(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-03
(45)【発行日】2022-10-12
(54)【発明の名称】シミュレーション装置、シミュレーション方法、およびプログラム
(51)【国際特許分類】
G06F 30/23 20200101AFI20221004BHJP
G06F 30/28 20200101ALI20221004BHJP
【FI】
G06F30/23
G06F30/28
(21)【出願番号】P 2018231555
(22)【出願日】2018-12-11
【審査請求日】2021-10-15
(73)【特許権者】
【識別番号】000003148
【氏名又は名称】TOYO TIRE株式会社
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100111039
【氏名又は名称】前堀 義之
(72)【発明者】
【氏名】片岡 雄治
【審査官】松浦 功
(56)【参考文献】
【文献】特開2017-189957(JP,A)
【文献】特開2015-212135(JP,A)
【文献】米国特許出願公開第2009/0210189(US,A1)
【文献】米国特許第7110921(US,B1)
【文献】劔持慎也 外4名,流動シミュレーションを用いたPVC高速押出成形用ダイ設計,松下電工技報,松下電工株式会社,2007年06月20日,Vol.55,No.2,pp.58-62
(58)【調査した分野】(Int.Cl.,DB名)
G06F 30/00 -30/28
B29C 48/00 -48/96
Google Scholar
(57)【特許請求の範囲】
【請求項1】
ダイ流路から押し出される流体の流れのシミュレーションを行うシミュレーション装置であって、情報を入力する入力部と、情報を記録する記憶部と、前記入力部を介して入力されるデータまたは前記記憶部から読み出されたデータによって流路モデルを作成する流路モデル作成部と、前記流路モデルについて流体の流れのシミュレーション演算を行う演算部とを備え、
前記流路モデル作成部は、
前記流路モデルにおいて上流側の前記ダイ流路の部分であるダイ流路領域を作成するダイ流路領域作成部と、
前記流路モデルにおいて最下流の最終断面形状であって、前記ダイ流路の断面よりも大きく規定された前記最終断面形状を上流側に押し出して形成される押出領域を作成する押出領域作成部と、
前記流路モデルにおいて前記ダイ流路領域と前記押出領域とを接続する接続領域を作成する接続領域作成部と、
前記ダイ流路領域、前記押出領域、および前記接続領域を解析のための有限個の要素に分割してFEMモデルを作成するFEMモデリング部と、
前記FEMモデルにおける解析条件を定義する解析条件定義部と
を備える、シミュレーション装置。
【請求項2】
前記最終断面形状は、実測した形状に基づく、請求項1に記載のシミュレーション装置。
【請求項3】
前記接続領域を画定する外面は、平坦面である、請求項1または請求項2に記載のシミュレーション装置。
【請求項4】
前記接続領域を画定する外面は、曲面である、請求項1または請求項2に記載のシミュレーション装置。
【請求項5】
前記接続領域を画定する外面は、
前記ダイ流路領域との接続部において角部を形成せずに内側へ凸の滑らかな湾曲面を構成する第1湾曲面と、
前記押出領域との接続部において角部を形成せずに外側へ凸の滑らかな湾曲面を構成する第2湾曲面と
を備える、請求項4に記載のシミュレーション装置。
【請求項6】
前記第1湾曲面は、前記第2湾曲面よりも小さい曲率を有する、請求項5に記載のシミュレーション装置。
【請求項7】
ダイ流路から押し出される流体の流れのシミュレーションを行うシミュレーション方法であって、
入力部を介して入力されるデータまたは記憶部から読み出されたデータによって流路モデルを作成し、
前記流路モデルについて流体の流れのシミュレーション演算を行う
ことを含み、
前記流路モデルの作成は、
前記流路モデルにおいて上流側の前記ダイ流路の部分であるダイ流路領域を作成し、
前記流路モデルにおいて最下流の最終断面形状であって、前記ダイ流路の断面よりも大きく規定された前記最終断面形状を上流側に押し出して形成される押出領域を作成し、
