(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-20
(45)【発行日】2022-09-29
(54)【発明の名称】直動型電磁ソレノイドアクチュエータ
(51)【国際特許分類】
H02K 33/16 20060101AFI20220921BHJP
G01N 29/04 20060101ALI20220921BHJP
【FI】
H02K33/16 A
G01N29/04
(21)【出願番号】P 2019017196
(22)【出願日】2019-02-01
【審査請求日】2021-11-04
(73)【特許権者】
【識別番号】596102528
【氏名又は名称】株式会社オンガエンジニアリング
(74)【代理人】
【識別番号】110001335
【氏名又は名称】弁理士法人 武政国際特許商標事務所
(72)【発明者】
【氏名】松橋 貫次
(72)【発明者】
【氏名】栗原 秀夫
(72)【発明者】
【氏名】栗原 陽一
【審査官】若林 治男
(56)【参考文献】
【文献】特開2002-205008(JP,A)
【文献】特開2014-082934(JP,A)
【文献】特開2006-280033(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 33/16
G01N 29/04
(57)【特許請求の範囲】
【請求項1】
励磁コイルに電流を流すことによりプランジャーの吸引力を利用して、該プランジャーを往復動させる直動型電磁ソレノイドアクチュエータ(1)であって、
筒状部材(10)内に、棒状の永久磁石(2)を挿入して両端を封止したプランジャー(3)と、
円筒状部材(14)の一端が封止され、他端の開口から挿入された与圧スプリング(4)と、該与圧スプリング(4)を押圧するように前記プランジャー(3)が摺動自在に内挿されたシリンダー(5)と、
前記シリンダー(5)と前記プランジャー(3)と共に差し込まれる、コイルボビン(6)に巻回された励磁コイル(7a,7b)と、を有し、
前記励磁コイル(7a,7b)は、前記コイルボビン(6)の軸方向に2区域にそれぞれ分けて巻回され、それぞれの励磁コイル(7a,7b)の巻線は逆巻線として並列接続され、通電時に各励磁コイル(7a,7b)の発生する磁極は対向磁極になるように構成した、ことを特徴とする直動型電磁ソレノイドアクチュエータ。
【請求項2】
前記プランジャー(3)は、筒状部材(10)内に永久磁石(2)としてネオジウム磁石を挿入した、ことを特徴とする請求項1の直動型電磁ソレノイドアクチュエータ。
【請求項3】
前記プランジャー(3)は、筒状部材(10)内に永久磁石(2)としてサマリウム磁石を挿入した、ことを特徴とする請求項1の直動型電磁ソレノイドアクチュエータ。
【請求項4】
前記コイルボビン(6)は、その中央に軸回りに隔壁(9)が形成された、ことを特徴とする請求項1の直動型電磁ソレノイドアクチュエータ。
【請求項5】
前記プランジャー(3)内において、前記永久磁石(2)と筒状部材(10)の直接接触を防止するニュートン液が封入されている、ことを特徴とする請求項1、2又は3の直動型電磁ソレノイドアクチュエータ。
【請求項6】
コンクリート建造物などについて検査した際に、後から特定し易いように変状部などに、インクをノズル(22)から吐出させてマーキングする直動型電磁ソレノイドアクチュエータ(1)を用いたマーキング装置(21)であって、
一端にインク押出軸(28)が、他端にインク供給底部(29)がそれぞれ設けられた筒状部材(27)内に、棒状の永久磁石(2)が挿入されて両端が封止されたインク供給プランジャー(23)と、
円筒状部材(35)の一端にノズル(22)が、他端にインク供給筒(26)が設けられ、更に該インク供給筒(26)と前記インク供給プランジャー(23)の間に取り付けられたスプリング(32)により、該インク供給プランジャー(23)が押圧された状態で該インク供給プランジャー(23)が摺動自在に内挿されたインク供給シリンダー(24)と、
前記インク供給プランジャー(23)と前記インク供給シリンダー(24)と共に差し込まれる、コイルボビン(6)に巻回された励磁コイル(7a,7b)と、を有し、
前記励磁コイル(7a,7b)に通電して発生する磁極で、前記インク供給プランジャー(23)を往復動させることにより、前記インク供給筒(26)から供給されたインクを、前記ノズル(22)から吐出させるように構成した、ことを特徴とする直動型電磁ソレノイドアクチュエータを用いたマーキング装置。
【請求項7】
前記インク供給シリンダー(24)のインク供給筒(26)は、前記インク供給プランジャー(23)の外径より細いスプリング支持筒(31)が形成され、該スプリング支持筒(31)の先端部(31a)が、前記インク供給プランジャー(23)が引っ込んだ状態のときに該インク供給底部(29)に接触するように配置された、ことを特徴とする請求項6の直動型電磁ソレノイドアクチュエータを用いたマーキング装置。
【請求項8】
前記インク供給底部(29)は、スプリング支持筒(31)の先端部(31a)に向けて突出するように半球形状になる、ことを特徴とする請求項6の直動型電磁ソレノイドアクチュエータを用いたマーキング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エネルギーを機械的な動作に変換するアクチュエータに係り、特にプランジャーを電磁ソレノイドにより直線往復運動させる直動型電磁ソレノイドアクチュエータに関する。
【背景技術】
【0002】
コンクリート構造物等の内部の剥離、空洞やクラック等の有無、それらの大小について点検する際に、非破壊検査方法の一種である打音検査法が用いられている。この打音検査法は、点検員がハンマーを手で持ち、コンクリート構造物等の表面に打撃し、その打音を聴いて空洞の有無や剥離のおそれを判断する検査方法である。この点検員による打音検査法は、熟練者の経験的な感覚で打音の音質の相違からコンクリート構造物等内部の異常の有無を判断する方法である。
