IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジャパン・ハムワージ株式会社の特許一覧

特許7145542一軸二舵船の操舵角補正機能を有する操舵システム
<>
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図1
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図2
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図3
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図4
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図5
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図6
  • 特許-一軸二舵船の操舵角補正機能を有する操舵システム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-09-22
(45)【発行日】2022-10-03
(54)【発明の名称】一軸二舵船の操舵角補正機能を有する操舵システム
(51)【国際特許分類】
   B63H 25/04 20060101AFI20220926BHJP
   B63H 25/08 20060101ALI20220926BHJP
   B63H 25/38 20060101ALI20220926BHJP
【FI】
B63H25/04 G
B63H25/08
B63H25/38 B
【請求項の数】 4
(21)【出願番号】P 2021133728
(22)【出願日】2021-08-19
【審査請求日】2022-02-14
【早期審査対象出願】
(73)【特許権者】
【識別番号】000107365
【氏名又は名称】ジャパン・ハムワージ株式会社
(74)【代理人】
【識別番号】110001298
【氏名又は名称】弁理士法人森本国際特許事務所
(72)【発明者】
【氏名】冨田 和志
(72)【発明者】
【氏名】山本 博敬
【審査官】福田 信成
(56)【参考文献】
【文献】特開2017-052297(JP,A)
【文献】特開2016-080432(JP,A)
【文献】特開2020-147176(JP,A)
【文献】中国特許出願公開第110136486(CN,A)
【文献】特開2014-118059(JP,A)
【文献】特開2016-132416(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B63H 25/04
B63H 25/08
B63H 25/38
(57)【特許請求の範囲】
【請求項1】
船尾に配置した一基の推進プロペラと、推進プロペラの後方に配置した左右一対の高揚力舵と、各高揚力舵をそれぞれ駆動する一対のロータリーベーン舵取機と、2枚の高揚力舵の舵角を組み合わせて船体運動の方向を制御する操舵制御装置と、自船の船速を測定する船速測定装置と、自船の船位を測定する位置測定装置と、自船の船首方位を測定する方位測定装置を備える一軸二舵船において、
操舵制御装置は、航海用電子海図をディスプレイ装置に表示する電子海図表示部と、各ロータリーベーン舵取機に指示舵角を与える舵角指示部と、自船の予定航路を航海用電子海図上に設定するコースライン設定部と、予定航路の航行に必要な適正操舵角を算出し、算出した適正操舵角を舵角指示部に指示舵角として出力する操船サポート部を有し、
操船サポート部は、デジタルツイン演算部と、シミュレーション演算部と、外力の合力演算部と、指示舵角演算部を有し、
デジタルツイン演算部は、船速測定装置で測定する自船の船速と、位置測定装置で測定する自船の船位と、方位測定装置で測定する自船の船首方位をリアルタイムで収集し、現在操舵角において実現する自船の現実船体運動を航海用電子海図上に再現し、
シミュレーション演算部は、船体に作用する力が現在操舵角における駆動力であると想定して演算により求めた自船の想定船体運動を航海用電子海図上に表示し、
外力の合力演算部は、現実船体運動と想定船体運動における船速差、船位差、船首方位差に基づいて船体に作用する外力の合力の作用方向と大きさを算出し、
指示舵角演算部は、外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正して外力に抗して予定航路を航行するのに必要な適正操舵角を算出することを特徴とする一軸二舵船の操舵角補正機能を有する操舵システム。
【請求項2】
操舵制御装置は、コースラインに対する自船の位置ずれを解消する針路補正部を有し、
針路補正部は、デジタルツイン演算部により航海用電子海図上に再現する自船の船首方位がコースラインと平行をなす状態で、自船からコースラインまでの最短離隔距離をコースラインに対する自船の船位の位置ずれ量として求め、最短離隔距離が設定許容域を超えると、船首方位をコースラインに交わる針路に向けるために設定した針路補正舵角を舵角指示部に出力することを特徴とする請求項1に記載の一軸二舵船の操舵角補正機能を有する操舵システム。
