(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-28
(45)【発行日】2022-10-06
(54)【発明の名称】有機エレクトロルミネッセンス素子
(51)【国際特許分類】
H01L 51/50 20060101AFI20220929BHJP
【FI】
H05B33/22 D
H05B33/14 A
(21)【出願番号】P 2019509067
(86)(22)【出願日】2018-03-02
(86)【国際出願番号】 JP2018008131
(87)【国際公開番号】W WO2018180215
(87)【国際公開日】2018-10-04
【審査請求日】2021-02-18
(31)【優先権主張番号】P 2017063510
(32)【優先日】2017-03-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005315
【氏名又は名称】保土谷化学工業株式会社
(74)【代理人】
【識別番号】100087745
【氏名又は名称】清水 善廣
(74)【代理人】
【識別番号】100098545
【氏名又は名称】阿部 伸一
(74)【代理人】
【識別番号】100106611
【氏名又は名称】辻田 幸史
(74)【代理人】
【識別番号】100150968
【氏名又は名称】小松 悠有子
(72)【発明者】
【氏名】駿河 和行
(72)【発明者】
【氏名】林 秀一
(72)【発明者】
【氏名】山本 剛史
(72)【発明者】
【氏名】加瀬 幸喜
(72)【発明者】
【氏名】望月 俊二
【審査官】倉本 勝利
(56)【参考文献】
【文献】国際公開第2014/009310(WO,A1)
【文献】特開2014-110135(JP,A)
【文献】国際公開第2017/138569(WO,A1)
【文献】特表2015-518653(JP,A)
【文献】特開2016-086147(JP,A)
【文献】国際公開第2012/008281(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/50
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
少なくとも陽極、正孔注入層、正孔輸送層、発光層、電子輸送層および陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔注入層が下記一般式(1)で表されるアリールアミン化合物および下記一般式(2)で表されるラジアレン誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】
(1)
(式中、R
1は重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、または置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基を表す。R
2、R
3は重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基を表す。r
1~r
3は同一でも異なってもよく、r
1は0~5を表し、r
2、r
3は0~4を表す。r
1が2~5である場合、または、r
2、r
3が2~4である場合、同一のベンゼン環に複数個結合するR
1~R
3は相互に同一でも異なってもよく、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
Ar
1
は、置換もしくは無置換のフェニル基、ビフェニリル基、ターフェニリル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、またはカルボリニル基を表し、Ar
2
~Ar
3は相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。
ここで、Ar
1
~Ar
3
が置換基を有する場合、置換基として重水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、アルケニル基、アリールオキシ基、アリールアルキルオキシ基、芳香族炭化水素基、縮合多環芳香族基、または芳香族複素環基を有する。)
【化2】
(2)
(式中、Ar
4~Ar
6は相互に同一でも異なってもよく、電子受容体基を置換基として有する芳香族炭化水素基、芳香族複素環基、または縮合多環芳香族基を表す。)
【請求項2】
前記正孔輸送層が、正孔輸送性のアリールアミン化合物を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
【請求項3】
前記正孔輸送層が、前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、請求項1または2記載の有機エレクトロルミネッセンス素子。
【請求項4】
前記一般式(1)において、Ar
1~Ar
3が置換もしくは無置換の芳香族炭化水素基である請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
【請求項5】
前記一般式(1)において、Ar
1~Ar
3が置換もしくは無置換のフェニル基、ビフェニリル基、ターフェニリル基、またはフルオレニル基である請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に関するものであリ、詳しくは電子アクセプターをドープした特定のアリールアミン化合物を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関するものである。
【背景技術】
【0002】
有機EL素子は自己発光性素子であるため、液晶素子に比べて明るく視認性に優れ、鮮明な表示が可能であることから、活発な研究がなされてきた。
【0003】
1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m2以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
【0004】
現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた(例えば、非特許文献1参照)。
【0005】
また、発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている(例えば、非特許文献2参照)。
そして、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた(例えば、非特許文献3参照)。
【0006】