【0003】
打音検査法は、コンクリート構造物等の点検する領域が広範囲に及ぶときは点検作業時間が長くなりやすかった。そこで、機械式の打撃ハンマー装置を用いる打音検査装置が利用されるようになった。この打音検査装置は、コンクリート構造物等の表面に機械式の打撃ハンマーを連続して打撃し、その構造物等の表面に励起されるコンクリート構造物の振動を振動センサで検出する検査装置である。
【0004】
この打音検査装置は、従来の点検員による打音検査法に比較して構造物等に与える打撃力を均一にできるという特徴がある。また打撃ハンマーを移動させながら構造物等の表面を打撃することで、検査効率の向上が図れ、広範囲な点検に適している。
【0005】
打音検査装置は、打撃ハンマーの往復動作によりハンマーヘッドが構造物等の表面に衝突することで打音が発生する。打音は打撃ハンマーのヘッドが構造物等の表面に衝突する度に発生するが、コンクリート内部が正常な箇所と異常な箇所では、コンクリートの振動によって発生した音波の伝播特性が異なり、打音波形に相違が見られる。従来の点検員による打音検査法と比較した場合、打撃力の与える方法が異なるため、打音検査装置で得られる打音特性は、従来の点検員による打音検査方法の場合とは異なる。
【0006】
打音検査装置は、点検対象が大規模な野外構造物に対して利用されている。主に、スクリーニングの点検方法として利用されている。打音検査装置で広範囲に点検し、発見された異常個所(変状部)については、その後点検員による打音検査法又は他の検査装置、検査方法により詳細に点検するようになっている。
【0007】
この打音検査装置に用いられる打撃ハンマー装置は、アクチュエータにより打撃ハンマーを前後動させる。このアクチュエータは、ソレノイドコイル(励磁コイル)の中にプランジャーとして強磁性材(電磁軟鋼等)を配置したものである。この励磁コイルに電流を流し、プランジャーの吸引力を利用して動作させる。磁力を高めるためにソレノイドコイルの外側に軟鋼等により磁気回路を必要とする場合がある。
【0008】
従来型の電磁ソレノイドの一例としては、例えば
図17の正面図と
図18の断面図に示すような構成のものがある。一端に開口を有するシリンダー52内に、復帰スプリング53を挿入し、この復帰スプリング53を押圧するようにプランジャー54を内装した。プランジャー54は鉄心などから成る。このシリンダー52をコイルボビン55に差し込み、このコイルボビン55の周囲に励磁コイル56を巻回した。これらの励磁コイル56とプランジャー54とを内装する磁気ヨーク57から構成されるものがある。
【0009】
励磁コイル56に電流を流すと、プランジャー54は復帰スプリング53のバネ反力との釣り合い点まで吸引される(
図18の図示の左方向)。励磁コイル56の電流を遮断すると復帰スプリング53の反力で復帰する(
図18の図示の右方向)。このとき電流の入り切りを繰り返すことで、このプランジャー54を直線運動(往復動作)させることができる。
【0010】
このようなアクチュエータ又はこれを利用した機械式の打撃ハンマー装置に関する技術として、例えば特許文献1の特開2005-201676公報「コンクリートの打音検査用打撃装置」のように、ハンマーヘッドをフレームへスライド自在に装着し、ソレノイドのアクチュエータシャフトに前記ハンマーシャフトを一定範囲スライド自在に連結して、前記アクチュエータシャフトの前進時に前記ハンマーシャフト及びハンマーヘッドが一体に前進し、且つアクチュエータシャフトが前進端に達した後に、前記ハンマーシャフトとハンマーヘッドがさらに前進して打音検査対象物へ衝突するように構成したコンクリートの打音検査用打撃装置が提案されている。
【先行技術文献】
【特許文献】
【0011】
【発明の概要】
【発明が解決しようとする課題】
【0012】
従来のアクチュエータの構成では、ヨーク、プランジャーの磁気特性から打撃速度が30mS程度が限界であった。広い範囲について打音検査する際に、例えばトンネル内のような広範囲を打音検査する際には早い速度で打音検査する必要がある。また、このような広範囲の場合には、多数の打音検査装置を複数同時に作動させることで検査時間の短縮を図ることができる。そこで、打音検査装置を走行させる装置に取り付けるために、アクチュエータ自体の小型化、軽量化が要請されていた。しかし、上述した従来構成のアクチュエータでは、小型軽量化ができないという問題を有していた。
【0013】
また、ソレノイドコイルの長さとプランジャーの長さを同一とした際に、磁気平衡点はソレノイドコイルにプランジャーが全入した時で、吸引力はゼロとなる。ソレノイドコイルとプランジャーの位置により吸引力は非線形となるという問題を有していた。
【0014】
本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、励磁コイルとプランジャーの構成に工夫を施すことで、プランジャーの高速化と共に装置自体の軽量化を図り、打音検査装置は元より種々の装置に利用することができる直動型電磁ソレノイドアクチュエータを提供することにある。
【課題を解決するための手段】
【0015】
第1の本発明は、励磁コイルに電流を流すことによりプランジャーの吸引力を利用して、該プランジャーを往復動させる直動型電磁ソレノイドアクチュエータ(1)であって、
筒状部材(10)内に、棒状の永久磁石(2)を挿入して両端を封止したプランジャー(3)と、
円筒状部材(14)の一端が封止され、他端の開口から挿入された与圧スプリング(4)と、該与圧スプリング(4)を押圧するように前記プランジャー(3)が摺動自在に内挿されたシリンダー(5)と、
前記シリンダー(5)と前記プランジャー(3)と共に差し込まれる、コイルボビン(6)に巻回された励磁コイル(7a,7b)と、を有し、