【請求項3】
操舵制御装置は、コースライン上にある対象物に対する停止操船において、
推進プロペラを常に前進回転のままで、双方の高揚力舵に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船の前進方向への慣性力に抗して自船を減速させ、双方の高揚力舵に与える舵角を、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲で制御し、
外力の合力演算部が算出する外力の合力に基づいて指示舵角演算部が自船と対象物までの距離間において停船に至る適正船速に減速させるのに必要な双方の高揚力舵の適正操舵角を算出することを特徴とする請求項1に記載の一軸二舵船の操舵角補正機能を有する付き操舵システム。
【請求項4】
操舵制御装置は、コースラインを横切る相手船を避ける避航操船において、
推進プロペラを常に前進回転のままで、双方の高揚力舵に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船の前進方向への慣性力に抗して自船を減速させ、双方の高揚力舵に与える舵角を、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲で制御し、舵角に応じて増減する後進推力を対象物である相手船との距離に見合って制御し、相手船が自船の進路を横切って通過するのに必要な時間を確保し、
外力の合力演算部が算出する外力の合力に基づいて指示舵角演算部が自船と相手船までの距離間において相手船を避ける適正船速に減速させるのに必要な双方の高揚力舵の適正操舵角を算出することを特徴とする請求項1に記載の一軸二舵船の操舵角補正機能を有する操舵システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一軸二舵船の操舵角補正機能を有する操舵システムに関し、自動操船において高精度の操舵を行う技術に係るものである。
【背景技術】
【0002】
従来、操船を自動で行う技術として、例えば、特許文献1に記載する自動衝突予防援助装置がある。
【0003】
これは、レーダ装置と共に船舶に搭載されるものであり、自船の周囲に存する他船の長さ、針路及び速度を、レーダ装置にて得られる映像情報から検出する他船検出手段と、他船検出手段により検出された自船に対する他船の相対速度と検出された船の長さとに基づき停止性能を算出する停止性能算出手段と、算出された停止性能と航行している海域の特性とに基づき、自船が進入すると他船との衝突の危険が生じ得る危険領域を求める危険領域算出手段と、求めた危険領域を画面上に表示する手段とを備えている。
【0004】
また、船舶に制動力を与える技術として特許文献2に記載する船舶の非常操船方法がある。これは、非常時に非常操舵手段を起動して通常の如何なる操舵モードよりも優先して舵制御手段を制御することにより、2枚の高揚力舵にプロペラ後流を後進推力として最大に作用させる舵角を与え、この後進推力により船舶の前進方向への慣性力に抗する後進力を船舶に与えて緊急停船ないし緊急後進させるものであり、推進プロペラを前進単一方向に作動させた状態において直ちに後進推力を得ることができ、少ない手数で短時間にかつ短い距離で船舶の停船ないし後進を行うことができる。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第4055915号
【文献】特開平7-52887号
【発明の概要】
【発明が解決しようとする課題】
【0006】
大型船舶では入力した針路を辿るオートパイロット(自動操舵装置)が普及している。オートパイロットは、コンパスを利用して自動航行するもので、あらかじめ設定した一定方向の針路に向けて航行するように操舵し、船首方位が風や波などで設定針路からずれた場合に自動的に舵を取り、船の船首方位を設定した方位に変針させて設定針路を保つものである。
【0007】
大洋では障害物に衝突する確率は低下するので、オートパイロットによる自動操舵が比較的容易である。オートパイロットは急激な大舵角を操舵しないように設定されており、小舵角で操船するので、時間的、距離的に余裕がある大洋での航行に向いている。
【0008】
しかし、オートパイロットはコンパスが示す「針路」を保持するものであり、航路(コースライン)を保持するものではない。このため、風圧や海潮流などによって、船自体がコースラインからずれた場合に位置修正を行う機能は一般的なオートパイロットにはない。従って、特に横方向からの風や波浪、海潮流が強い場合はコースラインからのずれ、船位の確認が必要である。
【0009】
また、輻輳海域や障害物がある海域では、短時間、短距離において精度の高い転針が必要であり、あるいは精度の高い針路の維持が求められるので、手動による操舵が必要である。また、接岸時には、波や潮汐等の船体に影響する外力の状況を考慮する必要があり、自動操舵が困難である。