発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物や燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。前記非特許文献に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える(例えば、非特許文献2参照)。
【0007】
有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要であり、キャリアバランスに優れた素子とする必要がある。また、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、さらには発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
【0008】
また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
【0009】
これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(例えば、特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう(例えば、非特許文献4参照)。また、前記特許文献に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm2/Vs以上と優れた移動度を有する化合物が知られているが(例えば、特許文献1および特許文献2参照)、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、さらなる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。また、耐久性の高い芳香族アミン誘導体の報告があるが(例えば、特許文献3参照)、電子写真感光体に用いられる電荷輸送材料として用いたもので、有機EL素子として用いた例はなかった。
【0010】
耐熱性や正孔注入性などの特性を改良した化合物として、置換カルバゾール構造を有するアリールアミン化合物が提案されている(例えば、特許文献4および特許文献5参照)。また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体、F4-TCNQなどをPドーピングすることによって、正孔注入性を高められることが提案されているが(特許文献6および非特許文献5参照)、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、低駆動電圧化や耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、さらなる低駆動電圧化や、さらなる高発光効率化が求められている。
【0011】
有機EL素子の素子特性の改善や素子作製の歩留まり向上のために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、正孔および電子が高効率で再結合できる、発光効率が高く、駆動電圧が低く、長寿命な素子が求められている。
【0012】
また、有機EL素子の素子特性を改善させるために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、キャリアバランスのとれた高効率、低駆動電圧、長寿命な素子が求められている。
【先行技術文献】
【特許文献】
【0013】
【文献】特開平8-048656号公報
【文献】特許第3194657号公報
【文献】特許第4943840号公報
【文献】特開2006-151979号公報
【文献】国際公開第2008/62636号
【文献】特開2011-100621号公報
【非特許文献】
【0014】
【文献】応用物理学会第9回講習会予稿集55~61ページ(2001)
【文献】応用物理学会第9回講習会予稿集23~31ページ(2001)
【文献】Appl.Phys.Let.,98,083302(2011)
【文献】有機EL討論会第三回例会予稿集13~14ページ(2006)
【文献】Appl.Phys.Let.,89,253506(2006)
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の目的は、高発光効率、高耐久性の有機EL素子用の材料として、正孔および電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、や耐久性に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、低駆動電圧、高発光効率であって、かつ長寿命の有機EL素子を提供することにある。
【0016】
本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)発光開始電圧が低いこと、(2)実用駆動電圧が低いこと、(3)発光効率および電力効率が高いこと、(4)長寿命であること、をあげることができる。
【課題を解決するための手段】
【0017】
そこで本発明者らは上記の目的を達成するために、特定の電子アクセプターをドープしたアリールアミン系の材料が正孔注入および輸送能力、薄膜の安定性や耐久性に優れていることに着目し、特定の(構造を有する)アリールアミン化合物を選択して、陽極からの正孔を効率良く注入・輸送できるようにし、正孔注入層の材料に電子アクセプターをドープした種々の有機EL素子を作製し、素子の特性評価を鋭意行った。その結果、本発明を完成するに至った。
【0018】
すなわち本発明によれば、以下の有機EL素子が提供される。
【0019】
1)少なくとも陽極、正孔注入層、正孔輸送層、発光層、電子輸送層および陰極をこの順に有する有機EL素子において、前記正孔注入層が下記一般式(1)で表されるアリールアミン化合物および下記一般式(2)で表されるラジアレン誘導体を含有することを特徴とする有機EL素子。
【0020】
【0021】
(式中、R1は重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、または置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基を表す。R2、R3は重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基を表す。r1~r3は同一でも異なってもよく、r1は0~5を表し、r2、r3は0~4を表す。r1が2~5である場合、または、r2、r3が2~4である場合、同一のベンゼン環に複数個結合するR1~R3は相互に同一でも異なってもよく、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。Ar1~Ar3は相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
【0022】
【0023】
