(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-29
(45)【発行日】2022-10-07
(54)【発明の名称】ポンプ装置
(51)【国際特許分類】
F04D 29/048 20060101AFI20220930BHJP
F04D 13/02 20060101ALI20220930BHJP
H02K 7/14 20060101ALI20220930BHJP
【FI】
F04D29/048
F04D13/02 G
F04D13/02 C
H02K7/14 B
(21)【出願番号】P 2019027057
(22)【出願日】2019-02-19
【審査請求日】2021-09-16
(73)【特許権者】
【識別番号】000109543
【氏名又は名称】テルモ株式会社
(74)【代理人】
【識別番号】100077665
【氏名又は名称】千葉 剛宏
(74)【代理人】
【識別番号】100116676
【氏名又は名称】宮寺 利幸
(74)【代理人】
【識別番号】100191134
【氏名又は名称】千馬 隆之
(74)【代理人】
【識別番号】100136548
【氏名又は名称】仲宗根 康晴
(74)【代理人】
【識別番号】100136641
【氏名又は名称】坂井 志郎
(74)【代理人】
【識別番号】100180448
【氏名又は名称】関口 亨祐
(72)【発明者】
【氏名】森 武寿
【審査官】大瀬 円
(56)【参考文献】
【文献】特開2013-213413(JP,A)
【文献】特開2012-021413(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04D 29/048
F04D 13/02
H02K 7/14
(57)【特許請求の範囲】
【請求項1】
インペラと、
前記インペラを回転自在に収容する内部空間を有するハウジングとを備えるポンプ装置であって、
前記ハウジングは、
前記内部空間に流体を流入させる流入口と、
前記内部空間から流体を流出させる流出口と、
前記ハウジングの壁部内で前記内部空間を周回するように配置される固定側反発磁石とを有し、
前記インペラは、前記固定側反発磁石との間で反発力を生じさせる反発機構を形成する可動側反発磁石を有し、
前記反発機構は、前記インペラの軸心が前記ハウジングの軸心と一致した状態で、前記流出口側の第1領域
における前記固定側反発磁石と前記可動側反発磁石の第1距離よりも前記インペラの軸心を挟んだ前記流出口と反対側の第2領域における前記固定側反発磁石と前記可動側反発磁石の第2距離が短いことで、前記第1領域の反発力よりも
前記第2領域の反発力
を大き
くしている
ポンプ装置。
【請求項2】
請求項
1記載のポンプ装置において、
前記固定側反発磁石は、
前記ハウジングの壁部内で環状に延在する本体部分と、
前記第2領域で前記可動側反発磁石に近接するように前記本体部分から突出することで、前記第1距離よりも前記第2距離を短くする凸部分とを有する
ポンプ装置。
【請求項3】
請求項
1記載のポンプ装置において、
前記反発機構は、前記ハウジングの壁部の軸心に対して前記固定側反発磁石の軸心が傾斜していることで、前記第1距離よりも前記第2距離を短くする
ポンプ装置。
【請求項4】
請求項
1記載のポンプ装置において、
前記固定側反発磁石の軸心が、前記ハウジングの壁部の軸心に対してオフセットしていることで、前記第1距離よりも前記第2距離を短くする
ポンプ装置。
【請求項5】
インペラと、
前記インペラを回転自在に収容する内部空間を有するハウジングとを備えるポンプ装置であって、
前記ハウジングは、
前記内部空間に流体を流入させる流入口と、
前記内部空間から流体を流出させる流出口と、
前記ハウジングの壁部内で前記内部空間を周回するように配置される固定側反発磁石とを有し、
前記インペラは、前記固定側反発磁石との間で反発力を生じさせる反発機構を形成する可動側反発磁石を有し、
前記反発機構は、前記インペラの軸心が前記ハウジングの軸心と一致した状態で、前記流出口側の第1領域の反発力よりも、前記インペラの軸心を挟んだ前記流出口と反対側の第2領域の反発力が大きく、
前記固定側反発磁石は、前記可動側反発磁石に対し前記流入口側にオフセットした位置に配置されている
ポンプ装置。
【請求項6】
請求項1~
5のいずれか1項に記載のポンプ装置において、
前記ハウジングは、駆動磁石を回転させるモータ機構を備え、
前記インペラは、前記駆動磁石との間で磁気カップリング機構を形成し、前記駆動磁石の回転に連れて当該インペラを回転させる従動磁石を有する
ポンプ装置。
【請求項7】
請求項
6記載のポンプ装置において、
前記反発機構は、前記磁気カップリング機構の径方向外側に形成される
ポンプ装置。
【請求項8】
請求項
6又は
7記載のポンプ装置において、
前記反発機構は、前記流入口に対して前記磁気カップリング機構よりも離れた位置に形成される
ポンプ装置。
【請求項9】
請求項
6~
8のいずれか1項に記載のポンプ装置において、
前記反発機構の反発力が、前記磁気カップリング機構の引力よりも大きい
ポンプ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体を流動させるポンプ装置に関する。
【背景技術】
【0002】
患者の血液(流体)を流動させる人工心肺装置において、ポンプ装置は血液循環の動力源として使用される。例えば、特許文献1には、ハウジング内に設けられたインペラを回転させ、この回転に伴う遠心力によりハウジング内に血液を引き込むと共に、ハウジングから血液を吐出する遠心式ポンプ装置が開示されている。
【0003】
特許文献1に開示のポンプ装置は、モータ室とインペラの間で磁気カップリングを形成して、インペラの磁石(永久磁石)を下側に吸引しつつインペラを回転させる。また、このポンプ装置は、ハウジングの上部及びインペラの上部(磁気カップリングの形成箇所と反対側)に磁石を各々備える。これにより、インペラの上下において磁石の吸引力が発生し、血液室の略中央付近においてインペラが釣り合った状態で回転する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、この種のポンプ装置は、ハウジング内の流出口(アウトフロー)側から血液が流出することで、流出口付近の血液の陰圧が高くなる。このため、インペラの回転時の姿勢は、流出口側付近のインペラ自体が低くなる一方で、軸心を挟んだ流出口と反対側のインペラ自体が高くなるように傾斜してしまう。このように、インペラが傾斜すると血液の流動に悪影響を及ぼす可能性がある。