【0010】
本発明は上記した課題を解決するものであり、船体に作用する風や波浪、海潮流等の外力を考慮して操舵角を補正することができる一軸二舵船の操舵角補正機能を有する操舵システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
上記した課題を解決するために、本発明の一軸二舵船の操舵角補正機能を有する操舵システムは、船尾に配置した一基の推進プロペラと、推進プロペラの後方に配置した左右一対の高揚力舵と、各高揚力舵をそれぞれ駆動する一対のロータリーベーン舵取機と、2枚の高揚力舵の舵角を組み合わせて船体運動の方向を制御する操舵制御装置と、自船の船速を測定する船速測定装置と、自船の船位を測定する位置測定装置と、自船の船首方位を測定する方位測定装置を備える一軸二舵船において、操舵制御装置は、航海用電子海図をディスプレイ装置に表示する電子海図表示部と、各ロータリーベーン舵取機に指示舵角を与える舵角指示部と、自船の予定航路を航海用電子海図上に設定するコースライン設定部と、予定航路の航行に必要な適正操舵角を算出し、算出した適正操舵角を舵角指示部に指示舵角として出力する操船サポート部を有し、操船サポート部は、デジタルツイン演算部と、シミュレーション演算部と、外力の合力演算部と、指示舵角演算部を有し、デジタルツイン演算部は、船速測定装置で測定する自船の船速と、位置測定装置で測定する自船の船位と、方位測定装置で測定する自船の船首方位をリアルタイムで収集し、現在操舵角において実現する自船の現実船体運動を航海用電子海図上に再現し、シミュレーション演算部は、船体に作用する力が現在操舵角における駆動力であると想定して演算により求めた自船の想定船体運動を航海用電子海図上に表示し、外力の合力演算部は、現実船体運動と想定船体運動における船速差、船位差、船首方位差に基づいて船体に作用する外力の合力の作用方向と大きさを算出し、指示舵角演算部は、外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正して外力に抗して予定航路を航行するのに必要な適正操舵角を算出することを特徴とする。
【0012】
また、本発明の一軸二舵船の操舵角補正機能を有する操舵システムにおいて、操舵制御装置は、コースラインに対する自船の位置ずれを解消する針路補正部を有し、針路補正部は、デジタルツイン演算部により航海用電子海図上に再現する自船の船首方位がコースラインと平行をなす状態で、自船からコースラインまでの最短離隔距離をコースラインに対する自船の船位の位置ずれ量として求め、最短離隔距離が設定許容域を超えると、船首方位をコースラインに交わる針路に向けるために設定した針路補正舵角を舵角指示部に出力することを特徴とする。
【0013】
また、本発明の一軸二舵船の操舵角補正機能を有する操舵システムにおいて、操舵制御装置は、コースライン上にある対象物に対する停止操船において、推進プロペラを常に前進回転のままで、双方の高揚力舵に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船の前進方向への慣性力に抗して自船を減速させ、双方の高揚力舵に与える舵角を、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲で制御し、外力の合力演算部が算出する外力の合力に基づいて指示舵角演算部が自船と対象物までの距離間において停船に至る適正船速に減速させるのに必要な双方の高揚力舵の適正操舵角を算出することを特徴とする。
【0014】
また、本発明の一軸二舵船の操舵角補正機能を有する操舵システムにおいて、操舵制御装置は、コースラインを横切る相手船を避ける避航操船において、推進プロペラを常に前進回転のままで、双方の高揚力舵に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船の前進方向への慣性力に抗して自船を減速させ、双方の高揚力舵に与える舵角を、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲で制御し、舵角に応じて増減する後進推力を対象物である相手船との距離に見合って制御し、相手船が自船の進路を横切って通過するのに必要な時間を確保し、外力の合力演算部が算出する外力の合力に基づいて指示舵角演算部が自船と相手船までの距離間において相手船を避ける適正船速に減速させるのに必要な双方の高揚力舵の適正操舵角を算出することを特徴とする。
【発明の効果】
【0015】
上記構成により、デジタルツイン演算部が航海用電子海図上に再現する自船の現実船体運動は、現在操舵角により船体に与える駆動力と、水の抵抗、風力、潮力等々が船体に与える種々の外力とにより定まる。
【0016】
船体に作用する外力のその全てを個々に測定することはできないが、航海用電子海図上に再現する自船の現実船体運動は、船体に作用する外力のその全てが影響した結果として現れる。
【0017】
