IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

特許7152210測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置
<>
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図1
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図2
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図3
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図4
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図5
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図6
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図7
  • 特許-測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-03
(45)【発行日】2022-10-12
(54)【発明の名称】測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置
(51)【国際特許分類】
   G01N 27/416 20060101AFI20221004BHJP
   G01N 27/26 20060101ALI20221004BHJP
   G01N 27/409 20060101ALI20221004BHJP
【FI】
G01N27/416 376
G01N27/26 371A
G01N27/26 371E
G01N27/409 100
【請求項の数】 5
(21)【出願番号】P 2018137494
(22)【出願日】2018-07-23
(65)【公開番号】P2020016447
(43)【公開日】2020-01-30
【審査請求日】2021-04-09
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000017
【氏名又は名称】特許業務法人アイテック国際特許事務所
(72)【発明者】
【氏名】森 伸彦
【審査官】小澤 理
(56)【参考文献】
【文献】国際公開第2018/030369(WO,A1)
【文献】特開平10-267885(JP,A)
【文献】特開2018-063145(JP,A)
【文献】米国特許出願公開第2002/0017467(US,A1)
【文献】特開2018-040723(JP,A)
【文献】特表2009-511859(JP,A)
【文献】国際公開第2010/032641(WO,A1)
【文献】特開平10-221303(JP,A)
【文献】SCHONAUER, D. et al.,Selective mixed potential ammonia exhaust gas sensor,Sensors and Actuators B: Chemical,2009年,Vol.140, No.2,p.585-590
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/416
G01N 27/26
G01N 27/409
(57)【特許請求の範囲】
【請求項1】
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガスの濃度である特定ガス濃度を測定するための、前記特定ガス濃度と前記被測定ガス中の酸素濃度と前記混成電位セルの起電力との対応関係である測定用対応関係を導出する測定用対応関係導出方法であって、
(a)前記被測定ガス中の酸素濃度と水蒸気濃度との対応関係である酸素-水対応関係を取得するステップと、
(b)前記特定ガスと酸素と水蒸気とを含み前記被測定ガスを模擬したガスである試験用被測定ガスであって、該試験用被測定ガス中の水蒸気濃度p1と前記酸素-水対応関係において該試験用被測定ガス中の酸素濃度に対応する水蒸気濃度p0との比R(=p1/p0)が0.9以上1.1以下である該試験用被測定ガスを用いて、前記検知電極が該試験用被測定ガスに晒された状態での前記混成電位セルの起電力を測定する起電力測定処理を、該試験用被測定ガス中の特定ガス濃度と酸素濃度との少なくとも一方を変化させて複数回実行するステップと、
(c)前記複数回実行した起電力測定処理の結果に基づいて前記測定用対応関係を導出するステップと、
を含む測定用対応関係導出方法。
【請求項2】
前記被測定ガスは内燃機関の排ガスである、
請求項1に記載の測定用対応関係導出方法。
【請求項3】
前記ステップ(a)では、前記排ガス中の酸素濃度と水蒸気濃度とを測定する濃度測定処理を、前記内燃機関の運転状態を変化させて複数回実行し、該複数回実行した濃度測定処理の結果に基づいて前記酸素-水対応関係を導出して取得する、
請求項2に記載の測定用対応関係導出方法。
【請求項4】
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガス濃度を測定する特定ガス濃度測定装置の製造方法であって、
(d)請求項1~3のいずれか1項に記載の測定用対応関係導出方法を用いて導出された前記測定用対応関係を、前記特定ガス濃度測定装置の記憶部に記憶させるステップ、
を含む特定ガス濃度測定装置の製造方法。
【請求項5】
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガス濃度を測定する特定ガス濃度測定装置であって、
請求項1~3のいずれか1項に記載の測定用対応関係導出方法を用いて導出された前記測定用対応関係を記憶した記憶部、
を備えた特定ガス濃度測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定用対応関係導出方法,特定ガス濃度測定装置の製造方法,及び特定ガス濃度測定装置に関する。
【背景技術】
【0002】
従来、自動車の排ガスなどの被測定ガスにおけるアンモニア濃度などの特定ガス濃度を検出するガスセンサが知られている。例えば、特許文献1には、酸素イオン伝導性固体電解質に設けられた検知電極及び基準電極を備えた混成電位型のガスセンサが記載されている。また、固体電解質体と一対の電極とを有する混成電位セルの起電力EMFの特性として、混成電位の式に基づく以下の式(1)が知られている(例えば、非特許文献1)。
【0003】
【数1】
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-116371号公報
【非特許文献】
【0005】