前記励磁コイル(7a,7b)は、前記コイルボビン(6)の軸方向に2区域にそれぞれ分けて巻回され、それぞれの励磁コイル(7a,7b)の巻線は逆巻線として並列接続され、通電時に各励磁コイル(7a,7b)の発生する磁極は対向磁極になるように構成した、ことを特徴とする。
【0016】
前記プランジャー(3)は、筒状部材(10)内にネオジウム磁石又はサマリウム磁石(サマリウムコバルト磁石)のようないわゆる強力な磁力を有する永久磁石(2)を挿入したものが好ましい。
前記コイルボビン(6)は、その中央に軸回りに隔壁(9)が形成されたものである。
前記プランジャー(3)内において、前記永久磁石(2)と筒状部材(10)の直接的接触を防止するニュートン液が封入されている、ことが望ましい。
【0017】
第2の本発明は、コンクリート建造物などについて検査した際に、後から特定し易いように変状部などに、インクをノズル(22)から吐出させてマーキングする直動型電磁ソレノイドアクチュエータ(1)を用いたマーキング装置(21)であって、
一端にインク押出軸(28)が、他端にインク供給底部(29)がそれぞれ設けられた筒状部材(27)内に、棒状の永久磁石(2)が挿入されて両端が封止されたインク供給プランジャー(23)と、
円筒状部材(35)の一端にノズル(22)が、他端にインク供給筒(26)が設けられ、更に該インク供給筒(26)と前記インク供給プランジャー(23)の間に取り付けられたスプリング(32)により、該インク供給プランジャー(23)が押圧された状態で該インク供給プランジャー(23)が摺動自在に内挿されたインク供給シリンダー(24)と、
前記インク供給プランジャー(23)と前記インク供給シリンダー(24)と共に差し込まれる、コイルボビン(6)に巻回された励磁コイル(7a,7b)と、を有し、
前記励磁コイル(7a,7b)に通電して発生する磁極で、前記インク供給プランジャー(23)を往復動させることにより、前記インク供給筒(26)から供給されたインクを、前記ノズル(22)から吐出させるように構成した、ことを特徴とする。
【0018】
前記インク供給シリンダー(24)のインク供給筒(26)は、前記インク供給プランジャー(23)の外径より細いスプリング支持筒(31)が形成され、該スプリング支持筒(31)の先端部(31a)が、前記インク供給プランジャー(23)が引っ込んだ状態のときに該インク供給底部(29)に接触するように配置されたものである。
前記インク供給底部(29)は、スプリング支持筒(31)の先端部(31a)に向けて突出するように半球形状になることが望ましい。
【発明の効果】
【0019】
第1の本発明の構成では、プランジャー(3)が従来のように鉄心ではなく、棒状の永久磁石(2)であり、更に励磁コイル(7a,7b)はその巻線が2区域にそれぞれ分けて巻回され、逆巻線として並列接続された構成である。各励磁コイル(7a,7b)に両端に逆向きにダイオードを接続すると、電流遮断時に励磁によるエネルギーの放出がダイオードを通じて逆電流が生じ各励磁コイル(7a,7b)の磁極が吸引時の逆となる。更に、与圧スプリング(4)の圧縮エネルギーと合成するために高速で初期位置に帰ることができる。その結果、プランジャー(3)の往復動作は、従来のような鉄心のプランジャーと巻回が一方向のみの励磁コイルから構成される電磁ソレノイドアクチュエータと比較してより高速になる。
【0020】
中央に軸回りに隔壁(9)が形成されたコイルボビン(6)では、それぞれの領域に励磁コイル(7a,7b)を逆向きに巻回するだけで、通電時に各励磁コイル(7a,7b)に発生する磁極は対向磁極となる。
プランジャー(3)内にニュートン液が充填されていると、プランジャー(3)の衝撃による内壁と永久磁石(2)との直接の衝突を回避して、永久磁石(2)が破損することを防止することができる。
【0021】
第2の本発明の構成では、インク供給プランジャー(23)は、その内部の永久磁石(2)が電磁力により励磁コイル(7a,7b)内に吸引されて移動し、スプリング(32)の弾性力で戻される。この繰り返しでインク供給シリンダー(24)内でインク供給プランジャー(23)の摺動を繰り返す。インク供給プランジャー(23)は、この繰り返しでインクをインク押出軸(28)(ノズル(22))側へ送り出すようになる。更に供給されたインクは、インク供給プランジャー(23)の筒状部材(27)の周囲と、インク供給シリンダー(24)の筒状部材(27)の内壁の間において、表面張力によりインクがインク押出軸(28)(ノズル(22))側へ伝わる構成であるため、装置の下向き又は上向き状態の何れの状態でもインクの吐出量を均一にして、コンクリート壁面に安定した状態でマーキングすることができる。
【0022】
インク供給シリンダー(24)のインク供給筒(26)は、インク供給プランジャー(23)の外径より細いスプリング支持筒(31)が形成され、このスプリング支持筒(31)の先端部(31a)は、インク供給プランジャー(23)が引っ込んだ状態のときに半球形状のインク供給底部(29)に接触するように配置されている。この接触がいわゆる「弁」機能を奏している。インクの供給時は、この半球形状のインク供給底部(29)がインクの円滑な移動を促進させている。
【図面の簡単な説明】
【0023】
【
図1】実施例1の直動型電磁ソレノイドアクチュエータを示す正面図である。
【
図2】実施例1の直動型電磁ソレノイドアクチュエータを示す断面図である。
【
図3】実施例1の直動型電磁ソレノイドアクチュエータを示す側面図である。
【
図4】実施例1のプランジャーとシリンダーを示す拡大正面図である。
【
図5】実施例1のプランジャーとシリンダーを示す拡大断面図である。
【
図6】実施例1のプランジャーとシリンダーを示す拡大断面図である。
【
図7】実施例1の直動型電磁ソレノイドアクチュエータを駆動させる回路図である。
【
