(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-22
(45)【発行日】2022-10-03
(54)【発明の名称】放射線治療装置とともに使用される患者モニタリングシステムのキャリブレーション方法
(51)【国際特許分類】
A61N 5/10 20060101AFI20220926BHJP
【FI】
A61N5/10 M
(21)【出願番号】P 2020505896
(86)(22)【出願日】2018-07-31
(86)【国際出願番号】 GB2018052192
(87)【国際公開番号】W WO2019025791
(87)【国際公開日】2019-02-07
【審査請求日】2021-07-20
(32)【優先日】2017-08-02
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】511180259
【氏名又は名称】ビジョン アールティ リミテッド
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ミード,エドワード ウィリアム
(72)【発明者】
【氏名】メイア,アイヴァン ダニエル
【審査官】野口 絢子
(56)【参考文献】
【文献】米国特許出願公開第2015/0085993(US,A1)
【文献】特表2016-524983(JP,A)
【文献】特開2011-085563(JP,A)
【文献】特開2016-221156(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/00- 5/10
H04N13/239
H04N13/246
(57)【特許請求の範囲】
【請求項1】
放射線治療中の患者のポジショニングをモニタするモニタリングシステムの画像捕捉デバイスと、治療装置が放射線を方向付けるように配置されている治療室のアイソセンタとの相対位置を決定する方法であって、
キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、平面図において、前記画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が
、前記画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことと、
前記画像捕捉デバイスにより前記キャリブレーションファントムの画像を取得することと、
前記キャリブレーションファントムの撮像された面のモデルを生成するように、前記取得された画像を処理することと、
前記キャリブレーションファントムの前記撮像された面の前記生成されたモデルを用いて、前記キャリブレーションファントムの中心と、
前記画像平面との相対位置を特定することと、
前記キャリブレーションファントムの中心と
前記画像平面との前記特定された
相対位置を用いて、
前記画像平面と、前記治療装置が放射線を方向付けるように配置されている前記治療室の前記アイソセンタとの相対位置を決定することと
を有する方法。
【請求項2】
キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、平面図において、前記画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が前記画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことは、
レーザ照明システムにより前記治療室の前記アイソセンタをハイライトすることと、
前記キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置を合わせ、平面図において、前記画像捕捉デバイスに最も近い前記キャリブレーションファントムの面は、前記治療室の前記アイソセンタをハイライトするために使用されるレーザ光を、前記キャリブレーションファントムの外側に設けられたマーキングとそろえることによって、
前記画像平面に対して45°傾けられる、ことと
を有する、
請求項1に記載の方法。
【請求項3】
前記キャリブレーションファントムは、立方体を有し、
前記キャリブレーションファントムの外側に設けられた前記マーキングは、前記立方体の辺に沿って延在するマーキングと、前記立方体を二等分するマーキングと、前記立方体の斜め向かいの角どうしの間に延在する十字と
、のうちの1つ以上を有する、
請求項2に記載の方法。
【請求項4】
前記キャリブレーションファントムは、1以上の照射ターゲットを包含し、
当該方法は、
前記治療装置によって照射される前記キャリブレーションファントムの放射線画像を取得することと、
前記治療装置によって照射される前記キャリブレーションファントムの前記取得された放射線画像を解析して、前記治療室の前記アイソセンタと前記キャリブレーションファントムの中心との相対位置を決定することと
を更に有する、
請求項1乃至3のうちいずれか一項に記載の方法。
【請求項5】
前記キャリブレーションファントムの中心が前記治療室の前記アイソセンタに位置するように前記キャリブレーションファントムを位置合わせし直すことを更に有する、
請求項4に記載の方法。
【請求項6】
前記モニタリングシステムは、複数の画像捕捉デバイスを有する、
請求項1乃至5のうちいずれか一項に記載の方法。
【請求項7】
前記モニタリングシステムは、前記治療室の前記アイソセンタの近くに位置する対象の表面上に光を投影するように動作するプロジェクタを更に有する、
請求項1乃至6のうちいずれか一項に記載の方法。
【請求項8】
前記プロジェクタは、前記治療室の前記アイソセンタの近くに位置する前記対象の表面上に、構造化された光を、レーザ光のグリッドパターン又はラインの形で投影するように動作し、
前記キャリブレーションファントムの撮像された面のモデルを生成するように前記取得された画像を処理することは、前記構造化された光が投影されている前記キャリブレーションファントムの取得された画像を処理し、該画像に現れる前記構造化された光のパターンの歪みに基づいて前記キャリブレーションファントムの前記撮像された面のモデルを生成することを有する、
請求項7に記載の方法。
【請求項9】
前記プロジェクタは、前記治療室の前記アイソセンタの近くに位置する前記対象の表面上に光の斑紋パターンを投影するよう動作し、
前記モニタリングシステムは、ステレオカメラを有し、
前記キャリブレーションファントムの撮像された面のモデルを生成するように前記取得された画像を処理することは、前記光の斑紋パターンが投影されている前記キャリブレーションファントムの取得された立体画像を処理し、前記ステレオカメラによって取得された立体画像における撮像対象の対応する部分の特定に基づいて前記キャリブレーションファントムの前記撮像された面のモデルを生成することを有する、
請求項7に記載の方法。
【請求項10】
前記モニタリングシステムは、1以上の画像捕捉デバイスを夫々収容している1以上のカメラポッドを有し、
キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、平面図において、前記画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が前記画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことは、前記キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、前記カメラポッドの1つの画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が、そのカメラポッドにおける画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことを有する、
請求項1乃至9のうちいずれか一項に記載の方法。
【請求項11】
前記1以上のカメラポッドは、複数のカメラポッドを有し、該複数のカメラポッドは全て、前記治療室の同じ側に位置する、
請求項10に記載の方法。
【請求項12】
前記1以上のカメラポッドは、前記治療室内に対称的なパターンで配置される、
請求項10又は11に記載の方法。
【請求項13】
前記モニタリングシステムは、1以上の画像捕捉デバイスを夫々収容している3つのカメラポッドを有し、
キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、平面図において、前記画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が前記画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことは、前記キャリブレーションファントムを、その中心が前記治療室の前記アイソセンタにおおよそ位置するように位置付け、平面図において、他の2つのカメラポッドに挟まれて中心に位置するカメラポッドの画像捕捉デバイスに最も近い前記キャリブレーションファントムの面が、前記中心に位置するカメラポッドにおける画像捕捉デバイス
によって捕捉される画像平面に対して45°傾けられる、ことを有する、
請求項11又は12に記載の方法。
【請求項14】
前記カメラポッドは、前記治療室の天井からつるされる、
請求項10乃至13のうちいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線治療中の患者の位置をモニタする患者モニタリングシステムのキャリブレーション方法に関係がある。特に、本発明は、治療室アイソセンタに対してモニタリングシステム内のカメラのような画像検出器の位置を特定する方法に関係がある。
【背景技術】
【0002】
放射線治療は、患者の身体の所定部位に存在する腫瘍を破壊又は除去するためにその所定部位の上に放射線ビームを投影することをから成る。そのような治療は、通常は、定期的に繰り返し行われる。医療介入ごとに、放射線源は、放射線ビームが有害となりうる隣接組織に放射することを回避するように、選択された部位を最大限の正確さで照射するために患者に対して位置合わせされなければならない。この理由のために、放射線治療中に患者のポジショニングを支援する多数のモニタリングシステムが提案されている。例えば、米国特許第7889906号、第7348974号、第8135201号、第9028422号、並びに米国特許出願第2015/256852号及び第2016/129283号におけるVisionRT社の先行特許及び特許出願で記載されているものがある。なお、これらの特許文献は全て、参照により本願に援用される。
【0003】
VisionRT社の特許及び特許出願で記載されているシステムでは、患者の画像が取得され、そして、患者の表面上の点に対応する多数の点の3Dポジションを特定するデータを生成するように処理される。そのようなデータは、前の機会に生成されたデータと比較され、一貫した方法で患者を位置合わせするために又は患者がポジションから外れる場合に警告を発するために使用され得る。典型的に、そのような比較は、ライブ画像に基づき生成されたデータによって特定された患者の表面上の点と、前の機会に生成されたデータによって特定された患者の表面上の点との間のポジションの差を最小限にする変換を決定するように、プロクラステス分析(Procrustes analysis)を行うことを伴う。
【0004】
VisionRT社の患者モニタリングシステムは、患者の表面の極めて正確な(例えば、サブミリメートル)モデルを生成することができる。そうするために、モニタリングシステムは、患者捕捉デバイス/カメラの相対位置及び向きと、各画像検出器/カメラのレンズの光学設計によって引き起こされる何らかの光学歪み、例えば、樽型(barrel)、陣笠型(pincushion)、及び糸巻き型(mustache)歪み並びに偏心(decentering)/接線方向(tangential)歪みと、カメラ/画像捕捉デバイスの他の内部パラメータ(例えば、焦点長さ、アスペクト比スキュー、ピクセル間隔、など)とを特定するカメラパラメータを確立するために較正される。知られると、カメラパラメータは、取得された画像を操作して、歪みがない画像を得るために利用され得る。次いで、異なる位置から取得された画像を処理し、画像並びに画像捕捉デバイス/カメラの相対位置及び向きから3Dポジションを導出することによって、3Dポジション測定が決定され得る。
【0005】
加えて、モニタリングシステムはまた、モニタリングシステムのカメラと、治療装置によって生成された放射線が方向付けられる治療室アイソセンタとの相対位置を特定するためにも、較正されるべきである。
【0006】
そもそも、放射線治療におけるアイソセンタ確認のための第1の方法は、治療装置のガントリヘッドに取り付けられた機械式ポインタの先端と、治療台に取り付けられた固定点との間の距離を測定することであった。かような方法は手動であり、骨が折れ、時間がかかる。方法の正確さは、人間である観測者に依存し、使用されるポインタの先端のサイズによっても制限された。
【0007】
改善された技術は、1988年にハーバード大学医科大学院のLutz、Winston及びMalekiによって紹介された。これは、Lutz W, Winston K R, Maleki N,“A system for stereotactic radiosurgery with a linear accelerator”,Int J Radiat Oncol Biol Phys,1998; 14(2): 378-81に記載されている。Winston-Lutzシステムでは、スチール、チタン又はタングステンから作られた小さい金属製ボールを有するキャリブレーションファントムが、ロッキングメカニズムによって治療台に固定される。ファントムポジションは、マイクロメートルツールによって3方向で調整可能である。放射線治療に使用されるコリメータは、ガントリヘッドに取り付けられており、ボールは、ファントム上のマークを治療室レーザと合わせることによって、アイソセンタの可能な限り近くに置かれる。コリメートされたビームを使用して、ボールの後ろのスタンドにビーム方向に垂直に取り付けられた放射線検査フィルムを露光する。球形の影の中心と視野の中心との間の差が、真のアイソセンタと、治療室レーザで示されるアイソセンタとの差を特定する。透明なテンプレートガイダンススケールを使用して、又はフィルム走査及びソフトウェア解析によって、フィルムごとにオフセットが読み取られる。
【0008】
