IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友重機械工業株式会社の特許一覧

特許7146543パルス管冷凍機およびパルス管冷凍機の製造方法
<>
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図1
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図2
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図3
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図4
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図5
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図6
  • 特許-パルス管冷凍機およびパルス管冷凍機の製造方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-26
(45)【発行日】2022-10-04
(54)【発明の名称】パルス管冷凍機およびパルス管冷凍機の製造方法
(51)【国際特許分類】
   F25B 9/00 20060101AFI20220927BHJP
【FI】
F25B9/00 311
【請求項の数】 7
(21)【出願番号】P 2018175585
(22)【出願日】2018-09-20
(65)【公開番号】P2020046125
(43)【公開日】2020-03-26
【審査請求日】2021-07-14
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100116274
【弁理士】
【氏名又は名称】富所 輝観夫
(72)【発明者】
【氏名】許 名堯
【審査官】庭月野 恭
(56)【参考文献】
【文献】特開2013-217516(JP,A)
【文献】特開2005-127633(JP,A)
【文献】特開2000-205674(JP,A)
【文献】特開2002-257428(JP,A)
【文献】特開2005-030704(JP,A)
【文献】国際公開第2017/203574(WO,A1)
【文献】特開2016-187912(JP,A)
【文献】特開2006-284060(JP,A)
【文献】特開2006-275429(JP,A)
【文献】特開2004-301445(JP,A)
【文献】特開2015-230131(JP,A)
【文献】特開平05-118685(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 9/00
(57)【特許請求の範囲】
【請求項1】
管内空間を有するパルス管と、
前記管内空間から又は前記管内空間への冷媒ガス流れを整流するように前記管内空間に面して配置された整流層と、前記冷媒ガス流れとの接触により前記冷媒ガス流れと熱交換するように前記管内空間に対して前記整流層の外側に前記整流層と一体形成された熱交換層とを備え、前記パルス管の低温端及び/または高温端に配置された一体型整流器と、を備え、
前記熱交換層は、前記パルス管の延在方向に直交する前記熱交換層の第1面内方向に平行に延びる複数の熱交換壁を備え、
前記複数の熱交換壁は、前記熱交換層の第1面内方向に直交する前記熱交換層の第2面内方向に複数の熱交換スリットと交互に配置され、
前記複数の熱交換スリットは、前記パルス管の延在方向に前記熱交換層を貫通し、前記熱交換層の第1面内方向に平行であり、
前記整流層は、前記複数の熱交換壁の各々から前記管内空間に向けて突出し、各熱交換壁上で前記第1面内方向に並んでいる複数の突起を備えることを特徴とするパルス管冷凍機。
【請求項2】
前記複数の突起は、各熱交換壁上で少なくとも2列で前記第1面内方向に並んでいることを特徴とする請求項に記載のパルス管冷凍機。
【請求項3】
前記複数の突起は、前記熱交換層から前記管内空間に向けて前記パルス管の延在方向に平行に直立していることを特徴とする請求項1または2に記載のパルス管冷凍機。
【請求項4】
前記パルス管の延在方向における前記複数の突起の長さは、前記パルス管の延在方向における前記熱交換層の厚さより大きいことを特徴とする請求項1から3のいずれかに記載のパルス管冷凍機。
【請求項5】
管内空間を有するパルス管と、
前記管内空間から又は前記管内空間への冷媒ガス流れを整流するように前記管内空間に面して配置された整流層と、前記冷媒ガス流れとの接触により前記冷媒ガス流れと熱交換するように前記管内空間に対して前記整流層の外側に前記整流層と一体形成された熱交換層とを備え、前記パルス管の低温端及び/または高温端に配置された一体型整流器と、を備え、
前記整流層は、前記熱交換層から前記管内空間に向けて突出する複数の突起を備え、
前記複数の突起の少なくとも1つは、途中で枝分かれしていることを特徴とするパルス管冷凍機。
【請求項6】
3Dプリントにより、整流層と熱交換層とが一体形成された一体型整流器を製作することと、
前記一体型整流器をパルス管の低温端及び/または高温端に装着することと、を備え
前記整流層は、前記パルス管の管内空間から又は前記管内空間への冷媒ガス流れを整流するように前記管内空間に面して配置され、
前記熱交換層は、前記冷媒ガス流れとの接触により前記冷媒ガス流れと熱交換するように前記管内空間に対して前記整流層の外側に前記整流層と一体形成され、