一方、シミュレーション演算部が航海用電子海図上に表示する自船の想定船体運動は、現在操舵角において船体に与える駆動力を演算し、この駆動力を船体に作用する力として算出するものである。
【0018】
このため、デジタルツイン演算部が、リアルタイムで収集する自船の船速、自船の船位、自船の船首方位に基づいて航海用電子海図上に再現する現実船体運動と、シミュレーション演算部が航海用電子海図上に表示する想定船体運動とを比較することは、制御可能な駆動力と制御不能な外力とが作用する実際の結果の現実船体運動と、制御可能な駆動力だけが作用すると想定する演算の結果の想定船体運動を比較することになる。
【0019】
よって、船体に作用する風や波浪、海潮流等の個々の外力を演算により求めることなく、現実船体運動と想定船体運動の間に生じる動きの差によって、船体に作用するすべての外力の合力の作用方向と大きさを捉えることができる。
【0020】
そして、外力の合力演算部が算出する船体に作用する外力の合力の作用方向と大きさに基づいて、指示舵角演算部において外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正することで、適正操舵角、すなわち航海用電子海図上に設定した予定航路の航行に必要な適正操舵角を算出できる。
【0021】
また、船体が外力を受けてコースライン外へシフトし、自船からコースラインまでの最短離隔距離が設定許容域を超えると、針路補正舵角を与えて船首方位をコースラインに交わる針路に向けるので、船位が自動的にコースライン上に復帰する。
【図面の簡単な説明】
【0022】
図1】本発明の実施の形態における一軸二舵船の推力システムおよび操舵制御装置を示す模式図
図2】同実施の形態における一軸二舵船の操舵制御装置の操船スタンドを示す模式図
図3】同実施の形態における操船スタンドの構成を示す模式図
図4】同実施の形態における高揚力舵の可動範囲を示す平面図
図5】同実施の形態における推進器および高揚力舵を示し、推力システム100の船尾部の構成を示す斜視図
図6】舵の組み合せ舵角と旋回方向を示す模式図
図7】同実施の形態における避航操船を示す模式図
【発明を実施するための形態】
【0023】
以下、本発明の舵システムに係る実施の形態を図面に基づいて説明する。
(実施例の構成)
本実施の形態における一軸二舵船の操舵角補正機能を有する操舵システムは、図1から図6に示すように、推力システム100と推力システム100を制御する操船システム(操舵制御装置)200からなる。
【0024】
推力システム100は、船体110の船尾に配置した1基1軸のプロペラからなる推進プロペラ101と、プロペラの後方に配置した2枚の高揚力舵102、103を配したものである。
【0025】
各高揚力舵102、103は、それぞれ、アウトボード(外舷側)へ105°、インボード(内舷側)へ35゜転舵可能に構成されている。そして、1基1軸の推進器(プロペラ)をプロペラ前進回転のままで、1対2枚の高揚力舵102、103をそれぞれ独立して種々の角度に作動させ、両舷の高揚力舵102、103を舵角の組合せを変えることによって、プロペラ後流を目的とする望ましい方向に分配し、それぞれの方向の推力を自在に変えることができる。従って、それぞれの方向の推力の合成推力を自在に変えることができ、プロペラ後流を制御して船尾回りの推力を360゜全方向にわたって制御することで、船の前後進、停止、前進旋回、後進旋回等の操船を行わせ、船の運動を自由に制御することができる。
【0026】
さらに、推力システム100は、高揚力舵102、103を駆動するロータリーベーン舵取機104、105と、ロータリーベーン舵取機104、105を制御する舵制御装置(サーボアンプ)106、107を有している。
【0027】
また、ロータリーベーン舵取機104、105のそれぞれには、ポンプユニット151、152と舵角発信器153、154とフィードバックユニット155、156が接続しており、フィードバックユニット155、156が舵制御装置106、107に接続している。
【0028】
操船システム(操舵制御装置)200は、操船スタンド250に格納されており、操船スタンド250には、ジャイロコンパス251、船舶レーダ装置310、自船501の船速を測定する船速測定装置312と、GPS等により自船501の船位を測定する位置測定装置313と、自船501の船首方位を測定する方位測定装置314が接続している。船舶レーダ装置310は、他船との衝突が予測されるときに警報信号出力部311から衝突警報信号を操船スタンド250の操船システム(操舵制御装置)200に発信する。
【0029】
操船スタンド250は、スタンド筺体に以下のものを一体的に備えている。ジャイロコンパス251のジャイロ方位を表示するジャイロ方位表示部252と、GPSコンパスを用いたオートパイロットによる操縦モードで操船するオート操船部253と、ジョイスティックレバー254による操縦モードで操船するジョイスティック操船部255と、手動操舵輪256による操縦モードで操船する手動操船部257と、ノンフォローアップ操舵レバー258による操縦モードで操船するノンフォローアップ操船部259と、モード切替スイッチ260により各操船部の切替を行うモード切替部261を備えている。