【文献】D.Schonauer et al.,Sensors and Actuators B vol.140(2009),p.585-590
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、発明者が調べたところ、実際のセンサ素子では、起電力EMF,アンモニア濃度pNH3,酸素濃度pO2,H2O濃度pH2Oの関係が式(1)通りにはならない場合があった。この場合、式(1)を用いる代わりに、被測定ガス中の起電力,アンモニア濃度,酸素濃度,及び水蒸気濃度の対応関係を予め実験により調べておき、この対応関係を用いてアンモニア濃度を導出することが考えられる。しかし、この対応関係は変数が4つ(4次元)であるため、そのような対応関係を導出するには非常に多数の実験データの取得が必要になるという問題があった。
【0007】
本発明はこのような課題を解決するためになされたものであり、精度良く特定ガス濃度を測定できる測定用対応関係を比較的容易に導出することを主目的とする。
【課題を解決するための手段】
【0008】
本発明は、上述した主目的を達成するために以下の手段を採った。
【0009】
本発明の測定用対応関係導出方法は、
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガス濃度を測定するための、前記特定ガス濃度と前記被測定ガス中の酸素濃度と前記混成電位セルの起電力との対応関係である測定用対応関係を導出する測定用対応関係導出方法であって、
(a)前記被測定ガス中の酸素濃度と水蒸気濃度との対応関係である酸素-水対応関係を取得するステップと、
(b)前記特定ガスと酸素と水蒸気とを含み前記被測定ガスを模擬したガスである試験用被測定ガスであって、該試験用被測定ガス中の水蒸気濃度p1と前記酸素-水対応関係において該試験用被測定ガス中の酸素濃度に対応する水蒸気濃度p0との比R(=p1/p0)が0.9以上1.1以下である該試験用被測定ガスを用いて、前記検知電極が該試験用被測定ガスに晒された状態での前記混成電位セルの起電力を測定する起電力測定処理を、該試験用被測定ガス中の特定ガス濃度と酸素濃度との少なくとも一方を変化させて複数回実行するステップと、
(c)前記複数回の起電力測定処理の結果に基づいて前記測定用対応関係を導出するステップと、
を含むものである。
【0010】
この測定用対応関係導出方法では、特定ガスと酸素と水蒸気とを含み被測定ガスを模擬したガスを試験用被測定ガスとする。そして、検知電極が試験用被測定ガスに晒された状態での混成電位セルの起電力を測定する起電力測定処理を、試験用被測定ガス中の特定ガス濃度と酸素濃度との少なくとも一方を変化させて複数回実行し、その結果に基づいて測定用対応関係を導出する。また、この測定用対応関係導出方法では、予め被測定ガス中の酸素濃度と水蒸気濃度との対応関係である酸素-水対応関係を取得しておく。そして、起電力測定処理で用いる試験用被測定ガスにおける酸素濃度と水蒸気濃度との関係が、この酸素-水対応関係と同じ関係又は近い関係にあるようにしておく。より具体的には、試験用被測定ガス中の水蒸気濃度p1と、酸素-水対応関係において試験用被測定ガス中の酸素濃度に対応する水蒸気濃度p0との比R(=p1/p0)が0.9以上1.1以下となるようにしておく。こうすることで、導出された測定用対応関係は水蒸気濃度による起電力への影響(水蒸気の干渉性)が考慮されているから、この測定用対応関係を用いることで精度良く特定ガス濃度を測定できる。また、この測定用対応関係導出方法では、特定ガス濃度及び酸素濃度と独立して水蒸気濃度を変化させた複数回の起電力測定処理を行う必要がないから、起電力測定処理の回数を少なくすることができる。したがって、測定用対応関係を比較的容易に導出することができる。
【0011】
この場合において、前記比Rは値1に近いほど好ましい。例えば、前記比Rは0.95以上1.05以下としてもよいし、0.99以上1.01以下としてもよい。また、前記特定ガスは、可燃性ガスとしてもよい。また、前記特定ガスは、アンモニア、炭化水素(HC)、一酸化炭素(CO)、水素のいずれかとしてもよい。前記特定ガスが炭化水素である場合、前記特定ガス濃度は炭化水素の炭素換算濃度としてもよい。
【0012】
本発明の測定用対応関係導出方法において、前記被測定ガスは内燃機関の排ガスであってもよい。内燃機関の排ガス中の酸素濃度と水蒸気濃度との間には相関があることが多いため、本発明を適用する意義が高い。
【0013】
この場合において、前記ステップ(a)では、前記排ガス中の酸素濃度と水蒸気濃度とを測定する濃度測定処理を、前記内燃機関の運転状態を変化させて複数回実行し、該複数回の濃度測定処理の結果に基づいて前記酸素-水対応関係を導出して取得してもよい。
【0014】
本発明の特定ガス濃度測定装置の製造方法は、
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガス濃度を測定する特定ガス濃度測定装置の製造方法であって、
(d)上述したいずれかの態様の測定用対応関係導出方法を用いて導出された前記測定用対応関係を、前記特定ガス濃度測定装置の記憶部に記憶させるステップ、
を含むものである。
【0015】
この製造方法で製造される特定ガス濃度測定装置は、上述した本発明の測定用対応関係導出方法を用いて導出された測定用対応関係を記憶する記憶部を備えるから、この測定用対応関係を用いて精度良く被測定ガス中の特定ガス濃度を測定できる。
【0016】
本発明の特定ガス濃度測定装置は、
固体電解質体と、前記固体電解質体に配設された検知電極と、前記固体電解質体に配設された参照電極と、を有する混成電位セルを備えたセンサ素子を用いて被測定ガス中の特定ガス濃度を測定する特定ガス濃度測定装置であって、
請求項1~3のいずれか1項に記載の測定用対応関係導出方法を用いて導出された前記測定用対応関係を記憶した記憶部、
を備えたものである。
【0017】
この特定ガス濃度測定装置は、上述した本発明の測定用対応関係導出方法を用いて導出された測定用対応関係を記憶する記憶部を備えるから、この測定用対応関係を用いて精度良く被測定ガス中の特定ガス濃度を測定できる。
【0018】
本発明の特定ガス濃度測定装置は、前記検知電極が前記被測定ガスに晒された状態での前記混成電位セルの起電力を取得する起電力取得部と、前記被測定ガスの酸素濃度を取得する酸素濃度取得部と、前記測定用対応関係に基づいて前記取得された起電力と前記取得された酸素濃度とに対応する前記特定ガス濃度を導出する特定ガス濃度導出部と、を備えていてもよい。ここで、「起電力を取得する」は、起電力に換算可能な情報や起電力と同視できる情報を取得する場合を含む。「酸素濃度を取得する」は、酸素濃度に換算可能な情報や酸素濃度と同視できる情報を取得する場合を含む。
【図面の簡単な説明】
【0019】
図1】エンジン1の排ガス処理システム2の説明図。
図2】アンモニア濃度測定システム20の説明図。
