(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-03
(45)【発行日】2022-10-12
(54)【発明の名称】予測モデル生成装置及び方法
(51)【国際特許分類】
H02J 3/00 20060101AFI20221004BHJP
H02J 13/00 20060101ALI20221004BHJP
【FI】
H02J3/00 170
H02J13/00 301A
(21)【出願番号】P 2020197000
(22)【出願日】2020-11-27
【審査請求日】2022-06-10
【早期審査対象出願】
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(73)【特許権者】
【識別番号】000222037
【氏名又は名称】東北電力株式会社
(74)【代理人】
【識別番号】110002365
【氏名又は名称】特許業務法人サンネクスト国際特許事務所
(72)【発明者】
【氏名】内海 吉貴
(72)【発明者】
【氏名】和田 義將
(72)【発明者】
【氏名】永田 晃久
(72)【発明者】
【氏名】古賀 裕貴
(72)【発明者】
【氏名】山田 信一
【審査官】右田 勝則
(56)【参考文献】
【文献】国際公開第2018/179283(WO,A1)
【文献】国際公開第2018/003879(WO,A1)
【文献】特開2018-207690(JP,A)
【文献】特開2018-185774(JP,A)
【文献】特開2018-36970(JP,A)
【文献】特開2017-182414(JP,A)
【文献】特開2016-63590(JP,A)
【文献】国際公開第2018/101363(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/00
H02J 13/00
(57)【特許請求の範囲】
【請求項1】
低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置において、
各需要家にそれぞれ設置されたスマートメーターが検出した各特定イベントのイベント情報に基づき認識される各前記特定イベントの発生頻度に基づいて、所定の第1の期間内に前記スマートメーターにより検出された各前記特定イベントを複数段階のレベルにそれぞれレベリングし、各前記レベルの前記特定イベントが発生した回数を前記特定イベントごとにそれぞれカウントするイベントレベリング部と、
前記イベントレベリング部によりカウントされた各前記特定イベントの前記レベルごとの発生回数に基づいて前記予測モデルを生成する予測モデル生成部と
を備えることを特徴とする予測モデル生成装置。
【請求項2】
前記第1の期間は、
当該第1の期間の最後に発生した前記引込線以下の設備不良の予兆となる前記特定イベントが所定割合以上含まれる期間である
ことを特徴とする請求項1に記載の予測モデル生成装置。
【請求項3】
前記予測モデル生成部は、
各前記特定イベントの前記レベルごとの発生回数と、各前記スマートメーターの前記需要家への取付け日からの経過時間とに基づいて前記予測モデルを生成する
ことを特徴とする請求項1又は請求項2に記載の予測モデル生成装置。
【請求項4】
前記スマートメーターにより計測された各前記需要家の30分値に基づいて、季節ごとの前記30分値の最大値及び日毎の電力使用量の最大値をそれぞれ算出する電力使用量管理部をさらに備え、
前記予測モデル生成部は、
各前記特定イベントの前記レベルごとの発生回数と、季節ごとの前記30分値の最大値及び日毎の電力使用量の最大値とに基づいて前記予測モデルを生成する
ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の予測モデル生成装置。
【請求項5】
前記特定イベントは、
前記設備不良の予兆となり得るイベントである
ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の予測モデル生成装置。
【請求項6】
低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置により実行される予測モデル生成方法であって、
各需要家にそれぞれ設置されたスマートメーターが検出した各特定イベントのイベント情報に基づき認識される各前記特定イベントの発生頻度に基づいて、所定の第1の期間内に前記スマートメーターにより検出された各前記特定イベントを複数段階のレベルにそれぞれレベリングし、各前記レベルの前記特定イベントが発生した回数を前記特定イベントごとにそれぞれカウントする第1のステップと、
カウントした各前記特定イベントの前記レベルごとの発生回数に基づいて前記予測モデルを生成する第2のステップと
を備えることを特徴とする予測モデル生成方法。
【請求項7】
前記第1の期間は、
当該第1の期間の最後に発生した前記引込線以下の設備不良の予兆となる前記特定イベントが所定割合以上含まれる期間である
