IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラの特許一覧

特許7150694装置の作動方法、装置及びコンピュータプログラム
<>
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図1
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図2a-2c
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図3a
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図3b
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図3c
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図4
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図5
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図6
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図7
  • 特許-装置の作動方法、装置及びコンピュータプログラム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-30
(45)【発行日】2022-10-11
(54)【発明の名称】装置の作動方法、装置及びコンピュータプログラム
(51)【国際特許分類】
   A61B 1/00 20060101AFI20221003BHJP
   A61B 18/24 20060101ALI20221003BHJP
【FI】
A61B1/00 552
A61B1/00 732
A61B18/24
【請求項の数】 18
(21)【出願番号】P 2019500490
(86)(22)【出願日】2017-07-07
(65)【公表番号】
(43)【公表日】2019-09-12
(86)【国際出願番号】 GB2017052005
(87)【国際公開番号】W WO2018007829
(87)【国際公開日】2018-01-11
【審査請求日】2020-06-29
(31)【優先権主張番号】1611819.2
(32)【優先日】2016-07-07
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】513249781
【氏名又は名称】ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラ
【氏名又は名称原語表記】THE UNIVERSITY COURT OF THE UNIVERSITY OF EDINBURGH
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100205833
【弁理士】
【氏名又は名称】宮谷 昂佑
(72)【発明者】
【氏名】ケブ ダリワル
(72)【発明者】
【氏名】マイケル ジー タンナー
(72)【発明者】
【氏名】ロバート アール トムソン
【審査官】牧尾 尚能
(56)【参考文献】
【文献】特表2006-523376(JP,A)
【文献】特表2006-521860(JP,A)
【文献】特開平04-176427(JP,A)
【文献】特開2011-237361(JP,A)
【文献】国際公開第2015/072964(WO,A1)
【文献】特開2015-125090(JP,A)
【文献】特開平06-098890(JP,A)
【文献】特開平02-290534(JP,A)
【文献】米国特許第05625458(US,A)
【文献】特表平08-508416(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00- 1/32
G02B 23/24-23/26
(57)【特許請求の範囲】
【請求項1】
散乱媒体中に少なくとも部分的に位置決めされた光ファイバの場所を判定する装置の作動方法であって、
前記装置は、前記光ファイバと、パルス光を生成するパルス光源と、前記散乱媒体の外部に位置決めされた時間分解単一光子検出器と、前記時間分解単一光子検出器が生成した信号を受信するプロセッサとを備え、
パルス光が前記光ファイバに沿って誘導されて前記光ファイバから前記散乱媒体へ放出されるように、前記パルス光を前記光ファイバの近位端に伝送するステップと、
記時間分解単一光子検出器により、前記光ファイバから記散乱媒体を通過した前記パルス光の光子を受信するステップと、
前記時間分解単一光子検出器により、受信された光子に対応する信号を生成するステップであって、受信された光子を表す前記信号は、受信された光子のそれぞれについて、位置、及び前記パルス光と同時に生成された電気パルスの伝送時間と光子が受信された時間との差を表す到達時間を含む、該ステップと、
前記プロセッサにより、前記時間分解単一光子検出器から前記信号を受信するステップと、
前記プロセッサにより、前記受信された光子のいくつかに対応する信号を選択するステップであって、前記選択は、到達時間が時間間隔以内である受信された光子を表す信号を選択することを含む、該ステップと、
前記選択された信号から画像を生成するステップと、
前記画像を用いて前記光ファイバの場所を判定するステップと
を含む、装置の作動方法。
【請求項2】
散乱媒体中に少なくとも部分的に位置決めされるよう構成された光ファイバと、
光ファイバの近位端に結合されてパルス光を前記光ファイバに沿って前記散乱媒体に伝送するよう構成されたパルス光源と、
前記散乱媒体の外部に位置決めされて前記散乱媒体を通過した前記パルス光の光子を受信するよう構成された時間分解単一光子検出器であり、受信された光子に対応する信号を生成するようさらに構成された前記時間分解単一光子検出器と、
前記時間分解単一光子検出器が生成した信号を受信し、前記受信された光子のいくつかに対応する信号を選択し、前記選択は、到達時間が時間間隔以内である光子を表す信号を選択することを含み、前記選択された信号から画像を生成し、前記画像を用いて前記光ファイバの場所を判定するよう構成されたプロセッサと
を備え、
受信された光子を表す前記信号は、受信された光子のそれぞれについて、位置、及び前記パルス光と同時に生成された電気パルスの伝送時間と光子が受信された時間との差を表す到達時間を含む、装置。
【請求項3】
請求項2に記載の装置において、前記散乱媒体は、ヒト又は動物の組織又は流体を含む装置。
【請求項4】
請求項2又は3に記載の装置において、前記散乱媒体は、ヒト又は動物の身体の少なくとも一部を含み、前記プロセッサは、前記ヒト又は動物の身体中の前記光ファイバの場所を判定するよう構成される装置。
【請求項5】
請求項2~4のいずれか1項に記載の装置において、前記選択は、弾道光子及び/又はスネーク光子に対応する信号を選択することを含む装置。
【請求項6】
請求項2~5のいずれか1項に記載の装置において、前記光ファイバは、前記パルス光を前記光ファイバの遠位先端から且つ/又は前記光ファイバの側面の少なくとも一部を通して前記散乱媒体に伝送するよう構成される装置。
【請求項7】
請求項2に記載の装置において、前記光ファイバは、前記パルス光を前記光ファイバの側面の少なくとも一部を通して前記散乱媒体に伝送するよう構成され、前記光ファイバの場所の判定は、形状に基づく画像処理技術を画像に適用して前記光ファイバの前記側面の少なくとも一部の場所を判定することを含む装置。
【請求項8】
請求項2~7のいずれか1項に記載の装置において、前記パルス光は、狭帯域レーザ光を含む装置。
【請求項9】
請求項2~8のいずれか1項に記載の装置において、フィルタを用いて前記受信された光子をフィルタリングし、前記フィルタは、前記パルス光の波長の光子を透過させるよう構成される装置。
【請求項10】
請求項2~9のいずれか1項に記載の装置において、前記パルス光の波長を含まない波長スペクトルを有する光で前記散乱媒体が置かれた環境を照明する、装置。
【請求項11】
請求項2~10のいずれか1項に記載の装置において、前記時間分解単一光子検出器は、1つ以上のSPAD(単一光子アバランシェダイオード)からなる装置。
【請求項12】