図3】アンモニア濃度測定装置70の記憶部73に記憶された測定用対応関係74の概念図。
図4】測定用対応関係導出処理の一例を示すフローチャート。
図5】エンジンの排ガス中の酸素濃度と水蒸気濃度との対応を実測した結果の一例。
図6】実測値と実施例1の測定用対応関係74を用いた導出値との関係を示すグラフ。
図7】実測値と比較例1の測定用対応関係74を用いた導出値との関係を示すグラフ。
図8】水蒸気濃度及びアンモニア濃度とアンモニア濃度の変化率との関係を示すグラフ。
【発明を実施するための形態】
【0020】
次に、本発明の実施形態について、図面を用いて説明する。図1は、エンジン1の排ガス処理システム2の説明図である。図2は、排ガス処理システム2の一部であり排ガス中の特定ガス(ここではアンモニア)の濃度を測定するアンモニア濃度測定システム20の説明図である。図3は、アンモニア濃度測定装置70の記憶部73に記憶された測定用対応関係74の概念図である。
【0021】
排ガス処理システム2は、被測定ガスとしてのエンジン1の排ガスを処理するシステムである。エンジン1は、本実施形態ではディーゼルエンジンとした。排ガス処理システム2は、図1に示すように、エンジン1に接続された排ガス経路3と、排ガス経路3中に配設されたガスセンサ30を含むアンモニア濃度測定システム20と、を備えている。排ガス処理システム2には、排ガスの上流から下流に向かってDOC(Diesel Oxidation Catalyst, ディーゼル用酸化触媒)4、DPF(Diesel particulate filter,ディーゼル微粒子捕集フィルター)5、NOxセンサ5a、インジェクタ6、SCR(Selective Catalytic Reduction,選択還元型触媒)7、ガスセンサ30、及びASC(Ammonia Slip Catalyst,アンモニアスリップ触媒)8がこの順に配置されている。DOC4は、排ガス処理システム2が備える酸化触媒の1つであり、排ガス中のHC及びCOを水と二酸化炭素とに変換して無毒化する。DPF5は、排ガス中のPMを捕捉する。NOxセンサ5aは、DPF5を通過した後の被測定ガスに含まれるNOx濃度を検出する。インジェクタ6は、アンモニアとアンモニアを生成可能な物質(例えば尿素)との少なくとも一方を排気管内に注入してSCR7に送り込む装置である。本実施形態では、インジェクタ6は尿素を注入し、注入された尿素は加水分解されてアンモニアが生成される。SCR7は、インジェクタ6により排気管内に供給されるアンモニアを利用して、排ガス中の窒素酸化物(NOx)を還元して無害なN2とH2Oに分解する。SCR7を通過した後の排ガスは配管10内を流れる。ガスセンサ30は、この配管10に取り付けられている。ASC8は、配管10の下流に配置されている。ASC8は、排ガス処理システム2が備える酸化触媒の1つであり、DOC4(前段DOC)に対して後段DOCとも呼ばれる。ASC8は、SCR7を通過した排ガス中の過剰なアンモニアを酸化して無害なN2とH2Oに分解する。ASC8を通過した後の排ガスは、例えば大気に放出される。
【0022】
アンモニア濃度測定システム20は、上述したガスセンサ30と、ガスセンサ30に電気的に接続されたアンモニア濃度測定装置70とを備えている。ガスセンサ30は、SCR7を通過した後の配管10内の被測定ガスに含まれる過剰のアンモニア濃度に応じた電気信号を発生させるアンモニアセンサとして構成されている。また、ガスセンサ30は、被測定ガス中の酸素濃度に応じた電気信号を発生させる酸素センサとしての機能も備えており、マルチセンサとして構成されている。アンモニア濃度測定装置70は、ガスセンサ30が発生させた電気信号に基づいて、被測定ガス中のアンモニア濃度を導出して、エンジンECU9に送信する。エンジンECU9は、検出された過剰のアンモニア濃度がゼロに近づくように、インジェクタ6から排気管へ注入する尿素量を制御する。また、エンジンECU9は、NOxセンサ5aによって検出されたNOx濃度が高いほどインジェクタ6から排気管へ注入する尿素量が多くなるように、インジェクタ6を制御する。以下、アンモニア濃度測定システム20について詳説する。
【0023】
ガスセンサ30は、図1の拡大断面図に示すように、センサ素子31と、センサ素子31の長手方向の一端側である前端側(図1の下端側)を覆って保護する保護カバー32と、センサ素子31を封入固定する素子固定部33と、素子固定部33に取り付けられたナット37と、を備えている。また、センサ素子31の一端側は、多孔質保護層48で被覆されている。
【0024】
保護カバー32は、センサ素子31の一端を覆う有底筒状のカバーであり、図1では1重のカバーとしているが例えば内側保護カバーと外側保護カバーとを有する2重以上のカバーとしてもよい。保護カバー32には、被測定ガスを保護カバー32内に流通させるための複数の孔が形成されている。センサ素子31の一端及び多孔質保護層48は、保護カバー32で囲まれた空間内に配置されている。
【0025】
素子固定部33は、円筒状の主体金具34と、主体金具34の内側の貫通孔内に封入されたセラミックス製のサポーター35と、主体金具34の内側の貫通孔内に封入されタルクなどのセラミックス粉末を成形した圧粉体36と、を備えている。センサ素子31は、素子固定部33を前後方向に貫通している。圧粉体36は主体金具34とセンサ素子31との間で圧縮されている。これにより、圧粉体36が主体金具34内の貫通孔を封止すると共にセンサ素子31を固定している。
【0026】
ナット37は、主体金具34と同軸に固定されており、外周面に雄ネジ部が形成されている。ナット37の雄ネジ部は、配管10に溶接され内周面に雌ネジ部が設けられた取付用部材12内に挿入されている。これにより、ガスセンサ30は、センサ素子31の一端側や保護カバー32が配管10内に突出した状態で、配管10に固定できるようになっている。
【0027】
センサ素子31について図2を用いて説明する。図2のセンサ素子31の断面図は、センサ素子31の長手方向の中心軸に沿った断面(図1の上下方向に沿った断面)を示している。センサ素子31は、酸素イオン伝導性の固体電解質からなる基部40と、センサ素子31の一端(図1の下端,図2の左端)側であって基部40の上面に設けられた検知電極51及び補助電極52と、基部40の内部に設けられた参照電極53と、基部40の温度を調整するヒータ部60と、を備えている。
【0028】