前記熱交換層は、前記パルス管の延在方向に直交する前記熱交換層の第1面内方向に平行に延びる複数の熱交換壁を備え、
前記複数の熱交換壁は、前記熱交換層の第1面内方向に直交する前記熱交換層の第2面内方向に複数の熱交換スリットと交互に配置され、
前記複数の熱交換スリットは、前記パルス管の延在方向に前記熱交換層を貫通し、前記熱交換層の第1面内方向に平行であり、
前記整流層は、前記複数の熱交換壁の各々から前記管内空間に向けて突出し、各熱交換壁上で前記第1面内方向に並んでいる複数の突起を備えることを特徴とするパルス管冷凍機の製造方法。
【請求項7】
3Dプリントにより、整流層と熱交換層とが一体形成された一体型整流器を製作することと、
前記一体型整流器をパルス管の低温端及び/または高温端に装着することと、を備え、
前記整流層は、前記パルス管の管内空間から又は前記管内空間への冷媒ガス流れを整流するように前記管内空間に面して配置され、
前記熱交換層は、前記冷媒ガス流れとの接触により前記冷媒ガス流れと熱交換するように前記管内空間に対して前記整流層の外側に前記整流層と一体形成され、
前記整流層は、前記熱交換層から前記管内空間に向けて突出する複数の突起を備え、
前記複数の突起の少なくとも1つは、途中で枝分かれしていることを特徴とするパルス管冷凍機の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パルス管冷凍機およびパルス管冷凍機の製造方法に関する。
【背景技術】
【0002】
従来から、パルス管冷凍機のパルス管の高温端および低温端に積層金網から成る整流器を設けることが知られている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2003-148826号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明者は、パルス管冷凍機において従来使用される積層金網の整流器に関して検討し、以下の課題を認識するに至った。整流器の設計に際して、積層金網を構成する各金網の仕様(例えば、線径、メッシュ数、織り方、線材など)が指定される。積層される複数枚の金網がたとえ同一の仕様をもつ場合であっても、実際には、すべての金網について網目の位置が厳密に揃うわけではない。そのため、金網が積層されたとき、隣接する2枚の金網の網目位置は不一致となり、ある金網の網目の直下に別の金網の線材が位置しうる。このように、積層金網における個々の金網の網目が揃わない場合には、積層金網を流れる冷媒ガスの流れが乱され、整流器としての整流効果は低下しうる。また、隣接する2枚の金網の間には接触熱抵抗があるため、金網間に温度差が生じうる。これは、整流器における熱交換効率を低下させうる。
【0005】
本発明のある態様の例示的な目的のひとつは、整流効果及び/または熱交換効率に関して改良された整流器を有するパルス管冷凍機を提供することにある。
【課題を解決するための手段】
【0006】
本発明のある態様によると、パルス管冷凍機は、管内空間を有するパルス管と、パルス管の低温端及び/または高温端に配置された一体型整流器と、を備える。一体型整流器は、管内空間から又は管内空間への冷媒ガス流れを整流するように管内空間に面して配置された整流層と、冷媒ガス流れとの接触により冷媒ガス流れと熱交換するように管内空間に対して整流層の外側に整流層と一体形成された熱交換層とを備える。整流層は、熱交換層から管内空間に向けて突出する複数の突起を備える。
【0007】
本発明のある態様によると、パルス管冷凍機の製造方法が提供される。この方法は、3Dプリントにより、整流層と熱交換層とが一体形成された一体型整流器を製作することと、一体型整流器をパルス管の低温端及び/または高温端に装着することと、を備える。
【0008】
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
【発明の効果】
【0009】
本発明によれば、整流効果及び/または熱交換効率に関して改良された整流器を有するパルス管冷凍機を提供することができる。
【図面の簡単な説明】
【0010】
図1】実施の形態に係るパルス管冷凍機を示す概略図である。
図2図2(a)から図2(c)は、図1に示されるパルス管冷凍機に使用されうる一体型整流器の一例を示す概略図である。
図3図1に示されるパルス管冷凍機に使用されうる一体型整流器の他の例を示す概略図である。
図4図1に示されるパルス管冷凍機に使用されうる一体型整流器の他の例を示す概略図である。
図5図5(a)および図5(b)は、図1に示されるパルス管冷凍機に使用されうる一体型整流器の他の例を示す概略図である。
図6】実施の形態に係るパルス管冷凍機の製造方法を示すフローチャートである。
図7】実施の形態に係る一体型整流器の製作方法の他の例を示す概略図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。また、以下の説明において参照する図面において、各構成部材の大きさや厚みは説明の便宜上のものであり、必ずしも実際の寸法や比率を示すものではない。
【0012】
図1は、実施の形態に係るパルス管冷凍機10を示す概略図である。パルス管冷凍機10は、コールドヘッド11と、圧縮機12とを備える。
【0013】
パルス管冷凍機10は、一例として、GM(Gifford-McMahon)方式の4バルブ型のパルス管冷凍機である。よって、パルス管冷凍機10は、主圧力切換弁14と、第1段蓄冷器16と、第1段パルス管18と、第1段副圧力切換弁20および任意的に第1段流量調整要素21を有する第1段位相制御機構と、を備える。圧縮機12と主圧力切換弁14によりパルス管冷凍機10の振動流発生源が構成される。圧縮機12は、振動流発生源と第1段位相制御機構とで共有されている。