請求項2~11のいずれか1項に記載の装置において、前記光ファイバは、少なくとも1つの医療機器の一部であるか、又は前記少なくとも1つの医療機器と同一場所に位置付けられ、該装置は、前記光ファイバの少なくとも一部の判定された場所に基づいて前記医療機器の少なくとも一部の場所を判定する、装置。
【請求項13】
請求項12に記載の装置において、前記医療機器は、内視鏡、ガイドワイヤ、カテーテル、カテーテルデリバリシステム、メス、組織の切除又は修正用のエネルギー源のうち少なくとも1つを含む装置。
【請求項14】
請求項12又は13に記載の装置において、前記医療機器は、自動手法を用いてヒト又は動物の体内に配置され、前記医療機器の場所の判定は、前記自動手法の確認を含む装置。
【請求項15】
請求項3に記載の装置において、前記選択された光子を用いて前記ヒト又は動物の組織の少なくとも一部の組織タイプを判定する、装置。
【請求項16】
散乱媒体中に少なくとも部分的に位置決めされた光ファイバの場所を判定する装置の作動方法であって、
前記装置は、前記光ファイバと、パルス光を生成するパルス光源と、前記光ファイバの近位端に結合された時間分解単一光子検出器と、前記時間分解単一光子検出器が生成した信号を受信するプロセッサとを備え、
前記散乱媒体の外部の前記パルス光源から前記散乱媒体に前記パルス光を伝送するステップと、
記時間分解単一光子検出器により、前記散乱媒体を通過して前記光ファイバに沿って前記時間分解単一光子検出器まで誘導された前記パルス光の光子を受信するステップと、
前記時間分解単一光子検出器により、受信された光子に対応する信号を生成するステップであって、受信された光子を表す前記信号は、受信された光子のそれぞれについて、位置、及び前記パルス光と同時に生成された電気パルスの伝送時間と光子が受信された時間との差を表す到達時間を含む、該ステップと、
前記プロセッサにより、前記時間分解単一光子検出器から前記信号を受け取るステップと、
前記プロセッサにより、前記受信された光子のいくつかに対応する信号を選択するステップであって、前記選択は、到達時間が時間間隔以内である光子を表す信号を選択することを含む、該ステップと、
前記プロセッサにより、前記選択された信号から画像を生成するステップと、
前記画像を用いて前記光ファイバの場所を判定するステップと
を含む、装置の作動方法。
【請求項17】
散乱媒体中に少なくとも部分的に位置決めされるよう構成された光ファイバと、
前記散乱媒体の外部に位置決めされてパルス光を前記散乱媒体に伝送するよう構成されたパルス光源と、
前記光ファイバの近位端に結合されて、前記散乱媒体を通過して前記光ファイバに沿って時間分解単一光子検出器まで誘導された前記パルス光の光子を受信するよう構成され、受信された光子に対応する信号を生成するようさらに構成された前記時間分解単一光子検出器と、
前記時間分解単一光子検出器が生成した信号を受け取り、前記受信された光子の到達時間に基づいて前記受信された光子のいくつかに対応する信号を選択し、前記選択された信号を用いて画像を生成し、前記画像を用いて且つ選択された信号に基づいて前記光ファイバの場所を判定するよう構成されたプロセッサと
を備え、
受信された光子を表す前記信号は、受信された光子のそれぞれについて、位置、及び前記パルス光と同時に生成された電気パルスの伝送時間と光子が受信された時間との差を表す到達時間を含む、装置。
【請求項18】
請求項1又は16に記載の装置の作動方法の各ステップを実行可能なコンピュータ可動命令を含む、コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、散乱媒体中に、例えばヒト又は動物組織中に位置決めされた光ファイバの場所を判定する方法及び装置に関する。
【背景技術】
【0002】
光ファイバベースの内視鏡は、人体の内部のイメージング及び感知に用いられることが多くなってきている。内視鏡本体(bulk endoscopes)は、多くの場合は操作機構により内臓の特定領域に導くことができるが、細い光ファイバ内視鏡は、内視鏡本体のワーキングチャンネルから押し出されると、従来のシステムが届かない所まで延びることができる。或いは、誘導内視鏡本体を一切用いずに細いファイバベース内視鏡を挿入することができる。
【0003】
シナリオによっては、内視鏡の先端の最終的な場所は、内視鏡本体の挿入の知識、臨床医の手応え、及び/又はファイバベース内視鏡イメージングシステムの非常に限られた(例えば、1mm未満の)視野で見える構造から見積もられる。状況によっては、定位技術(stereotactic techniques)を用いてファイバ内視鏡先端の場所を推定することができる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
X線又は電磁技術を用いて、内視鏡の端にあり得る金属端チップを見ることができる。しかしながら、X線又は電磁技術は、高価であり且つ/又は嵩張る装置を必要とし得る。さらに、X線を用いて内視鏡の先端の場所を判定することで、患者を不要な放射線に曝すことになり得る。
【課題を解決するための手段】
【0005】
本発明の第1態様では、散乱媒体中に少なくとも部分的に位置決めされた光ファイバの場所を判定する方法であって、パルス光を散乱媒体に伝送するステップと、検出器により、散乱媒体を通過したパルス光の光子を受信するステップと、受信された光子のいくつかに対応する信号を、受信された光子の到達時間に基づいて選択するステップと、選択された信号に基づいて光ファイバの場所を判定するステップとを含む方法が提供される。
【0006】
到達時間に基づいた信号の選択により、散乱しなかったか又はごく少量しか散乱しなかった光子を表す信号が選択され得る。このような信号は、到達時間に基づいて選択されない信号よりも光ファイバの場所をより適切に提供することができる。
【0007】
散乱媒体は、ヒト又は動物の組織又は流体である。
【0008】
光ファイバを通したパルス光の提供によりファイバの場所を判定することで、患者又は他の被検体を不要な放射線に曝し得る他の方法を用いずに光ファイバの場所を判定することができる。
【0009】
選択された信号に基づいて光ファイバの場所を判定するステップは、選択された信号を用いて画像を形成すること及び画像に基づいて光ファイバの場所を判定することを含む。
【0010】
場所は、自動で判定することができる。場所は、手動で判定することができる。場所は、画像処理技術を用いた画像処理により判定することができる。場所は、画像のうち輝度が高い部分、例えば画像のうち輝度が最大の部分により判定することができる。
【0011】
選択するステップは、弾道光子に対応する信号を選択することを含み得る。弾道光子は、散乱媒体中で散乱しなかった光子及び/又はごく少数の散乱事象しかなかった光子を含み得る。弾道光子は、検出器で受信されるパルス光の最初の光子を含み得る。弾道光子は、第1時間ビン内で受信された光子を含み得る。
【0012】
選択するステップは、スネーク光子(snake photons)に対応する信号を選択することを含み得る。スネーク光子は、弾道光子よりも到達が遅いが何らかの場所情報を保持する光子を含み得る。
【0013】
パルス光を散乱媒体に伝送するステップは、光ファイバを介したものであり得る。検出器は、散乱媒体の外部に位置決めされ得る。
【0014】
光ファイバは、パルス光を光ファイバの遠位先端から散乱媒体に伝送するよう構成され得る。パルス光が先端からしか伝送されない場合、先端からの光は点光源であるとみなすことができる。場所を判定するステップは、先端からの光が点光源から放出されると考えることに基づいたものであり得る。
【0015】
光ファイバは、パルス光を光ファイバの側面の少なくとも一部を通して散乱媒体に伝送するよう構成され得る。パルス光を光ファイバの側面から伝送することにより、先端の単一の点を判定するだけではなく、光ファイバの延長部分の場所を判定することができる。光ファイバの予想形状を、光ファイバの場所を判定するのに用いることができる。
【0016】
パルス光を散乱媒体に伝送するステップは、散乱媒体の外部に位置決めされた光源からのものであり得る。検出器は、光ファイバに結合され得る。光子を受信するステップは、光ファイバに入った光子を受信することを含み得る。
【0017】
パルス光を散乱媒体に伝送するステップは、散乱媒体に対する光源の位置を変えること及び/又は散乱媒体に対する光源からのパルス光の入射位置を変えることを含み得る。検出器の位置及び/又は光の入射位置を変えて、散乱媒体にわたって、例えば患者にわたって光を走査することにより画像を形成することができる。
