IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ JFEスチール株式会社の特許一覧

特許7147663疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材およびその製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-27
(45)【発行日】2022-10-05
(54)【発明の名称】疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材およびその製造方法
(51)【国際特許分類】
   C22C 38/00 20060101AFI20220928BHJP
   C22C 38/12 20060101ALI20220928BHJP
   C21D 8/02 20060101ALI20220928BHJP
   C22C 38/60 20060101ALI20220928BHJP
【FI】
C22C38/00 301F
C22C38/12
C21D8/02 B
C22C38/60
【請求項の数】 7
(21)【出願番号】P 2019068464
(22)【出願日】2019-03-29
(65)【公開番号】P2020164952
(43)【公開日】2020-10-08
【審査請求日】2020-10-26
(73)【特許権者】
【識別番号】000001258
【氏名又は名称】JFEスチール株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100165696
【弁理士】
【氏名又は名称】川原 敬祐
(72)【発明者】
【氏名】三浦 進一
(72)【発明者】
【氏名】塩谷 和彦
(72)【発明者】
【氏名】伊木 聡
【審査官】河口 展明
(56)【参考文献】
【文献】特開2014-001450(JP,A)
【文献】特開2007-327087(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00-38/60
C21D 7/00-8/10
(57)【特許請求の範囲】
【請求項1】
質量%で、
C:0.051%以上、0.200%以下、
Si:0.05%以上、1.00%以下、
Mn:0.20%以上、2.00%以下、
P:0.003%以上、0.030%以下、
S:0.0001%以上、0.0100%以下、
Al:0.001%以上、0.100%以下および
W:0.034%以上、1.000%以下
を含有し、残部がFeおよび不可避的不純物である成分組成を有し、
ミクロ組織が硬質相と軟質相から構成され、該硬質相の体積分率が0.29~0.80であり、該軟質相におけるフェライトの平均粒径が5~36μmであって該軟質層に占めるフェライトの面積率が95%以上であり、下記(1)式で示されるP値が0.5以上、10以下を満たす、疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
ここで、軟質相は、ビッカース硬さが225未満の組織であり、硬質相は、ビッカース硬さが225以上の組織である。
また、上記ミクロ組織の観察は、任意の箇所から採取した試料を研磨したサンプルを用いて、3%ナイタール腐食液によりエッチングした圧延方向に平行な断面の板厚の1/4位置にて実施し、上記フェライトの平均粒径は、線分法を用いて求め、上記体積分率は、光学顕微鏡観察による組織観察を行い、画像処理によって各ミクロ組織の面積を算出し、硬質相と判別したミクロ組織の合計の面積を、観察視野全体の面積で除した値を、硬質相の体積分率とすることで求める。

P値:10×W+2×Cu+1.5×Ni+3×Mo ・・・(1)
ただし、式中の各元素は、鋼材中の各元素の含有量(質量%)を示す。
【請求項2】
前記成分組成が、さらに、質量%で、
Cu:0.50%以下、
Ni:0.50%以下、
Sn:0.200%以下、
Sb:0.200%以下および
Mo:0.500%以下
のうちから選ばれる1種または2種以上を含有する、請求項1に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【請求項3】
前記成分組成が、さらに、質量%で、
V:0.200%以下、
Ti:0.050%以下、
Zr:0.100%以下、
B:0.0050%以下、
Ca:0.0100%以下、
Mg:0.0100%以下および
REM:0.0100%以下
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【請求項4】
表面に塗膜を有する、請求項1乃至3のいずれかに記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【請求項5】
前記塗膜が、防食下地層、下塗り層、中塗り層および上塗り層を有し、該防食下地層として無機ジンクリッチペイント、該下塗り層としてエポキシ樹脂塗料、該中塗り層として中塗り塗料用ふっ素樹脂、該上塗り層として上塗り塗料用ふっ素樹脂をそれぞれ用いてなる、請求項4に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【請求項6】
降伏強度または0.2%耐力が335MPa以上で、かつ、引張強度が490MPa以上である、請求項1乃至5のいずれかに記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【請求項7】