ことを特徴とする請求項6に記載の予測モデル生成方法。
【請求項8】
前記第2のステップでは、
各前記特定イベントの前記レベルごとの発生回数と、各前記スマートメーターの前記需要家への取付け日からの経過時間とに基づいて前記予測モデルを生成する
ことを特徴とする請求項6又は請求項7に記載の予測モデル生成方法。
【請求項9】
前記第1のステップでは、
前記スマートメーターにより計測された各前記需要家の30分値に基づいて、季節ごとの前記30分値の最大値及び日毎の電力使用量の最大値をそれぞれ算出し、
前記第2のステップでは、
各前記特定イベントの前記レベルごとの発生回数と、季節ごとの前記30分値の最大値及び日毎の電力使用量の最大値とに基づいて前記予測モデルを生成する
ことを特徴とする請求項6乃至請求項8のいずれか一項に記載の予測モデル生成方法。
【請求項10】
前記特定イベントは、
前記設備不良の予兆となり得るイベントである
ことを特徴とする請求項6乃至請求項9のいずれか一項に記載の予測モデル生成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は予測モデル生成装置及び方法に関し、例えば、配電系統における低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置に適用して好適なものである。
【背景技術】
【0002】
近年、双方向の通信機能を備えた電力量計であるスマートメーターの需要家への設置が進められている。スマートメーターを利用することによって、従来の計量システムでは取得できなかった需要家の30分ごとの電力使用量(以下、これを30分値と呼ぶ)及び自家発電からの逆潮流などの細かいデータや、スマートメーターが検出した電圧低下、停電及び復電などの各種イベントに関する情報(以下、これらをイベント情報と呼ぶ)などの取得が可能となる。
【0003】
このようなスマートメーターについては、その基本的な機能である定期的な検針値の収集に関する技術が特許文献1に開示されている。また近年では、その他の通信方式に関する技術などスマートメーターに関する様々な技術が提案されている。
【0004】
さらに、近年、スマートメーターの普及に伴いスマートメーターからセンタ設備側へと送信される30分値及び月単位での電力使用量といった検針値情報や、各種イベントのイベント情報の利活用を検討する動きもある。例えば、特許文献2には、電力管内に設置されたスマートメーターからの30分値やイベント情報を活用して、事故停電や配電設備の故障の原因を詳細に特定した上で、特定された原因ごとに、これらの事故停電や配電設備の故障への対応方法を指示することが可能なデータ管理システムが提案されている。
【0005】
さらに特許文献3には、配電設備の故障位置を推定する相グループ推定処理プログラムに関連して、スマートメーターのイベント通知に基づいて断線等の故障が発生した位置を推定する技術が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2005-352532号公報
【文献】特開2018-207690号公報
【文献】国際公開第2018/179283号
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、一般的に、電柱に設置された変圧器及びスマートメーター間を接続する低圧引込線に設けられたヒューズのヒューズ切れや、断線などといった低圧引込線以下の設備不良の予測は困難である。このため配電系統の保守管理業務では、緊急付託工事によるコストの増加や、低圧引込線の不良発生によるサービス品質の低下及び昼夜を問わない停電対応への繁忙感が問題となっている。
【0008】
また特許文献2及び特許文献3に開示された技術では、電力設備の故障を特定及び推定するために該当設備専用のプログラムが必要となるため、他の設備への展開が容易ではない。
【0009】
本発明は以上の点を考慮してなされたもので、かかる問題を一気に解決して、配電系統の保守管理に要するコストを削減しながら、配電サービスの品質を向上させ、かつ停電対応への繁忙感を解消させ得る予測モデル生成装置及び方法を提案しようとするものである。
【課題を解決するための手段】
【0010】
かかる課題を解決するため本発明においては、低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置において、各需要家にそれぞれ設置されたスマートメーターが検出した各特定イベントのイベント情報に基づき認識される各前記特定イベントの発生頻度に基づいて、所定の第1の期間内に前記スマートメーターにより検出された各前記特定イベントを複数段階のレベルにそれぞれレベリングし、各前記レベルの前記特定イベントが発生した回数を前記特定イベントごとにそれぞれカウントするイベントレベリング部と、前記イベントレベリング部によりカウントされた各前記特定イベントの前記レベルごとの発生回数に基づいて前記予測モデルを生成する予測モデル生成部とを設けるようにした。