前記流路モデルにおいて前記ダイ流路領域と前記押出領域とを接続する接続領域を作成し、
前記ダイ流路領域、前記押出領域、および前記接続領域を解析のための有限個の要素に分割してFEMモデルを作成し、
前記FEMモデルにおけるにおける解析条件を定義する
ことを含む、シミュレーション方法。
【請求項8】
前記最終断面形状は、実測した形状に基づく、請求項7に記載のシミュレーション方法。
【請求項9】
前記接続領域を画定する外面は、平坦面である、請求項7または請求項8に記載のシミュレーション方法。
【請求項10】
前記接続領域を画定する外面は、曲面である、請求項7または請求項8に記載のシミュレーション方法。
【請求項11】
前記接続領域を画定する外面は、
前記ダイ流路領域との接続部において角部を形成せずに内側へ凸の滑らかな湾曲面を構成する第1湾曲面と、
前記押出領域との接続部において角部を形成せずに外側へ凸の滑らかな湾曲面を構成する第2湾曲面と
を備える、請求項10に記載のシミュレーション方法。
【請求項12】
前記第1湾曲面は、前記第2湾曲面よりも小さい曲率を有する、請求項11に記載のシミュレーション方法。
【請求項13】
コンピュータの制御部にロードされることにより、当該コンピュータに、請求項7から請求項12のうちのいずれか1項に記載のシミュレーション方法を実行させる、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シミュレーション方法、シミュレーション方法、およびプログラムに関する。
【背景技術】
【0002】
ゴムのような高分子材料の押し出し工程において不具合が生じた場合、不具合の原因を特定するためにシミュレーションを使用してダイ流路(管路)の高分子材料の流れに問題がないかを確認することが有効である。例えば、特許文献1には、管路内の流体の流れをシミュレーションすることにより最適流路形状を取得するシミュレーション方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、高分子材料がダイの出口から大気中に押し出されたとき、押出物の断面がダイの出口の断面よりも大きくなるダイスウェル現象(またはバラス効果)が発生することが知られている。シミュレーションによってダイ流路の高分子材料の流れを確認するためには解析モデルを実際に近い状態で再現することが重要である。そのため、ダイ流路のモデルに加えてダイの出口後の領域もモデル化してダイスウェル現象を再現することが好ましい。
【0005】
特許文献1では、ダイ流路をモデル化し出口における流速分布を計算しているが、ダイスウェル現象については詳細な言及もない。単純にダイスウェル現象を再現するように解析モデルを作成してシミュレーションを実行すると、計算時間が非常に長くなる。
【0006】
本発明は、シミュレーション装置、シミュレーション方法、およびプログラムにおいて、ダイの出口後の領域をモデル化するとともに、計算時間を短縮することを課題とする。
【課題を解決するための手段】
【0007】
本発明の第1の態様は、ダイ流路から押し出される流体の流れのシミュレーションを行うシミュレーション装置であって、情報を入力する入力部と、情報を記録する記憶部と、前記入力部を介して入力されるデータまたは前記記憶部から読み出されたデータによって流路モデルを作成する流路モデル作成部と、前記流路モデルについて流体の流れのシミュレーション演算を行う演算部とを備え、前記流路モデル作成部は、前記流路モデルにおいて上流側の前記ダイ流路の部分であるダイ流路領域を作成するダイ流路領域作成部と、前記流路モデルにおいて最下流の最終断面形状であって、前記流路モデルにおいて前記ダイ流路の断面よりも大きく規定された前記最終断面形状を上流側に押し出して形成される押出領域を作成する押出領域作成部と、前記流路モデルにおいて前記ダイ流路領域と前記押出領域とを接続する接続領域を作成する接続領域作成部と、前記ダイ流路領域、前記押出領域、および前記接続領域を解析のための有限個の要素に分割してFEMモデルを作成するFEMモデリング部と、前記FEMモデルにおける解析条件を定義する解析条件定義部とを備える、シミュレーション装置を提供する。
【0008】