放射線撮影Winston Lutz画像を解析する数学的手法が開発されており、Low D A, Li Z, Drzymala R E,“Minimization of target positioning error in accelerator-based radiosurgery”,Med Phys,1995; 22(4): 443-48に記載されている。この手法は、治療装置アイソセンタとターゲットとの間の距離を最小限にするファントムスタンドの適切なオフセットを見つけるために、ガントリ角度及び寝台の8つの設定に対するフィルム測定アイソセンタ位置誤差を使用した。Grimm et al.は、同様の目的を受けて、特定の寝台及びガントリ角度で撮影され、デジタルカメラによって撮影されたレーザの画像と組み合わされた二次元放射線フィルム画像から、3次元でWinston-Lutzファントムボールの軌跡を再構成するアルゴリズムを開発した。このアプローチは、Grimm J, Grimm S L, Das I J, et al.,“A quality assurance method with sub-millimeter accuracy for stereotactic linear accelerators”,J Appl Clin Med Phys,2011; 12(1): 182-98に記載されている。
【0009】
放射線撮影ファントム画像の自動処理の更なる例は、E Schriebmann, E Elder and T Fox,“Automated Quality Assurance for Image-Guided Radiation Therapy”,J Appl Clin Med Phys,2009: 10(1): 71-79に記載されている。これは、メガボルト(MV)治療ビームが、統合されたキロ電圧(kV)又は体積コーンビームCTと一致することを確かにする品質保証方法の自動化について論じている。この論文には、キャリブレーション立方体が、レーザマーキングを用いて治療室アイソセンタの推定位置に位置付けられると説明されている。次いで、立方体の照射の放射線撮影画像が取得され、そして、MV、kV及び体積コーンビームによって特定されるように、位置合わせされる立方体がアイソセンタからオフセットされる範囲を決定するために処理される。
【0010】
それから、キャリブレーションファントムのポジションは、ファントムが治療室アイソセンタに正確に位置付けられるまで、放射線撮影Winston Lutz画像の解析に基づき調整され得る。アイソセンタの位置が特定されると、次いで、アイソセンタの位置が、レーザ光の平面を生成するレーザの組を使用することによってハイライトされ得る。そのために、多くのキャリブレーションファントムは外部マーキングを備え、それにより、ファントムがアイソセンタに位置付けられると、レーザ光は、レーザ光の生成された平面が外部マーキングと一致するように調整され得、ファントムが取り除かれる場合には、アイソセンタの位置が、レーザビームの交差によって特定される。
【0011】
それから、治療装置のアイソセンタに対するカメラのポジショニングは、治療装置のアイソセンタを中心とする位置で治療装置に位置合わせされる既知のサイズのキャリブレーション立方体を撮像することによって、決定され得る。典型的に、キャリブレーション立方体のポジショニングは、アイソセンタで交差するレーザ十字線の投影と立方体の外側のマークとの一致によって実現される。次いで、キャリブレーション立方体の画像が取得され、そして、カメラの相対位置の以前に取得された測定値と、画像に存在する何らかの歪みの存在に関する任意のデータとを使用して処理され、立方体の表面の3Dコンピュータモデルが生成される。生成された3Dモデルと、キャリブレーション立方体のサイズ及びポジションに関する既知のパラメータとの比較により、モデリングソフトウェアの座標系で行われた測定を、治療アイソセンタに対する治療室での実際の測定に変換することができる。
【0012】
放射線治療装置とともに使用されるステレオカメラシステムを較正することに対する従来のアプローチは極めて正確であるが、精度の更なる改善が望ましい。
【先行技術文献】
【特許文献】
【0013】
【文献】米国特許第7889906号
【文献】米国特許第7348974号
【文献】米国特許第8135201号
【文献】米国特許第9028422号
【文献】米国特許出願第2015/256852号
【文献】米国特許出願第2016/129283号
【非特許文献】
【0014】
【文献】Lutz W, Winston K R, Maleki N,“A system for stereotactic radiosurgery with a linear accelerator”,Int J Radiat Oncol Biol Phys.,1998; 14(2): 378-81
【文献】Low D A, Li Z, Drzymala R E,“Minimization of target positioning error in accelerator-based radiosurgery”,Med Phys,1995; 22(4): 443-48
【文献】Grimm J, Grimm S L, Das I J, et al.,“A quality assurance method with sub-millimeter accuracy for stereotactic linear accelerators”,J Appl Clin Med Phys,2011; 12(1): 182-98
【文献】E Schriebmann, E Elder and T Fox,“Automated Quality Assurance for Image-Guided Radiation Therapy”,J Appl Clin Med Phys,2009: 10(1): 71-79
【発明の概要】
【0015】
本発明の一態様に従って、モニタリングシステムのキャリブレーション方法は、キャリブレーションファントムを、その中心が治療室のアイソセンタにおおよそ位置するように位置付け、平面図において、モニタリングシステムの画像捕捉デバイスに最も近いキャリブレーションファントムの面がモニタリングシステムの画像捕捉デバイスのカメラ平面に対して約45°傾けられる、ことを特徴として提供される。次いで、キャリブレーションファントムの画像が画像捕捉デバイスにより取得され、画像は、キャリブレーションファントムの撮像された面のモデルを生成するように処理される。次いで、キャリブレーションファントムの撮像された面の生成されたモデルを用いて、キャリブレーションファントムの中心と、画像捕捉デバイスのカメラ平面との相対位置が特定される。特定された相対位置は、画像捕捉デバイスのカメラ平面と、治療装置が放射線を方向付けるように配置されている治療室のアイソセンタとの相対位置を決定するために用いられる。
【0016】
本出願人は、平面図において、画像捕捉デバイスに最も近いキャリブレーションファントムの面が、モニタリングシステムの画像捕捉デバイスのカメラ平面に対して約45°傾けられるように、キャリブレーションファントム、特に、キャリブレーション立方体の面に角度をつけることにより、そのようなモニタリングシステムがキャリブレーションファントムのモデルを生成することができる精度が改善され、従って、画像捕捉デバイスと治療室アイソセンタとの相対位置が決定され得る精度が改善されることを突き止めた。