(式中、Ar4~Ar6は相互に同一でも異なってもよく、電子受容体基を置換基として有する芳香族炭化水素基、芳香族複素環基、または縮合多環芳香族基を表す。)
【0024】
2)前記正孔輸送層が、正孔輸送性のアリールアミン化合物を含有する、上記1)記載の有機EL素子。
【0025】
3)前記正孔輸送層が、前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、上記1)または2)に記載の有機EL素子。
【0026】
4)前記一般式(1)において、Ar1~Ar3が置換もしくは無置換の芳香族炭化水素基である上記1)~3)のいずれかに記載の有機EL素子。
【0027】
5)前記一般式(1)において、Ar1~Ar3が置換もしくは無置換のフェニル基、ビフェニリル基、ターフェニリル基、またはフルオレニル基である上記1)~3)のいずれかに記載の有機EL素子。
【0028】
一般式(1)中のR1~R3で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」または「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。また、これらの基が同一のベンゼン環に複数個結合している場合(r1が2~5の整数である場合、またはr2、r3が2~4の整数である場合)、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
【0029】
一般式(1)中のR1~R3で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していてもよい。また、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
【0030】
一般式(1)中のR1~R3で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。また、これらの基が同一のベンゼン環に複数個結合している場合(r1が2~5の整数である場合、またはr2、r3が2~4の整数である場合)、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
また、これらの基は置換基を有していてもよく、置換基として、前記一般式(1)中のR1~R3で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
【0031】
一般式(1)中のR2、R3で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、およびカルボリニル基などをあげることができる。
ここで、R2とR3は、単結合、または置換もしくは無置換のメチレン基、酸素原子、硫黄原子を介して互いに結合して環を形成してもよい。また、これらの基が同一のベンゼン環に複数個結合している場合(r
2
、またはr
3
が2~4の整数である場合)、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
また、これらの基は置換基を有していてもよく、置換基として、前記一般式(1)中のR1~R3で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
【0032】
一般式(1)中のR2、R3で表される「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
ここで、R
2
とR
3
は、単結合、または置換もしくは無置換のメチレン基、酸素原子、硫黄原子を介して互いに結合して環を形成してもよい。また、これらの基が同一のベンゼン環に複数個結合している場合(r
2
、またはr
3
が2~4の整数である場合)、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
また、これらの基は置換基を有していてもよく、置換基として、前記一般式(1)中のR1~R3で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
【0033】
一般式(1)中のAr1~Ar3で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、前記一般式(1)中のR2、R3で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。
また、これらの基は置換基を有していてもよく、置換基として、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していてもよい。また、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
【0034】
一般式(2)中のAr4~Ar6で表される「電子受容体基を置換基として有する芳香族炭化水素基、芳香族複素環基、または縮合多環芳香族基」における「電子受容体基」としては、フッ素原子、塩素原子、臭素原子、シアノ基、トリフルオロメチル基、ニトロ基、などをあげることができる。
【0035】
一般式(2)中のAr4~Ar6で表される「電子受容体基を置換基として有する芳香族炭化水素基、芳香族複素環基、または縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、前記一般式(1)中のAr1~Ar3で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。
また、これらの基は電子受容体基以外にも置換基を有していてもよく、置換基としては、具体的に、重水素原子;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基をあげることができ、これらの置換基は、さらに前記例示した置換基、もしくは電子受容体基が置換していてもよい。そして、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
【0036】
一般式(1)中のAr1~Ar3としては、置換もしくは無置換のフルオレニル基、置換もしくは無置換の芳香族炭化水素基が好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニリル基、置換もしくは無置換のターフェニリル基、または置換基を有するフルオレニル基がより好ましい。r1~r3は0~2が好ましく、0または1がより好ましい。
【0037】
本発明の有機EL素子の正孔注入層において、前記一般式(1)で表されるアリールアミン化合物にドープされる電子アクセプターとしては、前記一般式(2)で表されるラジアレン誘導体(特許文献6参照)が用いられる。
【0038】
一般式(2)中のAr4~Ar6としては、「芳香族炭化水素基」、「縮合多環芳香族基」、またはピリジル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントレニル基、フルオレニル基、ピリジル基がより好ましい。