この構成によれば、流路モデルの最終断面形状がダイ流路の断面よりも大きく規定されているため、ダイスウェル現象を再現できる。また、流体の流れにおける最下流の最終断面形状が予め規定されているため、計算の収束までの時間を短縮できる。また、接続領域を設けているため、上流側のダイ流路領域から下流側の押出領域まで不連続な解析点が存在することを防止できる。従って、安定したシミュレーションを実行できるため、ダイ流路領域における流体の挙動を解析できる。
【0009】
前記最終断面形状は、実測した形状に基づいてもよい。
【0010】
この構成によれば、最終断面形状が実測した形状に基づいているため、実際の現象に近い高精度の解析が可能となる。
【0011】
前記接続領域を画定する外面は、平坦面であってもよい。
【0012】
この構成によれば、接続領域として簡易な形状を設定しているため、流路モデルを簡易に作成でき、解析に伴う計算時間を短縮できる。
【0013】
前記接続領域を画定する外面は、曲面であってもよい。
【0014】
この構成によれば、接続領域として実現象に近い形状を設定できるため、解析精度を向上できる。一般に、ダイスウェル現象においては、流体は、ダイの出口から押し出された後に線形的(一次的に)に膨張するのではなく、高次的に膨張する。従って、好ましくは、接続領域の外面形状を流体の膨張に応じた曲面形状に設定する。
【0015】
前記接続領域を画定する外面は、前記ダイ流路領域との接続部において角部を形成せずに内側へ凸の滑らかな湾曲面を構成する第1湾曲面と、前記押出領域との接続部において角部を形成せずに外側へ凸の滑らかな湾曲面を構成する第2湾曲面とを備えてもよい。
【0016】
この構成によれば、ダイ流路領域と接続領域との接続部が第1湾曲面で構成され、接続領域と押出領域との接続部が第2湾曲面で構成される。特に、第1湾曲面が接続領域の内側へ凸であることで、ダイ流路領域と接続領域とが滑らかに接続される。同様に、第2湾曲面が外側へ凸であることで、接続領域と押出領域とが滑らかに接続される。従って、各領域を接続する部分において、解析が不可能となる可能性のある不連続な点が発生することを防止し、計算の発散を防止できる。
【0017】
前記第1湾曲面は、前記第2湾曲面よりも小さい曲率を有してもよい。
【0018】
この構成によれば、ダイ出口におけるダイスウェル現象をより正確に再現できる。一般に、ダイスウェル現象においては、流体は、ダイの出口から押し出された後、ダイの出口付近において大きく膨張する。ダイ出口付近の第1湾曲面が、それより下流の第2湾曲面よりも小さい曲率を有すると、ダイ出口付近の膨張量を大きく設定することができる。従って、ダイスウェル現象の膨張状態を正確に再現できる。
【0019】
本発明の第2の態様は、ダイ流路から押し出される流体の流れのシミュレーションを行うシミュレーション方法であって、入力部を介して入力されるデータまたは記憶部から読み出されたデータによって流路モデルを作成し、前記流路モデルについて流体の流れのシミュレーション演算を行うことを含み、前記流路モデルの作成は、前記流路モデルにおいて上流側の前記ダイ流路の部分であるダイ流路領域を作成し、前記流路モデルにおいて最下流の最終断面形状であって、前記流路モデルにおいて前記ダイ流路の断面よりも大きく規定された前記最終断面形状を上流側に押し出して形成される押出領域を作成し、前記流路モデルにおいて前記ダイ流路領域と前記押出領域とを接続する接続領域を作成し、前記ダイ流路領域、前記押出領域、および前記接続領域を解析のための有限個の要素に分割してFEMモデルを作成し、前記FEMモデルにおける解析条件を定義することを含む、シミュレーション方法を提供する。
【0020】
前記最終断面形状は、実測した形状に基づいてもよい。
【0021】
前記接続領域を画定する外面は、平坦面であってもよい。
【0022】
前記接続領域を画定する外面は、曲面であってもよい。
【0023】
前記接続領域を画定する外面は、前記ダイ流路領域との接続部において角部を形成せずに内側へ凸の滑らかな湾曲面を構成する第1湾曲面と、前記押出領域との接続部において角部を形成せずに外側へ凸の滑らかな湾曲面を構成する第2湾曲面とを備えてもよい。
【0024】