【0017】
いくつかの実施形態で、キャリブレーションファントムを、その中心が治療室のアイソセンタにおおよそ位置するように位置付け、平面図において、画像捕捉デバイスに最も近いキャリブレーションファントムの面が画像捕捉デバイスのカメラ平面に対して約45°傾けられる、ことは、レーザ照明システムにより治療室のアイソセンタをハイライトすることと、治療室のアイソセンタをハイライトするために使用されるレーザ光を、キャリブレーションファントムの外側に設けられたマーキングとそろえることによって、キャリブレーションファントムを位置合わせすることと有してよい。キャリブレーション立方体の形をとるキャリブレーションファントム上のマーキングは、立方体の辺に沿って延在するマーキング、立方体を二等分するマーキング、及び/又は立方体の斜め向かいの角どうしの間に延在する十字を有してよい。
【0018】
いくつかの実施形態で、キャリブレーションファントムは、照射ターゲットを包含するキャリブレーションファントムを有してよい。かような実施形態では、放射線治療中の患者のポジショニングをモニタするモニタリングシステムの画像捕捉デバイスと、治療装置が放射線を方向付けるように配置される治療室のアイソセンタとの相対ポジションを見つけることは、治療装置によって照射されるキャリブレーションファントムの放射線画像を取得することと、該取得された放射線画像を解析して、治療室アイソセンタとキャリブレーションファントムの中心との相対位置を決定することとを有してよい。
【0019】
かような実施形態では、キャリブレーションファントムは、治療室のアイソセンタとキャリブレーションファントムの中心との相対位置が特定された後に位置合わせし直されてよく、位置合わせし直されたファントムの画像は、モニタリングシステムによって取得され、画像捕捉デバイスと治療室のアイソセンタとの相対位置を決定するために用いられる。
【0020】
代替的に、治療室のアイソセンタとキャリブレーションファントムの中心との相対位置は、画像捕捉デバイスと治療室のアイソセンタとの相対位置を決定するためにファントムを位置付けし直すことなしに、キャリブレーションファントムの生成されたモデルとともに使用されてもよい。
【0021】
いくつかの実施形態で、モニタリングシステムは、複数の画像捕捉デバイスを有してよい。
【0022】
いくつかの実施形態で、モニタリングシステムは、治療室アイソセンタの近くに位置する対象の表面上に光を投影するように動作するプロジェクタを有してよい。そのようなプロジェクタは、治療室アイソセンタの近くに位置する対象の表面上に、構造化された光を、レーザ光のグリッドパターン又はラインの形で投影するように動作するプロジェクタを有してよい。かようなシステムで、構造化された光が投影されているキャリブレーションファントムの取得された画像は、キャリブレーションファントムの撮像された面のモデルを生成するために、画像に現れる構造化された光の投影されたパターンの歪みを解析するように処理されてよい。
【0023】
他の実施形態では、プロジェクタは、治療室アイソセンタの近くに位置する対象の表面上に光の斑紋パターン(speckled pattern)を投影するよう動作するプロジェクタを有してよい。かようなシステムで、モニタリングシステムは、ステレオカメラを有してよく、取得された画像を処理してキャリブレーションファントムの撮像された面のモデルを生成することは、光の斑紋パターンが投影されているキャリブレーションファントムの取得された立体画像を処理することと、取得された画像における対象の対応する部分を特定するようにキャリブレーションファントムの撮像された面のモデルを生成することとを有してよい。
【0024】
モニタリングシステムは、1以上の画像捕捉デバイスを夫々収容している1以上のカメラポッドを有してよく、カメラポッドは、治療室の天井からつるされる。モニタリングシステムが複数のカメラポッドを有する場合に、カメラポッドは全て、治療室の同じ側に位置付けられてよく、カメラポッドは、治療室内に対称的なパターンで配置されてよい。
【0025】
かような実施形態で、キャリブレーションファントムは、その中心が前記治療室の前記アイソセンタにおおよそ位置するように配置されてよく、平面図において、カメラポッドの1つの画像捕捉デバイスに最も近いキャリブレーションファントムの面は、そのカメラポッドにおける画像捕捉デバイスのカメラ平面に対して約45°傾けられる。
【0026】
いくつかのかような実施形態で、モニタリングシステムは、2つの他のカメラポッドが両脇にある中央のカメラポッドを有してよく、キャリブレーションファントムを位置付けることは、中央に位置するカメラポッドの画像捕捉デバイスに最も近いキャリブレーションファントムの面が、平面図において、中央に位置するカメラポッドにおける画像捕捉デバイスのカメラ平面に対して約45°傾けられた状態で、キャリブレーションファントムを治療室アイソセンタにおおよそ位置付けることを有してよい。
【0027】
本発明の更なる態様では、上記の方法のいずれかで使用されるキャリブレーションファントムが提供される。そのようなキャリブレーションファントムは、キャリブレーション立方体を有してよく、立方体の外側には、モニタリングシステムのカメラ/画像捕捉デバイスによる撮像のための立方体の方向付けを容易にするマーキングが設けられている。そのようなマーキングは、立方体の辺に沿って延在するマーキングと、立方体を二等分するマーキングと、立方体の斜め向かいの角どうしの間に延在する十字とから選択されたマーキングを有してよい。いくつかの実施形態で、キャリブレーションファントムは、治療装置によって照射され得る照射ターゲットを包含してよい。
【0028】
これより、添付の図面を参照して、本発明の実施形態について更に詳述する。
【図面の簡単な説明】
【0029】
【
図1】治療装置及び患者モニタの概略斜視図である。
【
図2】
図1の患者モニタのカメラポッドの正面斜視図である。
【
図3】
図1の患者モニタのコンピュータシステムの概略ブロック図である。
【
図4】カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の従来配置の平面図である。
【
図5】カメラシステムと治療室のアイソセンタとの相対位置を特定するための従来のキャリブレーション立方体の概略斜視図である。
【
図6】本発明の実施形態に従って、カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の配置の平面図である。
【
図7】本発明の実施形態に従って、カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の概略斜視図である。
【
図8】本発明の更なる実施形態に従って、カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の配置の平面図である。
【
図9】本発明の更なる実施形態に従って、カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の配置の平面図である。
【
図10】本発明の更なる実施形態に従って、カメラシステムと治療室のアイソセンタとの相対位置を特定するためのキャリブレーション立方体の配置の平面図である。
【発明を実施するための形態】
【0030】