基部40は、それぞれがジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層からなる第1基板層41と、第2基板層42と、スペーサ層43と、固体電解質層44との4つの層が、図2における下側からこの順に積層された板状の構造を有している。これら4つの層を形成する固体電解質は緻密な気密のものである。基部40のうち保護カバー32内に存在する部分の周囲は、保護カバー32内に導入された被測定ガスにさらされる。また、基部40のうち、第2基板層42の上面と、固体電解質層44の下面との間であって、側部をスペーサ層43の側面で区画される位置に基準ガス導入空間46が設けられている。基準ガス導入空間46は、センサ素子31の一端側から遠い位置である他端側(図2の右端側)に開口部が設けられている。基準ガス導入空間46には、アンモニア濃度及び酸素濃度の測定を行う際の基準ガスとして、例えば大気が導入される。なお、基部40の各層は、安定化剤としてイットリア(Y23)を3~15mol%添加したジルコニア固体電解質からなる基板(イットリア安定化ジルコニア(YSZ)基板)としてもよい。
【0029】
検知電極51は、基部40のうち図2における固体電解質層44の上面に配設された多孔質の電極である。この検知電極51と、固体電解質層44と、参照電極53とによって、混成電位セル55が構成されている。混成電位セル55では、検知電極51において被測定ガス中のアンモニア濃度に応じた混成電位(起電力EMF)が生じる。そして、検知電極51と参照電極53との間の起電力EMFの値が被測定ガス中のアンモニア濃度の導出に用いられる。検知電極51は、アンモニア濃度に応じた混成電位を生じ、アンモニア濃度に対する検出感度を有する材料を主成分として構成されている。検知電極51は、例えば金(Au)などの貴金属を主成分としてもよい。検知電極51は、Au-Pt合金を主成分とすることが好ましい。ここで、主成分とは、含まれる成分全体のうち存在量(atm%,原子量比)が最も多い成分をいうものとする。検知電極51は、X線光電子分光法(XPS)とオージェ電子分光法(AES)との少なくとも一方を用いて測定された濃化度(=Auの存在量[atom%]/Ptの存在量[atom%])が0.1以上であることが好ましく、0.3以上であることがより好ましい。検知電極51の濃化度とは、検知電極51の貴金属粒子表面の表面濃化度である。Auの存在量[atom%]は、検知電極51の貴金属粒子表面のAu存在量として求める。同様に、Ptの存在量[atom%]は、検知電極51の貴金属粒子表面のPt存在量として求める。貴金属粒子表面は、検知電極51の表面(例えば図2の上面)としてもよいし、検知電極51の破断面としてもよい。例えば、検知電極51の表面(図2の上面)が露出している場合には、その表面で濃化度を測定できるため、XPSで測定を行えばよい。ただし、AESで濃化度を測定してもよい。一方、本実施形態のように検知電極51が多孔質保護層48で被覆されている場合は、検知電極51の破断面(図2の上下方向に沿った破断面)をXPS又はAESにより測定して濃化度を測定する。濃化度の値が大きいほど、検知電極51表面のPtの存在割合が減少することで、被測定ガス中のアンモニアが検知電極51周辺でPtにより分解されることを抑制できる。そのため、濃化度の値が大きいほどアンモニア濃度測定システム20におけるアンモニア濃度の導出精度が向上する。なお、濃化度の値の上限は特になく、例えば検知電極51がPtを含まなくてもよい。また、検知電極51全体がAuで構成されていてもよい。検知電極51は、Au-Pt合金とジルコニアとの多孔質サーメット電極としてもよい。
【0030】
補助電極52は、検知電極51と同様に固体電解質層44の上面に配設された多孔質の電極である。この補助電極52と、固体電解質層44と、参照電極53とによって電気化学的な濃淡電池セル56が構成されている。この濃淡電池セル56では、補助電極52と参照電極53との酸素濃度差に応じた電位差である起電力差Vが生じる。そして、この起電力差Vの値が被測定ガス中の酸素濃度(酸素分圧)の導出に用いられる。なお、補助電極52は、触媒活性を持つ貴金属であればよい。例えば補助電極52としてPt,Ir,Rh,Pd,もしくはそれらを少なくとも1つ以上含有する合金を用いることができる。本実施形態では、補助電極52はPtとした。補助電極52は、Ptとジルコニアとの多孔質サーメット電極としてもよい。
【0031】
参照電極53は、固体電解質層44の下面、すなわち固体電解質層44のうち検知電極51及び補助電極52とは反対側に配設された多孔質の電極である。参照電極53は基準ガス導入空間46内に露出しており、基準ガス導入空間46内の基準ガス(ここでは大気)が導入される。この参照電極53の電位は、上述した起電力EMF及び起電力差Vの基準となる。なお、参照電極53は、触媒活性を持つ貴金属であればよい。例えば参照電極53としてPt,Ir,Rh,Pd,もしくはそれらを少なくとも1つ以上含有する合金を用いることができる。本実施形態では、参照電極53はPtとした。参照電極53は、Ptとジルコニアとの多孔質サーメット電極としてもよい。
【0032】
多孔質保護層48は、検知電極51及び補助電極52を含むセンサ素子31の表面を被覆している。この多孔質保護層48は、例えば被測定ガス中の水分等が付着してセンサ素子31にクラックが生じるのを抑制する役割を果たす。多孔質保護層48は、例えばアルミナ、ジルコニア、スピネル、コージェライト、チタニア、及びマグネシアのいずれかを主成分とする。本実施形態では、多孔質保護層48はアルミナからなるものとした。多孔質保護層48の気孔率は例えば5体積%~60体積%である。なお、センサ素子31は多孔質保護層48を備えなくてもよい。
【0033】
ヒータ部60は、基部40の固体電解質を活性化させて酸素イオン伝導性を高めるために、基部40(特に固体電解質層44)を加熱して保温する温度調整の役割を担うものである。ヒータ部60は、ヒータ電極61と、ヒータ62と、スルーホール63と、ヒータ絶縁層64と、リード線66とを備えている。ヒータ電極61は、第1基板層41の下面に接する態様にて形成されてなる電極である。ヒータ電極61はアンモニア濃度測定装置70のヒータ電源77と接続されている。
【0034】
ヒータ62は、第1基板層41と第2基板層42とに上下から挟まれた態様にて形成される電気抵抗体である。ヒータ62は、リード線66及びスルーホール63を介してヒータ電極61と接続されており、ヒータ電極61を通してヒータ電源77から給電されることにより発熱し、センサ素子31を形成する基部40の加熱と保温を行う。ヒータ62は、温度センサ(ここでは温度取得部78)を用いて混成電位セル55及び濃淡電池セル56(特に固体電解質層44)が所定の駆動温度となるよう出力を制御可能に構成されている。混成電位セル55の固体電解質層44を適切に活性化することができるため、駆動温度は450℃以上とすることが好ましい。駆動温度は、600℃以上700℃以下としてもよく、650℃以上660℃以下としてもよい。ヒータ絶縁層64は、ヒータ62の上下面に、アルミナ等の絶縁体によって形成された多孔質アルミナからなる絶縁層である。
【0035】
アンモニア濃度測定装置70は、センサ素子31を用いて被測定ガス中のアンモニア濃度を測定する装置である。また、アンモニア濃度測定装置70は、センサ素子31の制御装置を兼ねている。アンモニア濃度測定装置70は、制御部72(特定ガス濃度導出部の一例)と、起電力取得部75と、酸素濃度取得部76と、ヒータ電源77と、温度取得部78とを備えている。