前記第1湾曲面は、前記第2湾曲面よりも小さい曲率を有してもよい。
【0025】
本発明の第3の態様は、コンピュータの制御部にロードされることにより、当該コンピュータに、前記シミュレーション方法を実行させる、プログラムを提供する。
【発明の効果】
【0026】
本発明によれば、シミュレーション装置、シミュレーション方法、およびプログラムにおいて、最終断面形状を規定した流路モデルを作成するので、ダイの出口後の領域をモデル化するとともに計算時間を短縮できる。
【図面の簡単な説明】
【0027】
【
図3】本発明の一実施形態に係るシミュレーション装置のブロック図。
【
図4】
図3のシミュレーション装置に実行される処理を示すフローチャート。
【
図5】
図4の流路モデル作成に関するサブルーチンを示すフローチャート。
【
図8】各領域における流路モデルの形状データの断面図。
【発明を実施するための形態】
【0028】
以下、添付図面を参照して本発明の実施形態を説明する。
【0029】
本実施形態のシミュレーション装置は、自動車等のタイヤの材料となるゴム(流体の一例)の流れを解析するものである。ただし、以下の説明は例示であり、シミュレーション装置は、ゴムの流れの解析以外に他の様々な流体の流れの解析に使用できる。
【0030】
図1を参照して、ゴム1は、図示しない混練機にて複数種類の材料が混合された後、内部にダイ流路12を構成するダイ10の出口11から押し出され、タイヤの各部に応じた様々な厚みおよび幅に成形される。本実施形態では、ダイ10の出口11は長方形状であるため、押し出されるゴム1の断面形状も概ね長方形状である。しかし、正確には、ゴム1は、ダイスウェル現象によって、ダイ10の出口11から出た際に膨張し、長方形状は維持されない。本実施形態では、ダイ流路12から押し出されるゴム1の流れを解析するが、特にダイスウェル現象を考慮したゴム1の流れを模した流路モデル20(
図2参照)を用いて解析を行う。なお、以降の一部の説明では、図示および説明を簡単にするため、ゴム1の厚み方向において上部のみがダイスウェル現象によって膨張しているものと扱うが、後述するようにゴム1は本来等方膨張する。
【0031】
図2は、解析で使用する流路モデル20の一例を示す斜視図である。
図2の流路モデル20は、
図1のゴム1の流れを模したものである。流路モデル20は、ダイ流路領域21と、押出領域22と、それらを接続する接続領域23とを有している。
【0032】
ダイ流路領域21は、ダイ流路12(
図1参照)を再現したものである。ダイ流路領域21は、流路モデル20において上流側の領域である。本実施形態では、ゴム1の流れ方向(
図1における矢印A参照)に垂直なダイ流路12の断面は、長方形状である。ダイ流路領域21の厚みは、例えば3~40mm程度である。ただし、ダイ流路領域21の断面形状は、長方形状に限定されず、三角形状、菱形状、または台形状など様々であり得る。従って、ダイ流路領域21の厚みも必ずしも3mm以上ではなく、鋭角部分などがある場合には部分的に例えば1mmなどの値もとり得る。
【0033】
押出領域22は、流路モデル20において下流側の領域である。押出領域22では、ゴム1の流れ方向(
図1における矢印A参照)において最下流の最終断面形状Fが規定されている。最終断面形状Fは、
図2において斜線を付して示されている。最終断面形状Fは、予めゴム1を実際にダイ10から押し出して実験した際の断面形状の各寸法をノギスやレーザ計測機などを用いて測定し、当該形状を再現したものである。即ち、最終断面形状Fは、実測した形状に基づく。
【0034】
押出領域22は、ゴム1の流れ方向(
図1における矢印A参照)において断面形状が一定である。そのため、押出領域22の形状データを作成する際には、最終断面形状Fを上流側に向かって押し出して押出領域22を形成する。また、押出領域22は、ダイ10(
図1参照)の外の領域である。そのため、押出領域22の厚みは、ダイスウェル現象を再現すべく、ダイ流路領域21よりも大きく設定され、例えば3~80mm程度である。ただし、前述のように、断面形状に応じて例えば1mm程度の厚みを有する部分も存在し得る。押出領域22の長さは、例えば1~100mm程度である。
【0035】
