IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エクソンモービル リサーチ アンド エンジニアリング カンパニーの特許一覧

特許7148641EMM-37材料並びにその方法及び使用
<>
  • 特許-EMM-37材料並びにその方法及び使用 図1
  • 特許-EMM-37材料並びにその方法及び使用 図2
  • 特許-EMM-37材料並びにその方法及び使用 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-27
(45)【発行日】2022-10-05
(54)【発明の名称】EMM-37材料並びにその方法及び使用
(51)【国際特許分類】
   C01B 39/48 20060101AFI20220928BHJP
   C07D 207/09 20060101ALI20220928BHJP
   B01J 29/70 20060101ALI20220928BHJP
【FI】
C01B39/48
C07D207/09
B01J29/70 Z
【請求項の数】 13
(21)【出願番号】P 2020566193
(86)(22)【出願日】2019-01-23
(65)【公表番号】
(43)【公表日】2021-06-03
(86)【国際出願番号】 US2019014664
(87)【国際公開番号】W WO2019164622
(87)【国際公開日】2019-08-29
【審査請求日】2021-09-02
(31)【優先権主張番号】62/632,681
(32)【優先日】2018-02-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390023630
【氏名又は名称】エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー
【氏名又は名称原語表記】ExxonMobil Technology and Engineering Company
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100156085
【弁理士】
【氏名又は名称】新免 勝利
(72)【発明者】
【氏名】アレン・ダブリュー・バートン
(72)【発明者】
【氏名】ヒルダ・ビー・ブローマン
(72)【発明者】
【氏名】ユージーン・テレフェンコ
【審査官】▲高▼橋 真由
(56)【参考文献】
【文献】米国特許出願公開第2017/0158521(US,A1)
【文献】特表2017-534544(JP,A)
【文献】特表2014-524406(JP,A)
【文献】特表2014-531381(JP,A)
【文献】米国特許出願公開第2016/0060129(US,A1)
【文献】国際公開第2013/028303(WO,A1)
【文献】国際公開第2013/019462(WO,A1)
【文献】Inorganic Chemistry,2019年,vol.58,pp.12854-12858,DOI: 10.1021/acs.inorgchem.9b01798
(58)【調査した分野】(Int.Cl.,DB名)
C01B 33/20-39/54
B01J 21/00-38/74
C07D 207/09
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
表1から選択される少なくとも6個のXRDピークを有する結晶性材料であって:
【表1】
前記6個のXRDピークの中の5個が表1B中のピークを含み:
【表2】
一部又はすべての構造指向剤が前記結晶性材料から除去されており、
式I:
(m)X :YO (式I)
(式中、0.01≦m≦0.25であり、Xは、B、Al、Fe、及びGa、又はそれらの混合物から選択される三価元素であり、Yは、Si、Ge、Sn、Ti、及びZr、又はそれらの混合物から選択される四価元素である)
を含む組成を有する、結晶性材料。
【請求項2】
単位セル中の四面体(T)原子に関する以下の表2中の連結性によって規定されるフレームワークを有する結晶性材料であって、前記四面体(T)原子が架橋原子によって連結され
式I:
(m)X :YO (式I)
(式中、0.01≦m≦0.25であり、Xは、B、Al、Fe、及びGa、又はそれらの混合物から選択される三価元素であり、Yは、Si、Ge、Sn、Ti、及びZr、又はそれらの混合物から選択される四価元素である)
を含む組成を有する結晶性材料。
【表3】
【請求項3】
0.10~0.28cc/gの微細孔容積を有する、請求項1又は2に記載の材料。
【請求項4】
YのXに対する比が5~25である、請求項に記載の材料。
【請求項5】
表3から選択される少なくとも6個のXRDピークを有し:
【表4】
前記6個のXRDピークが表3B中のピークを含み:
【表5】
式II:
(n)G:(v)X :YO (式II)
(式中、0.01≦v≦0.25であり、0.03≦n≦0.25であり、Gは有機構造指向剤であり、Xは、B、Al、Fe、及びGa、又はそれらの混合物から選択される三価元素であり、Yは、Si、Ge、Sn、Ti、及びZr、又はそれらの混合物から選択される四価元素である)
を含む組成を有する、製造されたままの結晶性材料。
【請求項6】
aパラメータが8.8±0.3Åであり、bパラメータが9.6±0.3Åであり、cパラメータが10.7±0.3Åであり、αが104±6°であり、βが100±6°であり、γが100±6°である三斜晶系単位セルを有する、請求項に記載の材料。
【請求項7】
YのXに対する比が5~25である、請求項に記載の材料。
【請求項8】
GのYに対する比が0.05~0.15である、請求項に記載の材料。
【請求項9】
水酸化物イオンの供給源と、四価元素Yの酸化物の供給源と、三価元素Xの供給源と、ビスピロリジニウムジカチオンを含む構造指向剤(G)とを含む組成物を混合するステップを含む、請求項のいずれか一項に記載の結晶性材料の調製方法。
【請求項10】
前記結晶性材料から一部又はすべての前記構造指向剤を除去するステップをさらに含む、請求項に記載の方法。
【請求項11】
前記構造指向剤は、化合物H:
【化1】
(式中、Aはイオンである)
を含むか、又は化合物Hである、請求項9または10に記載の方法
【請求項12】
化合物HがRS異性体を含むか、又はRS異性体である、請求項11に記載の方法
【請求項13】
有機化合物を請求項1~のいずれか一項に記載の結晶性材料に接触させるステップを含む、前記有機化合物を変換生成物に変換する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、EMM-37と呼ばれる材料、そのような材料の製造方法、これらの材料の使用、そのような材料の製造に使用される構造指向剤(SDA)、並びにそのような構造指向剤の製造に使用される方法及び中間体に関する。
【背景技術】
【0002】