【0006】
本発明は、上記のポンプ装置の技術に関連してなされたものであり、インペラを安定的な姿勢で回転させることにより、流体を良好に流動させることができるポンプ装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
前記の目的を達成するために、本発明の一態様は、インペラと、前記インペラを回転自在に収容する内部空間を有するハウジングとを備えるポンプ装置であって、前記ハウジングは、前記内部空間に流体を流入させる流入口と、前記内部空間から流体を流出させる流出口と、前記ハウジングの壁部内で前記内部空間を周回するように配置される固定側反発磁石とを有し、前記インペラは、前記固定側反発磁石との間で反発力を生じさせる反発機構を形成する可動側反発磁石を有し、前記反発機構は、前記インペラの軸心が前記ハウジングの軸心と一致した状態で、前記流出口側の第1領域における前記固定側反発磁石と前記可動側反発磁石の第1距離よりも前記インペラの軸心を挟んだ前記流出口と反対側の第2領域における前記固定側反発磁石と前記可動側反発磁石の第2距離が短いことで、前記第1領域の反発力よりも前記第2領域の反発力を大きくしている。
【発明の効果】
【0008】
上記のポンプ装置は、インペラの軸心がハウジングの軸心と一致した状態で、反発機構における第1領域の反発力よりも第2領域の反発力が大きいことで、内部空間の流出口付近の流体の圧力が低下しても、血液を良好に流動させることができる。すなわち、流出口付近に圧力の低下が生じても、インペラの軸心を挟んだ流出口と反対側の第2領域の反発力が強いので、インペラの回転姿勢が傾かなくなる。従って、ポンプ装置は、ハウジングに対しインペラを非接触且つ安定的に回転させ、インペラが傾くことによる流体への悪影響(例えば、流体の流動量の変化、接触による流体の破損等)を抑制することが可能となる。
【図面の簡単な説明】
【0009】
【
図1】本発明の第1実施形態に係るポンプ装置の全体構成を示す斜視図である。
【
図2】ポンプ装置のポンプ本体と駆動装置の分離状態を示す
図1のII-II線断面図である。
【
図5】
図5Aは、インペラのシース及び軸受部を拡大して示す側面断面図である。
図5Bは、インペラの回転時のシースの浮上状態を示す側面断面図である。
【
図6】
図6Aは、駆動磁石と従動磁石の磁気カップリング機構を示す
図4のVIA-VIA線断面図である。
図6Bは、固定側反発磁石と可動側反発磁石の反発機構を示す
図4のVIB-VIB線断面図である。
【
図7】インペラとハウジングの動圧軸受を拡大して示す側面断面図である。
【
図8】固定側反発磁石を下側から見た斜視図である。
【
図9】インペラを回転した際のポンプ装置の血液の流動を示す側面断面図である。
【
図10】第2実施形態に係るポンプ装置の要部を示す側面断面図である。
【
図11】第3実施形態に係るポンプ装置の要部を示す側面断面図である。
【
図12】第4実施形態に係るポンプ装置の要部を示す側面断面図である。
【
図13】第5実施形態に係るポンプ装置の要部を示す側面断面図である。
【
図14】
図14Aは、第6実施形態に係るポンプ装置の要部を示す側面断面図である。
図14Bは、第6実施形態に係るポンプ装置においてインペラの中空部の別形態を示す側面断面図である。
【発明を実施するための形態】
【0010】
以下、本発明について好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
【0011】
〔第1実施形態〕
本発明の第1実施形態に係るポンプ装置10Aは、患者の心肺機能を補助する(又は心肺を代替する)人工心肺装置12において、患者の血液を体外に脱血させ、また体内に送血する動力源として用いられる。
図1に示すように、ポンプ装置10Aは、インペラ14を装置内に有し、インペラ14の回転に伴う遠心力によって流体を流動させる遠心ポンプに構成されている。
【0012】
人工心肺装置12は、脱血チューブ16及び送血チューブ18をポンプ装置10Aに接続して、患者との間で血液を循環する循環回路を形成している。脱血チューブ16は、脱血ルーメン16aを内部に有する。脱血チューブ16の先端開口が適宜の生体器官(例えば、心臓の左心室)に留置されることで、ポンプ装置10Aは、脱血ルーメン16aを通して患者の血液を吸引する。送血チューブ18は、送血ルーメン18aを内部に有する。送血チューブ18の先端開口が適宜の生体器官(例えば、鎖骨下動脈)に留置されることで、ポンプ装置10Aは、送血ルーメン18aを通して患者に血液を送血する。なお、人工心肺装置12は、ポンプ装置10Aの他にリザーバ、人工肺等(共に不図示)を循環回路(脱血チューブ16や送血チューブ18)の途中位置に接続した構成でもよい。これにより、人工心肺装置12は、体外に脱血した血液の異物の除去や酸素化等を行い、この血液を患者の体内に戻す。
【0013】
そして
図2に示すように、ポンプ装置10Aは、上記のインペラ14を収容したポンプ本体20と、インペラ14を回転させる駆動装置22と、駆動装置22の駆動を制御する制御部24(Controller)とを備える。また、ポンプ装置10Aのハウジング26は、樹脂材料等により構成され、ポンプ本体20の外観を構成する本体側ハウジング28と、駆動装置22の外観を構成する駆動側ハウジング30とを含む。
【0014】
本体側ハウジング28と駆動側ハウジング30とは、着脱自在に構成され、使用時に相互に組み付けることで、駆動装置22の駆動力をポンプ本体20のインペラ14に伝達可能とする。そして使用後に、ポンプ本体20は駆動装置22から取り外されて廃棄される。つまり、ポンプ本体20は、1回の使用毎に取り替えられて、使い捨て又は滅菌処理されるディスポーザブルタイプに構成される。その一方で、駆動装置22は、リユースタイプに構成され、次の使用機会において、新たなポンプ本体20が取り付けられてこのポンプ本体20のインペラ14を動作させる。
【0015】
ポンプ本体20の本体側ハウジング28は、インペラ14が回転自在に収容されると共に、血液の流入及び流出がなされる内部空間32を有する。本体側ハウジング28は、上部側が略円錐状で、下部側が略円筒状に形成されている。