接続領域23は、ダイ流路領域21と、押出領域22とを接続する領域である。従って、接続領域23は、ダイ10の外の領域であり、ダイスウェル現象の影響を受ける。そのため、接続領域23は、ゴム1の流れ方向(
図1における矢印A参照)において、上流側から下流側へ断面形状が徐々に大きくなるように形成されている。本実施形態では、接続領域23を画定する外面は平坦面23aである。そのため、接続領域23は、ゴム1の流れ方向(
図1における矢印A参照)において、上流側から下流側へ断面形状が線形的に大きくなるように形成されている。ただし、接続領域23を画定する外面は平坦面に限定されず、即ち断面形状が線形的に大きくなるように形成されているものに限定されない。接続領域23は、後述する第1~第3変形例に示すように代替的な形状を有してもよい。接続領域23の長さは、例えば0.1~10mm程度である。
【0036】
図3は、本実施形態のシミュレーション装置100のブロック図である。シミュレーション装置100は、制御部(プロセッサ)110と、情報を入力する入力部140と、情報を表示する表示部150と、情報を記録する記憶部160とを備える。制御部110は、演算処理および装置全体の制御を行う。入力部140は、シミュレーション装置100に対する入力データを生成する若しくは受け取る部分であり、例えば、キーボード、マウス、またはタッチパネル等により構成される。表示部150は、制御部110による処理結果等を表示する部分であり、例えば、液晶ディスプレイ、有機ELディスプレイ、またはプラズマディスプレイ等により構成される。記憶部160は、制御部110で稼働するプログラムに必要なパラメータデータ等が記録されている。これらの制御部110、入力部140、表示部150、および記憶部160は、相互に接続されている。シミュレーション装置100は、デスクトップパソコン、ノートパソコン、ワークステーション、またはタブレット端末のような情報処理装置で構成される。
【0037】
制御部110は、流路モデル20の形状を作成し、かつ、流路モデル20の解析条件を定義する流路モデル作成部120と、作成された流路モデル20についてゴム1(
図1参照)の流れのシミュレーション演算を行う演算部130とを含んでいる。流路モデル作成部120は、入力部140を介して入力されるデータまたは記憶部160から読み出されたデータによってダイ流路12を含む流路モデル20を作成する。
【0038】
流路モデル作成部120は、ダイ流路領域作成部121と、押出領域作成部122と、接続領域作成部123と、FEMモデリング部124と、解析条件定義部125とを含んでいる。これらの流路モデル作成部120および演算部130は、ハードウェア資源であるプロセッサとしての制御部110と、記憶部160に記憶されるソフトウェアであるプログラムとの協働により実現される。
【0039】
ダイ流路領域作成部121は、流路モデル20において上流側のダイ流路12(
図1参照)の部分を再現したダイ流路領域21(
図2参照)を作成する。押出領域作成部122は、前述のようにして流路モデル20において最下流の最終断面形状Fから押出領域22(
図2参照)を作成する。接続領域作成部123は、前述のようにして外面を例えば平坦面として接続領域23(
図2参照)を作成する。
【0040】
FEMモデリング部124は、
図9を参照して後述するように、得られたダイ流路領域21と押出領域22と接続領域23とを有限個の要素に分割して解析用のFEMモデルを作成する。要素分割の条件は、入力部140にて入力されるか、または、記憶部160にて予め記憶されている。例えば、分割される要素の形状や大きさなどの条件が好適に設定される。
【0041】
解析条件定義部125は、上記FEMモデルに対して解析条件を定義する。解析条件は、各種境界条件や物性値を含み、例えば、流入条件としてダイ10の入口でのゴム1の質量流量や体積流量、ダイ10の内部での壁面におけるすべり有無などの条件、および、流れるゴム1の材料物性などを含む。これらの解析条件についても入力部140にて入力されるか、または、記憶部160にて予め記憶されている。
【0042】
図4,5は、シミュレーション装置100によって実行される処理を示すフローチャートである。