ゼオライトは、吸着剤として、及び炭化水素変換の触媒若しくは触媒担体として使用することができる。ゼオライトは、チャネルによって相互接続される均一な空隙及び細孔を有する。空隙及び細孔のサイズ及び寸法によって、あるサイズの分子の吸着が可能となる。サイズ選択によって分子を吸着する能力のために、ゼオライトは、炭化水素変換、例えば、クラッキング、水素化分解、不均化、アルキル化、オリゴマー化、及び異性化などの多くに使用されている。
【0003】
触媒作用及び吸着作用における用途が見出されているゼオライトとしては、いずれかの天然又は合成の結晶性ゼオライトが挙げられる。これらのゼオライトの例としては、大細孔ゼオライト、中間孔径ゼオライト、及び小細孔ゼオライトが挙げられる。これらのゼオライト及びそれらのアイソタイプは、非特許文献1に記載されている。大細孔ゼオライトは、一般に少なくとも約7Åの孔径を有し、LTL、VFI、MAZ、FAU、OFF、BEA、及びMORのフレームワークタイプのゼオライトが挙げられる(IUPAC Commission of Zeolite Nomenclature)。大細孔ゼオライトの例としては、マッシィ沸石、オフレタイト、ゼオライトL、VPI-5、ゼオライトY、ゼオライトX、オメガ、及びベータが挙げられる。中間孔径ゼオライトは、一般に約5Åから約7Å未満までの孔径を有し、例えば、MFI、MEL、EUO、MTT、MFS、AEL、AFO、HEU、FER、MWW、及びTONのフレームワークタイプのゼオライトが挙げられる(IUPAC Commission of Zeolite Nomenclature)。中間孔径ゼオライトの例としては、ZSM-5、ZSM-11、ZSM-22、MCM-22、シリカライト1、及びシリカライト2が挙げられる。小孔径ゼオライトは、約3Åから約5.0Å未満までの孔径を有し、例えば、CHA、ERI、KFI、LEV、SOD、及びLTAフレームワークタイプのゼオライトが挙げられる(IUPAC Commission of Zeolite Nomenclature)。小細孔ゼオライトの例としては、ZK-4、ZSM-2、SAP0-34、SAP0-35、ZK-14、SAP0-42、ZK-21、ZK-22、ZK-5、ZK-20、ゼオライトA、菱沸石、ゼオライトT、グメリン沸石、ALPO-17、及びクリノプチロライトが挙げられる。しかし、新規なゼオライトが依然として望まれている。
【先行技術文献】
【非特許文献】
【0004】
【文献】http://america.iza-structure.org/IZA-SC/ftc_table.php
【発明の概要】
【課題を解決するための手段】
【0005】
一態様では、本開示は、EMM-37材料、これらの材料の調製方法、及びそれらの使用を提供する。本開示は、一部又はすべてのSDAが除去されており、表1から選択される度2θにおいて少なくとも6個のX線回折(XRD)ピークを有する多孔質結晶性EMM-37材料を提供する。
【0006】
【表1】
【0007】
さらなる一態様では、単位セル中の四面体(T)原子に関する以下の表2中の連結性によって規定されるフレームワークを有する結晶性EMM-37材料が本明細書において提供され、四面体(T)原子は架橋原子によって連結される。
【0008】
【表2】
【0009】
別の一態様では、本開示は、一部又はすべてのSDAが除去されており、式I:
(m)X:YO (式I)
(式中、0.01≦m≦0.25であり、Xは三価元素であり、Yは四価元素である)
を含む組成を有する多孔質結晶性EMM-37材料を提供する。EMM-37材料は、発明を実施するための形態の項及び実施例の項に記載されるような、式Iの三価及び四価の酸化物以外の成分を含むことができる。
【0010】
さらに別の一態様では、表3から選択される度2θにおいて少なくとも6個のXRDピークを有する製造されたままの形態の結晶性EMM-37材料が提供される。
【0011】
【表3】
【0012】
さらに別の一態様では、式II:
(n)G:(v)X:YO (式II)
(式中、0.01≦v≦0.25であり、0.03≦n≦0.25であり、Gは有機構造指向剤であり、Xは三価元素であり、Yは四価元素である)
を含む組成を有する製造されたままの形態の結晶性EMM-37材料が提供される。これらのEMM-37材料は、発明を実施するための形態の項及び実施例の項に記載されるような、式IIの三価及び四価の酸化物以外の成分を含むことができる。
【0013】
さらに別の一態様では、本開示は、本明細書に記載の材料の調製方法を提供する。
【0014】
さらなる一態様では、以下の構造:
【化1】
(式中、Aはイオンである)
を有する化合物Hを含む、又は化合物HであるSDA材料、及びその調製方法が提供される。
【0015】
本概要などの本明細書中に記載されるいずれか2つ以上の特徴を組み合わせて、本明細書に特に記載されない特徴の組み合わせを形成することができる。1つ以上の特徴の詳細が添付の図面及び以下の説明に示される。その他の特徴及び利点は、説明及び図面、並びに請求項から明らかとなるであろう。
【図面の簡単な説明】
【0016】
図1】製造されたままのEMM-37材料の粉末XRDパターンを示している。
図2】515℃まで焼成して熱処理したEMM-37材料の粉末XRDパターンを示している。
図3】515℃、540℃、及び600℃まで焼成して熱処理したEMM-37材料の粉末XRDパターンを示している。
【発明を実施するための形態】
【0017】
本明細書において、EMM-37と呼ばれる材料、これらの材料の調製方法、それらの使用、EMM-37を調製するための構造指向剤、そのようなSDAの製造に使用される方法及び中間体が提供される。EMM-37材料は結晶性で多孔質である。一部又はすべてのSDAが除去されている(例えば、構造指向剤(SDA)を細孔から除去するための熱処理又はその他の処理)EMM-37材料は、三価元素の酸化物(例えば、X)及び四価元素の酸化物(例えば、YO)の化学組成物などの本明細書に記載のものなどの種々の成分を含むことができ、これらの酸化物は種々のモル比で存在することができる。Xは三価元素であり、Yは四価元素である。製造されたままのEMM-37(すなわち、SDAを細孔から除去するための熱処理又はその他の処理の前)は、合成混合物の成分の1つであるSDAをその細孔内に含むことができる。一態様では、製造されたままのEMM-37材料に対して、一部又はすべてのSDAを除去するための熱処理又はその他の処理を行うことができる。製造されたままのEMM-37材料の熱処理(例えば、焼成)では、典型的には、加熱炉中、空気、窒素、又はそれらの混合物から選択される雰囲気中で、材料が高温、例えば400~700℃に曝露される。別の一態様では、製造されたままのEMM-37材料のオゾン処理を使用して、一部又はすべてのSDAを除去することができる。一部又はすべてのSDAが除去されているEMM-37材料は、吸着剤として、並びに炭化水素変換、例えば、有機化合物から変換生成物への変換の触媒又は触媒担体として使用することができる。小細孔ゼオライトである本明細書に記載のEMM-37は、小分子を分離する能力を有する。