本発明に従って、患者のポジショニングをモニタするモニタリングシステムのカメラ/画像検出器と治療室のアイソセンタとの相対位置を決定する方法について記載する前に、記載される方法を用いて較正され得る患者モニタリングシステム及び放射線治療装置、並びにかようなシステムのカメラ/画像検出器と治療室のアイソセンタとの相対位置を特定することに対する従来アプローチが最初に、
図1~5を参照して記載される。
【0031】
図1は、多数のカメラポッド10内に取り付けられた多数のカメラを有するカメラシステムを備える患者モニタリングシステムの例の概略斜視図である。
図1には、配線(図示せず。)によってコンピュータ14へ接続されているカメラポッド10のうちの1台が示されている。コンピュータ14は、放射線治療を適用する線形加速器のような治療装置16へも接続されている。機械カウチ18が治療装置の部分として設けられており、治療中に患者20はその上に横たわる。治療装置16及び機械カウチ18は、コンピュータ14の制御下で、機械カウチ18及び治療装置16の相対ポジションが、カウチに隣接する矢印によって図中に示されているように、横方向に、垂直に、縦方向に、及び回転方向に変化し得るように、配置される。
【0032】
治療装置16は本体22を有し、それからガントリ24が延在する。コリメータ26は、治療装置16の本体22から離れてガントリ24の端部に設けられている。放射線が患者20を照射する角度を変えるべく、ガントリ24は、コンピュータ14の制御下で、図に示されるように、治療装置16の本体22の中心を通る軸の周りを回転するように配置される。更には、治療装置による照射の方向も、やはり図に矢印で示されるように、ガントリ24の端部でコリメータ26を回転させることによって、変えられ得る。
【0033】
患者モニタリングシステムにおいて適当な視野を得るべく、患者20をモニタするカメラを収容しているカメラポッド10は、通常、一定の距離(例えば、モニタされる患者から1~2メートル)から患者20を見る。
図1の例となる図では、
図1に示されるカメラポッド10の視野は、カメラポッド10から広がっている破線によって示される。
【0034】
図1に示されるように、通常、そのようなカメラポッド10は、治療室の天井からつるされ、ガントリ24から離されている。それにより、カメラポッド10は、ガントリ24の回転と干渉しない。いくつかのシステムでは、単一のカメラポッド10しか含まないカメラシステムが利用される。しかし、他のシステムでは、ガントリ24の回転が患者20のビューを全体的に、又はガントリ24若しくは機械カウチ18が特定の向きにあるときには部分的に、遮ることがあるので、複数台のカメラポッド10を含むことがカメラシステムにとって好ましい。複数台のカメラポッド10を設けることはまた、複数の方向から患者を撮影してシステムの精度を高めることを促す。
【0035】
レーザ照明システム(図示せず。)は、通常、レーザ光の3つの平面を生成するよう配置されたレーザ光源の組の形をとり、治療室アイソセンタをハイライトするために設けられてよい。治療室アイソセンタは、コリメータ26及びガントリ24の向き及びポジションにかかわらず放射線が通るように治療装置16が配置される治療室内のポジションである。患者20が治療のために位置合わせされる場合に、この治療室アイソセンタは、最大量の放射線を受けるよう意図されている組織と一致すべきである。
【0036】
図2は、例となるカメラポッド10の正面斜視図である。
【0037】
この例のカメラポッド10は、ヒンジ44を介してブラケット42へ接続されている筐体41を有する。ブラケット42は、カメラポッド10が治療室の天井に固定位置で取り付けられることを可能にし、一方、ヒンジ44は、カメラポッド10の向きがブラケット42に対して合わせられることを可能にする。それにより、カメラポッド10は、機械カウチ18の上の患者20を見るよう配置され得る。一対のレンズ46が、筐体41の正面48の両側に取り付けられている。これらのレンズ46は、筐体41の中に収容されているCMOS能動ピクセルセンサ又は電荷結合デバイス(図示せず。)のような画像捕捉デバイス/カメラの正面に位置付けられている。カメラ/画像検出器は、レンズ46を介して患者20の画像を捕捉するように、レンズ46の後ろに配置されている。
【0038】
この例では、スペックルプロジェクタ52が、
図2に示されるカメラポッド10において2つのレンズ46の間にあるように筐体41の正面48の真ん中に設けられている。この例のスペックルプロジェクタ52は、赤色光の非反復斑紋パターンで患者20を照らすよう配置される。それにより、患者20の画像がカメラポッド10内に取り付けられた2つの画像検出器によって捕捉される場合に、捕捉された画像の対応する部分が、より容易に区別され得る。そのために、スペックルプロジェクタ52は、LEDのような光源と、フィルムとを有し、フィルム上には、ランダムなスペックルパターンが印刷されている。使用中に、光源からの光がフィルムを介して投影され、結果として、明領域及び暗領域から成るパターンが患者20の表面上に投影される。いくつかのモニタリングシステムでは、スペックルプロジェクタ52は、構造化された光(例えば、レーザ光)をライン又はグリッドパターンの形で患者20の表面上に投影するよう構成されたプロジェクタと置き換えられてもよい。
【0039】
図3は、
図1の患者モニタのコンピュータ14の概略ブロック図である。コンピュータ14がカメラポッド10から受け取られた画像を処理するために、コンピュータ14は、ディスク54で提供されるソフトウェアによって、又は通信ネットワークを介して電気信号55を受信することによって、多数の機能モジュール56~64へと構成される。この例において、機能モジュール56~64は、ステレオカメラシステム10から受け取られた画像を処理する3Dポジション決定モジュール56と、3Dポジション決定モジュール56によって生成されたデータを処理し、データを、撮像された面の3Dワイヤメッシュモデルに変換するモデル生成モジュール58と、撮像された面の3Dワイヤメッシュモデルを記憶する生成モデル記憶部60と、前に生成された3Dワイヤメッシュモデルを記憶するターゲットモデル記憶部62と、生成されたモデルをターゲットモデルと整合させるのに必要とされる回転及び平行移動を決定する整合モジュール64とを有する。
【0040】
使用中に、カメラポッド10の画像捕捉デバイス/カメラによって画像が捕捉されると、これらの画像は3Dポジション決定モジュール56によって処理される。この処理は、3Dポジション決定モジュール56が患者20の表面上で画像の組内の対応する点の3Dポジションを特定することを可能にする。例となるシステムでは、これは、3Dポジション決定モジュール56が、カメラポッド10によって取得された画像の組において対応する点を特定し、次いで、それらの点の3Dポジションを、カメラポッド10の画像捕捉デバイス/カメラの夫々の記憶されたカメラパラメータと、取得された画像の組における対応する点の相対ポジションとに基づき決定することによって、達成される。
【0041】