図8】実施例1の直動型電磁ソレノイドアクチュエータを駆動させる際のパルス電流の波形図とダイオード電流の波形図である。
【
図9】実施例1の直動型電磁ソレノイドアクチュエータを駆動させる状態を示し、(a)はプランジャーが停止状態、(b)はプランジャーが退状態、(c)はプランジャーが進状態である。
【
図11】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置を示す断面図である。
【
図12】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置のインク供給プランジャーを示す一部断面にした正面図である。
【
図13】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置のインク供給プランジャーとインク供給シリンダーを示す一部切欠いた斜視図である。
【
図14】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置の動作を説明する説明断面図であり、(a)はインク供給プランジャーが進状態(インク吐出時)、(b)はインク供給プランジャーが退状態(インク吸い込み時)である。インクは紙面上にグレーで表現している。
【
図15】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置の使用状態を説明する説明断面図であり、(a)はインク押出軸が上向きの状態、(b)はインク押出軸が下向きの状態である。
【
図16】実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置を動作させるシステムの一例を示す系統図である。
【
図17】従来の電磁ソレノイドアクチュエータを示す正面図である。
【
図18】従来の電磁ソレノイドアクチュエータを示す断面図である。
【
図19】トンネル内を点検装置で点検する状態を示す正面図である。
【発明を実施するための形態】
【0024】
本発明の直動型電磁ソレノイドアクチュエータは、励磁コイルに電流を流すことによりプランジャーの吸引力を利用して、プランジャーを往復動させる直動型電磁ソレノイドアクチュエータであり、励磁コイルがコイルボビンの軸方向に2区域にそれぞれ分けて巻回され、それぞれの励磁コイルの巻線は逆巻線として並列接続され、通電時に各励磁コイルの発生する磁極は対向磁極となるように構成したものである。
【実施例1】
【0025】
以下、本発明の実施の形態を図面を参照して説明する。
<直動型電磁ソレノイドアクチュエータの構成>
図1は実施例1の直動型電磁ソレノイドアクチュエータを示す正面図である。
図2は実施例1の直動型電磁ソレノイドアクチュエータを示す断面図である。
図3は実施例1の直動型電磁ソレノイドアクチュエータを示す側面図である。
本発明の直動型電磁ソレノイドアクチュエータ1は、永久磁石2が挿入されているプランジャー3と、このプランジャー3が与圧スプリング4を押圧するように摺動自在に内挿されたシリンダー5とを有する。更にプランジャー3とシリンダー5が共に差し込まれる、励磁コイル7a,7bが巻回されたコイルボビン6を有する。本発明のプランジャー3に従来のような鉄心ではなく、永久磁石2を用いた。
【0026】
本発明の励磁コイル7a,7bは、
図2等に示すように、コイルボビン6の軸方向に2区域にそれぞれ分けて巻回されている。それぞれの励磁コイル7a,7bの巻線は逆巻線として並列接続されている。通電時に各励磁コイル7a,7bの発生する磁極は対向磁極になるように構成されている。各励磁コイル7a,7bに電流を流すことによりプランジャー3の吸引力を利用して、プランジャー3を往復動させる。これらの励磁コイル7a,7bとプランジャー3とを内装する磁気ヨーク8から構成される。
【0027】
コイルボビン6は、その中央に軸回りに隔壁9が形成されている。このように中央に隔壁9が形成されたコイルボビン6では、それぞれの領域に励磁コイル7a,7bを逆向きに巻回するだけで、通電時に各励磁コイル7a,7bに発生する磁極を対向磁極にすることができる。
【0028】
<シリンダーとプランジャーの構成>
図4は実施例1のプランジャーとシリンダーを示す拡大正面図である。
図5は実施例1のプランジャーとシリンダーを示す拡大断面図である。
図6は実施例1のプランジャーとシリンダーを示す拡大断面図である。
プランジャー3は、筒状部材10内に、棒状の永久磁石2を挿入して両端が封止部材11,12でそれぞれ封止されている。この永久磁石2は例えば、ネオジウム又はサマリウムのような強力な磁力を有するものを用いる。本発明では永久磁石2を直接用いずに筒状部材10内に挿入した構成にする。これはプランジャー3の高速な往復動動作に耐えるようにするためである。即ち永久磁石2の破損を防止するためである。例えば、本発明の直動型電磁ソレノイドアクチュエータ1を打音検査のような衝撃を受ける装置に組み込んだ場合でも、その装置の動作時の衝撃を吸収できるようにするためである。
【0029】
シリンダー5は、一端がシリンダー封止部材13で封止され、他端に開口を有する円筒状部材14である。この円筒状部材14に与圧スプリング4を挿入し、この与圧スプリング4を押圧するようにプランジャー3を摺動自在に内挿したものである。
【0030】
プランジャー3は、
図6に示すように、筒状部材10内に潤滑剤、オイル等のニュートン液が充填されたものである。このようなニュートン液は、筒状部材10の一方の封止部材12に開けられた注入孔15から適宜注入できるようになっている。このニュートン液により、プランジャー3の衝撃による内壁と永久磁石2との直接の衝突を回避して、永久磁石2が破損することを防止することができる。
【0031】
<直動型電磁ソレノイドアクチュエータの動作説明>
図7は実施例1の直動型電磁ソレノイドアクチュエータを駆動させる回路図である。