【0016】
本体側ハウジング28の上部側の天井部且つ中心には、脱血チューブ16に接続される血液流入ポート34が設けられる。血液流入ポート34の内部には、内部空間32に連通する流入路34aが設けられている。流入路34aは、血液流出ポート36の突出端に設けられた開口34a1に連通すると共に、内部空間32との境界に設けられた流入口34a2に連通する。
【0017】
また、本体側ハウジング28の略円筒状の上部側には、送血チューブ18に接続される血液流出ポート36が設けられている。
図3に示すように、血液流出ポート36は、略円筒状の外周壁40から接線方向に突出している。血液流出ポート36の内部には、内部空間32に連通する流出路36aが設けられている。流出路36aは、血液流出ポート36の突出端に設けられた開口36a1に連通すると共に、内部空間32との境界に設けられた流出口36a2に連通する。
【0018】
図4に示すように、内部空間32は、本体側ハウジング28の外形に応じた形状に形成される。内部空間32の上部側(以下、上空間32aという)には、インペラ14のフィン部60が配置される。上空間32aは、本体側ハウジング28の円錐部分の内面と円筒部分の上側部分の内面とで構成される。また、上空間32aの下部側中心部は、血液流入ポート34の流入口34a2に向かって突出した軸状部38により構成される。
【0019】
本体側ハウジング28の略円筒状部分は、円筒状の外周壁40と、本体側ハウジング28の下端部を構成する底壁42と、外周壁40の内側に設けられた上記の軸状部38とを含む。これにより、内部空間32の下部側(以下、下空間32bという)は、円筒状に形成され、後述するインペラ14の従動回転構造部62を回転自在に収容する。
【0020】
外周壁40の下部寄りには、固定側反発磁石44が設置されている。固定側反発磁石44は、インペラ14に設けられた後記の可動側反発磁石76との間で相互に反発し合う反発機構84Aを形成する。この固定側反発磁石44の構成については、後に詳述する。
【0021】
軸状部38は、円筒状の内周壁48と、内周壁48の上端部に連結される山形部50とを有し、内周壁48及び山形部50の内側に挿入穴52を形成している。下空間32bは、この挿入穴52の側方を周回している。挿入穴52は、下端側が開口しており、ポンプ本体20と駆動装置22の組付け時に駆動側ハウジング30が挿入される。
【0022】
軸状部38の山形部50は、円錐状を呈し、その中心部にはインペラ14を回転自在に軸支する軸受部54が設けられている。軸受部54は、金属材料により構成され、山形部50に固定される基部56と、基部56から上方向に突出し基部56よりも細く形成されたピン部58とを有する。軸受部54は、その軸心を延長した場合に、血液流入ポート34の流入口34a2の中心と重なり、この軸心は本体側ハウジング28(軸状部38、外周壁40)の軸心Stとも一致する。すなわち、軸受部54に軸支されるインペラ14の軸心Siは、理想的には本体側ハウジング28の軸心Stと同一となる。
【0023】
図1及び
図4に示すように、インペラ14は、円筒状に形成され、本体側ハウジング28内で、上空間32aと下空間32bの両方にわたって収容される。インペラ14は、フィン部60を上部に有すると共に、従動回転構造部62を下部に有する。フィン部60及び従動回転構造部62の内側は、軸状部38が配置される空間部64となっている。
【0024】
フィン部60は、従動回転構造部62の上端に連なる円錐壁部66と、円錐壁部66の中心で軸受部54に軸支されるシース68と、円錐壁部66の上面から上方向に突出する複数の突出壁部70とを備え、回転時に上空間32aに遠心力を生じさせる。円錐壁部66と一対の突出壁部70とで囲われる空間は、血液が流動する流通路60aとなり、この流通路60aは上部が開放している。なお、フィン部60の形状は、これに限定されず、例えば、突出壁部70の上部に図示しないシュラウドが設けられ、流通路60aが覆われる構成でもよい。
【0025】
図5A及び
図5Bに示すように、円錐壁部66は、本体側ハウジング28の山形部50よりも急に傾斜し、且つその上面が弓形に湾曲している。そのため、山形部50と円錐壁部66の間には、隙間(以下、上側隙間66aという)が形成される。シース68の周囲の円錐壁部66には、円錐壁部66を貫通する複数(3つ)のウオッシュアウトホール67(
図3も参照)が設けられている。ウオッシュアウトホール67は、円錐壁部66よりも上側の上空間32aと上側隙間66aとを連通して血液を流動させる。
【0026】
シース68は、円錐壁部66に滑らかに連なると共に、円錐壁部66よりも上方に向かって急激に傾斜する円錐状に形成されることで、突出壁部70よりも上側に突出している。シース68の下部側も、本体側ハウジング28にピン部58が固定される部分(基部56)に向かってテーパ状に突出するテーパ突出部69となっている。テーパ突出部69は、インペラ14の回転停止時に、その先細り端部69aが軸受部54の基部56の上面に狭い範囲で接触する。そしてインペラ14の回転時には、基部56の上面から先細り端部69aが浮上する。
【0027】
シース68の中心部には、シース68の軸方向に沿って中空部72が形成されている。中空部72は、ピン部58が挿入されると共に、インペラ14の一方面側の上空間32aと当該一方面と反対面側の上側隙間66aを連通する。
【0028】
中空部72は、ピン部58が延在方向全体にわたって挿入される第1中空72aと、第1中空72aの上端に連通すると共に第1中空72aよりも大きな断面積を有する第2中空72bとを有する。すなわち、ピン部58は、インペラ14の回転停止時に、第1中空72aよりも上方に突出している。
【0029】
第1中空72aの直径は、軸受部54のピン部58の直径よりも若干大径に設計されている。このため、ピン部58の外周面58aと、第1中空72aを構成するシース68(インペラ14)の内周面68aとの間には、連通用隙間59が形成される。詳細には、第1中空72aの直径が0.8mm~1mmの範囲に設定される一方で、ピン部58の直径が0.7mm~0.9mmの範囲に設定されることが好ましい。また、ピン部58の外周面58aとインペラ14の内周面68aとの間隔は、0.1mm~0.2mmの範囲に設定されるとよい。これにより、連通用隙間59を通して血液をスムーズに流動させることができる。