次いで、3Dポジション決定モジュール56によって生成されたポジションデータは、モデル生成モジュール58へ送られる。モデル生成モジュール58は、ステレオカメラ10によって撮像された患者20の表面の3Dワイヤメッシュモデルを生成するようにポジションデータを処理する。3Dモデルは、モデルの頂点が3Dポジション決定モジュール56によって決定された3Dポジションに対応する三角化ワイヤメッシュモデルを有する。そのようなモデルが決定されると、それは生成モデル記憶部60に記憶される。
【0042】
患者20の表面のワイヤメッシュモデルが記憶されると、次いで、整合モジュール64が呼び出されて、ステレオカメラ10によって取得されている現在の画像に基づく生成されたモデルと、ターゲットモデル記憶部62に記憶されている患者の以前に生成されたモデル表面との間の整合する平行移動及び回転を決定する。決定された平行移動及び回転は、次いで、指示として機械カウチ18へ送られ、カウチ18に、治療装置16に対して、患者20が前に治療されたときに患者20があったのと同じポジションに患者20を位置付けさせることができる。
【0043】
その後に、カメラポッド10の画像捕捉デバイス/カメラは、引き続き患者20をモニタすることができ、ポジションのいかなる変動も、更なるモデル表面を生成し、それら生成された表面を、ターゲットモデル記憶部62に記憶されているターゲットモデルと比較することによって、特定され得る。患者20が所定のポジションから外れたと決定される場合に、治療装置16は一時停止可能であり、あるいは、警告がトリガ可能であり、そして、患者20は位置合わせし直されて、患者20の誤った部分を照射することが回避される。
【0044】
これより、
図4及び
図5を参照して、治療室のアイソセンタに対するモニタリングシステムのカメラの相対位置を特定する従来アプローチについて記載する。
【0045】
図4は、キャリブレーションファントムの概略平面図である。キャリブレーションファントムは、本例では、3つのカメラ又はカメラポッド72~76によって撮像されるキャリブレーション立方体70の形をとる。治療室のアイソセンタに対するモニタリングシステムのカメラの相対位置を特定する場合に、キャリブレーション立方体70は、キャリブレーション立方体70の中心が治療室のアイソセンタにあるように位置付けられる。これは、従来技術によりアイソセンタの位置を特定し、該アイソセンタの位置を、レーザ光の3つの平面の交差によってハイライトすることによって、達成される。レーザ光の3つの平面のうちの2つ80、82が、太い破線によって
図4に示されている。第3の平面(
図4に図示せず。)は、図の表面と平行の向きを有しており、図の表面に対してアイソセンタの“高さ”を特定する。
【0046】
図示されるように、通常、カメラポッド72~76は、治療装置16が異なる角度及びポジションからアイソセンタに照射する場合に治療装置16の動きと干渉しないように、アイソセンタの位置から離して位置付けられる。通常、患者モニタリングシステムでは、3つのカメラポッド72~76が設けられ、
図4に示されるように、中央のカメラポッド72の両脇に他の2つのカメラポッド74、76があるように配置される。それらの二次カメラポッド74、76はしばしば、
図4に示されるように、中央のカメラポッド72の両側に対称に、且つ、中央のカメラポッド72と同じ治療室アイソセンタの側に位置付けられる。いくつかのシステムでは、二次カメラポッド74、76は、アイソセンタの一方の側に、実質的にアイソセンタに沿って位置付けられるように、配置されてもよい(すなわち、LoS(line of Sight)が、治療室のアイソセンタをハイライトするレーザ光80の平面のラインに沿って実質的に方向付けられる。)。
【0047】
治療室のアイソセンタに対するモニタリングシステムのカメラの相対位置を特定する場合に、キャリブレーション立方体70は、平面図において、キャリブレーション立方体70の面の1つが中央のカメラポッド72のカメラ/画像検出器の画像平面と実質的に平行であるように、方向付けられる。通常、この向きは、治療室アイソセンタのポジションをハイライトする光の平面の1つ80と平行であるように、平面図において中央のカメラポッド72の画像平面をそろえることによって、達成される。その場合に、立方体の表面にはマーキングが設けられ、キャリブレーション立方体70は、中央のカメラポッド72に面する立方体の面が中央のカメラポッド72のカメラ/画像検出器の画像平面と平行であるように正確にそろえられ、且つ、キャリブレーション立方体の中心が治療室アイソセンタにあるように位置合わせされることができる。通常、そのようなマーキングは、
図5に表されるように、キャリブレーション立方体の面の夫々で十字84の形をとる。
【0048】
キャリブレーション立方体70の画像からモデルを生成する場合に、モデルが生成され得る精度は、通常、斜めの角度で撮像された面については低下し、そのため、キャリブレーション立方体70の面は、通常、望ましくは、最も小さい斜角で面を見る画像データを用いてモデル化される。
【0049】
キャリブレーション立方体70の正面が中央のカメラポッド72のカメラ/画像検出器の画像平面と実質的に平行であるように立方体を方向付けることは、中央のカメラポッド72がキャリブレーション立方体70を見る角度を最小にし、
図4に表されるような向きでは、他のカメラポッド74、76は、それらに最も近いキャリブレーション立方体70の面を微少角度で見る。
【0050】
キャリブレーション立方体70の中心が治療室アイソセンタに位置し且つキャリブレーション立方体70の面が中央のカメラポッド72のカメラ/画像検出器の画像平面と平行であるようにキャリブレーション立方体70が位置付けられた状態で、治療室のアイソセンタをハイライトするレーザ光の平面は、キャリブレーション立方体70のマーキング84と一致すべきである。
【0051】
キャリブレーション立方体70の中心が治療室アイソセンタに位置するようにキャリブレーション立方体70が位置付けられると、カメラポッド72~76のカメラ/画像検出器は、キャリブレーション立方体70の画像を捕捉する。これらの画像は、次いで、コンピュータ14へ送られ、コンピュータ14は、キャリブレーション立方体70の面上の点の3D位置を特定するように画像を処理する。次いで、モニタリングシステムのモデル空間における治療室アイソセンタの相対位置は、処理された画像に基づき、立方体の面の特定された点に対するキャリブレーション立方体70のモデルの最良適合の中心として特定され得る。
【0052】
本出願人は、患者モニタリングシステムで典型的であるように、複数のカメラポッドが治療室アイソセンタの同じ側に位置する場合に、キャリブレーション立方体70を撮像するとき、通常、どのカメラも、アイソセンタの他の側にあるキャリブレーション立方体70の面の画像を取得しないと理解している。
【0053】
よって、例えば、
図4に表されるモニタリングシステムの場合に、カメラポッド72~76の視点がカメラポッド72~76の概略図から広がった破線によって表されるとき、カメラポッド72~76のどれも、立方体70の右手側にあるキャリブレーション立方体70の面として
図4で強調表示され且つ破線として強調表示されている、中央のカメラポッド72から遠隔にあるキャリブレーション立方体70の面の画像を取得しない。
【0054】
本出願人は更に、キャリブレーション立方体70のその面の画像を取得することができなかったこのことが、モニタリングシステムのモデル空間における治療アイソセンタの位置を決定することにおける誤りの潜在的な原因であると理解している。