一般式(2)中のAr4~Ar6は、少なくとも部分的に、好ましくは完全に、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基などの「電子受容体基」で置換されている態様が好ましい。
一般式(2)中のAr4~Ar6としては、テトラフルオロピリジル基、テトラフルオロ-(トリフルオロメチル)フェニル基、シアノ-テトラフルオロフェニル基、ジクロロ-ジフルオロ-(トリフルオロメチル)フェニル基、ペンタフルオロフェニル基、などのフッ素原子、塩素原子、シアノ基、またはトリフルオロメチル基で完全に置換されたフェニル基もしくはピリジル基が好ましい。
【0039】
本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物は、有機EL素子の正孔注入層、電子阻止層または正孔輸送層の構成材料として使用することができる。正孔の移動度が高く正孔注入層または正孔輸送層の材料として好ましい化合物である。また、電子阻止性能が高く、電子阻止層の材料として好ましい化合物である。
【0040】
本発明の有機EL素子に好適に用いられる、前記一般式(2)で表されるラジアレン誘導体は、有機EL素子の正孔注入層あるいは正孔輸送層に通常使用される材料に対するPドーピング材料として好ましい化合物である。
【0041】
本発明の有機EL素子は、正孔の注入・輸送性能、薄膜の安定性や耐久性に優れた有機EL素子用の材料を、キャリアバランスを考慮しながら組み合わせているため、従来の有機EL素子に比べて、陽極から正孔輸送層への正孔輸送効率が向上することによって、低駆動電圧を維持しつつ、発光効率が向上するとともに、有機EL素子の耐久性を向上させることができる。
低駆動電圧、高発光効率、かつ長寿命の有機EL素子を実現することが可能となった。
【発明の効果】
【0042】
本発明の有機EL素子は、正孔注入層の材料として正孔の注入・輸送の役割を効果的に発現できる特定の(構造を有する)アリールアミン化合物を選択し、特定の電子アクセプターをPドーピングすることによって、陽極から正孔輸送層へ正孔を効率良く注入・輸送でき、発光層への正孔の注入・輸送効率を向上できたことによって、正孔注入・輸送性能に優れ、低駆動電圧で、高発光効率の有機EL素子を実現することができる。
さらに、特定の(構造を有する)アリールアミン化合物をPドーピングしないで、正孔輸送層の材料に選択することによって、キャリアバランスを精緻化できるように組み合わせ、低駆動電圧であって、高発光効率、かつ長寿命の有機EL素子を実現することができる。
本発明によれば、従来の有機EL素子の低駆動電圧を維持しつつ、発光効率、特に耐久性を改良することができる。
【図面の簡単な説明】
【0043】
【
図1】実施例4~6、比較例1~2の有機EL素子構成を示した図である。
【発明を実施するための形態】
【0044】
本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を以下に示すが、これらの化合物に限定されるものではない。
【0045】
【0046】
【0047】
【0048】
【0049】
【0050】
【0051】
【0052】
【0053】
【0054】
【0055】
【0056】
【0057】
【0058】
【0059】
【0060】
【0061】
【0062】
【0063】
【0064】
【0065】
【0066】
【0067】
【0068】
【0069】
【0070】
【0071】
【0072】
【0073】
【0074】
【0075】
一般式(1)で表されるアリールアミン化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法、昇華精製法などによって行った。化合物の同定は、NMR分析によって行った。物性値として、融点、ガラス転移点(Tg)と仕事関数の測定を行った。融点は蒸着性の指標となるものであり、ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性や正孔阻止性の指標となるものである。
その他、本発明の有機EL素子に用いられる化合物は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって精製を行った後、最後に昇華精製法によって精製したものを用いた。
【0076】
本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層および陰極からなるもの、また、正孔輸送層と発光層の間に電子阻止層を有するもの、発光層と電子輸送層の間に正孔阻止層を有するもの、電子輸送層と陰極の間に電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略あるいは兼ねることが可能であり、例えば正孔注入層と正孔輸送層を兼ねた構成とすること、電子注入層と電子輸送層を兼ねた構成とすること、などもできる。また、同一の機能を有する有機層を2層以上積層した構成とすることが可能であり、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成、などもできる。本発明の有機EL素子の構造として、正孔輸送層が第一正孔輸送層と第二正孔輸送層の2層が積層した構成とすることも好ましい。
【0077】
本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。
【0078】
本発明の有機EL素子の正孔注入層としては、前記一般式(1)で表されるアリールアミン化合物に対し、特定の電子アクセプターをPドーピングしたものが好適に用いられる。
前記一般式(1)で表されるアリールアミン化合物と混合もしくは同時に使用できる、正孔注入・輸送性の材料としては、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料、などを用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0079】
本発明の有機EL素子の正孔輸送層としては、前記一般式(1)で表されるアリールアミン化合物の他、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(TAPC)などの、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、分子中にトリフェニルアミン構造を4個単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、種々のトリフェニルアミン3量体などを用いることができる。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)/ポリ(スチレンスルフォネート)(PSS)などの塗布型の高分子材料を用いることができる。