請求項1~6のいずれか1項に記載の構造用鋼材を製造する方法であって、請求項1乃至3のいずれかに記載の成分組成からなる鋼スラブを、1000℃以上1300℃以下に加熱し、ついで、スラブ加熱温度から850℃までの温度域における圧下率:25%以上、仕上げ圧延温度:(Ar点-40℃)以上の条件で熱間圧延を施したのち、Ar点~(Ar点-80℃)の温度域から冷却速度5℃/s以上で650℃以下400℃以上の温度域まで加速冷却を行う、疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材およびその製造方法に関するものである。
本発明は、構造安全性が強く求められる溶接構造物などへ適用される構造用鋼材に関し、主に橋梁などの陸上かつ屋外の大気腐食環境下で用いられ、特に飛来塩分量の多い海上、海岸などの厳しい腐食環境下で使用される構造用鋼材に用いて好適なものである。
【背景技術】
【0002】
橋梁などの屋外で用いられる鋼構造物は、通常、何らかの防食処理を施して用いられる。例えば、飛来塩分量が少ない環境では、耐候性鋼が多く用いられている。
ここで、耐候性鋼は、大気暴露環境で使用する場合に、Cu、P、Cr、Niなどの合金元素が濃化した保護性の高いさび層で表面が覆われ、これによって、腐食速度を大きく低下させた鋼材である。このような耐候性鋼を使用した橋梁は、飛来塩分量が少ない環境では、無塗装のまま数十年間の供用に耐え得ることが知られている。
【0003】
一方、海上や海岸近傍などの飛来塩分量の多い環境では、耐候性鋼において保護性の高いさび層が形成され難く、耐候性鋼を無塗装のまま使用することは困難である。このため、海上や海岸近傍などの飛来塩分量の多い環境では、表面に塗装などの防食処理を施した鋼材が一般的に用いられている。
【0004】
しかしながら、塗装鋼材では、時間の経過による塗膜の劣化やさびの発生、塗膜の膨れ等により、定期的な塗り替えなどの補修が必要となる。塗り替えに伴う塗装作業は、高所での作業となることが多く、作業自体が困難であるだけでなく、作業にかかる人件費も多大となる。そのため、塗装鋼材を使用する場合には、構造物のメンテナンスコストが増大し、ひいてはライフサイクルコストが増大するという問題があった。
【0005】
このため、塗り替え塗装の周期を延長することによって、塗装頻度を低減し、構造物のメンテナンスコストを抑制可能な耐食性に優れた鋼材、特には塗装耐久性に優れた構造用鋼材の開発が望まれている。
【0006】
また、このような構造用の部材として用いられる材料には、その用途によって種々の機械的特性が求められる。例えば、近年では、大型の構造物が増加していることから高強度の材料が求められることが多くなっている。さらに、構造用部材に用いられる鋼材は、常時稼働における繰返し荷重や風、地震等による震動に起因する繰返しに対して構造物の構造安全性を確保しなければならない。繰返し荷重は疲労破壊をもたらすため、上記用途に用いられる構造用鋼に対しては耐疲労特性に優れていることが要求される。
【0007】
一般的に、疲労き裂は、溶接部位の止端やルートあるいはスカラップなどの応力集中部から発生し、それが鋼材へと進展して、部材の終局的な破断へと至る。疲労き裂の発生に対しては、応力集中を低減することが重要であり、そのような手法としては溶接止端形状の改善(付加溶接、ピーニング処理など)が効果的であることが知られている。
しかし、数百あるいは数千の溶接部にそのような処理を工業的な規模で実施することは施工時間やコストの観点から非現実的である。そのため、新設された溶接構造物は定期的に検査が行われ、疲労き裂が検出された際には、補修を繰り返して構造安全性を保持していくことが行われるが、このような検査や補修の手間、コストは莫大である。
【0008】
そこで、疲労き裂が発生したとしてもそれが部材の破壊をもたらさぬように鋼材自身に疲労き裂伝播を遅延させる効果を持たせることが、検査や補修の観点からも極めて重要と考えられる。
【0009】
このような耐食性や疲労き裂伝播特性に優れた鋼材として、例えば、特許文献1には、質量%で、Pを0.15~0.30%、Crを2.0%超え3.0%未満含有させた高耐候性鋼材が開示されている。
特許文献2には、質量%で、Pを0.03~0.15%、Cuを0.2~0.5%含有させた超塗装耐久性鋼材が開示されている。
特許文献3には、質量%で、Cuを0.05~3.0%、Niを0.05~6.0%、Tiを0.01~1.0%含有させた耐久性に優れた塗装鋼材が開示されている。
特許文献4には、質量%で、Cuを0.05~3.0%、Niを0.05~6.0%、Tiを0.025~0.15%含有させた塗膜耐久性に優れた塗装用鋼材が開示されている。
特許文献5には、質量%で、Cuを0.30~1.00%、Niを1.0~5.5%含有させた高溶接性高耐候性鋼が開示されている。
特許文献6には、質量%で、Cuを0.05~1.0%、Niを0.01~0.5%、Snおよび/またはSbを0.03~0.50%含有させた海浜耐候性に優れた鋼材が開示されている。
特許文献7には、質量%で、Snを0.03~0.50%含有させた耐食性およびZ方向の靱性に優れた鋼材の製造方法が開示されている。
特許文献8には、質量%で、Snを0.15~0.5%含有させた、塩化物を含む乾湿繰り返し環境下で用いられる耐食性に優れた鋼材が開示されている。