【0030】
第1中空72aの連通用隙間59は、シース68の内側の上側隙間66aと第2中空72bとを連通する。また、第2中空72bは、シース68の上端の開口まで延在する。従って、中空部72は、インペラ14の回転時に、ピン部58の外周面58aとシース68の内周面68aとの間にすべり軸受を形成し、血液を流動させることができる。
【0031】
なお、軸受部54とインペラ14の中空部72の構成は、上記に限定されず種々の構成をとり得る。例えば、インペラ14の内周面68aとピン部58の外周面58aのうち少なくとも一方には、親水性コーティングが施されていてもよい。これにより、血液が中空部72(連通用隙間59)に入り込み易くなる。
【0032】
図3及び
図4に示すように、複数の突出壁部70は、ウオッシュアウトホール67の外側近傍位置から円錐壁部66の外縁付近まで延在している。各突出壁部70は、平面視で、若干湾曲して延在しており、これによりインペラ14の回転時には、流通路60aに入り込んだ血液を径方向外側にスムーズに流動させる。
【0033】
インペラ14の従動回転構造部62は、フィン部60の円錐壁部66に連なり、インペラ14の径方向に所定の厚みを有する円筒状に形成されている。インペラ14の平面視で、従動回転構造部62の直径は、例えば、20mm~50mmの範囲に設定される。本実施形態では、直径が30mmのインペラ14を適用している。
【0034】
従動回転構造部62は、インペラ14の軸心Siに平行に延在する側周面63(内周面63a、外周面63b)と、本体側ハウジング28の底壁42に対して非接触に対向する下端面とを有する。この従動回転構造部62の内部には、従動磁石74及び可動側反発磁石76が設置されている。
【0035】
従動磁石74は、ポンプ本体20と駆動装置22の装着状態で、駆動装置22の駆動磁石92と同一高さ位置に配置され、駆動磁石92との間で磁気カップリング機構104を形成する。より具体的には、従動磁石74は、従動回転構造部62の上部側で、径方向内側(内周面63a)寄りに固定される。また、従動磁石74の軸心に平行な軸方向長さ(厚み)は、駆動磁石92の軸方向長さと略同一に設計されている。
【0036】
図6Aに示すように、本実施形態に係る従動磁石74は、インペラ14の軸心Siに対し一定の半径R1で周回する従動側多極着磁リング磁石75に構成されている。従動側多極着磁リング磁石75は、複数のN極及びS極が周方向に沿って交互に並ぶように着磁される。従動側多極着磁リング磁石75の極性数は、
図6A中において6つ(すなわち3つの対極)に設定されているが、これに限定されるものではない。
【0037】
従動磁石74(従動側多極着磁リング磁石75)を構成する材料としては、例えば、アルニコ、フェライト、ネオジム等の硬質磁性材料があげられる。なお、従動磁石74は、多極着磁リングとして構成されることに限定されず、対極(N極、S極)を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
【0038】
図4及び
図6Bに示すように、可動側反発磁石76は、従動回転構造部62の下部側で、径方向外側(本体側ハウジング28の外周壁40)寄りに固定される。つまり、従動磁石74の半径R1に対し可動側反発磁石76の半径R2のほうが長い。また、従動磁石74と可動側反発磁石76とは、相互の磁界の影響が抑制されるように従動回転構造部62内で上下に大きく離間している。
【0039】
可動側反発磁石76は、インペラ14の軸心Siから所定距離離れた位置を周回する可動側内外周単極着磁リング磁石77に構成されている。可動側内外周単極着磁リング磁石77は、外周部の全周にわたって第1極性(
図4中ではS極)を有し、内周部の全周にわたって第1極性と反対の第2極性(
図4中ではN極)を有するように着磁されたリング体である。すなわち、可動側反発磁石76の外周面は、周方向に沿って第1極性が常に存在する可動側反発面77aとなっている。
【0040】
可動側反発磁石76(可動側内外周単極着磁リング磁石77)を構成する材料は、特に限定されず、従動磁石74であげた材料を適用し得る。なお、可動側反発磁石76も、単極着磁リングとして構成されることに限定されず、内周部と外周部とに対極を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
【0041】
また
図7に示すように、ポンプ装置10Aは、インペラ14の回転時において、従動回転構造部62の内周面63aと、内周面63aと対向する本体側ハウジング28(軸状部38)の内周壁48の対向面48aとの間に動圧軸受78を形成する。具体的には、内周面63aと対向面48aとの間に形成される第1隙間80が、従動回転構造部62の外周面63bと本体側ハウジング28の外周壁40の内周面40aとの間に形成される第2隙間82よりも小さく形成されている。
【0042】
第1隙間80の間隔I1は、流動する流体の粘性にもよるが、例えば流体が血液の場合には0.05mm~0.2mmの範囲に設定される。内周面63a及び対向面48aは、インペラ14や軸状部38の軸心Si、Stに平行であり、従って第1隙間80は、内周面63aと対向面48aが対向する範囲にわたって形成される。インペラ14の軸心Siに沿って内周面63aと対向面48aが対向し合う軸方向の領域は、10mm~100mmの範囲に設定されることが好ましい。
【0043】
第1隙間80が上記の範囲内の寸法に設定されていることで、インペラ14が回転した場合に、内周面63aと対向面48aとの間を流動する血液により浮力(動圧力)が発生する。つまり動圧軸受78は、インペラ14の軸心Siと直交するラジアル方向の荷重(ラジアル荷重)を支えるジャーナル軸受として機能する。例えば、動圧軸受78は、インペラ14が3000rpm以上で回転した際の第1隙間80を流動する血液により、軸状部38に対しインペラ14を確実に非接触とする。一方、第2隙間82の間隔I2は、例えば0.8mm~1.2mmの範囲に設定される。
【0044】
このように、インペラ14は、シース68において軸受部54に軸支される箇所と、従動回転構造部62において軸状部38に軸支される箇所とを有する。これによりインペラ14の回転時に、インペラ14の軸心Siが本体側ハウジング28(軸状部38)の軸心Stに対して傾くことが確実に抑制される。