【0036】
制御部72は、装置全体の制御を司るものであり、例えばCPU及びRAMなどを備えたマイクロプロセッサとして構成されている。制御部72は、処理プログラムや各種データを記憶する記憶部73を備えている。記憶部73には、被測定ガス中のアンモニア濃度と被測定ガス中の酸素濃度と混成電位セル55の起電力EMFとの対応関係である測定用対応関係74が記憶されている。本実施形態の測定用対応関係74では、図3に示すように、アンモニア濃度が高いほど起電力EMFが大きくなり、酸素濃度が低いほど起電力EMFが大きくなる傾向となるように、アンモニア濃度,酸素濃度,及び起電力EMFが対応付けられている。なお、図3では、横軸を対数軸として示しており、酸素濃度が一定の場合のアンモニア濃度の対数と起電力EMFとの関係は直線になっている(直線L1~L4)。測定用対応関係74は、マップ(値を対応付けた表)であってもよいし、関係式(例えば直線L1~L4を表す各々の関係式)であってもよい。図3では4本の直線のみ示しているが、測定用対応関係74は、例えば酸素濃度の値を1%ずつ異ならせた場合のアンモニア濃度の対数と起電力EMFとの各々関係を表す複数の直線の関係を含んでいてもよい。図3では横軸をアンモニア濃度としているが、横軸を酸素濃度としてもよい。例えば、測定用対応関係74は、アンモニア濃度が一定の場合の酸素濃度の対数と起電力EMFとの対応関係を表す複数の関係式として記述されていてもよい。
【0037】
起電力取得部75は、混成電位セル55の検知電極51及び参照電極53に接続されて起電力EMFを取得(ここでは測定)する電圧検出回路として構成されている。酸素濃度取得部76は、濃淡電池セル56の補助電極52及び参照電極53に接続されており、酸素濃度に関する情報としての起電力差Vを取得(ここでは測定)する電圧検出回路として構成されている。起電力取得部75及び酸素濃度取得部76は、各々が測定した起電力EMF及び起電力差Vを制御部72に出力する。制御部72は、この起電力EMFと、起電力差Vに対応する酸素濃度と、測定用対応関係74と、に基づいて、起電力EMF及び被測定ガス中の酸素濃度に対応するアンモニア濃度を導出する。例えば、起電力EMFが電圧V1[mV]であり、酸素濃度が10%であるときには、制御部72が図3の測定用対応関係74に基づいて導出する被測定ガス中のアンモニア濃度は10ppmとなる。測定用対応関係74は、後述する測定用対応関係導出方法を行って予め実験により導出された情報である。
【0038】
ヒータ電源77は、ヒータ62に電力を供給する電源であり、制御部72によって出力が制御される。温度取得部78は、ヒータ62の温度に関する値(ここでは抵抗値)を取得するモジュールである。温度取得部78は、例えば、ヒータ電極61に接続され、微小な電流を流してその際の電圧を測定することで、ヒータ62の抵抗値を取得する。
【0039】
なお、図2では図示を省略したが、検知電極51,補助電極52及び参照電極53の各電極は、センサ素子31の他端(図2における右側)に向かって形成された複数のリード線と一対一に導通している。起電力取得部75及び酸素濃度取得部76は、このリード線を介して起電力EMF及び起電力差Vをそれぞれ測定する。
【0040】
ここで、測定用対応関係74を導出する測定用対応関係導出方法について説明する。図4は、測定用対応関係導出処理の一例を示すフローチャートである。
【0041】
本実施形態の測定用対応関係導出方法は、
(a)被測定ガス中の酸素濃度と水蒸気濃度との対応関係である酸素-水対応関係を取得するステップと、
(b)特定ガスと酸素と水蒸気とを含み被測定ガスを模擬したガスである試験用被測定ガスであって、試験用被測定ガス中の水蒸気濃度p1と酸素-水対応関係において試験用被測定ガス中の酸素濃度に対応する水蒸気濃度p0との比R(=p1/p0)が0.9以上1.1以下である試験用被測定ガスを用いて、検知電極が試験用被測定ガスに晒された状態での混成電位セル55の起電力EMFを測定する起電力測定処理を、試験用被測定ガス中の特定ガス濃度と酸素濃度との少なくとも一方を変化させて複数回実行するステップと、
(c)複数回の起電力測定処理の結果に基づいて測定用対応関係74を導出するステップと、
を含む。
【0042】
ステップ(a)では、被測定ガス中の酸素濃度と水蒸気濃度とを測定する濃度測定処理を複数回実行して、被測定ガス中の酸素濃度と水蒸気濃度との対応関係である酸素-水対応関係を取得する(ステップS200)。濃度測定処理を複数回実行する際には、被測定ガス中の酸素濃度と水蒸気濃度との少なくとも一方が変化するように、濃度測定処理毎に所定の条件を適宜変更する。例えば、本実施形態では被測定ガスはエンジン1などの内燃機関の排ガスであるから、内燃機関の運転状態を変化させながら濃度測定処理を複数回実行する。濃度測定処理における酸素濃度及び水蒸気濃度の測定は、アンモニア濃度測定システム20が使用される時となるべく同じ条件で行うことが好ましい。例えば、濃度測定処理は、SCR7を通過したあとのエンジン1の排ガスに対して行うことが好ましい。エンジン1の種類やエンジン1内で燃焼する燃料の種類などについても、アンモニア濃度測定システム20が取り付けられる排ガス処理システム2と同じ種類とすることが好ましい。
【0043】
図5は、エンジンの排ガス中の酸素濃度と水蒸気濃度との対応を実測した結果の一例である。図5中の各点が、1回の濃度測定処理での酸素濃度と水蒸気濃度との対応を表している。図5のデータは、以下のように取得した。まず、エンジン1として3Lのディーゼルエンジンを用意し、図1と同じようにDOC4,DPF5,NOxセンサ5a,インジェクタ6,SCR7,配管10,ASC8を接続した。配管10すなわちSCR7とASC8との間には、FT-IR分析計(岩田電業製FAST3000)を取り付けた。ASC8の下流側には、流量計を接続した。次に、エンジン1をWHTCモードでサイクル運転させると共に、インジェクタ6からの尿素噴射量(mol/min)がDPF5通過後の排ガス中のNOx量(mol/min)の1.1倍となるようにした。NOx量は、NOxセンサ5a及び上述した流量計を用いて測定した。そして、上述したFT-IR分析計を用いて、配管10を流れる排ガス(すなわちアンモニア濃度測定システム20の使用時にガスセンサ30に到達する被測定ガス)の酸素濃度と水蒸気濃度との測定(濃度測定処理)を連続的に複数回実行した。エンジン1では、運転状態に応じて排ガス中の酸素濃度と水蒸気濃度とが変化するが、両者には相関がある場合が多い。図5からは、酸素濃度が高いほど水蒸気濃度が低くなる傾向が確認され、最小二乗法を用いた線形近似により、酸素濃度と水蒸気濃度との対応関係として図5の直線Lの関係が導出された。ステップ(a)では、このように被測定ガス中の酸素濃度と水蒸気濃度との測定を複数回行って、被測定ガス中の酸素-水対応関係(例えば図5の直線L)を導出して取得する。酸素-水対応関係は、マップとして導出してもよいし、関係式として導出してもよい。