本発明の有機EL素子の正孔輸送層としては、正孔輸送性のアリールアミン化合物が好適に用いられ、特に前記一般式(1)で表されるアリールアミン化合物が好適に用いられる。そして、Pドーピングしないものが好適に用いられる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0080】
本発明の有機EL素子の電子阻止層としては、分子中にトリフェニルアミン構造を4個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(TCTA)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(Ad-Cz)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0081】
本発明の有機EL素子では、発光層に隣接する層(例えば、正孔輸送層、電子阻止層など)において、電子アクセプターをPドーピングしないことが好ましい。
これらの層には、電子阻止性の高いアリールアミン化合物が好適に用いられ、前記一般式(1)で表されるアリールアミン化合物などが好ましく用いられる。
また、これらの層の膜厚は、通常用いられる膜厚であれば特に限定するものではないが、例えば、正孔輸送層としては20~100nm、電子阻止層としては5~30nmで用いられる。
【0082】
本発明の有機EL素子の発光層としては、アミン誘導体、ピレン誘導体の他、Alq3をはじめとするキノリノール誘導体の金属錯体などの各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成してもよく、ホスト材料として、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、アミン誘導体、ピレン誘導体の他、キナクリドン、クマリン、ルブレン、ペリレン、およびそれらの誘導体、ベンゾピラン誘導体、インデノフェナントレン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。
【0083】
また、発光材料として燐光発光体を使用することも可能である。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)3などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、Btp2Ir(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として4,4’-ジ(N-カルバゾリル)ビフェニル(CBP)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(UGH2)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(TPBI)などを用いることができ、高性能の有機EL素子を作製することができる。
【0084】
燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
【0085】
また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である(例えば、非特許文献3参照)。
【0086】
これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0087】
本発明の有機EL素子の正孔阻止層として、バソクプロイン(BCP)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0088】
本発明の有機EL素子の電子輸送層としては、Alq3、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、アントラセン誘導体、カルボジイミド誘導体、キノキサリン誘導体、ピリドインドール誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の電子輸送性の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
【0089】
本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
【0090】
本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
【0091】
以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【実施例1】
【0092】
<4,4’-ビス{ビフェニル-4-イル-フェニルアミノ}ビフェニル(化合物1-1)の合成>
窒素置換した反応容器に、N-フェニル-ビフェニル-4-アミン10.0g、4,4’-ジヨードビフェニル7.2g、炭酸カリウム7.4g、次亜硫酸ナトリウム0.6g、銅粉0.1g、ドデシルベンゼン7.2ml、キシレン7.2mlを加え、210℃で20時間撹拌した。反応液を冷却しながらトルエンを加え、50℃で熱濾過し濾液を室温まで冷却した後に、撹拌しながらメタノールを加え、析出した固体を濾過により採取した。得られた固体をトルエン-メタノールで再結晶し、4,4’-ビス{ビフェニル-4-イル-フェニルアミノ}ビフェニル(化合物1-1)の黄白色粉体10.0g(収率88%)を得た。
【0093】
得られた黄白色粉体についてNMRを使用して構造を同定した。
1H-NMR(CDCl3)で以下の36個の水素のシグナルを検出した。
δ(ppm)=7.38-7.72(16H)、7.10-7.38(18H)、7.07-7.08(2H)。
【0094】
【実施例2】
【0095】
<4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4’-(ジフェニルアミノ)-2-フェニル-ビフェニル(化合物1-20)の合成>
窒素置換した反応容器に、(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)-(6-ブロモビフェニル-3-イル)アミン10.0g、4-(ジフェニルアミノ)フェニルボロン酸7.9g、テトラキストリフェニルホスフィンパラジウム(0)0.60g、炭酸カリウム5.0g、トルエン80ml、エタノール40ml、水30mlを加えて加熱し、100℃で一晩撹拌した。冷却し、分液操作により有機層を採取した後、濃縮し、カラムクロマトグラフ(担体:シリカゲル、溶離液:ジクロロメタン/ヘプタン)によって精製することにより、4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4’-(ジフェニルアミノ)-2-フェニル-ビフェニル(化合物1-20)の白色粉体11.5g(収率75%)を得た。