【0014】
また、パルス管冷凍機10は、二段冷凍機であり、第2段蓄冷器22と、第2段パルス管24と、第2段副圧力切換弁26および任意的に第2段流量調整要素27を有する第2段位相制御機構と、をさらに備える。圧縮機12は、第2段位相制御機構にも共有されている。
【0015】
本書では、パルス管冷凍機10の構成要素どうしの位置関係を説明するために、便宜上、縦方向Aおよび横方向Bとの用語を用いる。通例、縦方向Aと横方向Bはそれぞれ、パルス管(18、24)および蓄冷器(16、22)の軸方向と径方向にあたる。ただし、縦方向Aと横方向Bは互いにおおよそ直交する方向であればよく、厳密な直交は要しない。また、縦方向Aおよび横方向Bとの表記は、パルス管冷凍機10がその使用場所に設置される姿勢を限定するものではない。パルス管冷凍機10は所望される姿勢で設置可能であり、例えば、縦方向Aおよび横方向Bをそれぞれ鉛直方向および水平方向に向けるようにして設置されてもよいし、反対に、縦方向Aおよび横方向Bをそれぞれ水平方向および鉛直方向に向けるようにして設置されてもよい。あるいは、縦方向Aおよび横方向Bをそれぞれ互いに異なる斜め方向に向けるようにして設置することも可能である。
【0016】
2つの蓄冷器(16、22)は直列に接続され、縦方向Aに延在する。2つのパルス管(18、24)はそれぞれ、縦方向Aに延在する。第1段蓄冷器16は、横方向Bに第1段パルス管18と並列に配置され、第2段蓄冷器22は、横方向Bに第2段パルス管24と並列に配置されている。第1段パルス管18は縦方向Aに第1段蓄冷器16とほぼ同じ長さを有し、第2段パルス管24は、縦方向Aに第1段蓄冷器16と第2段蓄冷器22の合計長さとほぼ同じ長さを有する。蓄冷器(16、22)とパルス管(18、24)は互いに概ね平行に配置されている。
【0017】
圧縮機12は、圧縮機吐出口12aと圧縮機吸入口12bとを有し、回収した低圧PLの作動ガスを圧縮して高圧PHの作動ガスを生成するよう構成されている。圧縮機吐出口12aから第1段蓄冷器16を通じて第1段パルス管18に作動ガスが供給され、第1段パルス管18から第1段蓄冷器16を通じて圧縮機吸入口12bへと作動ガスが回収される。また、圧縮機吐出口12aから第1段蓄冷器16、第2段蓄冷器22を通じて第2段パルス管24に作動ガスが供給され、第2段パルス管24から第2段蓄冷器22、第1段蓄冷器16を通じて圧縮機吸入口12bへと作動ガスが回収される。
【0018】
圧縮機吐出口12aおよび圧縮機吸入口12bはそれぞれ、パルス管冷凍機10の高圧源および低圧源として機能する。作動ガスは、冷媒ガスとも称され、例えばヘリウムガスである。なお一般に高圧PH及び低圧PLはともに大気圧より顕著に高い。
【0019】
主圧力切換弁14は、主吸気開閉弁V1と主排気開閉弁V2とを有する。第1段副圧力切換弁20は、第1段副吸気開閉弁V3と第1段副排気開閉弁V4とを有する。第2段副圧力切換弁26は、第2段副吸気開閉弁V5と第2段副排気開閉弁V6とを有する。
【0020】
パルス管冷凍機10には、高圧ライン13aおよび低圧ライン13bが設けられている。高圧ライン13aを通じて、高圧PHの作動ガスが圧縮機12からコールドヘッド11に流れる。低圧ライン13bを通じて、低圧PLの作動ガスがコールドヘッド11から圧縮機12に流れる。高圧ライン13aは、圧縮機吐出口12aを吸気開閉バルブ(V1、V3、V5)に接続する。低圧ライン13bは、圧縮機吸入口12bを排気開閉バルブ(V2、V4、V6)に接続する。
【0021】
第1段蓄冷器16は、第1段蓄冷器高温端16aと、第1段蓄冷器低温端16bとを有し、第1段蓄冷器高温端16aから第1段蓄冷器低温端16bへと縦方向Aに延在する。第1段蓄冷器高温端16aおよび第1段蓄冷器低温端16bはそれぞれ、第1段蓄冷器16の第1端および第2端とも称しうる。同様に、第2段蓄冷器22は、第2段蓄冷器高温端22aと、第2段蓄冷器低温端22bとを有し、第2段蓄冷器高温端22aから第2段蓄冷器低温端22bへと縦方向Aに延在する。第2段蓄冷器高温端22aおよび第2段蓄冷器低温端22bはそれぞれ、第2段蓄冷器22の第1端および第2端とも称しうる。第1段蓄冷器低温端16bが、第2段蓄冷器高温端22aに連通している。
【0022】
第1段パルス管18は、第1段パルス管高温端18aと、第1段パルス管低温端18bとを有し、第1段パルス管高温端18aから第1段パルス管低温端18bへと縦方向Aに延在する。第1段パルス管高温端18aおよび第1段パルス管低温端18bはそれぞれ、第1段パルス管18の第1端および第2端とも称しうる。
【0023】
第1段パルス管18は、その内部に第1段管内空間34aを有する。冷媒ガスは、第1段管内空間34aを通じて第1段パルス管高温端18aから第1段パルス管低温端18bへと(または第1段パルス管低温端18bから第1段パルス管高温端18aへと)流れることができる。
【0024】
同様に、第2段パルス管24は、第2段パルス管高温端24aと、第2段パルス管低温端24bとを有し、第2段パルス管高温端24aから第2段パルス管低温端24bへと縦方向Aに延在する。第2段パルス管高温端24aおよび第2段パルス管低温端24bはそれぞれ、第2段パルス管24の第1端および第2端とも称しうる。
【0025】