図8は実施例1の直動型電磁ソレノイドアクチュエータを駆動させる際のパルス電流の波形図とダイオード電流の波形図である。
図9は実施例1の直動型電磁ソレノイドアクチュエータを駆動させる状態を示し、(a)はプランジャーが停止状態、(b)はプランジャーが退状態、(c)はプランジャーが進状態である。
このように構成した本発明の直動型電磁ソレノイドアクチュエータ1は、プランジャー3が棒状の永久磁石2であり、更に励磁コイル7a,7bはその巻線が2区域にそれぞれ分けて巻回され、逆巻線として並列接続された構成である。そこで、各励磁コイル7a,7bに両端に逆向きにダイオードを接続すると、電流遮断時に励磁によるエネルギーの放出が、ダイオードを通じて逆電流を生じ各励磁コイル7a,7bの磁極が吸引時の逆となる。これにより高速で前後動する。
【0032】
更に、与圧スプリング4の圧縮エネルギーと合成するため高速で初期位置に帰ることができる。その結果、プランジャー3の往復動作は、従来のような鉄心のプランジャーと巻回が一方向のみの励磁コイルから構成される電磁ソレノイドアクチュエータと比較してより高速で往復動する。
【0033】
中央に軸回りに隔壁9が形成されたコイルボビン6では、それぞれの領域に励磁コイル7a,7bを逆向きに巻回するだけで、通電時に各励磁コイル7a,7bに発生する磁極を対向磁極にすることができる。
【0034】
プランジャー3内にニュートン液が充填されているので、永久磁石2が破損することを防止することができる。例えば、本発明の直動型電磁ソレノイドアクチュエータ1を、打音検査のような衝撃を受ける装置に組み込んだ場合でも、その装置の動作時の衝撃を吸収できるようにするためである。
【0035】
図10は磁化曲線と減磁曲線を示すグラフである。
従来のような弱い磁力の永久磁石は、長期間磁場の中に入れておくと保磁力が低下する傾向にある。しかし、本発明のプランジャー3に用いたネオジウム磁石又はサマリウム磁石(サマリウムコバルト磁石)のような強力な磁力であれば、減磁曲線のグラフに示すように、保磁力の低下はなく、不具合はない。
【0036】
因みに、
図10の磁化曲線と減磁曲線のグラフに示すように、磁化曲線には、J-H曲線(J-Hループ)とB-H曲線(B-Hループ)がある。J-H曲線は外部磁場により磁石の磁化の大きさがどの位変化するかを表している。B-H曲線は外部磁場の大きさに磁石の磁化を加えたトータルの磁束密度を表している。
【0037】
J-H曲線は、初期の着磁の場合は0(ゼロ)からa、bと変化して、cで飽和に達する。この最初の磁化(着磁)の様子を表したものを初磁化曲線といい、cの磁化の大きさを飽和磁化Jsという。次に、c点まで着磁した磁石に対して外部磁場を徐々に減少させて、磁場ゼロのd点になっても磁石の磁化が残っている。この外部磁場ゼロでの磁石の磁化の大きさを残留磁化という。さらに、dからe、fと今度は外部磁場を逆(マイナス)の方向に加えると、磁石の磁化の大きさはすぐにはゼロにならず、徐々にf点のゼロになる。このように、逆磁場(逆磁界)が加えられてもある程度磁化を保っていることが磁石(硬質磁性材料)の大きな特徴である。このf点での磁場の大きさを真の保磁力といい、保磁力の大きな磁石ほど、逆磁場に強い(減磁しにくい)磁石といえる。
【0038】
次にB-H曲線は、数1の数式のように、磁石の磁化Jと加えられた外部磁場Hのトータルの磁束密度を表したもので、磁石だけの磁化の大きさの変化をみているJ-H曲線とは外部磁場の分だけ異なる。従って、J-H曲線に外部磁場の大きさを同じだけY軸に加えたものがB-H曲線である。つまり、座標の右に行く(プラスH)ほど磁石の磁化JにHが加えられるから、ループは右肩上がりになり、座標の左に行く(マイナスH)ほど磁石のJからHが引かれるから、ループは左肩下がりになる。
【0039】
【0040】
H=0の点の残留磁化(残留磁束密度)BrはJrと同じ値になるが、B=0の点での保磁力HcbはHcjより小さな値になる。以上より、B-H曲線は磁石とコイルを組み込んだ磁気回路全体の磁束密度と外部磁場の関係を表すものであるため、磁石そのものというより、磁気回路の評価をする際に重要な指標となる。
【0041】
<アクチュエータの応用例1「機械式打撃ハンマー装置」>
実施例1の直動型電磁ソレノイドアクチュエータ1は、直動動作(直線往復動作)をするものであり、プランジャーの高速化と共に装置自体の軽量化に資するものである。そこで、本発明の直動型電磁ソレノイドアクチュエータ1を打音検査装置に用いる機械式打撃ハンマー装置に用いることができる。図示していないが、この機械式打撃ハンマー装置は、例えば鉄道におけるトンネルのコンクリート壁面、高速道路、橋梁の橋桁などの高所にあるコンクリート壁面に生じた内部の異常、ひび割れなどについて検査する作業に用いることができる。
【0042】
更に、実施例1の直動型電磁ソレノイドアクチュエータ1は装置自体の軽量化を図るものであるため、この直動型電磁ソレノイドアクチュエータ1を組み込んだ検査装置等について、鉄道のトンネルの天井部分、高速道路、橋梁の橋桁などの高所にあるコンクリート壁面の検査をする際に、より安全に使用することができる。
点検等が軽量化されるので、複数同時に操作させることも可能になり、広範囲の検査ができ、検査処理の迅速化になる。
【0043】
<アクチュエータの応用例2「ロボットの関節」>
実施例1の直動型電磁ソレノイドアクチュエータ1は、上述した機械式打撃ハンマー装置に限定されない。高速で動作し、更に強力な駆動力を有するので、他の種々の装置、機構に応用することができる。
実施例1の直動型電磁ソレノイドアクチュエータ1は、ロボットの関節を動作させる機構に用いることができる。本発明の直動型電磁ソレノイドアクチュエータ1は、ロボットの関節を動作させる場合に、関節を曲げるアクチュエータと、伸ばすアクチュエータとで一組のセットとして利用することができる。必要に応じて、伸ばすアクチュエータ、又は引っ張るアクチュエータと、ばね等の弾性部材と組合わせて用いることが可能である。