特許文献9には、質量%で、Snを0.01~0.5%含有させた、耐食性に優れた鋼材が開示されている。
【0010】
また、特許文献10には、フェライトの結晶方位を制御することによって、板厚方向のき裂伝播速度を低減する方法が示されている。
特許文献11には、フェライト粒径を1~3μmに微細化することによって疲労特性を向上する技術が示されている。
特許文献12には、ミクロ組織を硬質部の素地とこの素地に分散した軟質部とで構成し、両者の硬度差がビッカース硬さで150以上であることを特徴とする疲労亀裂進展抑制効果を有する鋼板が記載されている。
【先行技術文献】
【特許文献】
【0011】
【文献】特開平6-93372号公報
【文献】特開平6-143489号公報
【文献】特開平10-330881号公報
【文献】特開2000-169939号公報
【文献】特開平11-172370号公報
【文献】特開2006-118011号公報
【文献】特開2010-7109号公報
【文献】特開2012-255184号公報
【文献】特開2013-166992号公報
【文献】特開平8-199286号公報
【文献】特開2002-363644号公報
【文献】特開平7-242992号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、特許文献1および2のようにPの含有量を増加させると、溶接性が大きく低下する。さらに、特許文献1では、塗装した鋼材の耐食性、すなわち塗装耐久性について、何ら考慮が払われていない。
また、特許文献3、4および5のように、CuやNiの含有量を過度に増加させると、合金コストの増大を招き、それを避けるために合金量を減少させると飛来塩分量の多い地域では耐候性が不十分になる問題が発生する。さらに、特許文献3および4のようにTiを多量に含有させると、鋼材の靱性の劣化を招く。
加えて、特許文献6~9のように、Snなどの含有量を過度に増加させると、やはり合金コストの増大を招くとともに、鋼材の靱性の劣化を招く。
【0013】
特許文献10に記載された技術は、板厚方向以外に進展する疲労き裂伝播特性を向上することができない懸念がある。特許文献11に記載された技術は、圧延機の負荷が大きくなることや、圧延機の占有時間が長くなり、圧延能率が低下することが懸念される。特許文献12には、詳細な製造条件が記載されておらず、特許文献12記載の発明に係る鋼板を製造することは困難を伴う。さらに特許文献12では、亀裂進展の停留効果しか考慮してない。良好な耐疲労特性を得るためには亀裂経路の屈曲も考慮する必要があるが、この点については何ら考慮が払われていない。
【0014】
さらに、上掲した各特許文献では、塗装耐久性と疲労き裂伝播特性の両立を併せて改善することについては何ら検討がなされていない。
【0015】
本発明は、上記の現状に鑑み開発されたもので、合金コストの過度の増大を招くことなく、橋梁などの屋外の大気腐食環境下、特には飛来塩分量の多い海上や海岸近傍などの厳しい腐食環境下で使用する場合であっても、塗り替え塗装にかかる周期を延長して塗装頻度を低減し、かつ疲労き裂伝播を遅延することが可能な疲労き裂伝播特性および塗装耐久性に優れた構造用鋼材を、その有利な製造方法とともに提供することを目的とする。
【0016】
なお、「疲労き裂伝播特性に優れた」とは、以下の条件で疲労き裂伝播試験を行った際に、応力拡大係数範囲(ΔK)で20MPa√m(ここで、mはき裂長さ(単位:メートル)を示す)の時の疲労き裂伝播速度が、圧延直角方向および圧延方向とも、5.0×10-8m/cycle以下であることを意味する。
・疲労き裂伝播試験条件
応力比:0.1、周波数:20Hz、試験環境:室温大気中
準拠規格:ASTM E647
(ただし、板厚が25mmを超える場合、一方の面から板厚が25mmになるまで減厚して、試験片を採取する。)
また、「塗装耐久性に優れた」とは、鋼材表面に塗膜を形成し、以下の条件の腐食試験を行った際に、塗膜における初期欠陥部からの片側の膨れ幅が6.5mm以下であることを意味する。
・腐食試験条件
塗膜に付与する初期欠陥:幅1mm、長さ40mmの直線のカット
人工海塩の付着量:6.0g/m
試験時間:1200サイクル(9600時間)
サイクル条件:条件1(温度:60℃、相対湿度:35%、保持時間:3時間)、条件2(温度:40℃、相対湿度:95%、保持時間:3時間)、条件1から条件2および条件2から条件1への各移行時間を1時間とする、合計8時間のサイクル
【課題を解決するための手段】
【0017】
さて、発明者らは、合金コストの増大や靭性の劣化を招くおそれのあるCuやNi、Snなどを多量に含有させることなく優れた塗装耐久性を獲得し、かつ良好な疲労き裂伝播特性を得るべく、種々の成分組成、ミクロ組織形態を有する鋼材を作製し、その塗装耐久性、疲労き裂伝播特性を調査した。
その結果、適量のWを添加すると共に、適切なミクロ組織とすることで塗装耐久性および疲労き裂伝播特性が大幅に向上することを見出した。
【0018】
この理由については必ずしも明らかではないが、発明者らは次のように考えている。
(1)Wは、アノード反応に伴って溶出し、地鉄表面近傍さび層中にWO 2-として存在することで、腐食促進因子である塩化物イオンがさび層を透過して地鉄に到達するのを防止する。
(2)また、鋼材表面にWを含む化合物が沈殿することでアノード反応が抑制される。