【0030】
さらに、画面にタッチパネルを配したディスプレイ装置262と、ディスプレイ装置262に映す画像を制御する画像制御部263と、緊急停船押釦264を操作することにより全ての操縦モードに優先して船舶を緊急に停船させる操縦モードで操船する緊急停船部265と、舵制御装置106、107を介してロータリーベーン舵取機104、105に指示舵角を与える舵角指示部280と、輻輳海域を航行する際に、2隻の船が互いに進路を横切り、衝突の恐れがあるときに、相手船を右舷側に見て航行する自船が行う避航操船の操縦モードで操船する避航操船部281と、航海用電子海図をディスプレイ装置262に表示する電子海図表示部282と、自船の予定航路を航海用電子海図上に設定するコースライン設定部283と、コースラインに対する自船の位置ずれを解消する針路補正部284と、予定航路の航行に必要な適正操舵角を算出し、算出した適正操舵角を舵角指示部280に指示舵角として出力する操船サポート部290を備えている。
【0031】
画像制御部263は、航海用電子海図を映す海図表示画像266と、ジャイロ方位を映すジャイロ方位表示画像267と、ジャイロ方位表示部252をモニター画面上でタッチ操作するための方位表示部操作画像268と、オート操船部253をモニター画面上でタッチ操作するためのオート操船操作画像269を選択的に表示し、あるいは同時に表示する。
【0032】
ジョイスティック操作部255は、ジョイスティックレバー254がX-Y方向の何れの方向へも操作可能に構成されており、ジョイスティックレバー254の傾倒方向で船体の指令運動方向を制御し、傾倒方向における傾倒角度で船首尾方向指令速度および船体横方向指令速度を制御するものである。
【0033】
ジョイスティック操船部255は、両舷の高揚力舵102、103の舵角をそれぞれジョイスティックレバー254の傾倒方向に応じて設定した舵角に制御し、かつ両舷の高揚力舵102、103の舵角を組合せることで、プロペラ後流の推力を目的方向に向けて変向し、双方のロータリーベーン舵取機104、105により両舷の高揚力舵102、103のそれぞれの舵角を外舷側へ105°、内舷側へ35°の範囲で制御する。
【0034】
高揚力舵102、103の基本的な舵角の組合せ、およびジョイスティックレバー254の状態と、その呼称及びプロペラ後流線と運動方向を、図6において説明する。
【0035】
図6中で、舵は水平断面で示してあり、その横あるいは下方に各々の舵の舵角を示している。舵角は右に取るのが正(+)、左に取るのが負(-)として表示し、これらの舵角の組み合わせに対する呼称を掲げている。プロペラ後流は、細い矢印線で、又、それによる船の推進方向を太い中抜き矢印線で画いている。
【0036】
ちなみに、「前進左旋回」は左舷舵-35°、右舷舵-25°であり、「船首左回頭」は左舷舵-70°、右舷舵-25°であり、「船尾左旋回」は左舷舵-105°、右舷舵+45°から+75°であり、「後進左旋回」は左舷舵-105°、右舷舵+75°から+105°であり、「前進」は左舷舵0°、右舷舵0°であり、「その場停止」は左舷舵-75°、右舷舵+75°であり、「後進」は左舷舵-105°、右舷舵+105°であり、「前進右旋回」は左舷舵+25°、右舷舵+35°であり、「船首右回頭」は左舷舵+25°、右舷舵+70°であり、「船尾右旋回」は左舷舵-45°から-75°、右舷舵+105°であり、「後進右旋回」は左舷舵-75°から-105°、右舷舵+105°である。
【0037】
このように、2枚の高揚力舵102、103を装備した一軸二舵の船は、高揚力舵102、103の組み合わせ角を種々に変えることによって、推進力の方向と大きさを船の全方位に対して自在に可変して出力することができる。
【0038】
オート操船部253は、GPSコンパス、電子海図システムにより自船の現在位置情報、誘導経路情報、停船保持位置情報に基づいて自船を予め定めた設定針路に誘導制御する。
【0039】
緊急停船部265は、緊急時に緊急停止押釦264を押すと、ジョイスティックレバー254でいかなる操船状態を指示していようとも、あるいは他の操縦モードで操船していても、現在の操船に係る舵角をキャンセルして、左舷舵103を取舵方向(上から見て時計回りの方向)に、右舷舵102を面舵方向(上から見て反時計回りの方向)に、それぞれハードオーバー(舵いっぱい)まで転舵させ、船に制動力を与えて停止させる。
【0040】
手動操船部257は、手動操舵輪256の回転操作により二枚の高揚力舵102、103の舵角を制御して操船する。
【0041】
ノンフォローアップ操船部259は、ノンフォローアップ操舵レバー258を左右に操作している時間に応じて右舷もしくは左舷に舵を切る。
【0042】
避航操船部281は、ジャイロコンパス251および船舶レーダ装置310から得られる自船501および単一もしくは複数の相手船401、402の位置情報、自船501および相手船401、402の方位情報、相手船401、402との距離情報、および相手船401、402との相対速度情報に基づいて、その時々の状況に応じて推進方向や船速を自動的に制御して避航操船を行う。