第2段パルス管24は、その内部に第2段管内空間34bを有する。冷媒ガスは、第2段管内空間34bを通じて第2段パルス管高温端24aから第2段パルス管低温端24bへと(または第2段パルス管低温端24bから第2段パルス管高温端24aへと)流れることができる。以下では、第1段管内空間34aおよび第2段管内空間34bを、管内空間34と総称することがある。
【0026】
パルス管(18、24)の両端それぞれには、パルス管の軸方向に垂直な面内での作動ガス流速分布を均一化し、または所望の分布に調整するための一体型整流器32が設けられている。一体型整流器32は、熱交換器としても機能する。一体型整流器32は、整流層32aと、整流層32aと一体形成された熱交換層32bとを備える。整流層32aは、管内空間34から又は管内空間34への冷媒ガス流れを整流するように管内空間34に面して配置されている。熱交換層32bは、冷媒ガス流れとの接触により冷媒ガス流れと熱交換するように管内空間34に対して整流層32aの外側に配置されている。一体型整流器32の詳細は後述する。
【0027】
例示的な構成においては、蓄冷器(16、22)は内部に蓄冷材を充填した円筒状の管であり、パルス管(18、24)は内部を空洞とする円筒状の管である。よって、第1段管内空間34aおよび第2段管内空間34bはそれぞれ、円柱形状の空間となる。一体型整流器32は、全体として、円板状(または短い円柱状)の形状を有する。
【0028】
コールドヘッド11は、第1段冷却ステージ28と第2段冷却ステージ30とを備える。
【0029】
第1段蓄冷器16および第1段パルス管18は第1段冷却ステージ28から同方向に延びており、第1段蓄冷器高温端16aおよび第1段パルス管高温端18aは、第1段冷却ステージ28に対して同じ側に配置されている。このようにして、第1段蓄冷器16、第1段パルス管18、および第1段冷却ステージ28は、U字状に配置されている。同様に、第2段蓄冷器22および第2段パルス管24は第2段冷却ステージ30から同方向に延びており、第2段蓄冷器高温端22aおよび第2段パルス管高温端24aは、第2段冷却ステージ30に対して同じ側に配置されている。このようにして、第2段蓄冷器22、第2段パルス管24、および第2段冷却ステージ30は、U字状に配置されている。
【0030】
第1段パルス管低温端18bと第1段蓄冷器低温端16bは、第1段冷却ステージ28によって、構造的に接続され熱的に結合されている。第1段冷却ステージ28の内部には、第1段蓄冷器低温端16bを第1段パルス管低温端18bに連通する第1段連通路29が形成されている。同様に、第2段パルス管低温端24bと第2段蓄冷器低温端22bは、第2段冷却ステージ30によって、構造的に接続され熱的に結合されている。第2段冷却ステージ30の内部には、第2段蓄冷器低温端22bを第2段パルス管低温端24bに連通する第2段連通路31が形成されている。
【0031】
一体型整流器32は、熱交換層32bがパルス管に接合されることによって、パルス管の高温端及び/または低温端に取り付けられている。整流層32aは、熱交換層32bに支持されている。なお、熱交換層32bとともに、または熱交換層32bに代えて、整流層32aが、パルス管に接合されてもよい。
【0032】
例えば、第1段パルス管低温端18bに配置された一体型整流器32は、熱交換層32bが第1段パルス管低温端18bに接合され、それにより一体型整流器32は第1段パルス管低温端18bおよび第1段冷却ステージ28と構造的に接続され熱的に結合されている。熱交換層32bは、第1段冷却ステージ28に接合されてもよい。同様に、第2段パルス管低温端24bに配置された一体型整流器32は、熱交換層32bが第2段パルス管低温端24bに接合され、それにより一体型整流器32は第2段パルス管低温端24bおよび第2段冷却ステージ30と構造的に接続され熱的に結合されている。熱交換層32bは、第2段冷却ステージ30に接合されてもよい。
【0033】
したがって、圧縮機12から供給される冷媒ガスは、第1段蓄冷器低温端16bから第1段連通路29を通り、さらに第1段パルス管低温端18bの一体型整流器32を通過して、第1段管内空間34aへと流れることができる。第1段パルス管18からの戻りガスは、第1段管内空間34aから第1段パルス管低温端18bの一体型整流器32および第1段連通路29を通って第1段蓄冷器低温端16bへと流れることができる。
【0034】
第2段についても、圧縮機12から供給される冷媒ガスは、第2段蓄冷器低温端22bから第2段連通路31を通り、さらに第2段パルス管低温端24bの一体型整流器32を通過して、第2段管内空間34bへと流れることができる。第2段パルス管24からの戻りガスは、第2段管内空間34bから第2段パルス管低温端24bの一体型整流器32および第2段連通路31を通じて第2段蓄冷器低温端22bへと流れることができる。
【0035】
冷却ステージ(28、30)、および一体型整流器32は、例えば銅などの高熱伝導率の金属材料で形成される。ただし、冷却ステージ(28、30)と一体型整流器32が同じ材料で形成されることは必須ではなく、異なる材料で形成されてもよい。
【0036】
第2段冷却ステージ30には、冷却されるべき物体(図示せず)が熱的に結合されている。物体は、第2段冷却ステージ30上に直接設置され、または第2段冷却ステージ30に剛性または可撓性の伝熱部材を介して熱的に結合されてもよい。パルス管冷凍機10は、第2段冷却ステージ30からの伝導冷却によって物体を冷却することができる。なおパルス管冷凍機10によって冷却される物体は、限定しない例として、超伝導電磁石またはその他の超伝導装置、あるいは赤外線撮像素子またはその他のセンサであってもよい。パルス管冷凍機10は第2段冷却ステージ30に接触する気体または液体を冷却することもできる。