【0018】
SDAのすべての一部が除去されているEMM-37材料は、表1から選択される度2θにおいて少なくとも6個のXRDピークを有する。
【0019】
【表4】
【0020】
1つ以上の態様では、EMM-37材料(一部又はすべてのSDAが除去されている場合)は、表1Aから選択される度2θ及びd間隔値を有する少なくとも6個のXRDピークを有することができ、ここでd間隔値は、ブラッグの法則を用いてd間隔の対応する値に変換する場合に対応する偏差±0.20度2θに基づいて求められる偏差を有する。
【0021】
【表5】
【0022】
本明細書に記載のXRDピークを有するXRDパターンにはCu(Kα)放射線が使用される。EMM-37材料は、表1又は表1Aから選択される少なくとも7個、少なくとも8個、又は9個のXRDピークを有することができる。
【0023】
EMM-37材料(例えば、SDAを有するか、又は一部若しくはすべてのSDAが除去されている場合)は、単位セル中の四面体(T)原子に関する表2中の連結性によって規定されるフレームワークを有し、ここで四面体(T)原子は架橋原子によって連結される。連結性は、ゼオライト及びゼオタイプにおけるトポロジー的及び結晶学的四面体部位の分析のためのFortranコードであるコンピューターアルゴリズムのzeoTsitesによって計算することができる。例えば、G.Sastre,J.D.Gale,Microporous and Mesoporous Materials 2001,43,pages 27-40を参照されたい。四面体原子は、B、Al、Fe、Ga、Si、Ge、Sn、Ti、及びZr、又はそれらの混合物から選択される1つ以上の元素を含むことができる。例えば、四面体原子は、B、Al、又はSi、又はそれらの混合物から選択することができる。例えば、四面体原子は、Si若しくはAlを含むことができるか、又はSi若しくはAlであってよい。架橋原子は、O、N、及びC、又はそれらの混合物から選択することができる。架橋原子は酸素原子を含むことができるか、又は酸素原子であってよい(例えば、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、又は少なくとも95%の架橋原子が酸素であってよい)。架橋原子Cは、ゼオライトの形成に使用される種々の成分、例えばシリカ源から含まれることができる。架橋原子Nは、SDAが除去された後にゼオライト中に混入されうる。
【0024】
1つ以上の態様では、EMM-37材料(熱処理又はその他の処理によって、一部又はすべてのSDAが除去されている場合)は、0.10~0.28cc/g、例えば0.20~0.28cc/gの微細孔容積を有することができる。微細孔容積は0.10~0.20(例えば、0.12)、又は0.20~0.25(例えば、0.21又は0.22)cc/gであってよい。EMM-37材料は、表1又は表1Aから選択される少なくとも6個、少なくとも7個、少なくとも8個、又は9個のXRDピークを有することができ、0.10~0.28cc/g、例えば0.20~0.28cc/gの微細孔容積を有することができる。
【0025】
1つ以上の別の態様では、EMM-37材料(一部又はすべてのSDAが除去されている場合)は、表1Bから選択されるXRDピークの5個のXRDピークを有することができ、0.10~0.28cc/gの微細孔容積を有することができる。
【0026】
【表6】
【0027】
EMM-37材料(一部又はすべてのSDAが除去されている場合)は、場合により式I:
(m)X:YO (式I)
(式中、0.01≦m≦0.25であり、Xは三価元素であり、Yは四価元素である)
で表される組成を有することができる。Xは、B、Al、Fe、及びGa、又はそれらの混合物から選択することができる。例えば、Xは、Alを含むことができる、又はAlであってよい。Yは、Si、Ge、SnTi、及びZr、又はそれらの混合物から選択することができる。例えば、YはSiを含むことができるか、又はSiであってよい。式I中の酸素原子は、炭素原子(例えば、CHの形態)で置換することができ、これは製造されたままのEMM-37の調製に使用される成分の供給源に由来することができる。式I中の酸素原子は、例えばSDAが除去された後に、窒素原子で置換することもできる。式Iは、一部又はすべてのSDAが除去されている典型的なEMM-37材料のフレームワークを表すことができるが、EMM-37材料の唯一の表現であることを意味するものではない。EMM-37材料は、SDA及び不純物を除去するための適切な処理の後にSDA及び/又は不純物を含む場合があり、これらは式I中には示されていない。さらに、式Iは、EMM-37材料中に存在しうるプロトン及び電荷補償イオンを含んでいない。
【0028】
変数mは、式I中のXのYOに対するモル比の関係を表す。例えば、mが0.01である場合、YのXに対するモル比は50である(例えば、Si/Alのモル比は50である)。mが0.25である場合、YのXに対するモル比は2である(例えば、Si/Alのモル比は2である)。YのXに対するモル比は、5~40、5~25、又は4~15であってよい(例えば、Si/Alのモル比は、5~40、5~25、又は4~15である)。YのXに対するモル比は、4、5、6、7、8、9、10、11、又は12であってよい(例えば、Si/Alのモル比は、4、5、6、7、8、9、10、11、又は12である)。
【0029】
製造されたままの(例えば、熱処理が行われていない)EMM-37材料は、表3から選択される度2θにおいて少なくとも6個のXRDピークを有する。
【0030】
【表7】
【0031】
1つ以上の態様では、製造されたままの(例えば、SDAを除去するための処理が行われていない)EMM-37材料は、表3Aから選択される度2θ及びd間隔値を有する少なくとも6個のXRDピークを有することができ、ここでd間隔値は、ブラッグの法則を用いてd間隔の対応する値に変換する場合に対応する偏差±0.20度2θに基づいて求められる偏差を有する。
【0032】
【表8】
【0033】
製造されたままのEMM-37材料は、表3又は表3Aから選択される少なくとも7個、少なくとも8個、少なくとも9個、又は10個のXRDピークを有することができる。
【0034】
1つ以上の態様では、製造されたままのEMM-37材料は、aパラメータが8.8±0.3Åであり、bパラメータが9.6±0.3Åであり、cパラメータが10.7±0.3Åであり、αが104±6°であり、βが100±6°であり、γが100±6°である三斜晶系単位セルを有するとして記載することができる。製造されたままのEMM-37材料は、表3又は表3Aから選択される少なくとも6個の、少なくとも7個、少なくとも8個、少なくとも9個、又は10個のXRDピークを有することができ;aパラメータが8.8±0.3Åであり、bパラメータが9.6±0.3Åであり、cパラメータが10.7±0.3Åであり、αが104±6°であり、βが100±6°であり、γが100±6°である三斜晶系単位セルを有することができる。