【0043】
針路補正部284は、デジタルツイン演算部291により航海用電子海図上に再現する自船の船首方位がコースラインと平行をなす状態で、自船からコースラインまでの最短離隔距離をコースラインに対する自船の船位の位置ずれ量として求め、最短離隔距離が設定許容域を超えると、船首方位をコースラインに交わる針路に向けるために設定した針路補正舵角を舵角指示部280に出力する。
【0044】
操船サポート部290は、デジタルツイン演算部291と、シミュレーション演算部292と、外力の合力演算部293と、指示舵角演算部294を有している。
【0045】
デジタルツイン演算部291は、船速測定装置312で測定する自船の船速と、位置測定装置313で測定する自船の船位と、方位測定装置314で測定する自船の船首方位をリアルタイムで収集し、現在操舵角において実現する自船の現実船体運動を航海用電子海図上に再現する。
【0046】
シミュレーション演算部292は、現在操舵角において演算により想定する自船の想定船体運動を航海用電子海図上に表示する。
【0047】
外力の合力演算部293は、現実船体運動と想定船体運動における船速差、船位差、船首方位差に基づいて船体に作用する外力の合力の作用方向と大きさを算出する。
【0048】
指示舵角演算部294は、外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正して適正操舵角を算出する。
【0049】
以下、上記構成における作用を説明する。
1.ジョイスティックによる操縦モード
モード切替スイッチ260を操作してジョイスティックによる操縦モードを選択する。ジョイスティック操船部255は、ジョイスティックレバー254によって船体の指令運動方向、船首尾方向指令推力、船体横方向指令推力を指令する。
【0050】
この操船においては、推進プロペラ101をプロペラ前進回転のままで、それぞれの高揚力舵102、103をそれぞれ独立に種々の角度に作動させてプロペラ後流を制御し、船尾回りの推力を360゜全方向にわたって制御する。この制御によって船の前後進、停止、前進旋回、後進旋回等を行わせることにより操船における機動性を向上させることができる。
【0051】
すなわち、両舷の舵の舵角の組合せを変えることによって、プロペラ後流を目的とする望ましい方向に向けてその方向に推力を変えることができる。ここに挙げた舵角の組み合わせは一例であり、目的とする推進方向及び推力を得るように、舵角の組み合わせを任意に変えることができる。
【0052】
このように、操船においては推進器推力の反転(プロペラ逆転)が不要であり、主機関は常に前進回転のままであらゆる操船制御が行え、主機関の回転数を加減せずとも、両舵の舵角を加減して、そのときのプロペラ回転数に対応した前進最大速度から後進最大速度まで無段階にきめ細かく船速を制御することができる。
2.緊急停船部による操縦モード
緊急停船押釦264を押すことの一挙動で、緊急停船部265を起動し、全ての操縦モードに優先して船舶を緊急に停船させることができる。すなわち、ジョイスティックレバー254の操舵モードにかかわらず、あるいは他の操縦モードにかかわらず、緊急停船部265によってクラッシュアスターンモード(左舷舵は左般105°、右舷舵は右舷105゜に舵を取る「ASTERN」)に切換えて、両舵により非常に大きな制動力と後進力を発生させるので、プロペラ逆転による操船よりもはるかに短い時間、短い距離で船体を停止させることができる。
【0053】
また、クラッシュアスターンモードにおいても、主機関を止めて後進再始動をする必要がないため、操船中にいわゆる無制御状態となることがないので、航行における事態ヘのすばやい対応が可能である。
【0054】
尚、緊急停船部265による操船中に、船の特性、外乱等により旋回を起した場合や、または必要によって船首方位を含めて進行力向を変えたい場合には、そのままジョイスティックレバー254を操作すれば通常のジョイスティック操作と同様に、ジョイスティックレバー254によって自在に操船して避行航行することができる。
3.オートパイロットによる操縦モード
通常航行操船では、モード切替スイッチ260を操作してオートパイロットによる操縦モードを選択する。
【0055】
ディスプレイ装置262のモニター画面上にオート操船操作画像269を表示し、モニター画面上のタッチ操作によりオート操船部253に自船の位置、進みたい方位、到達したい位置ないし船首尾線方位を入力し、設定した針路で船を自動誘導操船する。
【0056】
さらに、電子海図表示部282によりディスプレイ装置262のモニター画面上に海図表示画像266として航海用電子海図を表示し、コースライン設定部283により自船の予定航路を航海用電子海図上に設定する。
【0057】