【0037】
また、言うまでもなく、第2段冷却ステージ30によって冷却される物体とは異なる物体が、第1段冷却ステージ28によって冷却されてもよい。たとえば、第1段冷却ステージ28には、第2段冷却ステージ30への熱侵入を低減または防止するための輻射シールドが熱的に結合されていてもよい。
【0038】
一方、第1段蓄冷器高温端16a、第1段パルス管高温端18a、および第2段パルス管高温端24aは、フランジ部36によって接続されている。フランジ部36は、パルス管冷凍機10が設置される支持台または支持壁などの支持部38に取り付けられる。支持部38は、冷却ステージ(28、30)および被冷却物を収容する断熱容器または真空容器の壁材またはその他の部位であってもよい。
【0039】
フランジ部36の一方の主表面からパルス管(18、24)および蓄冷器(16、22)が冷却ステージ(28、30)へと延び、フランジ部36の他方の主表面にはバルブ部40が設けられている。バルブ部40には、主圧力切換弁14、第1段副圧力切換弁20、および第2段副圧力切換弁26が収容されている。したがって、支持部38が断熱容器または真空容器の一部を構成する場合には、フランジ部36が支持部38に取り付けられるとき、パルス管(18、24)、蓄冷器(16、22)、および冷却ステージ(28、30)は、当該容器内に収容され、バルブ部40は、容器外に配置される。
【0040】
なお、バルブ部40は、フランジ部36に直接取り付けられている必要はない。バルブ部40は、パルス管冷凍機10のコールドヘッド11から分離して配置され、剛性または可撓性の配管によりコールドヘッド11に接続されてもよい。こうして、パルス管冷凍機10の位相制御機構がコールドヘッド11から分離して配置されてもよい。
【0041】
主圧力切換弁14は、パルス管(18、24)内に圧力振動を生成すべく第1段蓄冷器高温端16aを圧縮機吐出口12aおよび圧縮機吸入口12bに交互に接続するように構成されている。主圧力切換弁14は、主吸気開閉弁V1と主排気開閉弁V2のうち一方が開いているとき他方は閉じているように構成されている。主吸気開閉弁V1が圧縮機吐出口12aを第1段蓄冷器高温端16aに接続し、主排気開閉弁V2が圧縮機吸入口12bを第1段蓄冷器高温端16aに接続する。
【0042】
主吸気開閉弁V1が開いているとき、圧縮機吐出口12aから高圧ライン13aおよび主吸気開閉弁V1を通じて蓄冷器(16、22)に作動ガスが供給される。作動ガスはさらに、第1段蓄冷器16から第1段連通路29および一体型整流器32を通じて第1段パルス管18に供給されるとともに、第2段蓄冷器22から第2段連通路31および一体型整流器32を通じて第2段パルス管24に供給される。一方、主排気開閉弁V2が開いているとき、パルス管(18、24)から蓄冷器(16、22)、主排気開閉弁V2、および低圧ライン13bを通じて圧縮機吸入口12bに作動ガスが回収される。
【0043】
第1段副圧力切換弁20は、第1段パルス管高温端18aを圧縮機吐出口12aおよび圧縮機吸入口12bに交互に接続するように構成されている。第1段副圧力切換弁20は、第1段副吸気開閉弁V3と第1段副排気開閉弁V4のうち一方が開いているとき他方は閉じているように構成されている。第1段副吸気開閉弁V3が圧縮機吐出口12aを第1段パルス管高温端18aに接続し、第1段副排気開閉弁V4が圧縮機吸入口12bを第1段パルス管高温端18aに接続する。
【0044】
第1段副吸気開閉弁V3が開いているとき、圧縮機吐出口12aから高圧ライン13a第1段副吸気開閉弁V3、および第1段パルス管高温端18aを通じて第1段パルス管18に作動ガスが供給される。一方、第1段副排気開閉弁V4が開いているとき、第1段パルス管18から第1段パルス管高温端18a、第1段副排気開閉弁V4、および低圧ライン13bを通じて圧縮機吸入口12bに作動ガスが回収される。
【0045】
第2段副圧力切換弁26は、第2段パルス管高温端24aを圧縮機吐出口12aおよび圧縮機吸入口12bに交互に接続するように構成されている。第2段副圧力切換弁26は、第2段副吸気開閉弁V5と第2段副排気開閉弁V6のうち一方が開いているとき他方は閉じているように構成されている。第2段副吸気開閉弁V5が圧縮機吐出口12aを第2段パルス管高温端24aに接続し、第2段副排気開閉弁V6が圧縮機吸入口12bを第2段パルス管高温端24aに接続する。
【0046】
第2段副吸気開閉弁V5が開いているとき、圧縮機吐出口12aから高圧ライン13a第2段副吸気開閉弁V5、および第2段パルス管高温端24aを通じて第2段パルス管24に作動ガスが供給される。一方、第2段副排気開閉弁V6が開いているとき、第2段パルス管24から第2段パルス管高温端24a、第2段副排気開閉弁V6、および低圧ライン13bを通じて圧縮機吸入口12bに作動ガスが回収される。
【0047】
これらのバルブ(V1~V6)のバルブタイミングとしては、既存の4バルブ型パルス管冷凍機に適用しうる種々のバルブタイミングを採用することができる。
【0048】
バルブ(V1~V6)の具体的構成は種々ありうる。例えば、一群のバルブ(V1~V6)は、例えば電磁開閉弁などの複数の個別に制御可能なバルブの形式をとってもよい。バルブ(V1~V6)は、ロータリーバルブとして構成されてもよい。