【0044】
実施例1の直動型電磁ソレノイドアクチュエータ1は複雑な機構に組み込むことができる。複雑な動作が要求されるアクチュエータの制御には、その動作状態を検出するセンサを組み込み、状態を監視するようにする。これによりアクチュエータに入力されるエネルギーが調節され、所望の動作が可能になる。
【0045】
<アクチュエータの応用例3「その他の機器、装置」>
実施例1の直動型電磁ソレノイドアクチュエータ1は、点検装置、ロボットの関節以外にも利用することができる。開閉する機構、動作する機構がある機器、家具、建物であれば、家電製品、航空機、自動車、住宅、ビルなどの種々のものに利用することができる。特に、本発明の直動型電磁ソレノイドアクチュエータ1は、高速で動作し、強力な駆動力を有するのでその利用分野は広い。
【0046】
なお、本発明は、プランジャー3が従来のように鉄心ではなく、棒状の永久磁石2であり、励磁コイル7a,7bはその巻線が2区域にそれぞれ分けて巻回され、逆巻とし並列接続された構成にすることで、プランジャー3の高速化と共に装置自体の軽量化を図り、打音検査装置は元より種々の装置に利用することができれば、上述した発明の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【実施例2】
【0047】
実施例2は、実施例1の直動型電磁ソレノイドアクチュエータ1を用いたマーキング装置である。この実施例2は、コンクリート構造物等に生じたひび割れ、空洞、劣化などの欠陥個所(変状部)について、主に打音検査法により検査したこれらの変状部などを後から特定し易いようにマーキングする直動型電磁ソレノイドアクチュエータ1を用いたマーキング装置である。
【0048】
コンクリート構造物等の内部の剥離、空洞やクラック等の有無、それらの大小について点検する際に、非破壊検査方法の一種である打音検査法が用いられている。この打音検査法は、点検員がハンマーを手で持ち、コンクリート構造物等の表面に打撃し、その打音を聴いて空洞の有無や剥離のおそれを判断する検査方法である。この点検員による打音検査法は、熟練者の経験的な感覚で打音の音質の相違からコンクリート構造物等の内部の異常の有無を判断する方法である。
【0049】
打音検査法は、コンクリート構造物等の点検する領域が広範囲に及ぶときは点検作業時間が長くなりやすかった。そこで、機械式の打撃ハンマー装置を用いる打音検査装置が利用されるようになった。この打音検査装置は、コンクリート構造物等の表面に機械式の打撃ハンマーを連続して打撃し、その構造物等の表面に励起されるコンクリート構造物の振動を振動センサで検出する検査装置である。
【0050】
この打音検査装置は、従来の点検員による打音検査法に比較して構造物等に与える打撃力を均一にできるという特徴がある。また打撃ハンマーを移動させながら構造物等の表面を打撃することで、検査効率の向上が図れ、広範囲な点検に適している。
【0051】
打音検査装置は、打撃ハンマーの往復動作によりハンマーヘッドが構造物等の表面に衝突することで打音が発生する。打音は打撃ハンマーのヘッドが構造物等の表面に衝突する度に発生するが、コンクリート内部が正常な箇所と異常な箇所では、コンクリートの振動によって発生した音波の伝播特性が異なり、打音波形に相違が見られる。従来の点検員による打音検査法と比較した場合、打撃力の与える方法が異なるため、打音検査装置で得られる打音特性は、従来の点検員による打音検査方法の場合とは異なる。
【0052】
打音検査装置は、点検対象が大規模な野外構造物に対して利用されている。主に、打音検査装置は構造物等の点検の際にスクリーニングとして利用されている。打音検査装置で広範囲に点検し、発見された異常個所(変状部)については、その後、点検員による打音検査法又は他の検査装置、検査方法により詳細に点検するようになっている。この異常個所(変状部)の位置を後から確認するために、打音検査装置にはマーキング装置が取り付けられることが多い。
【0053】
このような異常個所(変状部)などの検査の際に、その個所にマーキングする技術として、例えば特許文献2の特開2016-50801公報「マーキング機能付き打音検査用打撃装置、打音検査システム及びマーキング方法」のように、検査対象物に打撃を加える打撃部と、前記検査対象物における前記打撃部による打撃箇所にマーキングを施すことが可能なマーキング部と、を備えているマーキング機能付き打音検査用打撃装置が提案されている。
前記マーキング部は、前記保持部に固定され、前記ヘッド部をマーキング待機位置から前記マーキング待機位置よりも前記打撃箇所に近いマーキング位置に向けて移動させることが可能なマーキング用アクチュエータを備え、前記ヘッド部は、前記マーキング用アクチュエータを介して、前記保持部と一体的に設けられたものである。
【0054】
【0055】
この従来のマーキング装置は、ボトルから供給されるインクを、チューブを通してインクジェットノズルからインク滴を吐出して所定のマーキングをする。このマーキング装置は、主に下向きにして使用する構成になっている。打音検査装置の打撃ハンマーによる検査は常に下向き状態で検査する場合だけではない。
図19のトンネル61内の点検をするときは、点検装置62は横向きになり、同時にマーキング装置(ノズル)も横向きになる。更に図示するように、コンクリートの天井面について検査するときは、点検装置62と共にマーキング装置(ノズル)も上向き状態で用いる。
【0056】
マーキング装置は、打音検査装置に付設されて使用することが多かった。このとき従来のマーキング装置では、上向き状態のときはインクが少なく吐出されてマーキング部分が不鮮明になることがあった。逆に下向き状態のときはインクが多く吐出され、滲みやすかった。マーキング装置の下向き状態と上向き状態とではインクの吐出量が異なり、濃い場合と薄い場合といった不均一な状態でマーキングされやすいという問題を有していた。