【0045】
そして、インペラ14の従動回転構造部62に対向する外周壁40には、上述したように固定側反発磁石44が設置される。
図4及び
図6Bに示すように、固定側反発磁石44は、可動側反発磁石76よりも径方向外側且つ若干上方に位置している。すなわち、固定側反発磁石44は、本体側ハウジング28(外周壁40)の軸心Stから最も離れた位置に配置されている。この固定側反発磁石44は、本体側ハウジング28の軸心Stから最も長い半径R3で周回する固定側内外周単極着磁リング磁石45に構成されている。
【0046】
固定側内外周単極着磁リング磁石45は、外周部の全周にわたって第1極性(
図4中ではN極)を有し、内周部の全周にわたって第1極性と反対の第2極性(
図4中ではS極)を有するように着磁されたリング体である。すなわち、固定側反発磁石44の内周面は、可動側反発磁石76の極性と同じ極性が周方向に沿って常に存在する固定側反発面45aとなっている。
【0047】
この固定側反発磁石44を構成する材料も特に限定されず、従動磁石74であげた材料を適用し得る。なお、固定側反発磁石44も、単極着磁リングとして構成されることに限定されず、内周部と外周部とに対極を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
【0048】
上記の可動側反発磁石76と固定側反発磁石44とで構成される反発機構84Aは、外周壁40からインペラ14(可動側反発磁石76)に向かって径方向内側且つ下方向に押し出す反発力(斥力)を生じさせる。つまりインペラ14は、反発機構84Aにより流入口34a2から離間して軸受部54に押しつけられると共に、周方向全体で径方向内側に押し付けられる力を受ける。反発機構84Aの反発力は、磁気カップリング機構104の引力よりも大きく設定されている。
【0049】
そして、本実施形態に係る反発機構84Aは、その周方向上において異なる反発力を生じさせる。詳細には
図8に示すように、固定側反発磁石44は、固定側反発磁石44の軸心Sfに沿った軸方向長さが一定で環状に延在する本体部分46と、本体部分46の一部分から下側に突出する凸部分47とを有する。凸部分47は、内部空間32に連通する血液流出ポート36の流出口36a2の形成箇所に対し、軸心Sfを挟んで反対側に配置される(
図3も参照)。
【0050】
ここで、血液流出ポート36の流出口36a2付近は、内部空間32から血液流出ポート36に血液を流出する内部空間32のアウトフロー側となる。既述したように、アウトフロー側は、血液が流出することで、その圧力が他の箇所よりも低くなる。特に内部空間32に血液が多量に流動すると、内部空間32の圧力分布に大きな不均衡が生じる。従来のポンプ装置では、このアウトフロー側の圧力低下に伴い、回転中のインペラのアウトフロー側が下方向に押し込まれる一方で、軸心Siを挟んだアウトフロー側と反対側が上方向に上がる傾斜姿勢となってしまい、インペラの回転が不安定になる。
【0051】
これに対し
図3、
図4及び
図8に示すように、ポンプ装置10Aでは、本体側ハウジング28に設置される固定側反発磁石44の凸部分47を、軸心Siを挟んだアウトフロー側(以下、第1領域86という)と反対側(以下、第2領域88という)に配置している。第1領域86及び第2領域88の範囲は、流出口36a2とインペラ14、本体側ハウジング28の軸心Si、Stを結ぶ仮想線Lを引いた場合に、固定側反発磁石44と仮想線Lの交点を含み、交点から周方向両側に全周長の1/10程度にわたる範囲を言う。
【0052】
これにより、第1領域86の固定側反発磁石44の本体部分46と回転中の可動側反発磁石76との第1距離D1に対し、第2領域88の固定側反発磁石44の凸部分47と回転中の可動側反発磁石76との第2距離D2のほうが短くなる。そのため、第1領域86の周辺部における反発機構84Aaの反発力に対し、第2領域88の周辺部における反発機構84Abの反発力のほうが大きくなる。反発機構84Abによって、インペラ14の第2領域88は、他の箇所(凸部分47が存在しない本体部分46の箇所)よりも下方向に強く押されることで、インペラ14が傾斜姿勢となることが抑制される。
【0053】
凸部分47が本体部分46から突出する突出量は、反発機構84Aaに対する反発機構84Abの反発力を勘案して適切に設計されればよい。例えば、本体部分46の厚みに対する凸部分47の厚みは、0.1~1倍に設定されるとよい(すなわち、第2領域88の固定側反発磁石44の厚みは、第1領域86の固定側反発磁石44の厚みの1.1~2倍に設定される)。
【0054】
また、固定側反発磁石44の凸部分47の円弧長は、特に限定されるものではないが、環状に形成される固定側反発磁石44の周長の1/4~1/8程度の寸法であるとよい。さらにポンプ装置10Aの側面断面視で、凸部分47の下端は、インペラ14が水平の場合(インペラ14の軸心Siが軸状部38の軸心Stに一致している状態)の可動側反発磁石76の上端よりも下側に配置される。その一方で、本体部分46の下端は、インペラ14が水平の場合の可動側反発磁石76の上端よりも上側に配置される。
【0055】
図2及び
図4に示すように、ポンプ装置10Aの駆動装置22は、駆動側ハウジング30と、駆動側ハウジング30内に収容されるモータ機構90とを備える。さらに、駆動装置22は、モータ機構90に設けられてインペラ14との間で引き合う駆動磁石92を有する。
【0056】
駆動側ハウジング30は、ポンプ本体20(本体側ハウジング28)を装着する円筒状の装着溝94を上面に有する上側筐体30aと、上側筐体30aの下側に連結される下側筐体30bとで構成されている。また、駆動側ハウジング30の装着溝94よりも径方向内側部分は、本体側ハウジング28の挿入穴52に挿入される中央凸部96となっている。
【0057】
そして、ポンプ本体20の本体側ハウジング28と、駆動装置22の駆動側ハウジング30とは、相互に着脱自在に位置決め固定可能な係合構造98を有する。本実施形態において、係合構造98は、本体側ハウジング28の挿入穴52に中央凸部96を挿入し、且つ本体側ハウジング28の底壁42を装着溝94に挿入することで、両装置を係合させる。なお、係合構造98は、種々の構成を採用してよいことは勿論である。
【0058】