オート操船部253は、自船の現在位置情報、誘導経路情報、停船保持位置情報に基づいて適宜に舵角を制御する。オートパイロットは、オート操船操作画像269において設定した進みたい方位また船首尾線方位としてジャイロコンパスが示す針路を保持する。
【0058】
しかし、自船の船位をコースライン上に保持するものではないので、航海用電子海図上で船首方位がコースラインと平行をなす状態を保ちつつ、風圧や海潮流などによって船位がコースラインからずれる場合がある。
【0059】
針路補正部284は、デジタルツイン演算部により航海用電子海図上に再現する自船の船首方位が、オートパイロットによる操船によって航海用電子海図上でコースラインと平行をなす状態で、自船からコースラインまでの最短離隔距離をコースラインに対する自船の船位の位置ずれ量として求める。
【0060】
そして、最短離隔距離が設定許容域を超えると、オートパイロットによる操船を一時停止し、船首方位をコースラインに交わる針路に向けるために設定した針路補正舵角を舵角指示部280に出力する。
【0061】
舵角指示部280が、舵制御装置106、107を介してロータリーベーン舵取機104、105に針路補正舵角を与え、針路補正部284は、船位がコースラインに達したらオートパイロットによる操船に復帰する。
【0062】
操船サポート部290は、デジタルツイン演算部291により、船速測定装置312で測定する自船の船速と、位置測定装置313で測定する自船の船位と、方位測定装置314で測定する自船の船首方位をリアルタイムで収集し、現在操舵角において実現する自船の現実船体運動を、ディスプレイ装置262のモニター画面に表示する航海用電子海図上に再現する。
【0063】
デジタルツイン演算部291が航海用電子海図上に再現する自船の現実船体運動は、現在操舵角により船体に与える駆動力と、水の抵抗、風力、潮力等々が船体に与える種々の外力とにより定まる。
【0064】
船体に作用する外力のその全てを個々に測定することはできないが、航海用電子海図上に再現する自船の現実船体運動は、船体に作用する外力のその全てが影響した結果として現れる。
【0065】
シミュレーション演算部292は、現在操舵角において演算により想定する自船の想定船体運動を航海用電子海図上に表示する。
【0066】
このシミュレーション演算部292が航海用電子海図上に表示する自船の想定船体運動は、現在操舵角において船体に与える駆動力、すなわち推進プロペラ101の推力と高揚力舵102、103の舵角の組合せにより生じる力を演算し、この駆動力を船体に作用する力として算出する。ここでのシミュレーション演算部292による演算にはいずれの外力も考慮されていない。しかし、測定可能な個々の外力はシミュレーション演算部292による演算に取り込むことも可能であるが、個々の外力をシミュレーション演算部292の演算に取り込むことは煩雑であり、測定不能の外力もあるので、すべての外力をシミュレーション演算部292の演算に取り込むことは不可能である。
【0067】
このため、デジタルツイン演算部291が、リアルタイムで収集する自船の船速、自船の船位、自船の船首方位に基づいて航海用電子海図上に再現する現実船体運動と、シミュレーション演算部292が航海用電子海図上に表示する想定船体運動とを比較することは、制御可能な駆動力と制御不能な外力とが作用する実際の結果の現実船体運動と、制御可能な駆動力だけが作用すると想定する演算の結果の想定船体運動を比較することになる。
【0068】
よって、船体に作用する風や波浪、海潮流等の個々の外力を演算により求めることなく、現実船体運動と想定船体運動の間に生じる動きの差によって、船体に作用するすべての外力の合力の作用方向と大きさを捉えることができる。
【0069】
そして、外力の合力演算部293が、現実船体運動と想定船体運動における船速差、船位差、船首方位差に基づいて船体に作用する外力の合力の作用方向と大きさを算出する。この外力の合力の作用方向と大きさに基づいて、指示舵角演算部294が外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正することで、適正操舵角、すなわち航海用電子海図上に設定した予定航路の航行に必要な操舵角を算出する。操船サポート部290は、算出した適正操舵角を舵角指示部280に指示舵角として出力する。
【0070】
オート操船部253は、コースライン上にある対象物に対する停止操船において、推進プロペラ101を常に前進回転のままで、双方の高揚力舵102、103に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船501の前進方向への慣性力に抗して自船501を減速させ、双方の高揚力舵102、103に与える舵角を、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲で制御する。
【0071】
この停止操船においても外力の影響を考慮し、外力の合力演算部293が算出する外力の合力に基づいて指示舵角演算部294が自船501と対象物までの距離間において停船に至る適正船速に減速させるのに必要な双方の高揚力舵102、103の適正操舵角を算出する。