【0035】
1つ以上の別の態様では、製造されたままのEMM-37材料は、表3Bから選択される6個のXRDピークを有することができ:
【0036】
【表9】
aパラメータが8.8±0.3Åであり、bパラメータが9.6±0.3Åであり、cパラメータが10.7±0.3Åであり、αが104±6°であり、βが100±6°であり、γが100±6°である三斜晶系単位セルを有することができる。
【0037】
場合により、製造されたままのEMM-37材料は式II:
(n)G:(v)X:YO (式II)
(式中、0.01≦v≦0.25であり、0.03≦n≦0.25であり、Gは有機構造指向剤であり、Xは三価元素であり、Yは四価元素である)
で表される組成を有することができる。Xは、B、Al、Fe、及びGa、又はそれらの混合物から選択することができる。例えば、XはAlを含むことができるか、又はAlであってよい。Yは、Si、Ge、Sn、Ti、及びZr、又はそれらの混合物から選択することができる。例えば、YはSiを含むことができるか、又はSiであってよい。式IIは、SDAを有する典型的な製造されたままのEMM-37材料のフレームワークを表すことができるが、このような材料の唯一の表現であることを意味するものではない。製造されたままのEMM-37材料は、式IIによって表されていない不純物を含む場合がある。さらに、式IIは、製造されたままのEMM-37材料中に存在しうるプロトン及び電荷補償イオンを含まない。式Iと同様に、式II中の酸素原子は、炭素原子(例えば、CHの形態)で置換することができ、これは製造されたままのEMM-37の調製に使用される成分の供給源に由来することができる。
【0038】
変数vは、式II中のXのYOに対するモル比の関係を表す。例えば、vが0.01である場合、YのXに対するモル比は50である(例えば、Si/Alのモル比は50である)。vが0.25である場合、YのXに対するモル比は2である(例えば、Si/Alのモル比は2である)。YのXに対するモル比は、5~40、5~25、又は4~15であってよい(例えば、Si/Alのモル比は、5~40、5~25、又は4~15である)。YのXに対するモル比は、4、5、6、7、8、9、10、11、又は12であってよい(例えば、Si/Alのモル比は、4、5、6、7、8、9、10、11、又は12である)。
【0039】
変数nは、式II中の有機構造指向剤GのYOに対するモル比の関係を表す。例えば、nが0.03である場合、GのYに対するモル比は0.03である。nが0.25である場合、GのYに対するモル比は0.25である。GのYに対するモル比は、0.05~0.15、0.10~0.25、0.15、又は0.25であってよい。
【0040】
製造されたままのEMM-37材料の調製に使用される方法は:
(i)水酸化物イオンの供給源と、四価元素Yの酸化物の供給源と、三価元素Xの供給源と、場合によりビスピロリジニウムジカチオンを含む構造指向剤(G)とを含む組成物を混合するステップと;
(ii)混合された組成物を加熱するステップと;
(iii)EMM-37材料の結晶を単離するステップと、
として記載することができる。
【0041】
この組成は、YOのXに対するモル比が2~50(例えば、5~30、4~25、又は5~20)であってよい。この組成は、HOのYOに対するモル比が1~50(例えば、10~40)であってもよい。この組成は、OHのYOに対するモル比が0.05~0.5(例えば、0.10~0.30)であってもよい。この組成は、GのYOに対するモル比が0.03~0.25(例えば、0.10~0.25)であってよい。
【0042】
CHの形態の炭素は、EMM-37の調製に使用される成分の種々の供給源、例えば、四価元素源(シリカ源)中に存在することができ、架橋原子としてEMM-37フレームワーク中に組み込むことができる。窒素原子は、SDAを除去した後に、架橋原子としてEMM-37材料のフレームワーク中に組み込むことができる。
【0043】
1つ以上の別の態様では、製造されたままのEMM-37材料は、最初に三価元素Xの供給源をSDAの水酸化物溶液と混合し、続いてこの混合物に四価のYの供給源を加えて成分のベース混合物を形成することによって調製することができる。場合により、EMM-37材料のシードをこのベース混合物に加えることができる。1つ以上の態様では、溶媒調整(例えば水のシリカに対する所望の比が実現される)後の混合物が、撹拌又は高速混合などの機械的方法によって、例えば、二重非対称遠心分離混合(例えば、FlackTek speedmixer)を1000~3000rpm(例えば、2000rpm)の混合速度で使用して、混合され得ることで、ベース混合物の適切な均質化が保証される。ベース混合物中の成分の性質によるが、溶媒のYOに対する所望のモル比が結果として得られる混合物で実現されるように、ベース混合物のある量の溶媒(例えば、水酸化物溶液からの水、並びに場合によりシリカ源の加水分解によるメタノール及びエタノール)を除去することができる。溶媒含有量を減少させるための適切な方法としては、周囲空気、乾燥窒素、乾燥空気などの静止雰囲気又は流動雰囲気下での蒸発、又は噴霧乾燥若しくは凍結乾燥による方法を挙げることができる。溶媒除去プロセス中に除去される水が多すぎる場合、所望のHO/YOモル比を実現するために得られた混合物に水を加えることができる。幾つかの例では、調製物が十分なHO/YOのモル比を有する場合、水の除去は必要ではない。
【0044】
混合された混合物は、次に、EMM-37材料の形成に適切な結晶化条件に置かれる。EMM-37材料の結晶化は、静的又は撹拌条件下、例えば対流オーブン中に入れられたポリプロピレンジャー又はTeflonでライニングされた若しくはステンレス鋼のオートクレーブなどの適切な反応器中、約100~約200℃の温度において、結晶化が起こるのに十分な時間、例えば、約1日~約30日(例えば、1日~1~14日、又は1日~7日)維持することで行うことができる。その後、製造されたままのEMM-37材料の固体結晶が、液体から(例えば、濾過又は遠心分離)によって分離され、回収される。
【0045】
四価元素Yの供給源の例は、シリカ、沈降シリカ、ヒュームドシリカ、アルカリ金属ケイ酸塩、オルトケイ酸テトラアルキル(例えば、オルトケイ酸テトラエチル、オルトケイ酸テトラメチルなど)、及び酸化ゲルマニウム、又はそれらの混合物のコロイド懸濁液から選択することができる。シリカの供給源の別の例としては、LUDOX(登録商標)(例えば、LUDOX(登録商標)LS-30、LUDOX(登録商標)AS-40)コロイダルシリカ、ULTRASIL(登録商標)沈降シリカ、CARBOSPERSE(商標)、ヒュームドシリカ懸濁液、又はそれらの混合物を挙げることができる。
【0046】