下側筐体30bの内部には、モータ機構90のモータ本体90aが設けられ、モータ本体90aは、制御部24の制御下に軸部100を適宜の回転速度で回転させる。軸部100は、モータ本体90aから突出して中央凸部96内の突出空間に挿入され、その上端部には径方向外側に突出する円盤状の回転部102が設けられている。ポンプ本体20と駆動装置22の装着状態では、インペラ14の軸心Siと軸部100の軸心Ssが相互に重なる。
【0059】
回転部102は、側面断面視で、径方向外側の外周面を部分的に切り欠いた保持部102aを有し、この保持部102aに駆動磁石92を保持している。つまり、回転部102は、駆動側ハウジング30内で駆動磁石92を所定の径方向位置及び高さ位置(中央凸部96内)に配置して、軸部100の回転に連れて駆動磁石92を回転させる。
【0060】
図6Aに示すように、本実施形態に係る駆動磁石92は、軸部100の軸心Ssに対し従動磁石74よりも短い半径R4で周回する駆動側多極着磁リング磁石93に構成されている。駆動側多極着磁リング磁石93は、従動磁石74と同様に、複数(6つ)の極性(N極、S極)が周方向に沿って交互に並ぶように着磁されている。駆動磁石92は、ポンプ本体20と駆動装置22の装着状態で、従動磁石74の内側で従動磁石74と対向配置されることで、従動磁石74との間に磁気カップリング機構104を形成する。
【0061】
駆動磁石92を構成する材料は、従動磁石74であげた材料を適宜選択し得る。また、駆動磁石92も、多極着磁リングとして構成されることに限定されず、対極(N極、S極)を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
【0062】
図2に戻り、ポンプ装置10Aの制御部24(Controller)は、図示しない入出力インタフェース、メモリ及びプロセッサを有する周知のコンピュータにより構成され、モータ機構90の駆動を制御する。制御部24の外面には、図示しないモニタ、スピーカ、操作ボタン等が設けられており、医師や看護士等のユーザは、操作ボタンを操作することで、ポンプ装置10Aの駆動内容を設定する。制御部24は、ユーザの設定情報に基づき、バッテリの電力の供給を制御して、例えば0~10000rpmの範囲で軸部100を回転させる。
【0063】
本実施形態に係るポンプ装置10Aは、基本的には以上のように構成されるものであり、以下その動作について説明する。
【0064】
ポンプ装置10Aを含む人工心肺装置12は、心肺機能を補助する患者に対して構築される。人工心肺装置12の構築時に、ユーザは、ポンプ本体20の血液流入ポート34に脱血チューブ16を接続し、ポンプ本体20の血液流出ポート36に送血チューブ18を接続する。ここで、ポンプ本体20の可動側反発磁石76と固定側反発磁石44とは、同一極性の可動側反発面77aと固定側反発面45aが相互に近接していることで、反発機構84Aを構成している。このため、インペラ14は本体側ハウジング28の底壁42側に押し付けられ、ポンプ本体20の持ち運び時等にインペラ14のシース68が軸受部54から抜けることを抑制することができる。そして
図2に示すように、駆動装置22に対しポンプ本体20を装着することで、ポンプ装置10Aが組み立てられる。この際、係合構造98はポンプ本体20と駆動装置22を相互に位置決め固定する。
【0065】
図4及び
図6Aに示すように、装着状態では、従動磁石74、駆動磁石92が同一の高さ位置に配置される。径方向に隣接する従動磁石74(従動側多極着磁リング磁石75)と駆動磁石92(駆動側多極着磁リング磁石93)は、異なる極性同士を相互に対向させて磁気カップリング機構104を形成する。すなわち、従動側多極着磁リング磁石75と駆動側多極着磁リング磁石93は、磁気カップリング力(磁気的結合力)を生じさせ、回転部102の回転力をインペラ14に伝達可能とする。
【0066】
従って、駆動装置22のモータ機構90が、軸部100を回転させると従動回転構造部62が連れ回りして、本体側ハウジング28内でインペラ14を回転させることができる。そして、上空間32a内で回転するフィン部60は、遠心力を生じさせて血液を流動させる。
【0067】
図9に示すように、インペラ14の回転時に、流入路34aから内部空間32に流入した血液は、上空間32aの径方向外側から下空間32bに回り込む。そして、血液は、外周壁40の内周面40aと従動回転構造部62の外周面63bの第2隙間82を下方に流動すると、下空間32bの下端側で径方向内側に向かう。さらに血液は、軸状部38の対向面48aと従動回転構造部62の内周面63aとの間の第1隙間80を上方に流動して上側隙間66aに至る。
【0068】
上側隙間66aに流動した血液の一部は、インペラ14の複数のウオッシュアウトホール67を通って上空間32aに移動する(
図5B参照)。さらに血液の他部は、軸受部54から浮上しているシース68の中空部72(第1中空72a、第2中空72b)を通って上空間32aに移動する。つまり軸受部54とシース68とは、回転時に非接触状態を可及的に保つことで、摩擦熱の発生を抑制して血液を良好に流動させることが可能となる。
【0069】
また、ポンプ本体20の可動側反発磁石76(可動側内外周単極着磁リング磁石77)と固定側反発磁石44(固定側内外周単極着磁リング磁石45)は、周方向全体で均等的に反発力をかける。さらに、インペラ14の回転時にインペラ14の下部側に回り込む血液によって、流入口34a2側にインペラ14が浮上しようとしても反発機構84Aの反発力を受けるので、インペラ14の浮上を確実に抑制することができる。
【0070】
特に、インペラ14の軸心Siが本体側ハウジング28の軸心Stと一致した状態では、凸部分47を有する固定側反発磁石44と可動側反発磁石76が回転中のインペラ14の第2領域88に強い反発力をかける。このため、流出路36aからの血液の流出に伴い、内部空間32の流出口36a2側が低い圧力になっても、反発機構84Abがインペラ14の第2領域88側の上昇(傾斜)を押さえ込む。よって、ポンプ装置10Aは、インペラ14と本体側ハウジング28との非接触状態を保ちつつインペラ14を安定的に回転させて、血液を良好に流動させることができる。
【0071】