【0011】
また本発明においては、低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置により実行される予測モデル生成方法であって、各需要家にそれぞれ設置されたスマートメーターが検出した各特定イベントのイベント情報に基づき認識される各前記特定イベントの発生頻度に基づいて、所定の第1の期間内に前記スマートメーターにより検出された各前記特定イベントを複数段階のレベルにそれぞれレベリングし、各前記レベルの前記特定イベントが発生した回数を前記特定イベントごとにそれぞれカウントする第1のステップと、カウントした各前記特定イベントの前記レベルごとの発生回数に基づいて前記予測モデルを生成する第2のステップとを設けるようにした。
【0012】
本発明の予測モデル生成装置及び方法によれば、生成された予測モデルに基づいて低圧引込線以下の設備不良の発生を精度高く予測することができるため、かかる設備不良の発生前に部品交換等の事前の対応を行うことで、緊急付託工事に起因する配電系統の保守管理業務のコストの増加や、停電対応の頻度を低減することができる。
【発明の効果】
【0013】
本発明によれば、配電系統の保守管理に要するコストを削減しながら、配電サービスの品質を向上させ、かつ停電対応への繁忙感を解消させ得る予測モデル生成装置及び方法を実現できる。
【図面の簡単な説明】
【0014】
【
図1】本実施の形態による予測モデル生成装置の物理構成を示すブロック図である。
【
図2】イベント情報管理テーブルの構成を示す図表である。
【
図3】30分値管理テーブルの構成を示す図表である。
【
図4】本実施の形態による予測モデル生成装置の論理構成を示すブロック図である。
【
図5】(A)及び(B)はイベントレベリング部による特定イベントのレベリングの説明に供する図及び図表である。
【
図6】イベントレベリング部による特定イベントのレベリングの説明に供する図である。
【
図7】イベントレベリング情報の説明に供する図表である。
【
図10】学習データ取得期間、検証データ取得期間及び実データ取得期間の説明に供する図である。
【
図11】検証データ取得期間の付加期間の説明に供するグラフである。
【
図12】(A)~(C)は、的中率及びカバー率の説明に供するベン図である。
【
図13】第1のイベント回数管理テーブルの構成例を示す図表である。
【
図14】イベントレベリングテーブルの構成例を示す図表である。
【
図15】電力使用量管理テーブルの構成例を示す図表である。
【
図16】設備情報管理テーブルの構成例を示す図表である。
【
図17】経過時間管理テーブルの構成例を示す図表である。
【発明を実施するための形態】
【0015】
以下図面について、本発明の一実施の形態を詳述する。
【0016】
(1)本実施の形態による予測モデル生成装置の構成
(1-1)予測モデル生成装置の物理構成
図1において、1は本実施の形態による予測モデル生成装置を示す。この予測モデル生成装置1は、制限中止割引システム2、メータデータ管理システム(MDMS:Meter Data Management System)3及びこの他の各種システム4を備えて構成される。
【0017】
予測モデル生成装置1は、配電系統における低圧引込線以下の設備不良(以下、停電とする)の発生を予測するための予測モデルを生成する予測モデル生成機能を有し、CPU(Central Processing Unit)10、メモリ11A、記憶装置11B及び表示装置12を備えた汎用のコンピュータ装置から構成される。
【0018】
CPU10は、予測モデル生成装置1全体の動作制御を司るプロセッサである。またメモリ11Aは、例えば揮発性の半導体メモリから構成され、CPU10のワークメモリとして利用される。メモリ11Aには、かかる予測モデル生成機能を実現するためのアプリケーションソフトウェアである後述の分析ツール13が格納される。
【0019】
また記憶装置11Bは、プログラムや必要な情報を長期間保持するために利用され、ハードディスク装置や、SSD(Solid State Drive)又はフラッシュメモリなどの大容量の不揮発性の記憶装置から構成される。記憶装置11Bには、各種プログラムのほか、後述の第1のイベント回数管理テーブル14、イベントレベリングテーブル15、電力使用量管理テーブル16、設備情報管理テーブル17、経過時間管理テーブル18及び第2のイベント回数管理テーブル19や、かかる予測モデル生成機能により生成された予測モデル20などが格納される。
【0020】
表示装置12は、例えば液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどから構成され、必要な情報を表示するために利用される。