【0057】
実施例2の本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、打音検査装置のような検査装置と共にマーキングする際に、検査装置が下向き又は上向き状態の何れの状態でもインクの吐出量を均一にして、コンクリート壁面に安定した状態でマーキングすることができる直動型電磁ソレノイドアクチュエータ1を用いたマーキング装置を提供することにある。
【0058】
実施例2の直動型電磁ソレノイドアクチュエータ1を用いたマーキング装置は、コンクリート建造物などの欠陥個所(変状部)について検査した際に、後から特定し易いように変状部などに、インクをノズルから吐出させてマーキングするように構成したものである。
【0059】
<マーキング装置の構成>
図11は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置を示す断面図である。
図12は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置のインク供給プランジャーを示す一部断面にした正面図である。
図13は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置のインク供給プランジャーとインク供給シリンダーを示す一部切欠いた斜視図である。
実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置21は、コンクリートなどの建造物について、打音検査装置のような検査装置で検査した変状部などに、インクをノズル22から吐出させてマーキングする装置である。マーキング装置21は、主にインク供給プランジャー23、インク供給シリンダー24と、上述した励磁コイル7a,7bとから構成される。
【0060】
このマーキング装置21を動作させるときは、上述した直動型電磁ソレノイドアクチュエータ1を構成する励磁コイル7a,7bに通電して発生する磁極で、インク供給プランジャー23を往復動させる。このインク供給プランジャー23が往復動することで、インク供給筒26から供給されたインクを、インク供給プランジャー23のノズル22から吐出させ、打音検査装置などで検査した変状部などにマーキングする。
【0061】
<インク供給プランジャーの構成>
インク供給プランジャー23は、筒状部材27の開口部の一端にインク押出軸28が、同じ筒状部材27の開口部の他端にインク供給底部29がそれぞれ形成された部材である。筒状部材27内には、上述した棒状の永久磁石2が収納されて両端が封止されている。永久磁石2は上述したように励磁コイル7a,7bで往復動するもので、インク供給プランジャー23自体を動作させる重要な部材である。
【0062】
インク押出軸28は、軸部28aと栓部28bとから成り、供給されたインクを筒状部材27の軸方向に供給するものである。この軸部28aはノズル22のインク供給孔22a内で摺動自在に挿通される。栓部28bは筒状部材27の開口部に閉じられ、筒状部材27と一体的に動作するようになる。この栓部28bは筒状部材27内に挿入された鉄心30を封止する機能を有する。
【0063】
インク供給プランジャー23のインク供給底部29は、供給されたインクをこの筒状部材27の周囲からインク押出軸28側へ送る機能を有する部材である。インク供給底部29の一端は、スプリング支持筒31の先端部31aに向けて突出するように半球形状になる。インク供給底部29の他端は、筒状部材27の開口部に閉じられる。
【0064】
このようにインク供給プランジャー23が棒状の永久磁石2であり、更に励磁コイル7a,7bはその巻線が2区域にそれぞれ分けて巻回され、逆巻線として並列接続された構成である。電磁路ヨーク8は、磁性体である筒状の鋼材で形成されている。そこで、各励磁コイル7a,7bに両端に逆向きにダイオードを接続すると、電流遮断時に励磁によるエネルギーの放出がダイオードを通じて逆電流が生じ各励磁コイル7a,7bの磁極が吸引時の逆となる。これによりインク供給プランジャー23が高速で前後動する。インク供給プランジャー23は、インク供給シリンダー24内で摺動を繰り返してインクをインク押出軸28(ノズル22)側へ送り出すようになる。
【0065】
<インク供給シリンダーの構成>
インク供給シリンダー24は、
図11に示すように、円筒状部材35の一端にノズル22が、他端にインク供給筒26が設けられた部材である。インク供給筒26とインク供給プランジャー23の間にスプリング32が取り付けられている。このスプリング32により、インク供給プランジャー23は、押圧された状態でインク供給シリンダー24内に摺動自在に内挿される。なお、図示例ではノズル22の周囲にはマーキングする際のヘッド部(図示せず)を着脱自在に取り付けるねじ部22bが形成されている。
【0066】
インク供給シリンダー24のインク供給筒26は、インク供給プランジャー23の外径より細いスプリング支持筒31が形成され、このスプリング支持筒31の先端部31aは、インク供給プランジャー23が引っ込んだ状態のときに半球形状のインク供給底部29に接触するように配置されている。この接触がいわゆる「弁」機能を奏する。インクの供給時は、この半球形状のインク供給底部29がインクの円滑な移動を促進させている。なお、図示例ではインク供給筒26にはインクをタンク(図示せず)から供給する際にも用いるパイプ(図示せず)を着脱自在に取り付けるねじ部26aが形成されている。
【0067】
インク供給シリンダー24のノズル22側には、Oリング33を取り付ける溝部34を有する。このOリング33はインク押出軸28の軸部28aに当たるようになり、接しているときはインクのリークを防止する機能を有する。逆にこのOリング33にインク押出軸28の軸部28aが接していないときは、インクをノズル22先端側への流れを阻害しないようになっている。即ち、インクをノズル22に円滑に供給することができる。