【0055】
この問題に対処するために、本出願人は、キャリブレーション立方体70の面が中央のカメラポッド72のカメラ/画像検出器の画像平面と実質的に平行であるようにそろえられる
図4に表された方法でキャリブレーション立方体70を位置合わせすることよりむしろ、キャリブレーション立方体70が代わりに、
図6に表されるように方向付けられる(すなわち、平面図において、中央のカメラポッド72に最も近いキャリブレーション立方体70の面が中央のカメラポッド72の画像平面に対して45°にあり、立方体の一辺がカメラポッド72の方に向けられるように、45°回転される)べきであることを提案する。
図6に示されるように、かような向きでは、中央のカメラから遠隔にあるキャリブレーション立方体70の面は、他のカメラポッド74、76によって撮像される。
【0056】
図6に示される向きでは、中央のカメラポッド72によって撮像されるキャリブレーション立方体70の面は、キャリブレーション立方体70が
図4にあるように方向付けられる場合よりも、カメラポッド72のカメラ/画像検出器の画像平面に対して斜めの角度にあると理解される。たとえこれが当てはまるとしても、相対的な方位角が約45°である場合に、本出願人は、面の3Dポジションがモデル化され得る精度がこのことにより有意に低下されないと気付いた。
【0057】
また、表されるように、中央のカメラポッド72から遠隔にあるキャリブレーション立方体の面は、相対的に斜めの角度で他のカメラポッド74、76によってのみ撮像される。通常、相対的に斜めの角度で撮像される面の3Dポジションをモデル化することは、比較的に不正確である。しかし、たとえこれが当てはまるとしても、本出願人は、いかなる不正確さも、キャリブレーション立方体70の表面積のより広い割合を撮像し、従ってモデル化するモニタリングシステムの能力によって補償されるよりも大きいと判断した。
【0058】
図4及び
図6の平面図画像では十分に明らかでないが、通常は、
図1に示されるように、患者モニタリングシステムのカメラポッドは、治療室の天井からつるされており、治療室アイソセンタの平面より上に位置していることが留意されるべきである。よって、
図4に示されるようなキャリブレーション立方体70の向きの場合に、カメラポッド72~76から遠隔にあるキャリブレーション立方体の上面の部分は、カメラポッド72~76により近い面の部分よりも斜めの角度で見られる。これは、より斜めの角度で見られる立方体の部分の正確なモデルを生成するシステムの能力を制限し、
図4に表される向きの場合には、通常、カメラポッド72~76に最も近いキャリブレーション立方体70の部分しかモデル化されない。
【0059】
図4に表される向きと比べて、
図6に示されるように方向付けられたキャリブレーション立方体70が撮像される場合には追加情報が取得され、たとえ、レーザ光の平面80によって示される平面の向こう側に位置するキャリブレーション立方体70の小さい部分しかモデル化され得ないとして、上面の3つの角が特定され得るという事実は、キャリブレーション立方体70の寸法の予備知識とともに、キャリブレーション立方体70の位置のより正確な特定を可能にする。一方、対照的に、
図4に示されるように方向付けられる場合には、カメラポッド72~76に最も近いキャリブレーション立方体70の部分をモデル化することは、立方体の2つの角のモデル化しかもたらさない。
【0060】
本出願人は、予想に反して、
図6において方向付けられた立方体の角に関する追加情報は、カメラポッド72~76がより斜めの角度でキャリブレーション立方体70の前方部を撮像すること又は相対的に斜めの角度でしかキャリブレーション立方体70の遠隔部分を撮像しないことに起因して生じる不正確さよりも、治療室アイソセンタの位置を特定する上でより重要であり、従って、表面が平面図において中央のカメラポッド72の画像平面に対して約45°にあるようにキャリブレーション立方体を位置合わせすることは、治療室アイソセンタがモニタリングシステムのモデル空間において特定され得る精度を改善すると判断した。
【0061】
図6に表されるようにキャリブレーション立方体70を方向付けることは、非常に斜めの角度で得られた画像データに依存せずに、3つ全てのカメラポッド72~76からの画像データを個々に且つ集合的に用いて、中央のカメラポッド72に最も近いキャリブレーション立方体70の角のモデル化を容易にする。これは、キャリブレーション立方体70の寸法の知識とともに、カメラ空間内の立方体の角の位置が特定されることを可能にするはずである。
【0062】
3つ全てのカメラポッドが完ぺきに較正される場合に、夫々の個々のカメラポッドからの画像の一致部分を特定することによって生成される面は全てそろえられるはずである。しかし、不可避的に小さな誤差が起こる。表される構成では、カメラポッド72~76は対照的に配置されている。外側の2つのカメラポッド74、76を用いてキャリブレーション立方体70の面をモデル化するときに誤差が起こる範囲で、そのような誤差は、他のカメラポッド74、76からの画像を用いて生成された面の平均に近い面を特定する中央のカメラポッド72によって生成されたモデル表面で互いに相殺され、従って、集合的に3つのカメラポッドは、中央のカメラポッド72に最も近いキャリブレーション立方体70の角の位置が、誤差を抑えて正確に特定されることを可能にするはずである。
【0063】
図6に表されるように、立方体の面が、平面図において、治療室アイソセンタに沿って方向付けられた中央のカメラポッド72のカメラ平面に対して45°に角度をつけられるように、キャリブレーション立方体70を位置合わせすることは、
図7に示されるようにマークを付されたキャリブレーション立方体70を提供することによって容易にされ得る。
図5に表されるようなキャリブレーション立方体70上の従来のマーキングと対照的に、
図7では、
図5に示された従来の十字マーキング84が、立方体の上面で立方体70の斜め向かいの角どうしの間に延在する対角十字86と、キャリブレーション立方体70を二等分する直線88と、立方体70の辺をハイライトする一連の直線90とによって置き換えられている。
【0064】
図6に示されるようにキャリブレーション立方体70を配置する場合に、キャリブレーション立方体70は、治療室アイソセンタを特定するために使用されるレーザ光の平面80、82をキャリブレーション立方体70上の変更されたマーキング86~90とそろえることによって、その中心が治療室アイソセンタにあるように位置付けられ得るということで、変更されたマーキング86~90はキャリブレーション立方体70の配置を助ける。
【0065】
以上、治療室アイソセンタに対してモニタリングシステムのカメラの位置を特定する方法が、ステレオカメラシステムを利用するモニタリングシステムとの関連で記載されてきたが、平面図においてキャリブレーション立方体の正面が中央のカメラポッドのカメラ/画像検出器の画像平面に対して約45°の角度で撮像される上記の方法は、他のタイプのカメラに基づく患者モニタリングシステムのキャリブレーションに同様に適用可能であることが理解される。よって、例えば、ステレオカメラに基づくモニタリングシステムにおいてカメラの位置を特定することよりむしろ、上記のアプローチは、タイム・オブ・フライト(time of flight)に基づくモニタリングシステム又は、代替的に、モニタされる表面上への構造化された光の投影を撮像することに基づくモニタリングシステムにおいてカメラと治療室アイソセンタとの相対位置を決定することに同様に適用可能である。