(3)疲労き裂の進展の停留とき裂経路の屈曲により、疲労き裂伝播特性が向上する。また、硬質相の体積分率によって疲労き裂の進展の停留とき裂経路の屈曲の起こりやすさが変化する。よって、疲労き裂伝播特性を向上させるためには、硬質相の体積分率を制御することが重要である。加えて、Wを添加することにより硬質相が生成しやすくなり、硬質相の体積分率を所望の値としやすくなる。
本発明は、上記の知見に基づき、さらに検討を重ねて完成されたものである。
【0019】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.020%以上、0.200%以下、
Si:0.05%以上、1.00%以下、
Mn:0.20%以上、2.00%以下、
P:0.003%以上、0.030%以下、
S:0.0001%以上、0.0100%以下、
Al:0.001%以上、0.100%以下および
W:0.005%以上、1.000%以下
を含有し、残部がFeおよび不可避的不純物である成分組成を有し、
ミクロ組織が硬質相と軟質相から構成され、該硬質相の体積分率が0.20~0.80であり、該軟質相におけるフェライトの平均粒径が5~50μmである、疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
ここで、軟質相は、ビッカース硬さが225未満の組織であり、硬質相は、ビッカース硬さが225以上の組織である。
【0020】
2.前記成分組成が、さらに、質量%で、
Cu:0.50%以下、
Ni:0.50%以下、
Sn:0.200%以下、
Sb:0.200%以下および
Mo:0.500%以下
のうちから選ばれる1種または2種以上を含有する、前記1に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【0021】
3.前記成分組成が、さらに、質量%で、
V:0.200%以下、
Ti:0.050%以下、
Zr:0.100%以下、
B:0.0050%以下、
Ca:0.0100%以下、
Mg:0.0100%以下および
REM:0.0100%以下
のうちから選ばれる1種または2種以上を含有する、前記1または2に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【0022】
4.下記(1)式で示されるP値が0.5以上、10以下を満たす、前記1乃至3のいずれかに記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。

P値:10×W+2×Cu+1.5×Ni+3×Mo ・・・(1)
ただし、式中の各元素は、鋼材中の各元素の含有量(質量%)を示す。
【0023】
5.表面に塗膜を有する、前記1乃至4のいずれかに記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【0024】
6.前記塗膜が、防食下地層、下塗り層、中塗り層および上塗り層を有し、該防食下地層として無機ジンクリッチペイント、該下塗り層としてエポキシ樹脂塗料、該中塗り層として中塗り塗料用ふっ素樹脂、該上塗り層として上塗り塗料用ふっ素樹脂をそれぞれ用いてなる、前記5に記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【0025】
7.降伏強度または0.2%耐力が335MPa以上で、かつ、引張強度が490MPa以上である、前記1乃至6のいずれかに記載の疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材。
【0026】
8.前記1乃至4のいずれかに記載の成分組成からなる鋼スラブを、1000℃以上1300℃以下に加熱し、ついで、スラブ加熱温度から850℃までの温度域における圧下率:25%以上、仕上げ圧延温度:(Ar点-40℃)以上の条件で熱間圧延を施したのち、Ar点~(Ar点-80℃)の温度域から冷却速度5℃/s以上で650℃以下400℃以上の温度域まで加速冷却を行う、疲労き裂伝播特性と塗装耐久性に優れた構造用鋼材の製造方法。
【発明の効果】
【0027】
本発明によれば、構造安全性が強く求められる溶接構造物、例えば橋梁等を、屋外で、しかも飛来塩分量の多い海上や海岸近傍などの厳しい腐食環境下で使用する場合であっても、塗り替え周期を延長して塗装頻度を低減することが可能で、かつ構造物に用いて応力集中部や溶接部等から疲労き裂が発生したとしても、使用過程での疲労き裂進展を遅らせることが可能な疲労き裂伝播特性および塗装耐久性に優れた構造用鋼材を、低コストで得ることができる。
そして、本発明の疲労き裂伝播特性および塗装耐久性に優れた構造用鋼材を、橋梁などの屋外の大気腐食環境下、特には飛来塩分量の多い海上や海岸近傍などの厳しい腐食環境下で使用される構造物に対して適用することにより、構造物のメンテナンスコスト、ひいてはライフサイクルコストを大幅に低減することができる。
【発明を実施するための形態】
【0028】
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を前記の範囲に限定した理由について説明する。なお、鋼の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.020%以上、0.200%以下