【0044】
次に、ステップ(b)では、試験用被測定ガスを用いて、検知電極51が試験用被測定ガスに晒された状態での混成電位セル55の起電力EMFを測定する起電力測定処理を複数回実行する(ステップS210)。試験用被測定ガスは、ガスセンサ30による特定ガス(ここではアンモニア)濃度の検出の対象となる被測定ガス(ここではエンジン1の排ガス)そのものではなく、被測定ガスを模擬したモデルガスである。試験用被測定ガスは、特定ガス(ここではアンモニア)と酸素と水蒸気とを含むガスである。試験用被測定ガスは、アンモニア,酸素,及び水蒸気と、混成電位セル55の起電力EMFの検出に影響を与えない(干渉性のない)気体(例えば窒素)との混合ガスとしてもよい。この試験用被測定ガスを用いて起電力測定処理を行うことで、試験用被測定ガス中のアンモニア濃度と、酸素濃度と、起電力EMFと、を対応付けた起電力データを取得する。そして、試験用被測定ガス中のアンモニア濃度と酸素濃度との少なくとも一方を変化させて、起電力測定処理を複数回実行する。これにより複数の起電力データが取得される。複数回の起電力測定処理は、以下のように行ってもよい。まず、試験用被測定ガス中の酸素濃度は同じ値(一定)としたままで、被測定ガス中のアンモニア濃度を変化させて、起電力測定処理を複数回実行する。次に、酸素濃度の値を変更して別の値で一定とし、そのままで被測定ガス中のアンモニア濃度を変化させて、起電力測定処理を複数回実行する。以下同様に、酸素濃度の値の変更を適宜繰り返して、同様に起電力測定処理を複数回実行する。
【0045】
ステップ(b)で起電力測定処理を複数回実行するにあたり、試験用被測定ガスは、この試験用被測定ガス中の酸素濃度と水蒸気濃度との関係が、ステップ(a)で導出した酸素-水対応関係と同じ関係又は近い関係にあるようにしておく。より具体的には、試験用被測定ガス中の水蒸気濃度p1と、酸素-水対応関係において試験用被測定ガス中の酸素濃度に対応する水蒸気濃度p0との比R(=p1/p0)が0.9以上1.1以下となるようにしておく。例えば、ある起電力測定処理における試験用被測定ガスの酸素濃度を15%とする場合を考える。この場合、図5に示すように、酸素-水対応関係において試験用被測定ガス中の酸素濃度(ここでは15%)に対応する水蒸気濃度p0は4%である。そのため、試験用被測定ガス中の水蒸気濃度p1は、Rp(=p1/p0)が0.9以上1.1以下となるように、すなわち3.6%(=0.9×4)以上4.4%(=1.1×4)以下となるようにする。
【0046】
続いて、ステップ(c)では、ステップ(b)の複数回の起電力測定処理の結果に基づいて測定用対応関係74を導出する(ステップS220)。これにより、例えば図3に示した測定用対応関係74が得られる。例えば、複数回の起電力測定処理の結果(複数の起電力データ)に基づいて、図5の直線Lと同様に例えば最小二乗法を用いた線形近似により図3に示す直線L1~L4を導出してもよい。また、複数の起電力データの集合をそのままマップとして測定用対応関係74を導出してもよい。
【0047】
次に、アンモニア濃度測定システム20の製造例について説明する。アンモニア濃度測定システム20のうちアンモニア濃度測定装置70は、制御部72,起電力取得部75,酸素濃度取得部76,ヒータ電源77及び温度取得部78を用意し接続して作製することができる。このとき、制御部72の記憶部73には、上述した測定用対応関係導出処理で導出された測定用対応関係74を記憶させておく(ステップ(d))。
【0048】
ガスセンサ30は、例えば以下のように作製する。まず、ガスセンサ30のうちセンサ素子31は、複数枚のセラミックグリーンシートを用いて作製することができる。具体的には、複数枚のセラミックグリーンシートの各々について、必要に応じて切欠や貫通孔や溝を設けたり電極や配線パターンをスクリーン印刷したりした後、それらを積層して焼成する。また、多孔質保護層48は、例えばプラズマ溶射又はスクリーン印刷などを用いて形成する。こうして得たセンサ素子31を素子固定部33で封入固定し、素子固定部33にナット37及び保護カバー32を溶接などにより取り付けることで、ガスセンサ30を作製する。そして、ガスセンサ30の各電極51~53とアンモニア濃度測定装置70の各取得部75,76,78とを上述したように接続し、ヒータ電極61をヒータ電源77と接続する。こうすることで、アンモニア濃度測定システム20を作製できる。
【0049】
続いて、こうして構成されたアンモニア濃度測定システム20によるアンモニア濃度の測定について説明する。制御部72は、予め、ヒータ電源77の出力を制御してヒータ62を発熱させ、混成電位セル55及び濃淡電池セル56の温度を所定の駆動温度(例えば600℃以上700℃以下のいずれかの温度)になるように制御しておく。制御部72は、例えば温度取得部78が取得したヒータ62の温度(ここでは抵抗値)が所定の値になるようにヒータ電源77の出力を制御することで、駆動温度を制御する。また、エンジン1からの排ガスはすでに保護カバー32内に流通しており、検知電極51及び補助電極52は排ガスに晒されている状態とする。制御部72は、例えばエンジンECU9からアンモニア濃度の導出指令を入力した時や、所定の周期(数msec~数十msecなど)毎に、アンモニア濃度を測定するアンモニア濃度導出処理を行う。
【0050】
アンモニア濃度導出処理では、制御部72は、まず、混成電位セル55の起電力EMF及び起電力差Vをそれぞれ起電力取得部75及び酸素濃度取得部76を介して取得する。ここで、混成電位セル55では、検知電極51と固体電解質層44と被測定ガスとの三相界面において被測定ガス中のアンモニアの酸化及び酸素のイオン化などの電気化学反応が生じ、検知電極51には混成電位が生じる。そのため、起電力EMFは被測定ガス中のアンモニア濃度及び酸素濃度に基づく値になる。また、濃淡電池セル56では、被測定ガス中の酸素濃度と基準ガス導入空間46内の大気の酸素濃度との差に応じて補助電極52と参照電極53との間に起電力差Vが生じる。なお、補助電極52であるPtの触媒作用により、被測定ガス中の炭化水素,NH3,CO,NO,NO2は酸化還元される。ただし、被測定ガス中のこれらのガス成分の濃度は、通常は被測定ガス中の酸素濃度に比して非常に小さいため、これらの酸化還元が生じても被測定ガス中の酸素濃度にはほとんど影響しない。そのため、起電力差Vは、被測定ガス中の酸素濃度に基づく値になる。記憶部73には、例えば予め実験などにより導出された起電力差Vと酸素濃度との対応関係が記憶されており、制御部72は、起電力差Vとこの対応関係とに基づいて、被測定ガス中の酸素濃度を取得する。続いて、制御部72は、取得した起電力EMF及び酸素濃度と、記憶部73に記憶された測定用対応関係74とに基づいて、被測定ガス中のアンモニア濃度を導出し、アンモニア濃度導出処理を終了する。制御部72は、線形補間などの補間を適宜行いながら、測定用対応関係74に基づいてアンモニア濃度を導出してもよい。