【0049】
このような構成により、パルス管冷凍機10は、パルス管(18、24)内に高圧PHと低圧PLの作動ガス圧力振動を生成する。圧力振動と同期して適切な位相遅れをもって、パルス管(18、24)内で作動ガスの変位振動すなわちガスピストンの往復動が生じる。ある圧力を保持しながらパルス管(18、24)内を上下に周期的に往復する作動ガスの動きは、しばしば「ガスピストン」と称され、パルス管冷凍機10の動作を説明するためによく用いられる。ガスピストンがパルス管高温端(18a、24a)またはその近傍にあるときパルス管低温端(18b、24b)で作動ガスが膨張し、寒冷が発生する。このような冷凍サイクルを繰り返すことにより、パルス管冷凍機10は、冷却ステージ(28、30)を冷却することができる。したがって、パルス管冷凍機10は、例えば超電導電磁石など種々の被冷却物を所望の極低温に冷却することができる。
【0050】
図2(a)から図2(c)は、図1に示されるパルス管冷凍機10に使用されうる一体型整流器32の一例を示す概略図である。図2(a)は、一体型整流器32の概略上面図であり、図2(b)は、A1-A1線による概略断面図であり、図2(c)は、一体型整流器32の概略底面図である。理解を容易にするために、図2(b)には、一体型整流器32が取り付けられるパルス管と冷却ステージの一部分を併せて図示している。
【0051】
一体型整流器32の形状を説明するために便宜上、本書では、パルス管の延在方向、第1面内方向B1、および第2面内方向B2との用語を使用する。上述のようにパルス管は図1に示される縦方向Aに沿って延在するから、パルス管の延在方向は、図1に示される縦方向Aに相当する。第1面内方向B1および第2面内方向B2は、パルス管の延在方向に直交する平面において互いに直交する2つの方向を指す。第1面内方向B1(または第2面内方向B2)は、図1に示される横方向Bと同じであってもよいし、異なってもよい。
【0052】
整流層32aは、熱交換層32bから管内空間34に向けて突出する複数の突起42を備える。突起42間には、整流のための冷媒ガス流路44が形成されている。理解を容易にするために、図2(a)から図2(c)では少数の突起42のみを図示しているが、実際には、整流層32aは、例えば数百から数千、またはそれより多数の突起42を有する。
【0053】
熱交換層32bは、複数の熱交換スリット46および複数の熱交換壁48を備える。突起42と同様に、熱交換スリット46および熱交換壁48についても実際には、図示されるよりも多数のスリットおよび壁が設けられている。このようなスリット式のガス流路は、冷媒ガスと接触面積が比較的大きくなるので、熱交換効率を向上する。
【0054】
熱交換スリット46は、冷媒ガスと熱交換層32bとの間の熱交換流路として一体型整流器32に形成されている。熱交換スリット46の各々は、縦方向Aに熱交換層32bを貫通し、第1面内方向B1に平行に延びている。熱交換壁48の各々は、第1面内方向B1に平行に延びている。複数の熱交換壁48は、隣接する2つの熱交換壁48の間に1つの熱交換スリット46を定めるようにして、複数の熱交換スリット46と第2面内方向B2に交互に配置されている。複数の熱交換壁48は、熱交換層32bの外周枠50によって互いに接続されている。外周枠50が、例えばろう付け、溶接などの適宜の接合技術によって、パルス管及び/または冷却ステージに接合されている。
【0055】
複数の突起42は、複数の熱交換壁48の各々から管内空間34に向けて突出し、各熱交換壁48上で第1面内方向B1に並んでいる。突起42は格子状に配列されている。突起42は第1面内方向B1および第2面内方向B2の両方向に等間隔に配置されている。
縦方向Aにおける各突起42の長さは等しい。
【0056】
冷媒ガス流路44は、熱交換スリット46と直交する溝または凹部である。冷媒ガス流路44は第2面内方向B2に延びている。よって、第1面内方向B1において各突起42の両側にはそれぞれ冷媒ガス流路44があり、第1面内方向B1において各突起42の両側にはそれぞれ熱交換スリット46がある。このようにして、整流層32aは、管内空間34に面する網目状流路を有する。
【0057】
管内空間34は、突起42間の冷媒ガス流路44に連通し、冷媒ガス流路44は熱交換スリット46に連通している。熱交換スリット46は、図1に示される第1段連通路29(または第2段連通路31でもよい)に連通している。このようにして、管内空間34は、一体型整流器32を通じて冷却ステージ内部の連通路に連通している。
【0058】
したがって、一体型整流器32は、従来の積層金網からなる整流器において起こりうる問題の解決に役立つ。上述のように積層金網では、隣接する2枚の金網の網目位置が不一致となり、それにより、積層金網を通過する途中で冷媒ガスの流れが乱され、整流器としての整流効果は低下しうる。これに対して、一体型整流器32では、管内空間34に面する網目状流路が縦方向A(すなわち流路の深さ方向)に直線的に形成されているので、冷媒ガス流路44における乱流の発生は抑制される。よって、一体型整流器32は、整流効果を向上できる。また、積層金網では金網間の接触熱抵抗が積層金網の内部に温度差を生じさせ、これにより熱交換効率が低下されうる。これに対し、一体型整流器32は、整流層32aと熱交換層32bが一体形成されているので、一体型整流器32の内部での温度差が低減される。よって、一体型整流器32は、熱交換効率を向上できる。
【0059】