Cは、鋼材の強度を上昇させ、かつ硬質第二相の体積分率を増加させる元素である。このため、Cは、構造用鋼としての所定の強度を確保するため、0.020%以上含有させる必要がある。一方、C含有量が0.200%を超えると、溶接性および靭性が劣化する。したがって、C含有量は0.020%以上、0.200%以下とする。
【0029】
Si:0.05%以上、1.00%以下
Siは、脱酸と強度を確保するため0.05%以上含有させる必要がある。一方、Si含有量が1.00%を超えると、靭性および溶接性が著しく劣化する。したがって、Si含有量は0.05%以上、1.00%以下とする。
【0030】
Mn:0.20%以上、2.00%以下
Mnは、鋼材の強度を上昇させる元素である。このため、Mnは、構造用鋼としての所定の強度を確保するため、0.20%以上含有させる必要がある。一方、Mn含有量が2.00%を超えると、靭性および溶接性が劣化する。したがって、Mn含有量は0.20%以上、2.00%以下とする。好ましくは0.75%以上、1.80%以下である。
【0031】
P:0.003%以上、0.030%以下
Pは、鋼材の塗装耐久性の向上に寄与する元素である。このような効果を得る観点から、Pは0.003%以上含有させる必要がある。一方、P含有量が0.030%を超えると、溶接性が劣化する。したがって、P含有量は0.003%以上、0.030%以下とする。
【0032】
S:0.0001%以上、0.0100%以下
Sは、溶接性および靭性を劣化させる元素である。このため、S含有量は0.0100%以下とする必要がある。ただし、S含有量を0.0001%未満にしようとすると、生産コストの増大を招く。したがって、S含有量は0.0001%以上、0.0100%以下とする。
【0033】
Al:0.001%以上、0.100%以下
Alは、製鋼時の脱酸に必要な元素である。このような効果を得るため、Alは0.001%以上含有させる必要がある。一方、Al含有量が0.100%を超えると、溶接性に悪影響を及ぼす。したがって、Al含有量は0.001%以上、0.100%以下とする。好ましくは0.005%以上、0.050%未満、より好ましくは、0.010%以上、0.030%未満である。
【0034】
W:0.005%以上、1.000%以下
Wは、疲労き裂伝播特性および塗装耐久性を改善する上で重要な元素である。Wは、アノード反応に伴って溶出し、さび層中にWO 2-として分布することによって、腐食促進因子の塩化物イオンがさび層を透過して地鉄に到達するのを静電的に防止する。さらに、鋼材表面にWを含む化合物が沈殿することで、鋼材のアノード反応を抑制する。また、Wを添加することで硬質相が生成しやすくなり、所望の硬質相と軟質相の体積分率比が得やすくなる。
これらの効果を十分に得るためには、Wを0.005%以上含有させる必要がある。一方、W含有量が1.000%を超えると、合金コスト上昇を招き、かつ硬質相分率が高くなりすぎ疲労き裂伝播特性が悪化する。したがって、W含有量は0.005%以上、1.000%以下とする。好ましくは0.010%以上、0.700%以下、より好ましくは0.030%以上0.500%以下、さらに好ましくは0.050%以上、0.100%以下である。
【0035】
以上、基本成分について説明したが、本発明では、必要に応じて、以下に述べる元素を適宜含有させることができる。
Cu:0.50%以下
Cuは、さび層中のさび粒を微細化することで緻密なさび層を形成し、腐食促進因子である酸素や塩化物イオンの地鉄への透過を抑制する効果を有する。また、Cuを添加することで硬質相が生成しやすくなる。一方、Cu含有量が0.50%を超えると、合金コストの上昇を招く。したがって、Cuを含有する場合、Cu含有量は0.50%以下とする。好ましくは0.01%以上、0.50%以下、より好ましくは0.03%以上、0.40%以下、さらに好ましくは0.04%以上、0.30%以下、特に好ましくは0.05%以上、0.25%以下である。
【0036】
Ni:0.50%以下
Niは、さび層中のさび粒を微細化することで緻密なさび層を形成し、腐食促進因子である酸素や塩化物イオンの地鉄への透過を抑制する効果を有する。また、Niを添加することで硬質相が生成しやすくなる。一方、Ni含有量が0.50%を超えると、合金コストの上昇を招く。したがって、Niを含有する場合、Ni含有量は0.50%以下とする。好ましくは0.01%以上、0.50%以下、より好ましくは0.03%以上、0.40%以下、さらに好ましくは0.04%以上、0.30%以下、特に好ましくは、0.05%以上、0.15%以下である。
【0037】
Sn:0.200%以下
Snは、地鉄表面近傍においてさび層中に存在し、さび粒子を微細化することで腐食促進因子である塩化物イオンがさび層を透過して地鉄に到達するのを防止する。また、Snは、鋼材表面においてアノード反応を抑制する。一方、Sn含有量が0.200%を超えると、鋼の延性や靭性の劣化を招く。したがって、Snを含有する場合、Sn含有量は、0.200%以下とする。好ましくは0.005%以上、0.200%以下、より好ましくは0.010%以上、0.100%以下、さらに好ましくは0.020%以上、0.050%以下である。
【0038】
Sb:0.200%以下