【0018】
光ファイバは、光子が光ファイバの遠位先端に入るよう構成され得る。光ファイバは、光子が光ファイバの側面の少なくとも一部に入るよう構成され得る。
【0019】
光ファイバの場所を判定するステップは、形状に基づく画像処理技術を画像に適用して光ファイバの側面の少なくとも一部の場所を判定することを含み得る。
【0020】
信号を選択するステップは、到達時間が閾値未満の信号を選択することを含み得る。信号を選択するステップは、到達時間が時間間隔以内である信号を選択することを含み得る。信号を選択するステップは、1つ又は複数の時間ビン内の信号を選択することを含み得る。
【0021】
パルス光は、狭帯域レーザ光を含み得る。パルス光は、短パルスレーザ光を含み得る。パルス光は、1000ps未満、場合によっては500ps未満の長さを有するパルスを含み得る。
【0022】
本方法は、フィルタを用いて受信された光子をフィルタリングするステップをさらに含み得る。フィルタは、パルス光の波長の光子を透過させるよう構成され得る。
【0023】
本方法は、パルス光の波長を含まない波長スペクトルを有する光で散乱媒体が置かれた環境を照明するステップをさらに含み得る。パルス光の波長を含まない光で環境を照明することにより、雑音を低減することができる。光ファイバの場所を特定する方法は、照明環境(例えば、手術室)で用いることができる。パルス光の波長を含まない光で環境を照明することにより、場所を特定する方法を強い照明が用いられ得る手術等の手技中に用いることができる。
【0024】
検出器は、検出器アレイを含み得る。検出器は、走査型検出器を含み得る。検出器は、単一光子検出器を含み得る。単一光子検出器は、少なくとも1つのSPAD(単一光子アバランシェダイオード)を含み得る。検出器は、APD(アバランシェフォトダイオード検出器)、ストリークカメラ、CCD検出器アレイを有する時間ゲート増感(intensified)カメラ(ICCD)、光電子増倍管(PMT)、超伝導単一光子検出器のうち少なくとも1つを含み得る。
【0025】
本方法は、少なくとも1つの集束コンポーネントを用いて受信された光子を検出器に集束させるステップをさらに含み得る。少なくとも1つの集束コンポーネントは、少なくとも1つのレンズを含み得る。
【0026】
光ファイバは、少なくとも1つの医療機器の一部であり得る。光ファイバは、少なくとも1つの医療機器と同一場所に位置付けることができる。
【0027】
医療機器は、内視鏡、ガイドワイヤ、カテーテル、カテーテルデリバリシステム、メス、組織の切除又は修正用のエネルギー源のうち少なくとも1つを含み得る。
【0028】
本方法は、光ファイバの少なくとも一部の判定された場所に基づいて医療機器の少なくとも一部の場所を判定するステップをさらに含み得る。
【0029】
医療機器は、ヒト又は動物の体内に少なくとも部分的に位置決めされ得る。医療機器の場所を判定するステップは、ヒト又は動物の体内の医療機器の場所を判定することを含み得る。
【0030】
医療機器は、自動手法を用いてヒト又は動物の体内に配置され得る。医療機器の場所を判定するステップは、自動手法の確認を含み得る。
【0031】
散乱媒体は、肺、上部消化管、下部消化管、尿路、骨組織、臓器組織のうち少なくとも1つの組織を含み得る。
【0032】
本方法は、選択された光子を用いてヒト又は動物組織の少なくとも一部の組織タイプを判定するステップをさらに含み得る。
【0033】
ヒト又は動物組織の少なくとも一部の組織タイプを判定するステップは、組織が健康か罹患しているかを判定することを含み得る。
【0034】
組織タイプを判定するステップは、選択された信号に対応する光子の散乱度を判定すること及び判定された散乱度に基づいて組織タイプを判定することを含み得る。
【0035】
独立して提供され得る本発明のさらに別の態様では、散乱媒体中に少なくとも部分的に位置決めされるよう構成された光ファイバと、パルス光を散乱媒体に伝送するよう構成されたパルス光源と、散乱媒体を通過したパルス光の光子を受信するよう構成された検出器と、受信された光子の到達時間に基づいて受信された光子のいくつかに対応する信号を選択し、且つ選択された信号に基づいて光ファイバの場所を判定するよう構成されたプロセッサとを備えた装置が提供される。
【0036】
独立して提供され得る本発明の別の態様では、散乱媒体を通過したパルス光の受信された光子の到達時間に基づいて受信された光子に対応する信号を選択し、且つ選択された信号に基づいて光ファイバの場所を判定するようプロセッサにより実行可能なコンピュータ可動命令を含む、コンピュータプログラム製品が提供される。
【0037】
添付図面を参照して本明細書に実質的に記載された方法又はシステムが提供され得る。
【0038】
一態様の特徴は、任意の他の態様の特徴として適宜提供することができる。例えば、方法の特徴が装置の特徴として提供される場合があり、その逆もまたあり得る。一態様の1つ又は複数の特徴を、他の態様の適当な1つ又は複数の特徴と組み合わせて提供することができる。
【0039】
本発明の実施形態を、非限定的な例としてここで説明し、以下の図に示す。
【図面の簡単な説明】
【0040】
図1】一実施形態によるファイバ・検出器構成の概略図である。
図2a】弾道光子到達を用いた観察画像を表す概略図である。
図2b】スネーク光子到達を用いた観察画像を表す概略図である。
図2c】散乱光子到達を用いた観察画像を表す概略図である。
図3a】時間0nsでの散乱媒体中のファイバの場所判定の実験結果のプロットである。
図3b】時間2nsでの散乱媒体中のファイバの場所判定の実験結果のプロットである。
図3c】時間5.5nsでの散乱媒体中のファイバの場所判定の実験結果のプロットである。
図4】コロイド懸濁液に散乱した光の非時間分解画像である。
図5】時間分解及び非時間分解画像のプロファイルを表す。
図6】到達時間に対して表した散乱スポットのプロファイルである。
図7図7aは、ニワトリの全身に散乱した光の弾道光子画像である。図7bは、ニワトリの全身に散乱した光の非時間分解画像である。
図8図8aは、ヒツジの肺及び胸郭に散乱した光の弾道光子画像である。図8bは、ヒツジの肺及び胸郭に散乱した光の非時間分解画像である。
【発明を実施するための形態】
【0041】
状況によっては、光が組織を通過し得ることが一般に認められ得る。例えば、手又は指を明るい白色光トーチにかざすと、手又は指の反対面では赤色光に見える場合がある。本発明の実施形態は、組織を(又は任意の他の適当な散乱媒体を)通過する光を用いて、その組織(又は他の散乱媒体)中に位置決めされた光ファイバの場所を判定する。
【0042】
一実施形態による装置を図1に概略的に示す。この装置は、光ファイバ10、光源14、検出器16、フィルタ17、レンズ18、及びプロセッサ20を備える。
【0043】
図1の実施形態では、光ファイバ10はファイバ内視鏡の一部である。他の実施形態では、任意の適当な光ファイバ(単数又は複数)が用いられ得る。図1は、患者の肺12の中に配置された光ファイバ10を示す。他の実施形態では、光ファイバ10は、ヒト又は動物の身体の異なる部分、例えば消化管又は尿路の内部に位置決めされ得る。さらに他の実施形態では、光ファイバ10は、任意の適当な散乱媒体中に位置決めされ得る。散乱媒体は、例えば、組織、身体、又は臓器であり得る。散乱媒体はガスであり得る。散乱媒体は、液体、例えば濁った液体であり得る。散乱媒体は霧であり得る。散乱媒体は、試料と称される場合もあり、光ファイバの少なくとも先端が試料中に位置決めされる。
【0044】
光源14は、光ファイバ10の近位端に結合され、パルス光を光ファイバ10に供給するよう構成される。本実施形態では、光源14は狭帯域短パルスレーザである。
【0045】