整流層32aが複数の突起42を備える。これにより、管内空間34に面する網目状流路が突起42間に形成される。こうした構成により、積層金網と比較して、良好な整流効果及び/または熱交換効率をもたらすように設計された冷媒ガス流路44を製作することが容易となる。
【0060】
複数の突起42は、熱交換層32bから管内空間34に向けて縦方向Aに平行に直立している。このようにすれば、管内空間34における冷媒ガス流れの方向と各突起42が平行に配置されるので、整流層32aによる整流効果を向上できる。
【0061】
縦方向Aにおける複数の突起42の長さは、縦方向Aにおける熱交換層32bの厚さより大きい。このようにすれば、整流層32aが比較的厚くなるので、整流層32aによる整流効果を向上できる。突起42の縦方向長さは、例えば、熱交換層32bの厚さの2倍より大きく、または5倍より大きく、または10倍より大きくてもよい。突起42の縦方向長さは、一体型整流器32が冷却ステージに装着されたとき冷却ステージの上面52を超えないように定められていてもよい。
【0062】
実施の形態に係るパルス管冷凍機10によれば、上述の一体型整流器32を備えることにより、冷媒ガスの整流効果および熱交換効率が高まる。それにより、パルス管冷凍機10の冷凍性能の向上も期待される。
【0063】
図3は、図1に示されるパルス管冷凍機10に使用されうる一体型整流器32の他の例を示す概略図である。図3には、一体型整流器32の概略上面図が示されている。
【0064】
複数の突起42は、各熱交換壁48上で少なくとも2列で第1面内方向B1に並んでいる。一体型整流器32は、第1面内方向B1に延びる突起分離溝54を有し、それにより、熱交換壁48上に第1突起列42aと第2突起列42bが形成されている。突起分離溝54は、一体型整流器32を貫通していない。一つの熱交換スリット46と複数の突起列42a、42bが第2面内方向B2に交互に配置されている。また、一体型整流器32は、第2面内方向B2にも突起分離溝54を有する。このようにして、突起42を細くして高密度に配置することにより、一体型整流器32の整流効果が向上される。
【0065】
図4は、図1に示されるパルス管冷凍機10に使用されうる一体型整流器32の他の例を示す概略図である。図4には、一体型整流器32の概略断面図が示されている。複数の突起42の少なくとも1つは、途中で枝分かれしている。突起42は、熱交換層32bから管内空間34に向かうにつれて、段々と分岐して細くなるとともに数が増えている。このようにしても、整流層32aの整流効果が向上される。
【0066】
図5(a)および図5(b)は、図1に示されるパルス管冷凍機10に使用されうる一体型整流器32の他の例を示す概略図である。図5(a)は、一体型整流器32の概略上面図であり、図5(b)は、A2-A2線による概略断面図である。
【0067】
図示されるように、整流層32aは、多孔板であってもよい。整流層32aは、突起ではなく、多数の貫通穴56を有する。熱交換層32bは、上述のように、交互に配置された複数の熱交換スリット46および熱交換壁48を有する。各熱交換スリット46に沿って、複数の貫通穴56が並んでいる。パルス管の管内空間は貫通穴56に連通し、貫通穴56が熱交換スリット46に連通している。このようにしても、積層金網に比べて整流効果及び/または熱交換効率が向上された一体型整流器32を提供することができる。
【0068】
図6は、実施の形態に係るパルス管冷凍機10の製造方法を示すフローチャートである。まず、3Dプリントにより、整流層32aと熱交換層32bとが一体形成された一体型整流器32が製作される(S10)。パルス管冷凍機10に組み込まれる一体型整流器32に適切な材料である例えば銅(例えば純銅)などの高熱伝導金属材料を使用可能な金属3Dプリンタが開発され、そうした金属3Dプリンタは一般に入手可能である。
【0069】
次に、一体型整流器がパルス管の低温端及び/または高温端に装着される(S12)。上述のように、例えば、一体型整流器32は、ろう付けなど適宜の接合技術を用いてパルス管の低温端及び/または高温端に取り付けられる。
【0070】
さらに続いて、パルス管冷凍機10が組み立てられる(S14)。一体型整流器32が取り付けられたパルス管に加えて、蓄冷器、バルブユニットなどパルス管冷凍機10の種々の構成要素が用意され、これらを用いて、パルス管冷凍機10が最終的に組み立てられる。このようにして、一体型整流器32を有するパルス管冷凍機10を提供することができる。
【0071】
本方法によれば、3Dプリントにより一体型整流器32が製作される。3Dプリントは形状の設計自由度が高い。そのため、良好な整流効果及び/または熱交換効率を実現するように設計された一体型整流器32を、製造工程による制約をまったく又はほとんど受けることなく製作可能である。一体型整流器32は、上述の具体例に限られず、任意の形状の流路を有しうる。所望の三次元形状を有する一体型整流器32を提供することができる。
【0072】
本方法によれば、複数の突起42を整流層32aに有する一体型整流器32、例えば、図2(a)から図2(c)に示される一体型整流器32、図3に示される一体型整流器32、および、図4に示される一体型整流器32を3Dプリントにより製作することができる。3Dプリントにより製作される一体型整流器32は、これらの具体例に限られない。例えば、突起42および熱交換スリット46の形状および配置はいかなるものであってもよい。
【0073】