Sbは、地鉄表面近傍においてさび層中に存在し、さび粒子を微細化することで腐食促進因子である塩化物イオンがさび層を透過して地鉄に到達するのを防止する。また、Sbは、鋼材表面においてアノード反応を抑制する。一方、Sb含有量が0.200%を超えると、鋼の延性や靭性の劣化を招く。したがって、Sbを含有する場合、Sb含有量は0.200%以下とする。好ましくは0.005%以上、0.200%以下、より好ましくは0.010%以上、0.150%以下、さらに好ましくは0.020%以上、0.100%以下である。
【0039】
Mo:0.500%以下
Moは、鋼材のアノード反応に伴って溶出し、さび層中にMoO 2-が分布することで、腐食促進因子である塩化物イオンがさび層を透過して地鉄に到達するのを防止する。また、鋼材表面にMoを含む化合物が沈殿することで、鋼材のアノード反応を抑制する。さらに、Moを添加することで硬質相が生成しやすくなる。一方、Mo含有量が0.500%を超えると、合金コストの上昇を招く。したがって、Moを含有する場合、Mo含有量は0.500%以下とする。好ましくは0.005%以上、0.500%以下である。
【0040】
V:0.200%以下
Vは、強度を高める元素である。一方、V含有量が0.200%を超えると、その強度向上効果が飽和する。したがって、Vを含有する場合、V含有量は0.200%以下とする。好ましくは0.005%以上、0.200%以下である。
【0041】
Ti:0.050%以下
Tiは、強度を高める元素である。一方、Ti含有量が0.050%を超えると、靭性の劣化を招く。したがって、Tiを含有する場合、Ti含有量は0.050%以下とする。好ましくは0.005%以上、0.050%以下である。
【0042】
Zr:0.100%以下
Zrは、強度を高める元素である。一方、Zr含有量が0.100%を超えると、その強度向上効果が飽和する。したがって、Zrを含有する場合、Zr含有量は0.100%以下とする。好ましくは0.005%以上、0.100%以下である。
【0043】
B:0.0050%以下
Bは、強度を高める元素である。一方、B含有量が0.0050%を超えると、靭性の劣化を招く。したがって、Bを含有する場合、B含有量は0.0050%以下とする。好ましくは0.0001%以上、0.0050%以下である。
【0044】
Ca:0.0100%以下
Caは、鋼中のSを固定し、溶接熱影響部の靭性を向上させる元素である。一方、Ca含有量が0.0100%を超えると、鋼中の介在物の量が増加し、かえって靭性の劣化を招く。したがって、Caを含有する場合、Ca含有量は0.0100%以下とする。好ましくは0.0001%以上、0.0100%以下である。
【0045】
Mg:0.0100%以下
Mgは、鋼中のSを固定し、溶接熱影響部の靭性を向上させる元素である。一方、Mg含有量が0.0100%を超えると、鋼中の介在物の量が増加し、かえって靭性の劣化を招く。したがって、Mgを含有する場合、Mg含有量は0.0100%以下とする。好ましくは0.0001%以上、0.0100%以下である。
【0046】
REM:0.0100%以下
REMは、鋼中のSを固定し、溶接熱影響部の靭性を向上させる元素である。一方、REM含有量が0.0100%を超えると、鋼中の介在物の量が増加し、かえって靭性の劣化を招く。したがって、REMを含有する場合、REM含有量は0.0100%以下とする。好ましくは0.0001%以上、0.0100%以下である。
【0047】
上記以外の成分は、Feおよび不可避的不純物である。なお、不可避的不純物としては、NやOが挙げられ、それぞれN:0.010%以下、O:0.010%以下であれば許容できる。
【0048】
P値:10×W+2×Cu+1.5×Ni+3×Mo ・・・(1)
ただし、式中の各元素は、鋼材中の含有量(質量%)を示す。
この(1)式は、硬質相の生成しやすさを示す指標である。すなわち、(1)式で示されるP値が0.5未満では、十分な量の硬質相が生成されず、所望の疲労き裂伝播特性が得られない。一方、P値が10.0を超えると、軟質相の体積分率が低下し、この場合もまた所望の疲労き裂伝播特性が得られない。したがって、P値は0.5以上、10.0以下を満足させることが有利である。より好ましくは0.6以上、9.0以下の範囲である。
【0049】
次に、本発明におけるミクロ組織形態について説明する。
本発明に係る鋼材のミクロ組織は、構成組織を軟質相中に硬質相が分散した複合組織とする。鋼材組織が硬質相単相あるいは軟質相単相の場合には、疲労き裂伝播を遅延することができない。
軟質相中に疲労き裂先端が存在し、その前方に硬質相が存在すると、塑性域の拘束などを通じ、疲労き裂が硬質相を避けて屈曲や分岐し進展するようになる。このようなき裂の屈曲や分岐は、破面粗さ誘起き裂閉口や応力遮蔽効果をもたらして疲労き裂進展駆動力を低下させる。
【0050】
軟質相はビッカース硬さが225未満の相である。このような軟質相の主相は、フェライトである。また、熱履歴によっては、焼戻しマルテンサイト、焼戻しベイナイトも軟質相である場合がある。また、フェライトの平均粒径は5~50μmとする必要がある。フェライトの平均粒径が5μm未満であると圧延機の負荷が大きくなることや、圧延機の占有時間が長くなり、圧延能率が低下することが懸念される。よってフェライトの平均粒径は5μm以上とする。また、フェライトの平均粒径が50μmを超えると、厚鋼板の基本的な特性である靱性が劣化する。したがって、フェライトの平均粒径は50μm以下とする。
なお、ビッカース硬さ(HV1)は、試験力を9.807Nとして、JIS Z 2244(2009)に準拠して測定する。