検出器16(カメラと称される場合もある)は、患者の体外に位置決めされる。検出器16は、光子を受信して各受信された光子に対応する電気信号を発生させるよう構成される。本実施形態では、検出器16は、複数の検出器素子を含む検出器アレイである。検出器16は、時間分解単一光子イメージングシステムである。この場合、時間分解単一光子イメージングシステムは、32×32アレイのSPAD(単一光子アバランシェダイオード)を含む。時間分解単一光子イメージングシステムは、時間相関単一光子計数(TCSPC)により動作する。他の実施形態では、任意の適当な時間分解検出器が用いられ得る。時間分解検出器は、低レベルの光を検出可能な、例えば単一光子を検出可能な時間分解検出器であり得る。時間分解検出器は、APD(アバランシェフォトダイオード)検出器又はストリークカメラを含み得る。時間分解検出器は、CCD検出器アレイを有する時間ゲート増感カメラ(ICCD)を含み得る。時間分解検出器は、複数の光電子増倍管(PMT)又は超伝導単一光子検出器を含み得る。一部の実施形態では、複数の検出器16を用いてもよい。一部の実施形態では、単素子検出器を光走査系と組み合わせて用いて画像を生成してもよい。
【0046】
本実施形態では、検出器16は、患者の身体に対して任意の適当な位置に配置され得るアーム(図示せず)に取り付けられる。他の実施形態では、検出器16の任意の適当な取り付けが用いられ得る。例えば、検出器16は、光ファイバ10を患者内に位置決めする手技を行う部屋の天井、例えば病棟又は手術室の天井に取り付けることができる。一部の実施形態では、検出器16は、臨床医、助手、又は他のユーザの頭部又は身体に取り付けられて、臨床医、助手、又は他のユーザに直観的なフィードバックを提供することができる。
【0047】
レンズ18は、検出器16と患者の身体との間に位置決めされる。検出器16及びレンズ18は、検出器16が患者の身体に焦点を合わせるよう配置される。他の実施形態では、代替的な集束コンポーネントをレンズ18の代わりに用いてもよく、又は集束コンポーネントを用いなくてもよい。
【0048】
フィルタ17は、検出器16の手前に位置決めされる。本実施形態では、フィルタ17は、検出器16とレンズ18との間に位置決めされる。本実施形態では、フィルタ17は狭帯域ラインパスフィルタ(narrow line pass filter)である。フィルタ17は、レーザ源14の分光帯域内にない光子を遮断するよう構成される。他の実施形態では、代替的なフィルタを用いてもよく、又はフィルタを用いなくてもよい。
【0049】
検出器16は、検出器16からの信号を受信し解析するよう構成されたプロセッサ20に接続される。プロセッサ20は、任意の適当な処理デバイス、例えばデスクトップPC、ラップトップ、又はモバイルデバイス等のコンピューティングデバイスを含み得る。本実施形態では、検出器16及びプロセッサ20は別個のコンポーネントだが、他の実施形態では、検出器16及びプロセッサ20の機能を単一のコンポーネントに組み合わせてもよい。検出器16が行うものとして記載した機能は、プロセッサ20が行う場合があり、その逆もまたあり得る。
【0050】
図1に示す装置の動作原理を次に説明する。光ファイバ10が患者の肺12に導入される。本実施形態では、光ファイバ10は、ファイバ内視鏡の一部であり、内視鏡検査の一部として患者の肺12に導入される。
【0051】
短パルス(本実施形態では、500ps未満のパルス長を有する)狭帯域レーザ光が、光源14により光ファイバ10に注入される。状況によっては、短パルス源の使用が動作に重要であり得る。状況によっては、反復可能な立ち上がりを有するパルス光を用いてもよい。
【0052】
本実施形態では、レーザ源14の照明パワーは数mWである。mWの照明パワーは組織中で安全なことが知られている。他の実施形態では、異なる照明パワーを用いてもよい。本実施形態では、パルスレートは20MHzである。レーザ光は、数秒又は数分であり得る期間にわたって光ファイバ10に注入される。
【0053】
レーザ源14の波長の慎重な選択により、優れた性能が得られる。レーザ源14の波長は、組織中の散乱及び吸収が低い波長であるよう選択され得る。
【0054】
光ファイバ10が内視鏡の一部である一部の実施形態では、内視鏡のイメージングシステムの固有照明を光源として用いてもよい。こうした実施形態では、光源14は、肺12の領域の画像を得るために内視鏡のイメージングシステムが肺12のその領域を照明するのに用いるのと同じ光源であり得る。
【0055】
一部の実施形態では、光ファイバ10は、内視鏡によるイメージングにも用いられる光ファイバである。一部のこうした実施形態では、光源14は、イメージング用に内視鏡が用いる光源とは異なるので、同じ光ファイバ14を2つの異なる光源(光源14及びイメージング光源)と共に用いて2つの異なる機能(光ファイバの場所特定及び肺の領域のイメージング)を果たす。
【0056】
上述のように、この実施形態のレーザ光のパルスレートは20MHzであり、レーザ光は数秒間又は数分間注入される。したがって、何千ものパルスが用いられる。各パルスは、500ps未満のパルス長を有し得る。それらのパルスの1つの進行について考える。
【0057】
レーザ光のパルスは、光源14から放出されて光ファイバ10の長さを進む。光ファイバ10は、その遠位先端からレーザ光のパルスを多数の光子(図1に光22として示す)として放出する。光ファイバ10の遠位先端からの光のパルスの放出時間は、t=0と指定され得る。
【0058】
本実施形態では、光子は光ファイバの端から直接放出される。光ファイバの端は、点光源とみなすことができる。他の実施形態(以下参照)では、光子は光ファイバの側面から放出されることもできる。
【0059】
本実施形態では、光ファイバの端からの光子の放出には指向性があり、光ファイバの遠位部の縦軸の延長である好ましい方向を有する。他の実施形態では、ファイバの先端は、例えば高散乱構造を光ファイバの遠位端に加えることにより、全方位性のより高い光の放出をもたらすよう構成され得る。こうした高散乱構造を加えることで、状況によっては、検出器16の方向に放出される光の量を増加させることができ、したがって検出器16により検出される光子の量を増加させることができる。
【0060】
手又は指のすぐそばに明るい白色光トーチを配置すると分かるように、組織を通る光信号の減衰は激しいかもしれないが、赤色波長ではそれ未満の波長よりも小さい(ゆえに、白色光は組織の通過後に赤色に見える)。
【0061】
本実施形態では、光ファイバ10の遠位先端から放出された少数の光子のみが体内から脱出し得る。光ファイバ10により放出された光子の多くは、組織中に吸収される。体内から脱出した(したがって、検出器16により観察することができる)光子の大半は、身体の不規則な組織構造からの散乱が多いことがある。各光子が組織を通るのに要する時間は、その光子が組織を通る間に散乱する回数に応じて変わり得る。
【0062】
光ファイバ10により放出された光子の一部は、組織を通過して体外へ出る。組織を通過して体外へ出た光子は、弾道光子、スネーク光子、及び/又は高散乱光子を含み得る。
【0063】
弾道光子は、実質的に散乱せずに直線状に散乱媒体を通る光子であり得る。こうした光子は、散乱媒体の原子と衝突していないとみなすことができる。弾道光子は、実質的にコヒーレント状態にある。光ファイバ10の端から放出された光子の一部は、弾道光子であって実質的に散乱せずに組織を通過するとみなすことができる。
【0064】
本実施形態では、弾道光子と称される光子は、ファイバの先端の非常に近くで少なくとも1回散乱している。システムの幾何学的形状により、真の弾道光子(全く散乱していない光子)が検出器16により受信されないことになり得る。他の構成では、弾道光子とみなされる光子は、真の弾道光子を含み得る。
【0065】
多くの実施形態では、弾道光子と散乱回数が非常に少ない光子との区別が可能であるようなシステムの時間分解はありそうにない。真の弾道光子及び散乱事象数が非常に少ない光子は、まとめて弾道光子として分類され得る。
【0066】
実験上、弾道光子と称される光子は、他の光子の前に到達したことが認められる光子であり得る。本実施形態では、絶対的なタイミング較正はない。弾道光子の到達時間は、それらの到達の観察により事後規定される。
【0067】
弾道光子は、組織を高速で通過して時間t=Xに検出器16に到達することができ、ここでXは、光速(媒体中の)及びファイバ先端からの検出器16の距離を用いて求めることができる。検出器16が受信した弾道光子の数は、光ファイバ10の先端と検出器16との間の散乱媒体の厚さと共に指数関数的に減少し得る。
【0068】