【0066】
以上、レーザ光の3つの平面の交差によってハイライトされた治療室アイソセンタにキャリブレーション立方体70が位置合わせされるところの、モニタリングシステムのキャリブレーションが記載されてきたが、上記の方法は、患者モニタリングシステムのカメラとアイソセンタとの相対位置を特定する他の方法に同様に適用可能であることが理解される。
【0067】
よって、例えば、レーザ光の平面の交差によって特定される治療室アイソセンタの識別に依存するのではなく、VisionRT社の先の米国特許出願第2016/129283号に記載されているアプローチのようなアプローチが利用されてよい。
【0068】
かようなアプローチにおいて、最初に、スチール、チタン又はタングステンなどから作られた1以上の小さい金属製ボール又は他の金属ターゲットのような照射ターゲットを包含するキャリブレーション立方体の形をしたキャリブレーションファントムは、キャリブレーション立方体の正面が、平面図において、モニタリングシステムのカメラ形成部の画像平面に対して約45°で角度をつけられた状態で、放射線療法治療装置のアイソセンタの推定位置にファントムの中心があるように位置合わせされる。次いで、キャリブレーションファントムは、放射線療法治療装置により照射される。それから、キャリブレーションファントムと放射線療法治療装置のアイソセンタとの相対位置が、照射ターゲットを包含するキャリブレーションファントムの照射の放射線画像を解析することによって決定される。
【0069】
いくつかの実施形態で、次いで、キャリブレーションファントムは、例えば、キャリブレーションファントムの中心と放射線療法治療装置のアイソセンタとの決定された相対位置に対応するオフセットをキャリブレーションファントムに適用するために、キャリブレーションファントムが取り付けられている可動式寝台に指示を送ることによって、位置合わせし直され得る。それから、モニタリングシステムのカメラと治療室アイソセンタとの相対位置は、中心が治療室アイソセンタに位置するように位置合わせし直されたキャリブレーション立方体の画像を捕捉することによって決定され得る。
【0070】
代替的に、米国特許出願第2016/129283号で提案されているように、カメラと治療室アイソセンタとの相対位置は、キャリブレーション立方体を物理的に位置付けし直すことなしに決定されてよい。より具体的には、キャリブレーション立方体は、上述されたように、放射線療法治療装置のアイソセンタの推定位置に位置合わせされてよい。次いで、キャリブレーション立方体の正面が平面図においてモニタリングシステムのカメラ形成部の画像平面に対して約45°で角度をつけられた状態でのキャリブレーション立方体の画像が取得され、それから、立方体の面の3Dコンピュータモデルが生成され得る。また、キャリブレーション立方体は、立方体が位置合わせし直されることなしに照射されてよく、照射された立方体、特に、立方体内の照射ターゲットの放射線画像が取得され、立方体と治療室アイソセンタとの相対位置を決定するように処理され得る。次いで、モニタリングシステムのカメラのポジションに対する治療室のアイソセンタの位置は、モニタリング装置によって捕捉された画像を処理することによって生成されたカメラ空間内の立方体の表現と放射線画像とを解析することによって決定された何らかのオフセットに基づき、決定され得る。
【0071】
いずれのアプローチでも、治療室アイソセンタがキャリブレーション立方体70内に含まれるターゲットの照射の画像の解析を通じて決定されるということで、上記のいずれかのアプローチを採用することは、レーザハイライトシステムが治療室アイソセンタを特定することの如何なる不正確さによっても生じる誤差を回避することが理解される。かような実施形態では、レーザハイライトシステムの存在を省略することが可能である。なお、望ましくは、レーザハイライトシステムは、レーザハイライトシステムが、キャリブレーション立方体70上のマーキング86~90とともに、キャリブレーション立方体を、その中心が、完ぺきにそろえられない場合に、治療室アイソセンタの極めて近くにあるように、正確な向きで最初に位置合わせすることを助ける。
【0072】
図4及び
図6に表される例では、カメラポッド72~76のグループが示され、全てのカメラポッドが、治療室のアイソセンタを通るある平面の同じ側に位置付けられているが、カメラポッド72~76は異なる構造で配置されてもよいことも理解される。
【0073】
特に、モニタリングシステムのキャリブレーションに対する上記のアプローチは、二次カメラポッド74、76が、
図8に表されているように、中央のカメラポッド72のカメラ/画像捕捉デバイスの画像平面と平行又は略平行な、治療室アイソセンタを通る平面と整列されるところのモニタリングシステムに同様に適用されることが理解される。かような構成では、
図8に示されるように、カメラ72~76の夫々に最も近い各面は、その面を撮像するカメラの画像平面に対して平面図において約45°傾けられている。よって、かような構成では、カメラがキャリブレーションファントム70を見る相対傾斜は、モニタリングシステムがキャリブレーション立方体70上の4つ全ての側面及び上面を見ることを依然として可能にしながら、最小限にされる。3つのカメラポッド72~76を有し、そのうちの2つのカメラ74、76が中央のカメラポッド72の両側に実質的に対称的に配置されるカメラシステムのキャリブレーションの場合に、中央のカメラポッド72のカメラ/画像捕捉デバイスの画像平面に対して約45°であるように平面図において立方体の面に角度をつけることは、カメラポッド74、76の配置の対称性及びキャリブレーション立方体70の対称性が二次カメラポッド74、76にキャリブレーション立方体70の類似した画像を捕捉させるので好ましく、従って、キャリブレーション立方体の位置を決定するときに二次カメラポッド74、76によって捕捉された画像に基づき生じる如何なる誤差も、互いに相殺するはずである。
【0074】
また、他の実施形態において、単一のカメラポッド(例えば、中央のカメラポッド72のみ)を有するモニタリングシステムは、
図9に表されるように、立方体の正面(すなわち、カメラポッド72が立方体をモニタしている状態でカメラ/画像検出器の画像平面に最も近い面)がカメラの画像平面に対して傾けられるようにキャリブレーション立方体70を方向付ける上記のアプローチを用いて、較正されてよいことが理解される。
【0075】
また、他のシステムでは、
図10に表されるように、中央のカメラポッド72が省略されてよく、代わりに、カメラポッド74、76の組を含むモニタリングシステムが、上記のアプローチにより較正されてもよいことが理解される。
【0076】
上記の実施形態では、キャリブレーション立方体のアライメントについて、平面において立方体の面がカメラポッド72のカメラ/画像捕捉デバイスの画像平面に対して約45°にあるようにされるものとして記載してきたが、立方体のアライメントは、本発明の利点を得るために厳密に45°である必要はなく、45°からのいくらかの偏差が許されることが理解される。