また、本体側ハウジング28の軸状部38の対向面48aとインペラ14の内周面63aとの間の第1隙間80は、インペラ14の回転中に(例えば3000rpm以上で)、ラジアル荷重を受ける動圧軸受78を形成する。これによりインペラ14の回転姿勢をより安定的に保って、インペラ14の軸心Siを本体側ハウジング28の軸心Stに一致させることができ、軸受部54にかかる負担を軽減することが可能となる。
【0072】
なお、本発明は、上述の実施形態に限定されず、発明の要旨に沿って種々の改変が可能である。例えば、磁気カップリング機構104や反発機構84Aの位置関係は特に限定されるものではない。一例として、反発機構84Aは、磁気カップリング機構104の上側に位置していてもよく、また磁気カップリング機構104の径方向内側に位置していてもよい。固定側反発磁石44は、ポンプ本体20(本体側ハウジング28)に設けられるだけでなく、駆動装置22(駆動側ハウジング30)に設けられていてもよい。
【0073】
また、反発機構84Aにおいて異なる反発力を発生させる手段は、固定側反発磁石44に凸部分47を設けることに限定されるものではない。例えば、固定側反発磁石44は、凸部分47を備えずに本体部分46により構成され、第1領域86の材料と第2領域88の材料を変えることで、第1領域86の磁力よりも第2領域88の磁力が大きくなるように構成してもよい。また例えば、固定側反発磁石44は、凸部分47を備えずに本体部分46により構成され、第2領域88以外の周方向箇所に磁力を抑制する部材を配置してもよく、或いは第2領域88に軟磁性体等の磁力誘導体を配置してもよい。
【0074】
ジャーナル軸を構成する動圧軸受78は、第2隙間82(インペラ14の外周面63bと外周壁40の内周面40aの間)に形成されてもよい。また動圧軸受78は、インペラ14の側周面63とハウジング26の対向面のいずれか一方に凹部(溝、切り欠き等)を設けることで、動圧力を増加させてもよい。動圧軸受78は、インペラ14の軸心Siに沿った側周面63と対向面全体に形成されることに限定されず、例えば、インペラ14の側周面63の下部寄りに形成されてもよい。
【0075】
以下、他の実施形態について幾つか例示する。なお、以降の説明において、上述の実施形態と同じ構成又は同じ機能を有する要素には、同じ符号を付してその詳細な説明を省略する。
【0076】
〔第2実施形態〕
第2実施形態に係るポンプ装置10Bは、
図10に示すように、本体側ハウジング28の軸心St(インペラ14の軸心Si)に対し環状の固定側反発磁石44の軸心Sfを傾斜させて反発機構84Bを構成している点で、上記のポンプ装置10Aと異なる。また、固定側反発磁石44は、上記の凸部分47を備えずに環状の本体部分46のみを備え、断面視で一定の大きさの方形状で周方向に延在している。
【0077】
具体的には、固定側反発磁石44の軸心Sfは、外周壁40内において第1領域86側よりも第2領域88側が下方側に低くなるように(固定側反発磁石44が可動側反発磁石76に近づく方向に)僅かに傾斜している。例えば、本体側ハウジング28の軸心Stに対する固定側反発磁石44の軸心Sfの傾斜角度は、5°以下であることが好適であり、より好ましくは0.5°~3°の範囲に設定されるとよい。このように固定側反発磁石44を傾斜して設置することでも、第2領域88側の可動側反発磁石76と固定側反発磁石44の第2距離D2は、第1領域86側の可動側反発磁石76と固定側反発磁石44の第1距離D1よりも短くなる。
【0078】
以上のように構成されたポンプ装置10Bは、インペラ14の回転時に、第1領域86の反発機構84Baの反発力よりも第2領域88の反発機構84Bbの反発力が大きくなる。このため、ポンプ装置10Bは、内部空間32のアウトフロー側の圧力が低くなっても、インペラ14の軸心Siと本体側ハウジング28の軸心Stとを安定的に一致させることができる。従って、ポンプ装置10Bは、第1実施形態に係るポンプ装置10Aと同様の効果が得られる。特に、このポンプ装置10Bは、固定側反発磁石44の構造が簡素化し、製造コストを抑制することが可能となる。
【0079】
〔第3実施形態〕
第3実施形態に係るポンプ装置10Cは、
図11に示すように、本体側ハウジング28の軸心Stに対し、環状の固定側反発磁石44の軸心Sfをオフセットさせて反発機構84Cを構成している点で、上記のポンプ装置10A、10Bと異なる。また固定側反発磁石44は、第2実施形態と同様に、凸部分47を備えずに環状の本体部分46のみを備え、断面視で一定の大きさの方形状で周方向に延在している。
【0080】
具体的には、固定側反発磁石44は、その軸心Sfが本体側ハウジング28の軸心Stに対し第1領域86側に寄るようにずれて配置される。例えば、本体側ハウジング28の軸心Stに対する固定側反発磁石44の軸心Sfのオフセット量は、1.5mm以下であると好適であり、より好ましくは0.1mm~1mmの範囲に設定されるとよい。これにより、第1領域86側の固定側反発面45aよりも第2領域88側の固定側反発面45aが、外周壁40内の内周面40a(内部空間32)の近くに配置される。
【0081】
このように固定側反発磁石44を設置することでも、やはり第2領域88側の可動側反発磁石76と固定側反発磁石44の第2距離D2が、第1領域86側の可動側反発磁石76と固定側反発磁石44の第1距離D1よりも近くなる。従って、ポンプ装置10Cも、インペラ14の回転時に、やはり第1領域86の反発機構84Caの反発力よりも第2領域88の反発機構84Cbの反発力が大きくなるので、第1実施形態に係るポンプ装置10A、10Bと同様の効果が得られる。
【0082】
〔第4実施形態〕
第4実施形態に係るポンプ装置10Dは、
図12に示すように、第1隙間80の間隔I1を長くすることで、インペラ14の内周面63aと対向面48aの間に動圧軸受78を形成しない構成としている点で、ポンプ装置10A~10Cと異なる。すなわちポンプ装置10Dは、動圧軸受78を形成しなくても、反発機構84A~84Cの反発力を適切に設定することによりインペラ14の姿勢を安定的に保つことが可能である。
【0083】
〔第5実施形態〕
第5実施形態に係るポンプ装置10Eは、
図13に示すように、固定側反発磁石44を環状の本体部分46のみで構成する一方で、動圧軸受78によってインペラ14の傾斜を抑制する構成となっている点で、ポンプ装置10A~10Dと異なる。すなわち、固定側反発磁石44、可動側反発磁石76とは、周方向に等間隔D’に離間することで均等な反発力を働かせる反発機構84Dを構成している。このように、ポンプ装置10Eは、反発機構84A~84Cによりインペラ14の周方向上の反発力を変化させなくても、動圧軸受78の動圧力を適切に働かせることでインペラ14の姿勢を安定的に保つことも可能である。