わずかに散乱した光子は、スネーク光子と称され得る。スネーク光子は、組織中で少数の散乱事象(弾道光子と呼ばれるものよりも多い)があったが、依然として有用な場所情報を提供し得るものであり得る。スネーク光子は、ある程度のコヒーレンスを保持し得る。スネーク光子は、弾道光子からわずかに遅れてt=X+ΔX1で到達し得る。スネーク光子は、組織を高速で通過し得るが、弾道光子ほど高速ではない。本実施形態では、ΔX1が1ns未満である光子をスネーク光子とみなすことができる。他の実施形態では、異なる時間範囲を用いてどの光子がスネーク光子であるかを判定することができる。
【0069】
実際には、散乱事象がない光子から非常に多数の散乱事象がある光子まで連続スケールがあると考えることができる。スネーク光子という用語が用いられるのは概して、弾道光子と称されないが依然として関連する場所情報を与えると考えることができる光子を指す場合である。
【0070】
散乱度がより高い光子は、高散乱光子、非常に散乱した(very scattered)光子、又はランダム散乱(randomly scattered)光子と称され得る。高散乱光子は、スネーク光子の後にt=X+ΔX2で到達し得る。高散乱光子は、組織中に広範囲に散乱した可能性がある。本実施形態では、ΔX2が1nsよりも大きい光子を高散乱光子とみなすことができる。本実施形態では、高散乱光子は、2cmよりも悪い分解能で空間情報を与える光子であり得る。他の実施形態では、異なる時間を用いて弾道光子、スネーク光子、及び高散乱光子を区別することができる。時間ΔX1、ΔX2は、実験に大きく依存し得る。
【0071】
一部の実施形態では、全光子の受信後に、弾道光子とみなされる光子、スネーク光子とみなされる光子、及び高散乱光子とみなされる光子の判定を行うことができる。ΔX1、ΔX2は、光子データの受信後に事後規定され得る。
【0072】
体外に出た光子は、弾道光子、スネーク光子、及び高散乱光子を含み得る。体外に出る光子の一部は、検出器16の方向に進んでレンズ18により検出器16に集束される。レーザ源14の分光帯域内にない光子は、検出器16の手前の狭帯域ラインパスフィルタ17により遮断され得る。狭帯域ラインパスフィルタ17は、雑音(例えば、光ファイバ10以外の発生源からの不要な光子)を低減することができる。弾道光子画が最初に到達し、次にスネーク光子が到達し、その次に高散乱光子が到達する。
【0073】
実際には、検出器16に到達する各パルスからの光子の数は非常に少ない場合がある。特に、少数の弾道及び/又はスネーク光子しか各パルスから得られない場合がある。パルスによっては、検出器16に到達するそのパルスからの光子がゼロであり得る。したがって、後述のように、多数のパルスからの光子が検出器16により収集されて結果が合計される。
【0074】
検出器16は、各検出された光子を電気信号に変換する。本実施形態では、検出器16は、スタートストップモードで時間相関単一光子計数(TCSPC)により動作する。光源14と検出器16とは、電気接続を介して同期する。レーザ光源14は、光のパルスを生成すると電気パルスも検出器16に送る。検出器16は、電気パルスを受け取るとタイミングを開始する。検出器16は、光子を認めると(例えば、検出器アレイの検出器素子が光子を認めると)タイミングを停止する。検出された光子を表す電気信号は、パルスの伝送時間と光子が検出器16に到達した時間との差を表す到達時間を含む。
【0075】
他の実施形態では、検出器16は、光子を検出するとタイミングを開始し、次の電気信号を受け取るとタイミングを停止する(リバーススタートストップモード)。パルス間の時間が既知なので、到達時間を判定することができる。他の実施形態では、任意の適当な到達時間判定方法を用いることができる。
【0076】
本実施形態では、検出された光子を表す電気信号は位置も含む。位置は、32×32アレイのどのアレイ素子(単数又は複数)が光子を検出したかに基づいて判定される。
【0077】
他の実施形態では、任意の適当な各検出光子の到達時間及び/又は位置判定方法を用いることができる。各光子の到達時間及び/又は位置は、任意の適当な信号又は信号の組み合わせにより表すことができる。
【0078】
電気信号は、プロセッサ20に渡される。プロセッサ20は、多数のパルスにわたる電気信号を収集する。プロセッサ20は、ヒストグラム化により電気信号を合成する。他の実施形態では、プロセッサ20は、任意の適当な方法で電気信号を合成し得る。さらに他の実施形態では、電気信号は、検出器16の回路で合成され得る。
【0079】
各光子の到達時間はその各パルスの伝送時間に対して判定されるので、多数のパルスにわたる結果を合成することができる。例えば、全ての弾道パルスが、どのパルスに由来するかに関係なく時間t=Xで記録され得る。本実施形態では、パルスレートは20MHzであり、結果は数秒で得られる。他の実施形態では、結果は任意の適当な期間で、例えば1秒未満、数秒、又は最大1分で得ることができる。任意の適当なパルスレートを用いることができる。
【0080】
プロセッサ20は、時間ビン内の光子到達を記録し、時間ビンはこの例では50ps時間ビンである。他の実施形態では、任意の適当なサイズの時間ビンを用いることができる。
【0081】
50ps間隔のうちいずれかの画像を生成することができる。50ps時間ビン内の光子到達を記録することで、到達する光子のビデオを生成することができ、各50ps時間ビンはそのビデオのフレームに対応する。
【0082】
プロセッサ20は、判定された到達時間が所望の時間ビン内に、例えば最初の50ps時間ビン内にある電気信号を選択する。
【0083】
一部の実施形態では、時間ゲートがプロセッサ20により適用され、プロセッサ20は、判定された到達時間が時間ゲート前である電気信号を選択する。他の実施形態では、時間ゲートが検出器16により適用され、検出器16は、判定された到達時間が時間ゲート内にある電気信号のみをプロセッサ20に渡す。
【0084】
一部の実施形態では、時間ゲートは上限時間閾値を含み、選択された信号は、到達時間が上限時間閾値未満の信号である。他の実施形態では、時間ゲートは上限及び下限時間閾値の両方を含み、選択された信号は、到達時間が下限時間閾値を超え上限時間閾値未満の信号である。
【0085】
本実施形態では、信号は、到達時間に応じてビンに仕分けられ、プロセッサ20又は検出器16は、所与の1つ又は複数のビン内に入る到達時間を有する電気信号を選択する。
【0086】
プロセッサ20は、この実施形態では選択された時間ビン内に入る信号である選択された信号から画像を形成する。本実施形態では、画像は、検出器アレイ16の素子毎に1画素を含む。検出器アレイ16は、32×32の素子を含むので、形成画像は32×32画素画像である。画像内の各画素の輝度は、選択された時間ビン中に対応するアレイ素子が受信した、その時間ビン内に到達時間がある光子の数を表す。検出器アレイの検出器素子のそれぞれが、検出器アレイに対して異なる角度原点(angular origin)を有する光を検出する。
【0087】
図2a~図2cは、光子到達時間を表す、種々の時間ビンでの観察が予想され得る画像の種類を示す概略図である。画像は、肺12の表示に重ねられる。図2a~図2cは、画像における画素の効果を示すものではない。図2a~図2cは、光ファイバ10の先端により放出されて身体を通過する光を、サイズを徐々に増加させた円形領域30、32、34として表す。ヒトの胴の組織が不均質であり、そこに含まれる一部のタイプの組織(例えば、骨)は、他のタイプの組織とは異なる程度に光を吸収及び/又は散乱させ得るので、ヒトの胴の実際の画像において、得られる光の領域は円形でないことが予想されることに留意されたい。
【0088】
図2aは、t=Xでの第1時間ビン(例えば、50ps時間ビン)内の弾道到達の観察画像を図示したものである。第1時間ビン内に受信された光子は、弾道光子、すなわち組織中で散乱しないか又はごく少数しか散乱しない光子とみなすことができる。弾道光子は、点光源を表すとみなすことができる画像中の分布30を形成する。
【0089】
図2bは、t=X+ΔX1での時間ビン(例えば、50ps時間ビン)内の光子の観察画像を図示したものである。例えば、ΔX1は2nsであり得る。t=X+ΔX1は、わずかに散乱したスネーク光子が到達する時間である。わずかに散乱したスネーク光子は、図2aの点光源30よりも大きな分布32を画像中に形成する。
【0090】
図2cは、t=X+ΔX2での時間ビン(例えば、50ps時間ビン)内の光子の観察画像を図示したものである。例えば、ΔX2は5nsであり得る。t=X+ΔX2は、非常に散乱した光子が到達する時間である。散乱光子は、図2cの分布34よりもこの場合も大きな分布を画像中に形成する。