【0051】
ここで、被測定ガス中の水蒸気濃度は、起電力EMFにも影響を与える場合がある。例えば、水蒸気濃度が高いほど、起電力EMFが小さくなる傾向が見られる場合がある。そのため、例えば被測定ガス中の酸素濃度とアンモニア濃度とが同じ値であっても、起電力EMFは変化する場合がある。しかし、本実施形態の測定用対応関係74を導出する際には、比R(=p1/p0)が0.9以上1.1以下となるように試験用被測定ガス中の酸素濃度と水蒸気濃度とを調整している。すなわち、被測定ガス中の酸素濃度と水蒸気濃度との間に存在する対応関係(酸素-水対応関係)を利用して、試験用被測定ガス中の水蒸気濃度が被測定ガス中の水蒸気濃度と同じ又は近い値となるような条件下で測定用対応関係74を導出している。そのため、測定用対応関係74は、水蒸気濃度による起電力EMFへの影響(水蒸気の干渉性)が考慮されている。例えば、測定用対応関係74では、酸素濃度が15%である場合の起電力EMFとアンモニア濃度との関係は直線L4で表される。そして、図5に示した例からわかるように、被測定ガス中の酸素濃度が15%である場合には被測定ガス中の水蒸気濃度は4%付近であることが多い。そして、この直線L4は、試験用被測定ガス中の水蒸気濃度p1が4%付近(3.6%以上4.4%以下)となるようにして行った起電力測定処理に基づいて導出されている。したがって、直線L4の関係には、酸素濃度が15%の時の水蒸気の干渉性が考慮されている。言い換えると、直線L4の関係は、酸素濃度が15%の時に被測定ガス中の水蒸気濃度によって生じる可能性の高い起電力EMFへの影響を加味した関係になっている。したがって、この測定用対応関係74を記憶部73に記憶しておき、制御部72がこの測定用対応関係74を用いることで精度良くアンモニア濃度を測定できる。ここで、比Rは値1に近いほど好ましい。例えば、比Rは0.95以上1.05以下としてもよいし、0.99以上1.01以下としてもよい。
【0052】
また、上述した測定用対応関係導出方法では、試験用被測定ガス中の水蒸気濃度は酸素濃度に応じて定まる。したがって、アンモニア濃度及び酸素濃度と独立して水蒸気濃度を変化させた複数回の起電力測定処理を行う必要がない。そのため、起電力測定処理の回数を少なくすることができる。したがって、測定用対応関係を比較的容易に導出することができる。また、導出された測定用対応関係74では、起電力EMF,アンモニア濃度及び酸素濃度は変数であるが、水蒸気濃度は変数ではない。そのため、例えば、測定用対応関係74の代わりに被測定ガス中の起電力EMF,アンモニア濃度,酸素濃度,及び水蒸気濃度の4つの変数を対応付けた対応関係を用いる場合と比べて、変数を1つ減らすことができ、測定用対応関係74のデータ量を少なくすることができる。また、制御部72がアンモニア濃度を導出する際に、被測定ガス中の水蒸気濃度を取得する必要がない。
【0053】
また、ステップ(a)で酸素-水対応関係を作成しておき、この関係を用いてステップ(b)を行うため、被測定ガスではなく試験用被測定ガスを用いてステップ(b)を行っても、精度良くアンモニア濃度を測定できる測定用対応関係74を導出できる。例えば被測定ガスを用いる場合にはエンジン1を用意してこの配管にガスセンサ30を接続しエンジン1を実際に運転させる作業などが必要になり、手間がかかる。これに対しステップ(b)ではそのような作業が不要になり、モデルガスである試験用被測定ガスを用いて容易にステップ(b)を行うことができる。例えば、同じ種類や同じ型式のエンジン1に対して使用される複数のガスセンサ30について、それぞれ測定用対応関係74を導出したい場合がある。この場合、複数のガスセンサ30の各々について、エンジン1の排ガスを用いて測定用対応関係74を導出しようとすると、上記の作業の回数が多くなってしまう。これに対し、上述した測定用対応関係導出方法では、ステップ(a)を1回行って酸素-水対応関係を予め作成しておき、複数のガスセンサ30の各々に対してステップ(b)を行って、ガスセンサ30の各々の測定用対応関係74を導出することができる。この場合、ステップ(a)ではエンジン1を用いたとしても、複数回のステップ(b)ではエンジン1を用いる必要がない。そのため、上記の作業の回数を減らすことができ、複数回実行するステップ(b)の各々を容易に行うことができる。
【0054】
以上詳述した本実施形態の測定用対応関係導出方法では、比R(=p1/p0)が0.9以上1.1以下となるように調整した試験用被測定ガスを用いるから、精度良くアンモニア濃度を測定できる測定用対応関係74を導出できる。また、測定用対応関係74の導出に必要な起電力測定処理の回数を少なくできるから、測定用対応関係を比較的容易に導出できる。
【0055】
また、被測定ガスは内燃機関(ここではエンジン1)の排ガスである。内燃機関の排ガス中の酸素濃度と水蒸気濃度との間には相関があることが多いため、本実施形態の測定用対応関係導出方法を適用する意義が高い。
【0056】
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
【0057】
例えば、上述した実施形態では、特定ガスはアンモニアとしたが、これに限られない。特定ガスは、可燃性ガスとしてもよい。特定ガスは、アンモニア、炭化水素(HC)、一酸化炭素(CO)、水素のいずれかとしてもよい。特定ガスが炭化水素である場合、特定ガス濃度は炭化水素の炭素換算濃度としてもよい。
【0058】
上述した実施形態では、ステップ(a)において酸素-水対応関係を実験により導出したが、これに限られない。例えば、被測定ガス中の酸素-水対応関係が既知である場合には、ステップ(a)ではこの既知の酸素-水対応関係を取得すればよい。
【0059】
上述した実施形態では特に説明しなかったが、同じ被測定ガスでも所定の条件によって酸素-水対応関係が変化する場合、その条件毎に測定用対応関係を導出してもよい。例えば、被測定ガスが内燃機関の排ガスである場合、外気の湿度によって酸素-水対応関係が変化する場合がある。この場合、ある1つの測定用対応関係を導出する際には湿度の条件を一定としておくことが好ましい。そして、複数の湿度条件の各々に対応して測定用対応関係を導出しておき、導出した複数の測定用対応関係を記憶部73に記憶することが好ましい。あるいは、制御部72は、湿度に応じて(又は季節,地域などの湿度と相関のあるパラメータに応じて)、測定用対応関係74を補正して使用してもよい。
【0060】