【0084】
〔第6実施形態〕
第6実施形態に係るポンプ装置10Fは、
図14Aに示すように、インペラ14のシース68に形成した中空部72に凸部106(羽体)を設けた点で、上記のポンプ装置10A~10Eと異なる。中空部72の凸部106は、インペラ14の回転時に中空部72を流動する血液に流動力を付与することで、血液をより円滑に流動させることができる。なお、中空部72において血液に流動力を付与する構成は、凸部106に限らず、
図14Bに示すように、凹部108(溝)でもよい。例えば、螺旋状の凹部108が形成されていることで、血液を軸方向に流動させることができる。
【0085】
上述の実施形態から把握し得る技術的思想及び効果について、以下に記載する。
【0086】
ポンプ装置10A~10Dは、インペラ14の軸心Siがハウジング26(本体側ハウジング28)の軸心Stと一致した状態で、反発機構84A~84Cにおける第1領域86の反発力よりも第2領域88の反発力が大きいことで、内部空間32の流出口36a2付近の流体(血液)の圧力が低下しても、血液を良好に流動させることができる。すなわち、流出口36a2付近に圧力の低下が生じても、インペラ14の軸心Siを挟んだ流出口36a2と反対側の反発機構84A~84Cの反発力が強いので、インペラ14の回転姿勢が傾かなくなる。従って、ポンプ装置10A~10Dは、ハウジング26にインペラ14を非接触且つ安定的に回転させ、インペラ14が傾くことによる流体への悪影響(例えば、流体の流動量の変化、接触による流体の破損(血液の溶血)等)を抑制することが可能となる。
【0087】
また、第1領域86における固定側反発磁石44と可動側反発磁石76の第1距離D1よりも第2領域88における固定側反発磁石44と可動側反発磁石76の第2距離D2が短いことで、第1領域86の反発力よりも第2領域88の反発力を大きくしている。これにより、ポンプ装置10A~10Dは、固定側反発磁石44や可動側反発磁石76において周方向上の磁力を変化させることなく、第1領域86の反発力よりも第2領域88の反発力が強い構造を簡単に形成することができる。
【0088】
また、固定側反発磁石44は、ハウジング26の壁部(外周壁40)内で環状に延在する本体部分46と、第2領域88で可動側反発磁石76に近接するように本体部分46から突出することで、第1距離D1よりも第2距離D2を短くする凸部分47とを有する。このように、固定側反発磁石44の形状により(凸部分47を有することで)、ポンプ装置10A、10Dは、第1領域86の反発力よりも第2領域88の反発力を大きくすることができる。
【0089】
また、反発機構84Bは、ハウジング26の壁部(外周壁40)の軸心Stに対して固定側反発磁石44の軸心Sfが傾斜していることで、第1距離D1よりも第2距離D2を短くしてもよい。このように、固定側反発磁石44の軸心Sfが傾いている構成であれば、固定側反発磁石44の形状によって反発力を変化させる必要がなくなり、製造コストをより低減することができる。
【0090】
また、固定側反発磁石44の軸心Sfが、ハウジング26の壁部(外周壁40)の軸心Stに対してオフセットしていることで、第1距離D1よりも第2距離D2を短くする。このように、ポンプ装置10Cは、固定側反発磁石44の軸心Sfがハウジング26の軸心Stに対してオフセットしていることでも、固定側反発磁石44の形状によって反発力を変化させる必要がなくなる。
【0091】
また、固定側反発磁石44は、可動側反発磁石76に対し流入口34a2側にオフセットした位置に配置されている。これにより、ポンプ装置10A~10Dは、可動側反発磁石76を有するインペラ14を、流入口34a2側から離れる方向に押しつけることが可能となる。そのため、インペラ14の回転時に、インペラ14が流入口34a2側に向かって変位してハウジング26に接触することを防止することができる。
【0092】
また、ハウジング26は、駆動磁石92を回転させるモータ機構90を備え、インペラ14は、駆動磁石92との間で磁気カップリング機構104を形成し、駆動磁石92の回転に連れて当該インペラ14を回転させる従動磁石74を有する。これによりポンプ装置10A~10Dは、モータ機構90から内部空間32を独立させて駆動磁石92の回転力をインペラ14に非接触で伝達し、且つ反発機構84A~84Cによりハウジング26と非接触にインペラ14を回転させることができる。
【0093】
また、反発機構84A~84Cは、磁気カップリング機構104の径方向外側に形成される。これにより、インペラ14自体を傾けるように流体が作用したとしても、径方向外側の反発機構84A~84Cにおいてインペラ14全体の姿勢を保つことが可能となり、インペラ14をより安定的に回転させることができる。
【0094】
また、反発機構84Aは、流入口34a2に対して磁気カップリング機構104よりも離れた位置に形成される。このように反発力がかかる箇所が流入口34a2から離れた位置にあることで、反発機構84Aは、ハウジング26に対するインペラ14の重心が低くなり(流入口34a2から離れた位置になり)インペラ14をさらに安定的に回転させることができる。
【0095】
また、反発機構84Aの反発力が、磁気カップリング機構104の引力よりも大きい。これにより、ポンプ装置10A~10Dは、インペラ14の回転時にインペラ14の浮上を確実に抑制することができるため、ハウジング26にインペラ14が接触することを回避することができる。
【符号の説明】
【0096】
10A~10F…ポンプ装置 14…インペラ
20…ポンプ本体 22…駆動装置
26…ハウジング 28…本体側ハウジング
32…内部空間 34a2…流入口
36a2…流出口 38…軸状部
44…固定側反発磁石 46…本体部分
47…凸部分 48a…対向面
54…軸受部 58…ピン部
58a…外周面 59…連通用隙間
63…側周面 63a、68a…内周面
69…テーパ突出部 72…中空部
72a…第1中空 72b…第2中空
76…可動側反発磁石 78…動圧軸受
84A~84C…反発機構 86…第1領域
88…第2領域 104…磁気カップリング機構
Sf、Si、Ss、St…軸心