【0091】
さらに別の実施形態では、ΔX1及びΔX2は0.5ns及び1.0nsである。他の実施形態では、任意の適当な時間を用いることができる。一部の実施形態では、写真(photos)が受信される時間ビン毎に画像がプロットされる。
【0092】
要約すると、弾道光子について得られた画像(図2a)は、光ファイバの端における点光源30を示す。スネーク光子(図2b)は、点光源30の位置の周りで後に到達した雲(cloud)32として現れる。さらに散乱した光子(図2c)は、点光源0の位置の周りでさらにより散乱した雲34として現れる。
【0093】
本実施形態では、プロセッサ20は2つの画像を形成する。第1画像では、時間ビンを用いて弾道光子を表す信号を選択する。第1画像は、点光源の画像のように見え得る。
【0094】
厳密に言えば、弾道光子は全く散乱していない光子だが、本実施形態では、弾道光子の範疇は、非常に少量の散乱がある光子を含み得る。例えば、光ファイバ10の先端が検出器16に向いていない場合、弾道光子に分類された光子は、検出器に達するために少なくとも一度散乱しなければならなかった可能性がある。こうした極低散乱の(very-low-scattering)光子も弾道光子と称され得る。
【0095】
プロセッサ20は、さらに別の時間ビンを用いてスネーク光子を表す信号が選択される第2画像を形成する。
【0096】
他の実施形態では、1つの画像のみがプロセッサ20により形成される。画像は、弾道光子のみを用いた画像、弾道光子及びスネーク光子の両方を用いた画像、又はスネーク光子のみを用いた画像であり得る。
【0097】
さらに他の実施形態では、全到達時間にデータが収集され得る。選択された到達時間に画像が形成され得る。時間ゲートの幅又は時間ゲートの限度が、弾道及び/又はスネーク光子の組み合わせを選択するために所望に応じて選択される。弾道及び/又はスネーク光子の組み合わせは、ファイバ先端の場所の判定を最大化するようなものであり得る。一部の実施形態では、1つ又は複数の選択された時間ビンから画像が形成され得る。一部の実施形態では、所与の到達時間前に又は2つの到達時間の間に受信された全光子を用いて画像が形成され得る。
【0098】
プロセッサ20は、第1画像及び/又は第2画像を処理することにより光ファイバ10の先端の場所を判定する。光ファイバ10は内視鏡の一部なので、光ファイバ10の先端の場所は、内視鏡の遠位端の場所を表すとみなすことができる。したがって、プロセッサ20は、内視鏡の遠位端の場所を判定することができる。
【0099】
本実施形態では、プロセッサ20は、検出器アレイの各素子が受信した光子の数を表す各画像の画素の輝度を自動的に用いて、光ファイバ10の先端の場所を判定する。先端の場所を表す画素の輝度は、周囲の画素の輝度よりも高いと予想される。他の実施形態では、任意の適当な先端場所判定方法を用いることができる。一部の実施形態では、場所は、画像を形成せずに電気信号から判定される。
【0100】
一部の実施形態では、画像がユーザに対して表示され、ユーザは画像から光ファイバの先端の位置を判定する。他の実施形態では、任意の自動又は半自動場所判定方法を用いることができる。
【0101】
光ファイバ10の先端の位置を、光ファイバが挿入された組織領域の画像上に表すことができる。例えば、X線又はCTスキャンから得られた画像が表示され、光ファイバの先端の判定位置が、X線又はCTスキャン画像に重ねられ得る。他の実施形態では、他のタイプの医用画像、例えば他のモダリティから得られた画像を用いることができる。
【0102】
本実施形態では、光ファイバ10はファイバ内視鏡の一部である。光ファイバ10の先端の場所を判定することにより、ファイバ内視鏡の場所が判定される。判定された内視鏡の場所、又はシステムから得られたユーザによる内視鏡場所判定を補助する画像に、この場合は組織である散乱媒体の既存の画像が重ねられる。既存の画像は、例えば、X線又は他の医療スキャンを含み得る。これにより、ユーザが所望の組織の場所で内視鏡の場所を確認することが可能となり得る。画像の位置合わせは、身体上のマーカ又は他の方法により行うことができる。
【0103】
弾道光子又はスネーク光子画像から判定された場所は、xy平面と指定され得る検出器アレイ16の向きにより規定された平面における場所である。一部の実施形態では、光ファイバ10の場所は、検出器16により受信された光子の飛行時間(例えば、弾道光子の飛行時間)を用いて検出器16と光ファイバ10の先端との間の距離を求めることによっても判定される。
【0104】
一部の実施形態では、光ファイバ10の先端の場所は、経時的に繰り返し判定される。一部のこうした実施形態では、光ファイバ10が挿入される組織領域の画像に、光ファイバ10の先端の位置のインジケータが重ねられてもよい。位置のインジケータは時間と共に移動し得る。
【0105】
一部の実施形態では、光ファイバ10の先端の点位置が判定され、組織領域の画像上に点として示される。一部の実施形態では、弾道又はスネーク光子画像が組織領域の画像に重ねられてもよい。一部のこうした実施形態では、単一の点位置が判定されないことがある。
【0106】
一部の実施形態では、2つ以上の検出器16が用いられる。例えば、検出器16は、光ファイバ10が位置決めされる身体に対してそれぞれ異なる角度で配置され得る。一部のこうした実施形態では、異なる検出器16からの結果を用いて、3次元で光ファイバ先端の場所を判定することができる。
【0107】
一部の実施形態では、検出器16は、身体に対して異なる位置に動かされる。例えば、検出器16をアームに取り付けることができ、アームを異なる位置に動かすことができる。検出器16の異なる位置を用いて、光ファイバ先端の場所の改善をもたらすことができる。異なる位置16を用いて、骨等の特定の散乱体を回避する図を得ることができる。
【0108】
本実施形態では、光ファイバの端の場所を検出することが目標だが、さらに他の実施形態(後述)では、光ファイバのそれ以外の部分もイメージングされ得る。図2aに表されているような弾道光子画像から、光ファイバの先端に関する正確な点光源の場所を得ることができる。例えば、光ファイバの先端は、センチメートル精度で判定することができる。
【0109】
点光源(光ファイバの端)と検出器との間に散乱媒体があるにも関わらず、弾道光子を用いて点光源の画像を形成することができる。距離に伴う指数損失に起因した少数の弾道光子は、状況によっては複雑な構造のイメージングを困難にし得る。しかしながら、本実施形態では、光ファイバの先端は、明るく照明された単一の点光源とみなすことができる。
【0110】
スネーク光子を含む画像(例えば、図2bの画像と同様のもの)を、光ファイバの先端の場所を得るのに用いることができる。スネーク光子は、弾道光子よりも広がるが、ファイバ先端の場所に関する有用な空間情報を依然として与えることができる。一部の実施形態では、スネーク光子を弾道光子と組み合わせて用いて、信号強度を向上させる。弾道光子よりもさらに多くのスネーク光子があってもよい。
【0111】
一部の実施形態では、スネーク光子に対応する信号を用いて、散乱媒体(この場合は組織である)の散乱プロファイルに関する情報を得る。組織タイプが異なれば、散乱プロファイルも異なり得る。例えば、健康肺組織は、罹患肺組織とは異なる散乱プロファイルを有し得る。スネーク光子の散乱度を用いて、組織表現型を判定することができる。例えば、散乱度を用いて、組織が健康か罹患しているかを判定することができる。ファイバ先端の場所が既知であれば、組織が健康か罹患しているかに関する情報を体内の特定の場所に関連付けることができる。例えば、一実施形態では、弾道光子を用いた画像でファイバ先端の場所が特定され、関連組織タイプがスネーク光子を用いた対応の画像から判定される。
【0112】
高散乱光子は、全ての空間情報を失い得る。スネーク光子を用いれば、何らかの空間情報を保持する散乱光子を用いて組織をイメージングすることができる。高散乱光子は、通過した組織の領域が広すぎるので、内視鏡が存在していた組織に関する情報を提供できない可能性があるが、スネーク光子はその組織からより直接的に来た可能性がある。
【0113】
本実施形態では、高散乱光子は無視される。高散乱光子は、画像から時間ゲートで除外され得る。状況によっては、高散乱光子は、有用な空間情報をほとんど有し得ない。高散乱光子が有する空間情報があっても、ΔX2の値が大きいほど有用ではなくなり得る。