【0043】
図4を参照して、処理を開始すると(ステップS4-1)、まず、流路モデル作成部120によって流路モデル20が作成される(ステップS4-2)。流路モデル20の作成に関しては、
図5を参照して後述する。次いで、作成された流路モデル20に対して解析条件定義部125によって解析条件が定義される(ステップS4-3)。次いで、演算部130によって、このようにして作成された流路モデル20について解析が実行される(ステップS4-4)。解析は計算結果が収束するまで実行され、解析が完了しない場合には(NO:ステップS4-5)、必要に応じて条件が再設定され(ステップS4-6)、解析が行われる(ステップS4-4)。最終断面形状Fにて、大気圧とゴムの膨張力が釣り合う関係となり、即ち計算結果が収束して解析が完了すると(YES:ステップS4-5)、表示部150に結果を出力し(ステップS4-7)、処理を終了する(ステップS4-8)。表示部150に出力される結果は、例えば、流路モデル20の各部におけるゴム1の流れの速度成分と圧力値である。従って、ユーザは、表示部150を介して、特に外部から視認できないダイ流路領域21における流れなどを確認できる。
【0044】
図5を参照して、
図4のステップS4-2における流路モデル20の作成手順を説明する。先に、作成される流路モデル20の形状データを
図6に示す。
図6の流路モデル20の形状データは、先に説明した
図2に示す模式的な流路モデル20をより実際に即した形状としたものである。前述のように、流路モデル20は、ダイ流路領域21と、接続領域23と、押出領域22とを含んでいる。流路モデル20の側面を
図7に示し、各領域21~23の断面形状を比較したものを
図8に示す。
【0045】
図7に示すように、ダイ流路領域21と押出領域22とにおいては、流路モデル20の厚みが一定である。接続領域23においては、厚みが線形的に増加している。即ち、接続領域23を画定する外面は平坦面である。また、
図8に示す各断面形状は、上図がダイ流路領域21のものを示し、中央図が接続領域23のものを示し、下図が押出領域22のものを示している。断面形状は、下流の領域ほど大きくなっており、ダイスウェル現象が再現されていることが確認できる。特に、ダイ流路領域21では断面形状が長方形であり、接続領域23では断面形状が長方形であり、押出領域22では断面形状が長方形の各辺の特に中央部が外側へ膨出した形状となっている。
【0046】
図5を再び参照して、流路モデル20を作成する際には、まず、押出領域作成部122によって最終断面形状Fから押出領域22が作成される(ステップS5-1)。次に、ダイ流路領域作成部121によって、ダイ流路12(
図1参照)を再現したダイ流路領域21が作成される(ステップS5-2)。そして、接続領域作成部123によってダイ流路領域21と押出領域22とを平坦面23aで接続するように接続領域23が作成される(ステップS5-3)。このようにして、流路モデル20の形状データが作成される。なお、押出領域22の作成(ステップS5-1)と、ダイ流路領域21の作成(ステップS5-2)とは、いずれが先であってもよい。
【0047】
流路モデル20の形状データが上記のようにして作成されると、次にFEMモデリング部124によって、
図9に示すように流路モデル20の形状データを解析のための有限個の要素に分割してFEMモデルを作成する(ステップS5-4)。このようにして作成された流路モデル(FEMモデル)20に対して前述のように解析が実行される。
【0048】
本実施形態のシミュレーション装置100によれば以下の有利な作用効果を奏する。
【0049】
流路モデル20の最終断面形状Fがダイ流路12の断面よりも大きく規定されているため、ダイスウェル現象を再現できる。また、ゴム1の流れにおける最下流の最終断面形状Fが予め規定されているため、計算の収束までの時間を短縮できる。また、流路モデル20において接続領域23を設けているため、上流側のダイ流路領域21から下流側の押出領域22まで不連続な解析点が存在することを防止できる。従って、安定したシミュレーションを実行できるため、ダイ流路領域21における流体の挙動を解析できる。
【0050】