また、本方法によれば、複数の貫通穴56を整流層32aに有する一体型整流器32、例えば、図5(a)および図5(b)に示される一体型整流器32を3Dプリントにより製作することができる。この場合にも、貫通穴56および熱交換スリット46の形状および配置はいかなるものであってもよい。
【0074】
図7は、実施の形態に係る一体型整流器32の製作方法の他の例を示す概略図である。
実施の形態に係る一体型整流器32は、他の方法でも製作できる。図7には、ワイヤーカット加工を用いた一体型整流器32の製作方法が示されている。まず、母材58が用意される(S20)。母材58は、例えば、円板形状を有し、銅(例えば純銅)などの高熱伝導金属材料で形成されている。
【0075】
次に、1回目のワイヤーカット加工が行われる(S22)。これにより、多数の溝60が形成される。母材58を多数の細長片に分離しないように、ワイヤーカット加工は、母材58の片側(図7において左側)から切削を開始し、反対側(図において右側)では母材58の外周をわずかに残すように行われる(例えば、半円状の外周枠62が残されている)。
【0076】
続いて、2回目のワイヤーカット加工が行われる(S24)。2回目のワイヤーカット加工は、1回目のワイヤーカット加工に対し直交する方向(例えば紙面に垂直な方向)から行われ、多数の突起42が形成される。2回目のワイヤーカット加工も、1回目のワイヤーカット加工と同様に、母材58を多数の小片に分離しないように行われる。1回目のワイヤーカット加工で形成された溝60は、熱交換スリット46となる。このようにして、一体型整流器32が製作されてもよい。
【0077】
なお、図7に示される一体型整流器32は、3Dプリントにより製作されてもよい。この場合、外周枠62を全周に形成することができるので、一体型整流器32の強度を高めるうえで有利である。
【0078】
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。
【0079】
上述の実施の形態では、一体型整流器32は、第1段パルス管18の両端および第2段パルス管24の両端に設けられている。しかし、ある実施の形態においては、一体型整流器32は、第1段パルス管高温端18aと第1段パルス管低温端18bのうちいずれか(例えば第1段パルス管低温端18bのみ)に設けられてもよい。一体型整流器32は、第2段パルス管高温端24aと第2段パルス管低温端24bのうちいずれか(例えば第2段パルス管低温端24bのみ)に設けられてもよい。
【0080】
本発明において、パルス管冷凍機10が4バルブ型パルス管冷凍機であることは、本質的ではない。パルス管冷凍機10は、異なる構成の位相制御機構を有してもよく、例えば、ダブルインレット型パルス管冷凍機、またはアクティブバッファ型パルス管冷凍機であってもよい。また、上述の実施の形態では、一体型整流器32をGM方式のパルス管冷凍機10に適用する場合を例として説明したが、本発明はこれに限られず、実施の形態に係る一体型整流器32は、スターリング方式のパルス管冷凍機またはその他の方式のパルス管冷凍機に適用されてもよい。上述の実施の形態は、二段式のパルス管冷凍機10を例として説明したが、パルス管冷凍機10は、単段式であってもよいし、あるいは多段式(例えば三段式)であってもよい。
【0081】
上述の実施の形態では、整流層32aが複数の突起42を有するいくつかの例を説明したが、一体型整流器32は、他の構成も可能である。図5(a)および図5(b)を参照して例示したように、整流層32aは、突起ではなく、多数の貫通穴56を有してもよい。
【0082】
したがって、ある実施の形態においては、パルス管冷凍機は、管内空間を有するパルス管と、パルス管の低温端及び/または高温端に配置された一体型整流器と、を備える。一体型整流器は、管内空間から又は管内空間への冷媒ガス流れを整流するように管内空間に面して配置された整流層と、冷媒ガス流れとの接触により冷媒ガス流れと熱交換するように管内空間に対して整流層の外側に整流層と一体形成された熱交換層とを備える。整流層は、整流層の上面から下面へと貫通する複数の貫通穴を有し、管内空間は、複数の貫通穴を通じて熱交換層に連通してもよい。
【0083】
熱交換層は、パルス管の延在方向に熱交換層を貫通しパルス管の延在方向に直交する熱交換層の第1面内方向に平行に複数の熱交換スリットを定めるように、熱交換層の第1面内方向に平行に延びるとともに熱交換層の第1面内方向に直交する熱交換層の第2面内方向に複数の熱交換スリットと交互に配置された複数の熱交換壁を備えてもよい。少なくとも1つの熱交換スリットに沿って複数の貫通穴が並んでいてもよい。複数の熱交換スリットの各々に沿って複数の貫通穴が並んでいてもよい。管内空間は、複数の貫通穴を通じて熱交換スリットに連通してもよい。
【0084】
複数の貫通穴は、管内空間から熱交換層(例えば、熱交換スリット)へとパルス管の延在方向に平行に延びていてもよい。パルス管の延在方向における複数の貫通穴の長さは、パルス管の延在方向における熱交換層の厚さより大きくてもよい。貫通穴の長さは、例えば、熱交換層の厚さの2倍より大きく、または5倍より大きく、または10倍より大きくてもよい。貫通穴の長さは、一体型整流器が冷却ステージに装着されたとき冷却ステージの上面を超えないように定められていてもよい。
【0085】
複数の貫通穴は、1つの熱交換スリットに沿って少なくとも2列で第1面内方向に並んでいてもよい。
【符号の説明】
【0086】
10 パルス管冷凍機、 32 一体型整流器、 32a 整流層、 32b 熱交換層、 34 管内空間、 42 突起、 46 熱交換スリット、 48 熱交換壁。
図1
図2
図3
図4
図5
図6
図7