三価元素Xは、アルミニウムを含むことができる、又はアルミニウムであってよい。適切なアルミニウム源は、メタカオリン、アルカリ金属アルミン酸塩、アルミニウムアルコキシド、及び硝酸アルミニウムなどの水溶性アルミニウム塩、又はそれらの混合物から選択することができる。これに加えて、又はこれとは別に、三価元素Xは、ホウ素を含むことができる、又はホウ素であってよい。適切なホウ素源は、ホウ酸、テラホウ酸ナトリウム(sodium teraborate)、及び四ホウ酸カリウム、又はそれらの混合物から選択することができる。
【0047】
製造されたままのEMM-37材料の合成中に細孔中に取り込まれた一部又はすべてのSDAを除去して、熱処理されたEMM-37材料を形成することができる。製造されたままのEMM-37材料が、空気、窒素、又はそれらの混合物から選択される雰囲気中、一部又はすべてのSDAを除去するのに十分な温度に加熱される熱処理(例えば、焼成)を用いて、SDAの除去を行うことができる。熱処理に減圧を用いることができるが、利便性の理由から大気圧が望ましい。熱処理は、最高700℃、例えば400℃~700℃の温度で行うことができる。測定される温度は、試料の周囲環境の温度である。熱処理(例えば、焼成)は、箱形炉中、空気から水を除去する乾燥剤が入れられた乾燥管に曝露された乾燥空気中で行うことができる。加熱は、400℃~700℃(例えば、515又は540℃)において1日~14日行うことができる。加熱は最初に窒素雰囲気中で最高400℃まで行うことができ、次に400℃において雰囲気を空気に切り替えることができる。
【0048】
製造されたままのEMM-37材料は、構造指向剤、例えばビスピロリジニウムジカチオンを含むことができる。多孔質結晶性EMM-37材料の別の合成方法は、SDAを使用せずに行うことができる。構造指向剤の適切な供給源は、関連のジ第四級アンモニウム化合物の水酸化物及び/又は塩から選択することができる。例えば、構造指向剤は、以下の構造:
【化2】
(式中、Aはイオンである)
を有する化合物Hを含むことができる、又は化合物Hであってよい。
【0049】
例えば、Aは、トシレート、OH(ヒドロキシル)、又はI若しくはBrなどのハライドであってよい。1つ以上の態様では、Aは、ヒドロキシル基(OH)を含むことができる、又はヒドロキシル基(OH)であってよい。化合物Hは2つの立体中心を有し、したがって化合物Hは、RS、SS、又はRRの配置を有する。例えば、化合物Hは、RS配置を含むことができる、又はRS配置であってよい。製造されたままのEMM-37材料の調製に使用されるSDAは、RS配置を有する化合物Hであってよい。
【0050】
化合物H又はその特定の立体異性体の調製方法は:
(i)化合物1:
【化3】
を化合物2:
【化4】
に変換するステップと;
(ii)化合物2を化合物3:
【化5】
に変換するステップと;
(iii)化合物3を化合物H:
【化6】
に変換するステップと;
(iv)場合により化合物Hを所望の立体異性体(例えば、RS異性体)に精製するステップと、
を含むことができる。
【0051】
化合物2は、化合物1を化合物2に変換することによって調製することができる。例えば、溶媒の存在下で、化合物1をメチルアミン及びメタノールと反応させることができる。この溶媒は、水などのプロトン性溶媒を含むことができる、又は水などのプロトン性溶媒であってよい。使用されるメチルアミンの量は、1モル当量の化合物1を基準として1~3モル当量(例えば、1.6モル当量)のメチルアミンであってよい。化合物1から化合物2への変換は、化合物1をメチルアミンとともにマイクロ波加熱することを含むことができる。マイクロ波加熱は、150℃~170℃の温度(例えば、密封された容器中の反応混合物を150℃~170℃までの加熱)であってよい。マイクロ波加熱は、15分で150℃~170℃(例えば、160℃)まで上昇させ、150℃~170℃(例えば、160℃)の温度を1~3時間(例えば、1時間)維持することを含むことができる。
【0052】
化合物3は、化合物2を化合物3に変換することによって調製することができる。化合物2から化合物3への変換は、溶媒の存在下で化合物2を還元剤と反応させることを含むことができる。例えば、還元剤は、水素化アルミニウムリチウム(LAH)を含むことができる、又は水素化アルミニウムリチウム(LAH)であってよい。使用される還元剤の量は、1モル当量の化合物2を基準として2~5モル当量(例えば、3~4又は3.5モル当量)の還元剤であってよい。溶媒は、テトラヒドロフラン(THF)などのエーテルを含むことができる、又はテトラヒドロフラン(THF)などのエーテルであってよい。
【0053】
化合物Hは、化合物3を化合物Hに変換することによって調製することができる。例えば、溶媒の存在下で、化合物3をハロアルカン源と反応させることができる。ハロアルカン源は、ヨードメタンなどのヨージド源を含むことができる、又はヨードメタンなどのヨージド源であってよい。使用されるハロアルカン源の量は、1モル当量の化合物3を基準として2~4モル当量(例えば、3モル当量)のハロアルカン源であってよい。溶媒は、メタノールなどのプロトン性溶媒を含むことができる、又はメタノールなどのプロトン性溶媒であってよい。
【0054】
化合物Hは、場合により、所望の立体異性体、例えば、SS、RR、又はRSを得るために精製することができる。例えば、化合物Hは、RS立体異性体として実質的に純粋なものとして得ることができる。化合物Hに関して「実質的に純粋」とは、SS、RR、又はRSの立体異性体少なくとも80%、90%、95%、96%、97%、98%、又は99%純粋であることを意味する。精製は、溶媒又は1つ以上の溶媒の混合物から所望の立体異性体(例えば、RS立体異性体)を沈殿させることを含み得る。溶媒は、プロトン性溶媒を含むことができる、又はプロトン性溶媒であってよい。例えば、プロトン性溶媒は、メタノール、水、又はそれらの混合物から選択することができる。例えば、化合物Hを熱メタノール(例えば室温よりも高温のメタノール)中に溶解させることができ、脱イオン水を化合物Hのメタノール溶液に加えることで、化合物Hを沈殿させたり、結晶化させたりすることができる。化合物Hの結晶化又は沈殿のための溶媒系としてメタノール/水混合物を使用すると、RS異性体を固体(例えば、結晶又は沈殿物)として最初に単離することができ、続いて溶媒を例えば減圧下で除去することによって、残留溶液から残りの異性体を単離することができる。上記のようにRS異性体をRR及びSSの異性体から分離することができる。RR及びSSの鏡像異性体は、キラル分離剤によって互いに分離することができる。
【0055】
化合物Hのアニオンは、別のアニオンに変換することができる。例えば、アニオンのヨージドは、当業者に周知の標準的な方法、例えば樹脂交換によって水酸化物アニオンに変換することができる。
【0056】
一般的特徴