【0068】
<マーキング装置の動作説明>
図14は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置の動作を説明する説明断面図であり、(a)はインク供給プランジャーが進状態(インク吐出時)、(b)はインク供給プランジャーが退状態(インク吸い込み時)である。インクは紙面上にグレーで表現している。
このように構成した直動型電磁ソレノイドアクチュエータ1を用いたマーキング装置21は、
図14(a)のインク吐出時の説明図に示すように、インク供給プランジャー23がインク供給シリンダー24内で前後動する構成である。インク供給シリンダー24のインク供給筒26からインクが供給されると、このインクは、インク供給筒26のスプリング支持筒31の周囲まで充填される。このとき、インク供給プランジャー23の筒状部材27の周囲と、インク供給シリンダー24の円筒状部材35の内壁の間において、表面張力によりインクがインク押出軸28(ノズル22)側へ伝わる。更にインクをインク供給筒26から押し込むと、インクはインク押出軸28に届く。
【0069】
次に、
図14(b)のインク吸い込み時の説明図に示すように、インク供給プランジャー23を瞬時に戻すと、インクはそのままでインク供給プランジャー23のみ図示の右側に戻る。この状態で、インク供給プランジャー23を進状態にすると、インク押出軸28周辺のインクは、インク供給プランジャー23により押し出され、ノズル22先端側へ移動し、ノズル孔22aから吐出してマーキングすることができる。この動作を繰り返すことで、連続してマーキングすることができる。
【0070】
<マーキング装置の上向きと下向き動作説明>
図15は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置の使用状態を説明する説明断面図であり、(a)はインク押出軸が上向きの状態、(b)はインク押出軸が下向き状態である。
図14と同様にインク部分はグレーで表現している。
実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置21は、そのノズル22側にOリング33を備えているだけでなく、マーキング装置21のインク供給筒26側には、スプリング支持筒31の先端部31aに向けてインク供給底部29が半球形状になり、インク供給プランジャー23の前後動作の際に、インク供給筒26のスプリング支持筒31の先端部31aとインク供給底部29とが接するようになり弁としての機能を有する。
【0071】
図15(a)に示すインク押出軸28が上向きの状態では、インク供給筒26のスプリング支持筒31の先端部31aとインク供給底部29とが接して弁の機能を果たしている。インクの重量による逆流を防止してインクの吐出量が少なくなることを防止する。
【0072】
一方、
図15(b)に示すインク押出軸28が下向きの状態では、ノズル22側のOリング33が弁の機能を果たしている。インクの重量による逆流を防止してインクが多く吐出されることを防止する。そこで、マーキング装置21が下向き状態と上向き状態といずれの向きであっても、インクの濃い場合と薄い場合といった不均一な状態にならず安定した状態でマーキングすることができる。
【0073】
<システムの構成>
図16は実施例2の直動型電磁ソレノイドアクチュエータを用いたマーキング装置を動作させるシステムの一例を示す系統図である。
コンクリート構造物の壁面に、例えば打音検査装置41のハンマーヘッド部を打撃する。この打撃により、打音をマイク42で集音する。コンクリート内のひび割れ、空洞、劣化等の変状部があると、健全部とは異なる打音になる。マイク42で取得した音声データを電気信号に変換し、これを増幅器43で増幅し、増幅器43で増幅された信号を整流器44で直流に変換する。この電気信号から所定の周波数成分を取り出し、取り出した波形をコンピュータ45(パソコン)等に表示して解析する。例えば、コンクリート内のひび割れ、空洞、劣化等の変状部を波形の変化で発見する。音声データを解析して変状部の有無を判断する。なお、コンピュータ45は打音検査装置41の動作、マーキング装置21の動作に供する電力(電源46)も合わせて制御する。
【0074】
変状部がある位置に本発明のマーキング装置21によりマーキング即ち印を付ける。打音検査装置41は下向き又は上向きのいずれの状態で打音検査する。この向きに合わせて、マーキング装置21も下向き又は上向きいずれの状態でもマーキングをする。このときに、本発明のマーキング装置21は下向き又は上向き状態の何れの状態でもインクの吐出量を均一にすることができ、コンクリート壁面に安定した状態でマーキングすることができる。
【0075】
なお、実施例2の本発明は、打音検査装置のような検査装置と共にマーキングする際に、マーキング装置21の下向き又は上向き状態の何れの状態でもインクの吐出量を均一にして、コンクリート壁面に安定した状態でマーキングすることができれば、上述した発明の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【産業上の利用可能性】
【0076】
本発明は、直動動作(往復動作)を利用して、打撃ハンマー装置、その他の直動動作(往復動作)する種々の装置に利用することができる。
【符号の説明】
【0077】
1 直動型電磁ソレノイドアクチュエータ
2 永久磁石
3 プランジャー
4 与圧スプリング
5 シリンダー
6 コイルボビン
7a,7b 励磁コイル
9 隔壁
10 筒状部材
14 円筒状部材
21 マーキング装置
22 ノズル
23 インク供給プランジャー
24 インク供給シリンダー
26 インク供給筒
27 筒状部材
28 インク押出軸
29 インク供給底部
31 スプリング支持筒
31a スプリング支持筒の先端部
32 スプリング
35 円筒状部材