上述した実施形態では、酸素-水対応関係を利用して予め測定用対応関係74を導出して記憶部73に記憶したが、記憶部73に酸素-水対応関係が記憶されており制御部72が特定ガス濃度を導出する際に酸素-水対応関係を利用してもよい。例えば、制御部72は、起電力EMF,特定ガス濃度,酸素濃度,及び水蒸気濃度を対応付けた関係式(上述した式(1)など)に、取得した起電力EMF及び酸素濃度と、酸素-水対応関係及び酸素濃度から導出される水蒸気濃度と、を代入して特定ガス濃度を導出してもよい。
【0061】
上述した実施形態では、被測定ガスは排ガスとしたが、これに限られない。被測定ガスは、酸素濃度と水蒸気濃度との間に対応関係のあるガスであればよい。
【0062】
上述した実施形態では、センサ素子31は、濃淡電池セル56を備えていることで酸素濃度も測定可能としたが、これに限られない。センサ素子31は濃淡電池セル56(具体的には補助電極52)を備えていなくてもよい。この場合、アンモニア濃度測定装置70は、センサ素子31以外から酸素濃度を取得すればよい。例えば、アンモニア濃度測定装置70は、排ガス経路3に配設された別のセンサ(例えば酸素センサ、A/Fセンサ、又はNOxセンサなど)や、他の装置(例えばエンジンECU9)から、酸素濃度を取得してもよい。
【実施例
【0063】
以下には、測定対応関係導出方法を具体的に行った例を実施例として説明する。なお、本発明は以下の実施例に限定されるものではない。
【0064】
[実施例1]
上述した測定対応関係導出方法を行って測定用対応関係74を導出した例を実施例1とした。この実施例1のステップ(a)で取得した酸素-水対応関係は、図5に示したデータである。ステップ(b)では、酸素濃度を1%~20%まで1%ずつ変化させ、アンモニア濃度を1ppm~1000ppmまで変化させて、複数回の起電力測定処理を行って、マップとして測定用対応関係74を導出した。各起電力測定処理における試験用被測定ガス中の水蒸気濃度p1は、比R(=p1/p0)が0.99以上1.01以下となるようにした。試験用被測定ガスのうち、アンモニアと酸素と水蒸気以外の成分(ベースガス)は窒素とした。また、ステップ(b)で用いたガスセンサ30は、AESで測定した検知電極51の濃化度が0.99であるものを用いた。ガスセンサ30は、多孔質保護層48の気孔率が40%であるものを用いた。起電力測定処理中の混成電位セル55及び濃淡電池セル56の駆動温度は、610℃とした。
【0065】
[比較例1]
各起電力測定処理における試験用被測定ガス中の水蒸気濃度p1を5%で一定とした点以外は、実施例1と同様にして測定用対応関係74を導出し、比較例1とした。
【0066】
[評価試験]
図1と同様に配管10に実施例1と同じガスセンサ30を取り付けた点以外は、図5のデータの取得時と同様の条件でエンジン1の運転及びインジェクタ6からの尿素の噴射を行った。そして、エンジン1の運転中の同じ時刻におけるアンモニア濃度の導出値と、FT-IR分析計による実測値と、を取得した。アンモニア濃度の導出値は、ガスセンサ30の起電力EMF及び起電力差Vと、実施例1で導出した測定用対応関係74と、を用いて導出した。そして、導出値と実測値との取得を連続的に複数回行った。また、比較例1の測定用対応関係74を用いた点以外は同様にして、導出値と実測値との取得を連続的に複数回行った。
【0067】
分析計による実測値と、実施例1の測定用対応関係74を用いて導出した導出値と、の関係を図6に示す。分析計による実測値と、比較例1の測定用対応関係74を用いて導出した導出値と、の関係を図7に示す。図6,7では、線形近似により導出された実測値と導出値との関係を示す直線を実線で示し、「実測値=導出値」となる直線を破線で示した。測定用対応関係74を用いたアンモニア濃度の導出の精度が高いほど、実線が破線に近づくことになる。図6,7から、実施例1の測定用対応関係74を用いた場合の方が、比較例1の測定用対応関係74を用いた場合と比べて、アンモニア濃度を精度良く導出できていることがわかる。
【0068】
[水蒸気の干渉性の調査]
複数回の起電力測定処理において、試験用被測定ガス中の酸素濃度を10%で一定とし、水蒸気濃度を5%で一定として、アンモニア濃度のみを変化させた点以外は、実施例1と同様にして測定用対応関係74を導出し、比較例2とした。続いて、アンモニア濃度を1ppm、酸素濃度を10%、水蒸気濃度を1%とした試験用被測定ガスを用いてガスセンサ30の起電力EMFを測定して、比較例2の測定用対応関係74に基づくアンモニア濃度を導出した。アンモニア濃度の導出値と、試験用被測定ガス中のアンモニア濃度(真値)とに基づいて、アンモニア濃度の変化率(=(導出値-真値)/真値×100)を導出した。同様に、試験用被測定ガス中の酸素濃度は10%で一定とし、アンモニア濃度及び水蒸気濃度を変化させて起電力EMFの測定を複数回行って、各々の測定に対応する変化率を導出した。
【0069】
図8は、水蒸気濃度及びアンモニア濃度(真値)とアンモニア濃度の変化率との関係を示すグラフである。変化率が0%に近いほど、測定用対応関係74を用いたアンモニア濃度の導出値と、実際のアンモニア濃度の値(真値)とが近いことを意味する。図8からわかるように、水蒸気濃度が5%の場合には変化率がほぼ0%であった。これは、比較例2の測定用対応関係74の導出に用いた試験用被測定ガスの水蒸気濃度が5%であるためと考えられる。一方、水蒸気濃度が5%から遠い値になるほど、変化率の絶対値が大きくなっていた。この結果から、比較例2の測定用対応関係74を用いる場合は、被測定ガス中の水蒸気濃度が5%から遠い値になるほど、水蒸気の起電力EMFへの干渉性によってアンモニア濃度の導出精度が低下することがわかる。また、図8から、被測定ガス中のアンモニア濃度(真値)が高いほど、アンモニア濃度の導出精度がより低下する傾向が見られた。
【産業上の利用可能性】
【0070】
本発明は、自動車の排ガスなどの被測定ガスにおけるアンモニア濃度などの特定ガス濃度を検出するガスセンサの製造産業などに利用可能である。
【符号の説明】
【0071】
1 エンジン、2 排ガス処理システム、3 排ガス経路、4 DOC、5 DPF、5a NOxセンサ、6 インジェクタ、7 SCR、8 ASC、9 エンジンECU、10 配管、12 取付用部材、20 アンモニア濃度測定システム、30 ガスセンサ、31 センサ素子、32 保護カバー、33 素子固定部、34 主体金具、35 サポーター、36 圧粉体、37 ナット、 40 基部、41 第1基板層、42 第2基板層、43 スペーサ層、44 固体電解質層、46 基準ガス導入空間、48 多孔質保護層、51 検知電極、52 補助電極、53 参照電極、55 混成電位セル、56 濃淡電池セル、60 ヒータ部、61 ヒータ電極、62 ヒータ、63 スルーホール、64 ヒータ絶縁層、66 リード線、70 アンモニア濃度測定装置、72 制御部、73 記憶部、74 測定用対応関係、75 起電力取得部、76 酸素濃度取得部、77 ヒータ電源、78 温度取得部。
図1
図2
図3
図4
図5
図6
図7
図8