【0051】
また、フェライトの平均粒径は、以下の方法で測定する。
任意の箇所から採取した試料を研磨したサンプルを用いて、3%ナイタール腐食液によりエッチングした圧延方向に平行な断面の板厚1/4位置にて任意の5視野で光学顕微鏡により組織観察を実施する。線分法を用いてフェライトの平均粒径を求める。
【0052】
硬質相は、ビッカース硬さが225以上の相である。このような硬質相としては、パーライト、ベイナイト、マルテンサイトがあげられ、また、熱履歴によっては、焼戻しマルテンサイト、焼戻しベイナイトも硬質相になる場合がある。
なお、軟質相と硬質相の判別は、上記した方法により、各ミクロ組織のビッカース硬さを測定することで実施する。
【0053】
そして、本発明では、硬質相の体積分率を0.20~0.80とする。硬質相の体積分率が0.20より小さい場合には、軟質相の比率が大きいため、多くの場合、疲労き裂先端は軟質相中に存在し、さらに、その前方に硬質相が存在する状況が少ない。そのため、軟質相中に存在する疲労き裂先端の前方に硬質相が存在することによる、疲労き裂の屈曲や分岐による疲労き裂進展駆動力の低下効果が得られない。一方、硬質相の体積分率が0.80より大きくなると、軟質相の比率が小さいため、多くの場合、疲労き裂先端は硬質相中に存在する。そのため、軟質相中に存在する疲労き裂先端の前方に硬質相が存在することによる、疲労き裂の屈曲や分岐による疲労き裂進展駆動力の低下効果が得られない。
そのため、硬質相の体積分率を0.20~0.80とする。
なお、硬質相の体積分率は、以下のようにして求める。
すなわち、圧延方向に平行な鋼材断面の板厚の1/4位置において、光学顕微鏡観察による組織観察を行い、画像処理によって各ミクロ組織の面積を算出する。ついで、各ミクロ組織からそれぞれ5点を無作為に抽出してビッカース硬さ(HV1)を計測し、ビッカース硬さが225未満の相を軟質相、ビッカース硬さが225以上の相を硬質相と判別する。そして、硬質相と判別したミクロ組織の合計の面積を、観察視野全体の面積で除した値を、硬質相の体積分率とする。
【0054】
また、本発明の鋼材は、通常、鋼材表面を塗装して使用される。ここで、鋼材表面の塗膜としては、例えば、防食下地層、下塗り層、中塗り層および上塗り層をこの順に有する塗膜が挙げられる。
なお、防食下地層としては無機ジンクリッチペイント(例えば、関西ペイント株式会社製:SDジンク1500)、下塗り層としてはエポキシ樹脂塗料(例えば、関西ペイント株式会社製:エポマリンHB(K))、中塗り層としては中塗り塗装用のふっ素樹脂(例えば、関西ペイント株式会社製:セラテクトF中塗り)、上塗り層として上塗り塗装用のふっ素樹脂(例えば、関西ペイント株式会社製:セラテクトF(K)上塗り)が有利に適合する。また、鋼材表面の塗膜は、プライマー層、下塗り層、中塗り層、上塗り層をこの順に有する塗膜や、防食下地層、下塗り層、上塗り層をこの順に有する塗膜でも良い。
【0055】
また、本発明の構造用鋼材は、上記成分組成を有する溶鋼を、通常の連続鋳造や分塊法によりスラブとし、このスラブを熱間圧延により厚板や形鋼、薄鋼板、棒鋼等に製造することにより、得られる。
【0056】
特に、以下の製造方法によって製造された鋼材は、降伏強度または0.2%耐力が335MPa以上、引張強度が490MPa以上の特性が得られる。
スラブ加熱温度は、適宜決定してよい。ただし、1300℃を超えてスラブを加熱すると、過度のスケール生成による歩留りの低下およびエネルギー消費量の増大を招く。一方、結晶粒の粗大化による靱性の劣化が問題となる。また、1000℃未満でスラブを加熱すると、スラブの変形抵抗が増大し、続く圧延工程における圧延荷重の増大により圧延が困難となる場合がある。したがって、スラブ加熱温度は1000~1300℃の範囲とする。好ましくは1050~1250℃の範囲である。より好ましくは1080~1200℃の範囲である。
【0057】
加熱されたスラブは、(Ar点-40℃)以上の温度で熱間圧延を終了したのち、所望の寸法形状の鋼材とする。仕上げ圧延温度が(Ar点-40℃)未満ではフェライト相が多量に生成し、所望の硬質相の体積分率が得られない。従って、仕上げ圧延温度は(Ar点-40℃)以上とする。好ましくはAr点以上である。
また、熱間圧延におけるスラブ加熱温度から850℃までの温度域における圧下率(=([熱間圧延開始前のスラブの厚み]-[850℃における被圧延材の厚み])÷[熱間圧延開始前のスラブの厚み]×100)が25%以上となるように圧延を行う。この圧延によって、オーステナイト粒が再結晶あるいは部分的に再結晶するため、平均粒径が5μmから50μmのフェライトが得られる。
なお、Ar点は、公知の方法で測定してもよいが、本願では、以下に示す「鉄と鋼 第67巻(1981)p147」に記載される(1)式により、求めた値を用いた。
Ar点(℃)
=910-310×C-80×Mn-20×Cu-55×Ni-80×Mo
ただし、式中の元素は、鋼材中の含有量(質量%)を示す。
【0058】
熱間圧延を終了した後は加速冷却を実施する。
冷却開始温度はAr点~(Ar点-80℃)の温度域とする。これにより、オーステナイト相からフェライトに代表される軟質相が生成される。
冷却速度は5℃/s以上とする。この加速冷却により、残部オーステナイト部をベイナイトやマルテンサイトなどの硬質相とすることができ、硬質相と軟質相からなる鋼材を製造することができる。