EMM-37材料(一部又はすべてのSDAが除去される場合)は、水素化成分と組み合わせることができる。水素化成分は、水素化-脱水素機能が行われる、モリブデン、タングステン、レニウム、ニッケル、コバルト、クロム、マンガン、又は白金若しくはパラジウムなどの貴金属から選択することができる。このような水素化成分は、以下の方法:共結晶化;IIIA族元素、例えばアルミニウムが構造中に存在する程度での組成物中への交換;その中への含浸、又はそれとの物理的混合の1つ以上によって組成物中に混入することができる。1つ以上の態様では、このような水素化成分は、EMM-37材料中に含浸させることができる。白金の場合、EMM-37材料に、白金金属含有イオンを含む溶液を含浸させることができる。含浸に適切な白金化合物は、クロロ白金酸、塩化第一白金、及び白金アミン錯体を含有する化合物から選択することができる。
【0057】
EMM-37材料(一部又はすべてのSDAが除去される場合)は、吸着剤又は触媒のいずれかとして使用される場合、少なくとも部分的に脱水することができる。このような脱水は、空気、窒素、又はそれらの混合物から選択される雰囲気において200~370℃の範囲内の温度(例えば試料の周囲環境の温度)に加熱することによって行うことができ、大気圧、減圧、又は過圧において、30分~48時間の間で行うことができる。脱水は、EMM-37材料を減圧下に置くことによって室温で行うこともできるが、十分な量の脱水を得るためには、より長い時間が必要となる。
【0058】
EMM-37材料(一部又はすべてのSDAが除去される場合)は、吸着剤として、又は多種多様の有機化合物変換プロセスを触媒するために、アルミノシリケートの形態で触媒として使用することができる。単独、又は1つ以上の別の触媒活性物質(他の結晶性触媒を含む)との併用のいずれかで、本明細書に記載の改質されたEMM-37材料によって効果的に触媒される化学変換プロセスの例としては、酸活性を有する触媒を必要とするプロセスが挙げられる。本明細書に記載の改質されたEMM-37材料によって触媒することができる有機変換プロセスの例としては、クラッキング、水素化分解、不均化、アルキル化、オリゴマー化、及び異性化が挙げられる。
【0059】
EMM-37材料(一部又はすべてのSDAが除去される場合)は、有機変換プロセス中に使用される温度及びその他の条件に対して耐性である別の材料と併用することができる。このような耐性材料は、活性材料、不活性材料、合成ゼオライト、天然ゼオライト、無機材料、又はそれらの混合物から選択することができる。このような耐性材料の例は、クレー、シリカ、アルミナなどの金属酸化物、又はそれらの混合物から選択することができる。無機材料は、天然、又はシリカ及び金属酸化物の混合物などのゼラチン状沈殿物若しくはゲルの形態のいずれかであってよい。EMM-37材料とともに耐性材料を使用すること、すなわち、それらが組み合わされる、又は結晶が活性である製造されたままのEMM-37結晶の合成中に存在すると、特定の有機変換プロセス中の触媒の変換及び/又は選択性が変化する傾向にある。不活性耐性材料は、適切には、特定のプロセスにおける変換の量を制御するための希釈剤として機能し、それによって、反応速度を制御するための別の手段を使用せずに経済的で規則的な方法で生成物を得ることができる。これらの材料は、商業的な操作条件下で触媒の粉砕強度を改善するために、天然クレー、例えば、ベントナイト及びカオリンの中に混入することができる。上記不活性耐性材料、すなわち、クレー、酸化物などは、触媒のバインダーとして機能する。商業的使用において、触媒が粉砕されて粉末状材料となるのを防止するのに望ましいので、良好な粉砕強度を有する触媒は有益となりうる。
【0060】
EMM-37材料との複合材料を形成することができる天然クレーとしては、モンモリロナイト及びカオリンのファミリー(これらのファミリーは、サブベントナイトと、Dixieクレー、McNameeクレー、Georgiaクレー、及びFloridaクレーとして一般に知られているカオリンとを含む)、又は主要無機成分がハロイサイト、カオリナイト、ディッカイト、ナクライト、又はアナウキサイトであるその他のものが挙げられる。このようなクレーは、最初に採掘されたときの未処理の状態で使用することができ、又は最初に焼成、酸処理、若しくは化学改質を行うことができる。EMM-37材料との複合材料の形成に有用なバインダーとしては、シリカ、ジルコニア、チタニア、マグネシア、ベリリア、アルミナ、又はそれらの混合物から選択される無機酸化物も挙げられる。
【0061】
EMM-37材料(例えば、製造されたままの若しくは焼成された、又はその他のEMM-37材料)は、シリカ-アルミナ、シリカ-マグネシア、シリカ-ジルコニア、シリカ-トリア、シリカ-ベリリア、シリカ-チタニアなどの多孔質マトリックス材料、並びにシリカ-アルミナ-トリア、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-マグネシア、及びシリカ-マグネシア-ジルコニアなどの三元組成物と、複合材料を形成することができる。
【0062】
EMM-37材料及び無機酸化物マトリックスの相対比率は、広範囲で変動することができ、EMM-37材料含有量は、複合材料の約1~約90重量パーセントの範囲となり、又は複合材料がビーズ形態で調製される場合は複合材料の約2~約80重量パーセントの範囲内である。
【0063】
本明細書において使用される場合で、他に明記されなければ、数値又は値の範囲は、関連技術の当業者が妥当であると考える程度まで逸脱することができる。機器のばらつき及びその他の要因が数値に影響を与えうることがよく知られている。他に明記されなければ、このような逸脱は、示される数値又は値の範囲の±2%、5%、10%、又は15%となりうる。
【0064】
本明細書に記載のEMM-37材料は、XRD若しくはNMR分光法を用いた定量によって(例えば、関連ピークの面積若しくは相対強度を測定することによる)、又はそのような測定に適切な他の周知の方法によって、組成物の全重量を基準として、少なくとも50重量%、少なくとも60重量%、少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、少なくとも95重量%、少なくとも97重量%、又は少なくとも99重量%(例えば、99.5重量%又は99.9重量%)が純粋なEMM-37材料であってよい。材料の残りの部分は、構造指向剤、非晶質材料、その他の不純物、又はそれらの混合物であってよい、EMM-37ではない材料である。
【0065】
本明細書に記載のEMM-37材料は実質的に結晶性である。本明細書において使用される場合、「結晶性」という用語は、限定するものではないが、単一成分又は多成分結晶形態、例えば溶媒和物、水和物、及び共結晶などを含む材料の結晶性固体形態を意味する。結晶性は、分子の規則的な繰り返し及び/又は規則的な配列を有し、区別可能な結晶格子を有することを意味することができる。例えば、結晶性EMM-37は、異なる水又は溶媒の含有量を有することができる。異なる結晶格子は、XRD(例えば、粉末XRD)などによる固体特性決定方法によって決定することができる。関連技術の当業者に周知のその他の特性決定方法は、結晶形の特定にさらに役立てたり、安定性及び溶媒/水の含有量の測定に役立てたりすることができる。