【0114】
本実施形態の方法は、組織から脱出する少数の光子のイメージングにより、光ファイバの場所(したがってファイバ内視鏡の場所)を光学的に観察する方法を提供することができる。光子の時間分解検出を用いて、散乱光子のうち後着のものから弾道光子が分離される。検出器16の非常に正確な時間分解測定又はゲーティングにより、非時間分解測定でイメージングに影響を及ぼすであろう後着光子を放棄することで、ファイバ先端の場所のイメージングを成功裏に達成することができる。弾道光子が画像を形成できることが、場合によってはファイバ内視鏡の場所の正確な判定に重要であり得る。時間ゲーティングの精度は、非弾道光子の抑制の成功、したがって内視鏡先端の場所特定の精度を定め得る。
【0115】
原理上、組織を通過して検出器16に至る光子の全て(弾道光子、スネーク光子、及び高散乱光子を含む)を画像の形成に用いることができる。しかしながら、多くの場合、光ファイバは、非常に低い空間分解能しか有しないような画像中に位置する可能性がある。検出器16により受信された全光子を用いる場所の判定の精度は低い場合がある。弾道光子、スネーク光子、又は弾道光子及びスネーク光子の組み合わせのみを用いることにより、かなり高い空間分解能で光ファイバの場所を特定することができる。
【0116】
光ファイバから受信された光の時間分解測定を用いることにより、ファイバ内視鏡の場所をより正確に知ることができる。ファイバ内視鏡の場所をより正確に知ることは、複数のシナリオで重要であり得る。例えば、内視鏡の場所特定の改善は、観察された異常組織の場所、例えば内視鏡イメージングにより観察された異常組織又は生検により回収された異常組織の場所の判定に重要である。内視鏡の場所特定の改善は、臓器の複数領域の効果的なサンプリングに重要であり得る。内視鏡の場所特定の改善により、サンプリングが正確な場所で行われることを確実にすることが容易になり得る。
【0117】
弾道又はスネーク光子で内視鏡の場所を正確にイメージングするために、高感度カメラ(検出器16)が用いられる。カメラは、組織から出る少数の光子、及び実際にはさらに少数の弾道光子を検出可能である。強レーザ光フィルタを検出時に用いて、関心の波長以外の波長の光子を除去することもできる。
【0118】
本実施形態では、CMOS SPADに基づくもの等の単一光子検出器アレイが用いられる。画像の形成には空間情報が必要である。本実施形態では、その空間情報は検出器アレイにより提供される。検出器アレイの異なる検出器素子に当たる光子は、異なる空間位置から到達する。
【0119】
しかしながら、他の実施形態では、検出器アレイではなく単一の検出器が用いられる。単一の検出器は、高性能の単一点単一光子検出器であり得る。空間情報は、走査型イメージングシステムを用いて得ることができる。
【0120】
一実施形態では、検出器16は単一の検出器であり、装置は、検出器の位置を経時的に変えるよう、又はレンズ若しくは結像系を調整して光の収集場所を変えるよう構成された走査系をさらに備える。位置の変化は、異なるパルスが異なる検出器位置で受信されるようなものであり得る。レンズ又は結像系の変化は、検出器は移動しないが異なる時間に異なる位置からの光を受信するようなものであり得る。位置の変化は、検出器アレイの画素サイズと同等以下の少量ずつであり得る。したがって、走査型検出器は、高分解能画像を取得可能であり得る。他の実施形態では、任意の適当な検出光子の空間情報を取得する手段を用いることができる。
【0121】
図1を参照して上述した実施形態では、光が光ファイバの端からのみ放出される。他の実施形態では、同様の原理をファイバ長の場所特定に拡張することができる。用いられる光ファイバは、光子がファイバの側面から散乱するようなものであり得る。全長に沿って高散乱である光ファイバを用いることができる。側方散乱光の量を増加させる目的の高散乱ファイバが現存している(例えば、Corning Fibrance)。
【0122】
一実施形態では、検出器16は、ファイバの先端から散乱する光子に加えてファイバの長さから散乱する光子(すなわち、ファイバの側面から放出される光子)を検出する。弾道光子及び/又はスネーク光子を用いて、患者内の光ファイバの経路を判定することができる。光ファイバの経路は、プロセッサ20により形成された画像中に緩やかな曲線として現れ得る。
【0123】
光ファイバの側面から放出された光子からの信号は、ファイバ端から放出された光からの信号よりもはるかに弱い場合がある。一部の実施形態では、光源が緩やかに曲がった線の形態であるという事前知識により、高度画像処理技術を用いてファイバ長の場所の正確な画像を再構成することができる。例えば、画像処理技術は、確率アトラスに基づく手法及び/又は制限曲線フィット(restricted curve fit)の最適化を含み得る。
【0124】
一部の実施形態では、図1のシステムを収容する環境が、測定波長(すなわち、検出器16により検出され光ファイバの場所の判定に用いられる光子の波長)とは異なる1つ又は複数の波長の光で照明される。環境は、内視鏡検査が行われる部屋、例えば病棟又は手術室であり得る。
【0125】
検出器16により検出された光ファイバからの光子の数は、少ないことが予想される。光ファイバに光を供給するレーザ源の波長を含まない光で部屋を照明することにより、検出波長の雑音レベルを減らすことができる。状況によっては、異なる波長の照明が用いられる場合、光ファイバから生じる光子以外はTCSPC測定帯域(検出器が許容する周波数帯域)の光子は実質的に室内に存在し得ない。環境の照明に用いられるのとは異なる波長を光源に用いることで、雑音(すなわち、他の光源からの不要な光子)を低減することができる。
【0126】
一部の実施形態では、環境の照明は蛍光ランプからの光によるものである。内視鏡検査は、頭上の蛍光灯で照明された室内で行われることが多い。蛍光ランプは、白色として知覚されるが実際には別個の帯域を含む光を生成する。
【0127】
光源は、光ファイバを通過する光が蛍光ランプの暗い中間帯スペクトル領域内にある波長を有する。TCSPC測定は、その場合は暗い中間帯スペクトル領域内で行われる。
【0128】
環境の照明に用いられるのとは異なる波長を光源に用いることにより、検出器16により受信された光子の数が少ないと予想されるとしても、光ファイバに関する場所の判定を十分に明るい室内で行うことができ、弱光又は暗闇で行う必要がない。これが特に有用なのは、部屋が手術室又は他の医療施設である場合である。
【0129】
上述の実施形態では、光は、患者の体内に位置決めされた光ファイバから放出され、患者の外部に位置決めされた検出器により受信される。しかしながら、光が患者の外部の光源により放出されて患者内の光ファイバにより受信される代替的な環境がある。
【0130】
こうした一実施形態では、短パルスレーザ源からの光が患者の身体にわたって走査される。例えば、光は、患者の胴の2次元領域にわたって走査され得る。光ファイバが患者の肺内に位置決めされる。光源からの一部の光は、患者の組織を通過して光ファイバの先端から光ファイバ内に到達する。側面から発光するよう構成された光ファイバの場合、光は光ファイバの側面を通して到達し得る。
【0131】
検出器が、光ファイバの近位端(患者の外部にある端)に結合される。検出器は、例えば単一光子検出器であり得る。光ファイバに到達する光子は、検出器により検出されて電気信号に変わる。光子の特着時間は記録される。各光子の位置も、その光子が伝送されたときの走査光源の位置から判定され得る。
【0132】
弾道光子及び/又はスネーク光子に対応する信号が、例えば時間ゲーティング又は1つ又は複数の時間ビン内の信号の選択により選択される。選択された信号を用いて画像が形成され、画像は、光ファイバに伝送された光を用いて光ファイバの場所を判定するのに用いられる。状況によっては、暗闇で(すなわち、患者内で)光子を受信することが有益であり得る。状況によっては、光を患者の内部から外部へ伝送するのではなく、光を患者の外部から内部へ伝送することにより、雑音レベルを低減することができる。
【0133】
上記実施形態では、ヒト患者の肺内の光ファイバの場所が判定される。しかしながら、さらに広い用途が可能であり得る。光ファイバを、任意の適当な医学的又は獣医学的用途で任意のヒト又は動物組織中に位置決めすることができる。例えば、光ファイバは、ヒト又は動物被検体の肺、上部消化管、下部消化管、又は尿路に送られる内視鏡の一部であり得る。光ファイバは、任意の適当な臓器又は他の組織中に位置決めされ得る。他の実施形態では、光ファイバは、ヒト又は動物組織を含まない散乱物質内に位置決めされ得る。