【0096】
得られた白色粉体についてNMRを使用して構造を同定した。
1H-NMR(CDCl3)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.71-7.64(4H)、7.58-7.56(2H)、7.49-6.94(32H)、1.51(6H)。
【0097】
【実施例3】
【0098】
<4,4’-ビス[(9,9-ジメチルフルオレン-2-イル)-フェニルアミノ]ビフェニル(化合物1-21)の合成>
窒素置換した反応容器に、4,4’-ビス(フェニルアミノ)ビフェニル10.0g、2-ブロモ-9,9-ジメチルフルオレン17.1g、トルエン100ml、tert-ブトキシナトリウム8.6gを加え、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム0.1g、tert-ブチルホスフィンの50%(w/w)トルエン溶液0.2gを加えて加熱し、100℃で3時間撹拌した。80℃まで冷却し熱濾過した。濾液にシリカゲル、活性白土を加え吸着精製を行い、濾過により固体を除去した。濾液を濃縮し、析出した固体を濾過により採取した。得られた固体をトルエンで再結晶し、4,4’-ビス[(9,9-ジメチルフルオレン-2-イル)-フェニルアミノ]ビフェニル(化合物1-21)の黄色粉体16.4g(収率77%)を得た。
【0099】
得られた黄色粉体についてNMRを使用して構造を同定した。
1H-NMR(CDCl3)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.62-7.65(4H)、7.52-7.53(4H)、7.10-7.45(20H)、7.06-7.10(4H)、1.47(12H)。
【0100】
【実施例4】
【0101】
有機EL素子は、
図1に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極(アルミニウム電極)8の順に蒸着して作製した。
【0102】
具体的には、膜厚150nmのITOを成膜したガラス基板1をイソプロピルアルコール中にて超音波洗浄を20分間行った後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔注入層3として、下記構造式の電子アクセプター(Acceptor-1)と化合物(1-1)を、蒸着速度比がAcceptor-1:化合物(1-1)=3:97となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この正孔注入層3の上に、正孔輸送層4として化合物(1-1)を膜厚40nmとなるように形成した。この正孔輸送層4の上に、発光層5として下記構造式の化合物EMD-1と下記構造式の化合物EMH-1を、蒸着速度比がEMD-1:EMH-1=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層5の上に、電子輸送層6として下記構造式の化合物(ETM-1)と下記構造式の化合物(ETM-2)を、蒸着速度比がETM-1:ETM-2=50:50となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この電子輸送層6の上に、電子注入層7としてフッ化リチウムを膜厚1nmとなるように形成した。最後に、アルミニウムを100nm蒸着して陰極8を形成した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
【0103】
【0104】
【0105】
【0106】
【0107】
【0108】
【実施例5】
【0109】
実施例4において、正孔注入層および正孔輸送層の材料として化合物(1-1)に代えて化合物(1-20)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
【0110】
【実施例6】
【0111】
実施例4において、正孔注入層および正孔輸送層の材料として化合物(1-1)に代えて化合物(1-21)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
【0112】
【0113】
[比較例1]
比較のために、実施例4において、正孔注入層および正孔輸送層の材料として化合物(1-1)に代えて下記構造式の(HTM-1)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
【0114】
【0115】
[比較例2]
比較のために、実施例4において、正孔注入層および正孔輸送層の材料として化合物(1-1)に代えて下記構造式の(HTM-2)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
【0116】
【0117】
実施例4~6および比較例1、2で作製した有機EL素子を用いて、素子寿命を測定した結果を表1にまとめて示した。素子寿命は、発光開始時の発光輝度(初期輝度)を2000cd/m2として定電流駆動を行ったとき、発光輝度が1900cd/m2(初期輝度を100%としたときの95%に相当:95%減衰)に減衰するまでの時間として測定した。
【0118】
【0119】
表1に示すように、実施例4~6と比較例1、2との比較において、電流密度10mA/cm2の電流を流したときの発光効率は、比較例1、2の有機EL素子の8.04~8.10cd/Aに対し、実施例4~6の有機EL素子では8.31~8.70cd/Aと高効率であった。また、電力効率においても、比較例1、2の有機EL素子の6.84~6.89lm/Wに対し、実施例4~6の有機EL素子では7.24~7.58lm/Wと高効率であった。さらに、素子寿命(95%減衰)においては、比較例1、2の有機EL素子の269~277時間に対し、実施例4~6の有機EL素子では325~361時間と長寿命化していることが分かる。
【0120】
本発明の有機EL素子は、正孔注入層の材料として特定のアリールアミン化合物を選択し、特定の電子アクセプターをPドーピングすることによって、陽極から正孔輸送層へ正孔を効率良く注入・輸送でき、有機EL素子内部のキャリアバランスを改善し、従来の有機EL素子と比較して、高発光効率、かつ長寿命の有機EL素子を実現できることが分かった。
【産業上の利用可能性】
【0121】
本発明の、特定のアリールアミン化合物と特定の電子アクセプターを有機EL素子内部のキャリアバランスを精緻化できるように組み合わせた有機EL素子は、発光効率が向上するとともに、有機EL素子の耐久性を改善させることができ、例えば、家庭電化製品や照明の用途への展開が可能となった。
【0122】
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極