【0066】
本明細書において使用される場合、「実質的に結晶性」という用語は、記載の固体材料の試料の重量の過半量(50重量%を超える)が結晶性であり、試料の残りが非結晶性形態であることを意味する。1つ以上の態様では、実質的に結晶性の試料は、少なくとも95%の結晶化度(例えば、5%の非結晶性形態)、少なくとも96%の結晶化度(例えば、4%の非結晶性形態)、少なくとも97%の結晶化度(例えば、3%の非結晶性形態)、少なくとも98%の結晶化度(例えば、約2%の非結晶性形態)、少なくとも99%の結晶化度(例えば、1%の非結晶性形態)、及び100%の結晶化度(例えば、0%の非結晶性形態)を有する。
【0067】
本明細書に記載の改質されたEMM-37材料の微細孔容積は、関連技術において周知の方法を用いて測定することができる。例えば、材料は窒素物理吸着を用いて測定することができ、それらのデータは、微細孔容積方法が記載され参照により本明細書に援用されるLippens,B.C.et al.,“Studies on pore system in catalysts:V.The t method”,J.Catal.,4,319(1965)に記載のt-プロット法によって分析することができる。
【0068】
本明細書に報告されるX線回折データは、0.01796°のステップサイズでCuKα放射線を使用し50mm×16mmの活性領域を有するVÅNTEC-1気体検出器を使用して連続モードでBruker D4 Endeavor測定器を用いて収集した。図1及び2は、278秒/ステップの有効カウント時間で収集し、図3は347.5秒/ステップで収集した。格子面間隔のd間隔は、オングストロームの単位で計算し、線の相対強度I/Iは、ピーク強度の、バックグラウンドの上の最も強い線の強度のものに対する比である。強度は、ローレンツ効果及び分極効果に関して補正していない。2θにおける回折ピークの位置、及び線の相対ピーク面積強度I/I(o)(ここで、Ioは、バックグラウンド衲衣の最も強い線の強度である)は、MDI Jadeピーク検索アルゴリズムを用いて求めた。単一の線として示される回折データは、結晶学的変化の差などの特定の条件下で、分離した線又は部分的に分離した線として現れうる複数の重なり合う線からなることができることを理解されたい。典型的には、結晶学的変化は単位セルパラメータの小さな変化、及び/又は結晶対称の変化を含むことができるが、構造の変化は含まない。相対強度の変化を含むこれらの小さな影響は、カチオン含有量、フレームワーク組成、細孔の充填の性質及び程度、結晶のサイズ及び形状、好ましい配向、並びに熱及び/又は水熱履歴の差の結果として生じることもある。
【0069】
特定の実施例によって、本開示の態様がより詳細に記載される。以下の実施例は、例示の目的で提供されるものであり、いかなる方法によっても本開示を限定することを意図するものではない。関連技術の当業者であれば、本質的に同じ結果を得るために種々のパラメータの変更又は修正が可能であることが容易に理解されるであろう。
【実施例
【0070】
実施例1:化合物Hの合成
スキーム1により化合物Hを調製した。
【化7】
【0071】
ステップ1.1,1’-ジメチル-[3,3’-ビピロリジン]-2,2’,5,5’-テトラオン(化合物2)
1.6当量のメチルアミンを1当量の二無水物の1,1-ジメチル-3,3’-ビピロリジン-2,2’,5,5’-テトラオンと、マイクロ波中で15分で160℃まで上昇させ、160℃の温度を1時間維持することによって反応させた。溶媒として水を使用した。マイクロ波加熱の後、反応混合物を、約10mLのMeOH/1gのメソブタン-1,2,3,4-テトラカルボン酸無水物を含むメタノール溶液中に滴下した。5~10分後、白色固体が溶液から沈殿した。この固体をフリット上で単離し、オーブン乾燥させた。得られた白色結晶性固体(56%の収率)は、H NMRによって測定すると純粋な化合物2であった。
【0072】
ステップ2.1,1’-ジメチル-3,3’-ビピロリジン(化合物3)
3000mlの3口丸底フラスコにオーバーヘッド撹拌機及び還流冷却器を取り付けた。次にこのフラスコに1500mLのテトラヒドロフランを加えた。次に16.89gのペレット形態の水素化アルミニウムリチウム(LAH)を加え、得られた懸濁液を激しく終夜撹拌した。次にフラスコの周囲に氷浴を配置した。次に、31.56gの1,1’-ジメチル-[3,3’-ビピロリジン]-2,2’,5,5’-テトラオン(化合物2)を約2時間にわたって5gずつ撹拌混合物に徐々に加えた。次に混合物を終夜撹拌した。翌朝、フラスコの下に加熱マントルを配置し、次に懸濁液を2時間還流させた。次にフラスコを氷浴中で冷却し、混合物に約400mlのジエチルエーテルを加えた。次にこの時点で、激しい撹拌下で200mLの45%NaOH溶液を滴下した。灰色固体が白色になった後、固体を濾過によって除去し、分液漏斗を用いてTHF/エーテル層を単離した。次にこの溶液を無水硫酸マグネシウムで乾燥させ、次に濾過によって固体を除去した。次に、回転蒸発によってジアミン(化合物3)を回収して、63%の収率の生成物を得た。この手順を繰り返して、より多い量のジアミン(化合物3)を製造した。H NMR及び13C NMRによって、生成物が2つの異性体の約60/40の混合物であることが示された。
【0073】
ステップ3.1,1,1’,1’-テトラメチル-[3,3’-ビピロリジン]-1,1’-ジイウムヨージド(化合物H、Aがヨウ化物である場合)
51.92gのジアミン(化合物3)を300mLのメタノールに加えた。次に、激しく撹拌しながらこの混合物に132gのヨードメタンを滴下した。翌日、固体沈殿物を濾過によって単離した。H及び13C NMRによって、生成物が約95%異性体Aであることが示された。溶媒の回転蒸発によって、残りの生成物を単離した。回転蒸発で得られた固体残留物をアセトンで洗浄し、次に終夜乾燥させた。H及び13C NMRによって、溶媒から回収した生成物が約92%異性体Bであることが示された。最初に回収した固体を、最小限の脱イオン水を加えた熱メタノールから2回再結晶させることによってさらに精製した。再結晶によって、大きな結晶が得られ、これらを単結晶X線回折の構造解に使用した。47gの異性体A及び33gの異性体Bが得られた。単結晶構造解によって、異性体AがRSジアステレオマーであることが示された。異性体BはRR及びSSの鏡像異性体であり、これらの鏡像異性体は互いに分離しなかった。
【0074】
異性体A:H NMR,400MHz,DO,水溶液:1.75(m,2H),2.20(m,2H),2.58(m,2H),2.94(s,6H),3.02(s,6H),3.13(m,2H),3.43(t,4H),3.64(m,2H);及び13C NMR,100MHz,DO,水溶液:27.2,39.8,52.3,53.3,65.70,68.9.