4.手動による操縦モード
モード切替スイッチ260を操作して手動操舵輪256による操縦モードを選択する。この操縦モードでは、手動操舵輪256の回転操作により二枚の高揚力舵102、103の舵角を手動操船部257に指示し、二枚の高揚力舵102、103の舵角を制御して操船する。
5.ノンフォローアップの操縦モード
モード切替スイッチ260を操作してノンフォローアップ操縦レバー258による操縦モードを選択する。この操縦モードでは、ノンフォローアップ操船部259により、ノンフォローアップ操舵レバー258を左右に操作している時間に応じて右舷もしくは左舷に舵を切る。
6.避航操船の操船モード
輻輳海域を航行する場合には、モード切替スイッチ260を操作して避航操船部281による操縦モードを選択する。
【0072】
この輻輳海域を航行する避航操船の操船モードにおいて、相手船401、402が自船501のコースライン502を横切り、衝突の恐れがあるときに船舶レーダ装置310が衝突警報信号を発信すると、避航操船部281が避航操船を行う。
【0073】
避航操船部281は、図7に示すように、輻輳海域を航行する避航操船の操船モードにおいて、相手船401、402が航海用電子海図上で自船501のコースライン502を横切り、衝突の恐れがあるときには、船舶レーダ装置310が発する衝突警報信号を受けて、相手船401、402を右舷側に見て航行する自船501の現状のコースライン502を継続航行しつつ、推進プロペラ101を常に前進回転のままで、双方の高揚力舵102、103に舵角を与えてプロペラ後流の推力を後進推力となし、後進推力により自船501の前進方向への慣性力に抗して自船501を減速させて相手船401、402との衝突を回避する。
【0074】
避航操船部281が双方の高揚力舵102、103に与える舵角は、プロペラ後流を後進推力として最大に作用させる舵角からプロペラ後流の前進推力をなくす舵角までの範囲である。そして、推進プロペラ101を一定の前進回転のままに、舵角に応じて増減する後進推力を相手船401、402との距離に見合って制御し、相手船401、402が自船501のコースライン502を横切って通過するのに必要な時間を確保できる船速に減速する。
【0075】
この避航操船においても、外力の影響を考慮し、外力の合力演算部293が算出する外力の合力に基づいて指示舵角演算部294が自船501と相手船401、402までの距離間において相手船401、402を避ける適正船速に減速させるのに必要な双方の高揚力舵102、103の適正操舵角を算出する。
【0076】
次に、相手船401、402が自船501のコースライン502を横切って通過した後に、双方の高揚力舵102、103の舵角を制御し、プロペラ後流の推力を前進推力となしてコースライン502を継続航行する操船を行う。
【符号の説明】
【0077】
100 推力システム
110 船体
101 推進プロペラ
102、103 高揚力舵
104、105 ロータリーベーン舵取機
106、107 舵制御装置
108 船首スラスター
109 スラスター制御装置
151、152 ポンプユニット
153、154 舵角発信器
155、156 フィードバックユニット
200 操船システム
250 操船スタンド
251 ジャイロコンパス
252 ジャイロ方位表示部
253 オート操船部
254 ジョイスティックレバー
255 ジョイスティック操船部
262 ディスプレイ装置
263 画像制御部
264 緊急停船押釦
265 緊急停船部
266 海図表示画像
267 ジャイロ方位表示画像
268 方位表示部操作画像
269 オート操船操作画像
280 舵角指示部
281 避航操船部
282 電子海図表示部
283 コースライン設定部
284 針路補正部
290 操船サポート部
291 デジタルツイン演算部
292 シミュレーション演算部
293 外力の合力演算部
294 指示舵角演算部
310 船舶レーダ装置
311 警報信号出力部
312 船速測定装置
313 位置測定装置
314 方位測定装置
401、402 相手船
501 自船
502 コースライン
【要約】
【課題】船体に作用する風や波浪、海潮流等の外力を考慮して操舵角を補正することができる一軸二舵船の操舵角補正機能を有する操舵システムを提供する。
【解決手段】デジタルツイン演算部291は、自船の船速と自船の船位と自船の船首方位をリアルタイムで収集し、現在操舵角において実現する自船の現実船体運動を航海用電子海図上に再現し、シミュレーション演算部292は、船体に作用する力が現在操舵角における駆動力であると想定して演算により求めた自船の想定船体運動を航海用電子海図上に表示し、外力の合力演算部293は、現実船体運動と想定船体運動における船速差、船位差、船首方位差に基づいて船体に作用する外力の合力の作用方向と大きさを算出し、指示舵角演算部294は、外力の合力に抗するための補正舵角を算出し、現在操舵角を補正舵角で補正して適正操舵角を算出する。
【選択図】図3
図1
図2
図3
図4
図5
図6
図7