特に本実施形態では、最終断面形状Fが実測した形状に基づいているため、実際の現象に近い高精度の解析が可能となる。ただし、必要に応じて実測を省略し、推定寸法等で最終断面形状Fを規定してもよい。
【0051】
また、接続領域23を画定する外面を平坦面23aとしており、接続領域23として簡易な形状を設定している。そのため、流路モデル20を簡易に作成でき、解析に伴う計算時間を短縮できる。
【0052】
(第1変形例)
図10は、
図7に対応して、流路モデル20の第1変形例を示している。特に、破線円内に接続領域23の一部が拡大して示されている。
図10に示すように、接続領域23を画定する外面は、曲面であってもよい。例えば、本変形例では、接続領域23を画定する外面を円弧面としている。
【0053】
本変形例によれば、接続領域23として実現象に近い形状を設定できるため、解析精度を向上できる。一般に、ダイスウェル現象においては、ゴム1は、ダイ10の出口11から押し出された後に線形的(一次的に)に膨張するのではなく、高次的に膨張する。従って、好ましくは、接続領域23の外面形状をゴム1の膨張に応じた曲面形状に設定する。
【0054】
(第2変形例)
図11は、
図7に対応して、流路モデル20の第2変形例を示している。特に、破線円内に接続領域23の一部が拡大して示されている。
図11に示すように、接続領域23を画定する外面は、ダイ流路領域21との接続部において角部を形成せずに内側へ凸の滑らかな湾曲面を構成する第1湾曲面23bと、押出領域22との接続部において角部を形成せずに外側へ凸の滑らかな湾曲面を構成する第2湾曲面23cとを備えてもよい。本変形例では、第1湾曲面23bおよび第2湾曲面23cは、ともに同じ曲率の円弧面である。
【0055】
本変形例によれば、ダイ流路領域21と接続領域23との接続部が第1湾曲面23bで構成され、接続領域23と押出領域22との接続部が第2湾曲面23cで構成される。特に、第1湾曲面23bが接続領域23の内側へ凸であることで、ダイ流路領域21と接続領域23とが滑らかに接続される。同様に、第2湾曲面23cが外側へ凸であることで、接続領域23と押出領域22とが滑らかに接続される。従って、各領域21~23を接続する部分において、解析が不可能となる可能性のある不連続な点が発生することを防止し、計算の発散を防止できる。
【0056】
(第3変形例)
図12は、
図7に対応して、流路モデル20の第3変形例を示している。特に、破線円内に接続領域23の一部が拡大して示されている。
図12に示すように、第2変形例の接続領域23(
図11参照)から第1湾曲面23bの曲率を変更してもよいし、第2湾曲面23cの曲率を変更してもよい。例えば、本変形例では、第2変形例から第1湾曲面23bの曲率を小さくし、第2湾曲面23cの曲率を大きくしている。従って、本変形例では、第1湾曲面23bは、第2湾曲面23cよりも小さい曲率を有する。
【0057】
本変形例によれば、ダイ10の出口11におけるダイスウェル現象をより正確に再現できる。一般に、ダイスウェル現象においては、流体は、ダイ10の出口11から押し出された後、ダイ10の出口11付近において大きく膨張する。ダイ10の出口11付近の第1湾曲面23bが、それより下流の第2湾曲面23cよりも小さい曲率を有すると、ダイの出口11付近の膨張量を大きく設定することができる。従って、ダイスウェル現象の膨張状態を正確に再現できる。また、第2変形例と同様に、各領域21~23が滑らかに接続されるため、計算の発散を防止できる。
【0058】
以上より、本発明の具体的な実施形態およびその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
【符号の説明】
【0059】
1 ゴム
10 ダイ
11 出口
12 ダイ流路
20 流路モデル
21 ダイ流路領域
22 押出領域
23 接続領域
23a 平坦面
23b 第1湾曲面
23c 第2湾曲面
100 シミュレーション装置
110 制御部(プロセッサ)
120 流路モデル作成部
121 ダイ流路領域作成部
122 押出領域作成部
123 接続領域作成部
124 FEMモデリング部
125 解析条件定義部
130 演算部
140 入力部
150 表示部
160 記憶部