【0134】
一部の実施形態では、光ファイバから放出された(又は光ファイバを通して受け取られた)光を用いて光ファイバの場所を特定する方法を用いて、多種多様な医学的用途のいずれか1つで医療機器の場所を判定することができる。
【0135】
場所が判定される光ファイバは、任意の適当な医療機器、例えば内視鏡又はカテーテルデリバリシステムの一部であり得る。状況によっては、光ファイバは医療機器の一部でなくてもよいが、医療機器の一部と同一場所に位置付けてもよい。例えば、光ファイバをカテーテル内に又はガイドワイヤに沿って配置することができる。光ファイバを、任意の配置可能なデバイス、例えば体内に植え込まれるか又は他の方法で送り込まれる任意のデバイスと関連付けてもよい。光ファイバの場所を判定することにより、医療機器の場所も判定することができる。一実施形態では、医療機器は、組織の切除又は修正用のエネルギー源を含む。
【0136】
多くの医療用途で、体内に位置決めされた医療機器の場所が判定され得る。上述の方法は、任意の適当な医療用途で、例えば訓練、内視鏡検査、ステントの留置、又はカテーテルの留置で用いることができる。例えば、訓練では、内視鏡のファイバから放出された光を用いて内視鏡の場所を判定する方法を用いて、訓練中の人物が内視鏡を正確に配置したかを判定することができる。
【0137】
現在の臨床では、反復X線を用いて、カテーテル等の体内に配置すべきデバイスの位置を判定し得る。デバイスは、X線で可視となるように放射線不透性物質でコーティングされ得る。反復X線は、患者をX線に曝露させる。光に基づいた方法を代わりに用いてデバイスの位置を判定することにより、被曝を低減することができる。一部の実施形態では、光放出を用いて判定された場所に、患者のX線画像を重ねることができる。
【0138】
状況によっては、検出器16を用いて、光ファイバの場所のリアルタイムビデオを得ることができ、これは、光ファイバが患者の体内で動く際にその動きを見せることができる。リアルタイムビデオは、光ファイバが位置付けられた場所のライブ映像の表示を可能にし得る。リアルタイムビデオは、患者を照射せずに得ることができる。
【0139】
一部の実施形態では、ファイバから放出された光を用いて場所を判定する方法は、自動手術、例えばロボット手術に関して用いられる。例えば、光を用いて判定された場所を用いて、例えば腹腔鏡手術中に体内でロボット作動されるメス等の医療機器の場所を確認することができる。
【0140】
放出された光を用いて場所を得ることで、体内で実行される手技、例えばロボットによる手技の信頼が高まり得る。これを用いて、所望の場所に達したことを確かめることができる。組織試料を採取する手技では、これを用いて所望の試料の場所から確実に試料を採取することができる。複数の試料を採取する手技では、これを用いて複数の試料の間隔が所望通りであることを確実にすることができる。
【0141】
散乱媒体中のファイバの場所を判定する原理証明実験として、第1実験的実証(experimental demonstration)を図1のシステムを用いて行った。第1実験的実証では、光ファイバを牛乳(乳脂肪球が水系溶液中に分散した乳化コロイド)中に吊り下げた。32×32アレイのCMOS SPAD及び単純なレンズ装置を用いてイメージングを行った。視野は各軸15cm以下とした。
【0142】
図3a~図3cは、第1実験的実証の実験結果を示す。パルスの到達に対する特定の時間に画像が形成され、t=0は、パルスの第1光子の到達時間を表す。図3aは、t=0nsの時間ビンに関する実験結果を示す。図3aは、弾道光子を含むと予想され得る。図3bは、t=2nsの時間ビンに関する結果を示す。図3bは、スネーク光子を含むと予想され得る。図3cは、t=5.5nsの時間ビンに関する実験結果を示す。図3cは、図3a及び図3bの光子よりも大きく散乱した光子を含むと予想され得る。
【0143】
図3aの明領域は図3bのものよりも小さく、図3bの明領域は図3cのものよりも小さいことが分かる。予想通り、後着光子は、先着光子よりも大きな検出器の空間領域に分布する。
【0144】
図3a~図3cにおいて、早い到達時間ではイメージング検出器に達する散乱光が少ないが、予想通りにより多くの散乱光が後で到達することが明確に観察される。比較のために、コロイド懸濁液(牛乳)に散乱した光の非時間分解画像を図4として示す。非時間分解画像は、全光子(弾道、スネーク、及び高散乱)を含み、時間ゲーティングを用いない。
【0145】
図5は、散乱光点の形成を示す種々の画像のプロファイルである。線40は、非時間分解画像(図4)のプロファイルである。線42は、弾道先着光子(図3a)のプロファイルである。線44は、後着散乱光子(図3c)のプロファイルである。
【0146】
図6は、到達時間に対して表した散乱光点のプロファイルを示す。振幅をz軸、プロファイルを縦軸、到達時間を横軸に表す。プロファイルが時間と共に広がることが分かる。
【0147】
第1実験的実証は、15cmに制限された視野を有するが、これは実用のために選択したものである。この視野内で、非時間分解画像(図4)は明確な円形パターンを示し、これは光源の判定を可能にし得る。しかしながら、図1のシステムが用いられる多くの実践的シナリオでは、散乱は第1実証的実験で観察されたものよりもはるかに複雑であると予想される。散乱の複雑さは、骨を含むヒト組織の不均質な性質に起因し得る。人体における複雑な散乱は、体外に出る際に単純なパターンをもたらす可能性が低い。したがって、時間分解イメージングが内視鏡の場所の判定に重要であり得る。
【0148】
第1実験的実証では、光源は実際には正確に非時間分解画像(図4)の中心にはなく、それは画像の平面における原パルスの方向により画像が偏るからである。
【0149】
牛乳の散乱密度は、ヒト組織と同等ではなかった。用いられた牛乳の深さは、例えば肺腔の組織の厚さとほぼ同じであったが、組織の散乱特性には大きなばらつきがあり得る。しかしながら、第1実験的実証を原理証明として用いた。
【0150】
第1実験的実証では、単純な散乱物質中の弾道光子イメージング原理を実証したが、実際の組織中の内視鏡の場所は、骨等を含む大きく異なる組織特性に起因してより複雑なデータを与える場合がある。
【0151】
第2実験的実証を、ニワトリの全身を用いて行った。図7aは、ニワトリの全身に散乱した光の弾道光子画像を示す。円50は、図7aの弾道画像における内視鏡先端の判定場所の中心にある。図7bは、ニワトリの全身に散乱した光の非時間分解画像を示す。
【0152】
第3実験的実証を、ヒツジの肺及び胸郭を用いて行った。図8aは、ヒツジの肺及び胸郭に散乱した光の弾道光子画像を示す。円52は、図8aの弾道画像における内視鏡先端の判定場所の中心にある。図8bは、ヒツジの肺及び胸郭に散乱した光の非時間分解画像を示す。
【0153】
第2及び第3実験的実証の結果は、複雑な組織から脱出する光(図7b及び図8b)が内視鏡先端の明確な場所を示すことができないことを実証している。一方、弾道光子画像(図7a及び8a)は、これらの初期の原理証明実験において1センチメートル以内までの非常に明確な内視鏡先端場所を示すことができる。
【0154】
図7a~図8bの実験において、1ns後に多くの空間情報が失われたことが分かった。スネーク光子は、状況によっては0.5nsより前に到達する光子であり得る。非時間分解画像は、全時間ビンで到達する光子から得られる画像であり得る。
【0155】
図7a~図8bの原理証明実験では、視野は15cmである。検出器サイズは幅32画素である。弾道光子は、2画素未満の幅まで観察され特定された。各画素は約0.5cmの幅を有するので、弾道光子画像の分解能は1センチメートルと考えられる。状況によっては、検出器の分解能は、システムの光学及び検出器分解能により制限され得る。状況よっては、検出の分解能は、散乱統計により制限され得る。
【0156】
本発明は単なる例として上述してあり、本発明の範囲内で詳細の変更を行うことができることが理解され得る。
【0157】
明細書及び(必要に応じて)特許請求の範囲及び図面に開示された各特徴は、独立して又は任意の適当な組み合わせで提供することができる。
図1
図2a-2c】
図3a
図3b
図3c
図4
図5
図6
図7
図8