冷却停止温度は650℃以下400℃以上の温度域とする。冷却停止温度が650℃を上回る場合、フェライトなどの軟質相の生成量が多くなり、所望の硬質相の体積分率が得られない。一方、冷却停止温度が400℃を下回る場合、鋼材に反りが発生しやすくなり、矯正などによる製造コストの増大が懸念される。
【0059】
なお、鋼における各元素の含有量は、スパーク放電発光分光分析法、蛍光X線分析法、ICP発光分光分析法、ICP質量分析法または燃焼法等により求めることができる。
【実施例
【0060】
(実施例1)
表1に示す成分組成(残部はFeおよび不可避的不純物)を有する鋼を溶製し、連続鋳造によりスラブ(厚み250mm)としたのち、表2に示す種々の条件で熱間圧延を行い、熱延後の板厚が12~80mmになる鋼板を得た。なお、No.15では、空冷により室温まで冷却した。
得られた鋼板に対し、以下に示す条件で腐食試験、組織観察、引張試験および疲労き裂伝播試験を実施した。結果を表3に示す。
【0061】
・腐食試験
上記のようにして得た鋼板から70mm×50mm×5mmの試験片を採取した。この試験片の表面に、表面粗さがISO 25178の Sa 2.5となるようショットブラストを施したのち、アセトン中での超音波脱脂を5分間行い、風乾した。ついで、試験片の片面を塗装面とし、防食下地として無機ジンクリッチペイントとしてSDジンク1500(厚さ:75μm)を塗布し、ついで下塗りとしてエポキシ樹脂塗料としてエポマリンHB(K)(厚さ:120μm)を塗布し、ついで中塗りとしてセラテクトF中塗り塗料(厚さ:30μm)を塗布し、ついで上塗りとしてセラテクトF(K)上塗り塗料(厚さ:25μm)を塗布し、防食下地層、下塗り層、中塗り層および上塗り層からなる塗膜を形成した。なお、試験片の他方の片面と端面は、溶剤型のエポキシ樹脂塗料にてシールし、さらにシリコン系のシール剤にて被覆した。
【0062】
上記の塗装後、試験片に形成した塗膜の中央部に、地鉄に到達するように幅:1mm、長さ:40mmの直線のカットを入れ、初期欠陥を設けた。ついで、以下に示す条件にて腐食試験を実施した。
すなわち、試験片表面の人工海塩の付着量が6.0g/mとなるように、人工海塩を純水で所定の濃度に希釈した溶液をスプレーし、試験片に人工海塩を付着させた。ついで、この試験片を用いて、条件1(温度:60℃、相対湿度:35%、保持時間:3時間)、条件2(温度:40℃、相対湿度:95%、保持時間:3時間)、条件1から条件2および条件2から条件1への各移行時間を1時間とする、合計8時間のサイクルを1サイクルとして、これを1200サイクル繰り返す腐食試験を実施した。なお、人工海塩の付着は、週に1回とした。
そして、腐食試験終了後、塗膜における初期欠陥部からの片側の膨れ幅を測定し、塗装耐久性を評価した。
得られた結果を表3に示す。なお、片側の膨れ幅が6.5mm以下であれば、塗装の耐久性に優れると判断した。
【0063】
・組織観察
組織観察(光学顕微鏡観察)は、任意の箇所から採取した試料を研磨したサンプルを用いて、3%ナイタール腐食液によりエッチングした圧延方向に平行な断面の板厚の1/4位置にて実施した。組織観察は上述した方法により5視野で実施し、硬質相の体積分率を、それら総視野での平均値として求めた。また、軟質相および硬質相を判別するため、フェライト、マルテンサイト、ベイナイト、焼戻しマルテンサイト、焼戻しベイナイト等のミクロ組織ごとにそれぞれ5点を無作為に抽出してビッカース硬さ(HV1)を計測し、ビッカース硬さが225未満の相を軟質相、ビッカース硬さが225以上の相を硬質相に判別した。
なお、No.13を除き、軟質相に占めるフェライトの面積率は95%以上であった。
【0064】
・引張試験
得られた鋼板のうち、板厚50mm未満の鋼板は、JIS Z 2241に準拠した1A号あるいは5号引張試験片を用い、全厚の降伏強度または0.2%耐力と、引張強度を評価した。また、板厚50mm以上の鋼板は、JIS Z 2241に準拠した4号引張試験片を用い、板厚1/4位置の降伏強度または0.2%耐力と、引張強度を評価した。試験片本数は各2本とし、その算術平均を当該鋼板の降伏強度あるいは0.2%耐力および引張強度として評価した。
【0065】
・疲労き裂伝播試験
疲労き裂伝播試験は、全厚(板厚25mmを超えるものは25mmtまで片面減厚)のCT試験片を採取し、応力比0.1、周波数20Hz、室温大気中でASTM E647に準拠して行った。なお、当該試験は、き裂を圧延直角方向に進展させる場合と、き裂を圧延方向に進展させる場合のそれぞれで行った。
そして、応力拡大係数範囲(ΔK)で20MPa√m(ここで、mはき裂長さ(単位:メートル)を示す)の時の疲労き裂伝播速度が、圧延直角方向および圧延方向の両方で5.0×10-8m/cycle以下の場合を合格とした。
【0066】
【表1】
【0067】
【表2】
【0068】
【表3】
【0069】
表3より、発明例はいずれも、塗膜の膨れ幅が6.5mm以下で、かつ疲労き裂伝播速度が圧延直角方向および圧延方向の両方で5.0×10-8m/cycle以下であり、塗装耐久性および疲労き裂伝播特性が共に優れることが分かる。
一方、比較例では、塗膜の膨れ幅が6.5mmを超えていたり、疲労き裂伝播速度が5.0×10-8m/cycleを超えており、十分な塗装耐久性や疲労き裂伝播特性が得られなかった。