【0075】
異性体B:H NMR:400MHz,D2O,水溶液:1.94(m,2H),2.38(m,2H),2.66(m,2H),3.01(s,6H),3.10(s,6H),3.10(m,2H),3.51(t,4H),3.61(m,2H);及び13C NMR,100MHz,DO,水溶液:27.1,39.6,52.2,53.3,65.5,68.6.(sは一重線を表し、tは三重線を表し、及びmは多重線を表す)。
【0076】
化合物Hのヨウ化物の水酸化物形態への変換
異性体Aを水中に溶解させ、それを700mLのDowex LC NG水酸化物に加えることによって、その水酸化物形態に変換した。翌日、樹脂を濾過によって取り出し、脱イオン水で洗浄して、樹脂から生成物を取り出した。次に水性画分を1つにまとめ、減圧下で60℃で濃縮した。0.1NのHClの標準溶液を用いた滴定によって測定すると、この水溶液の水酸化物濃度は1.86mmolOH-/gであった。
【0077】
実施例2.製造されたままのEMM-37の合成
以下の実験1~11の合成において、アルミニウム源としてメタカオリンを使用した。実施例1で得た化合物Hをメタカオリン、NaOH、脱イオン水、及びLUDOX(登録商標)AS-40と混合した。次にTeflonライナーにキャップを取り付け、鋼製Parrオートクレーブの内部に封入した。次にこのオートクレーブを、160℃に維持した対流オーブン中、転動条件下で7~14日間加熱した。生成物を遠心分離によって単離し、脱イオン水中に再懸濁させ、次にさらに遠心分離を行った。このプロセスを3回繰り返し、粉末XRD用の試料を収集した。
【0078】
以下の実験1~11の合成に使用したモル比及び条件は以下のものを含んだ。
【0079】
実験1:Si/Al=5、NaOH/Si=0.30、SDA(OH)2/Si=0.15(異性体A)、及びH2O/Si=30。160℃における加熱の14日後、XRDによって測定すると、生成物はEMM-37及び方沸石の混合物であった(各相が約50%)。Si/Alのモル比を6.7まで増加させたことを除けば、実験1を繰り返した(実験1A)。生成物は、微量の方沸石(約5~10%)を有するEMM-37であった。
【0080】
実験2:Si/Al=10、NaOH/Si=0.30、SDA(OH)2/Si=0.15(異性体A)、及びH2O/Si=31。160℃における加熱の28日後、XRDによって測定すると、生成物はEMM-37及び少量のベータ(約25%未満)の混合物であった。
【0081】
実験3:Si/Al=10、NaOH/Si=0.30、SDA(OH)2/Si=0.15(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は純粋なEMM-37であった。160℃で7日間加熱したことを除けば、実験3を繰り返した(実験3A)。XRDによって測定すると、これも生成物は純粋なEMM-37であった。SDAに異性体Bを用いたことを除けば、実験3をさらに繰り返した(実験3B)。XRDによって測定すると、得られた生成物はNu-87であった。
【0082】
実験4:Si/Al=8、NaOH/Si=0.30、SDA(OH)2/Si=0.15(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は純粋なEMM-37であった。
【0083】
実験5:Si/Al=12、NaOH/Si=0.30、SDA(OH)2/Si=0.15(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は純粋なEMM-37であった。160℃で7日間加熱したことを除けば、実験5を繰り返した(実験5A)。XRDによって測定すると、これも生成物は純粋なEMM-37であった。
【0084】
実験6:Si/Al=10、NaOH/Si=0.10、SDA(OH)2/Si=0.25(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は微量のゼオライトベータを有するEMM-37であった。
【0085】
実験7:Si/Al=8、NaOH/Si=0.10、SDA(OH)2/Si=0.25、及びH2O/Si=30、160℃で14日間。生成物は少量のソーダライトを有するEMM-37であった。
【0086】
実験8:Si/Al=10、NaOH/Si=0.15、SDA(OH)2/Si=0.225(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は少量のソーダライトを有するEMM-37であった。Si/Alの比を8まで低下させたことを除けば、実験8を繰り返した(実験8A)。XRDによって測定すると、今回も生成物は少量のソーダライトを有するEMM-37であった。
【0087】
実験9:Si/Al=5、NaOH/Si=0.10、SDA(OH)2/Si=0.25(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物は少量のソーダライトを有するEMM-37であった。
【0088】
実験10:Si/Al=6.7、NaOH/Si=0.10、SDA(OH)2/Si=0.25(異性体A)、及びH2O/Si=30、160℃で14日間。XRDによって測定すると、生成物はEMM-37及び方沸石(各相が約50%)の混合物であった。
【0089】
実験11:Si/Al=6.7、NaOH/Si=0.30、SDA(OH)2/Si=0.15、及びH2O/Si=30、160℃で7日間。XRDによって測定すると、生成物は純粋なEMM-37であった。160℃で7日間加熱したことを除けば、実験11を繰り返した(実験11A)。XRDによって測定すると、これも生成物はEMM-37であり、少量の非晶質材料を有した。
【0090】
実施例3.製造されたままのEMM-37のさらなる合成
23mLのTeflonライナー中で、2.65gの化合物Hの水酸化物の溶液(異性体A)([OH-]=1.86mmol/g)を、0.93gのメタカオリン、0.40gの50%NaOH、5.67gの脱イオン水、及び2.24gのLUDOX(登録商標)AS-40と混合し、この混合物に0.053gのEMM-37の種晶を加えた。次に上記Teflonライナーにキャップを取り付け、23mLの鋼製Parrオートクレーブの内部に封入した。次にオートクレーブを、160℃に維持した対流オーブン中、転動条件(約40rpm)下で7日間加熱した。次に生成物を濾過によって回収して、約250mLの脱イオン水で洗浄した。粉末XRD(図1)によって、生成物が製造されたままの形態の純粋なEMM-37であることが示された。この粉末パターンは、a=8.82、b=9.63、c=10.65Å、及びα=104.4、β=99.9、γ=99.5°の三斜晶系セルに帰属することができた。表4は、製造されたままのゼオライトのピーク及び強度の一覧を示している。空気中のTGAによって、225~700℃の間で約21.5%の質量減が示された。
【0091】
【表10】
【0092】
アルミニウム源として水酸化アルミニウムを使用したことを除けば、同じモル比でこの手順を繰り返すと、ゼオライトベータが生成物であった。
【0093】
実施例4.熱処理されたEMM-37
反応物の量を2.7倍にしたことを除けば、実施例3のような実験を繰り返した。粉末XRDによって、生成物が純粋なEMM-37であることが示された。試料をマッフル炉中、窒素下で温度を2℃/分で400℃まで上昇させ、次に空気中2℃/分で515、540、又は600℃まで温度を上昇させることによって焼成した。温度を515、540、又は600℃で2時間維持した後、それぞれの試料を周囲温度まで冷却した。
【0094】
図3は、515℃(パターンIII)、540℃パターン(II)、及び600℃(パターンI)で焼成したEMM-37の粉末XRDパターンを示している。図3は、有機構造指向剤(異性体Aとしての化合物H)を除去するための焼成後に、XRDパターンが顕著に広くなることを示している。広がりの程度は、515℃から600℃まで増加する。表5及び図2は、515℃で焼成した試料の粉末XRDパターンを示している。515℃で焼成した試料は0.22cc/gの吸着容量を有した。
【0095】
【表11】
【0096】
本明細書に記載されるものに加えて、本開示の種々の修正は、以上の説明から当業者には明らかとなるであろう。このような修正は、添付の請求項の範囲内となることも意図される。限定するものではないがすべての特許、特許出願、及び刊行物などの本出願に引用される各参考文献は、その全体が参照により本明細書に援用される。
図1
図2
図3