップ
306 方法ステップ
308 方法ステップ
310 構成
312 パラメータの自動最適化のテーブル
314 所与の理論的組成
316 推定放射線厚さ
400 方法
402 方法ステップ
404 方法ステップ
406 方法ステップ
408 方法ステップ
410 方法ステップ
412 方法ステップ
414 方法ステップ
416 方法ステップ
418 方法ステップ
420 方法ステップ
422 方法ステップ
500 方法
502 方法ステップ
504 方法ステップ
506 方法ステップ
508 方法ステップ
510 方法ステップ