【0021】
一方、メータデータ管理システム3は、管轄管内の各スマートメーター(図示せず)からそれぞれ送信されてくるイベント情報及び30分値や、各スマートメーターの構成情報を管理する機能を有するコンピュータ装置である。
【0022】
実際上、メータデータ管理システム3は、各需要家にそれぞれ設置したスマートメーターから適宜送信されてくるイベント情報を
図2に示すようなイベント情報管理テーブル21に登録して管理している。
図2では、イベント情報管理テーブル21の各行の情報がそれぞれイベント情報40を表す。
【0023】
またメータデータ管理システム3は、各スマートメーターから例えば30分周期で送信されてくる対応する需要家の30分値を
図3に示すような30分値管理テーブル22に登録して管理している。
図3では、30分値管理テーブル22の各行の各欄の値がそれぞれ一人の需要家の対応する時間帯の30分値42を表す。さらにメータデータ管理システム3は、単相3線型や三相3線型といった各スマートメーターの構成情報を図示しない構成情報テーブルに登録して管理している。
【0024】
そして、メータデータ管理システム3が管理しているこれらの情報(イベント情報40、需要家の30分値42及びスマートメーターの構成情報)は、例えば、USB(Universal Serial Bus)メモリなどの半導体メモリ、CD(Compact Disc)若しくはDVD(Digital Versatile Disc)などの光ディスク、又は、可搬型のハードディスク装置などの可搬型記憶装置を介して人手により予測モデル生成装置1に提供される。
【0025】
制限中止割引システム2は、管轄管内に発生した各種停電の実績などを管理する1又は複数のコンピュータ装置から構成される。また各種システム4は、各スマートメーターの需要家への取付け日や、点検実績及び設備設計情報、竣工情報、並びに、改修実績などの設備情報を管理する1又は複数のコンピュータ装置から構成される。
【0026】
制限中止割引システム2が管理している各種停電の実績の情報や、各種システム4が管理している上述の設備情報も、半導体メモリ、光ディスク又は可搬型記憶装置を介して人手により予測モデル生成装置1に提供される。
【0027】
(1-2)予測モデル生成装置の論理構成
図4は、かかる予測モデル生成装置1の論理構成を示す。この
図4からも明らかなように、予測モデル生成装置1は、第1のイベント回数管理部30、イベントレベリング部31、電力使用量管理部32、設備情報管理部33、経過時間管理部34、第2のイベント回数管理部35、予測モデル生成部36、モデル評価部37及び不良発生予測部38と、第1のイベント回数管理テーブル14、イベントレベリングテーブル15、電力使用量管理テーブル16、設備情報管理テーブル17、経過時間管理テーブル18及び第2のイベント回数管理テーブル19とを備えて構成される。
【0028】
第1のイベント回数管理部30、イベントレベリング部31、電力使用量管理部32、設備情報管理部33、経過時間管理部34、第2のイベント回数管理部35、予測モデル生成部36、モデル評価部37及び不良発生予測部38は、すべてCPU10(
図1)がメモリ11A(
図11)に格納された分析ツール13(
図1)を実行することにより具現化される機能部である。
【0029】
第1のイベント回数管理部30は、上述のように提供された各種停電の実績の情報の中からいずれかの低圧引込線に発生した設備不良(停電)の発生日時や発生した低圧引込線に関する所定期間(少なくとも
図10の現時点から「a/aa」までの期間)分の停電実績情報45と、提供されたイベント情報40の中から同じ期間分のイベント情報40とを抽出し、抽出したこれらの情報に基づいて、その期間内に各スマートメーターがそれぞれ検知した特定の各イベント(以下、これらを特定イベントと呼ぶ)の発生回数をスマートメーターごと及びイベント種別ごとにそれぞれカウントする機能を有する。第1のイベント回数管理部30は、かかるカウント結果を
図13について後述する第1のイベント回数管理テーブル14に格納して管理する。
【0030】
なお第1のイベント回数管理部30が取得するイベント情報40は、後述のようにそのイベント情報40に基づいて予測モデル20を生成する関係上、そのイベント情報40に対応するイベントがその後に発生した低圧引込線以下の設備不良の予兆となり得るものであるものとする。このためその設備不良(停電)が現時点で既に発生していることが必須となる。そこで、第1のイベント回数管理部30は、イベント情報40を取得するに際しては、現時点からある程度前の所定期間(以下、これを学習データ取得期間と呼ぶ)に発生したイベントのイベント情報を取得する(
図10参照)。この学習データ取得期間の長さは、学習データ取得期間の最後に発生した低圧引込線以下の設備不良の予兆となる特定イベントの多く(所定割合以上)が含まれる期間であり、経験的に求められた長さが定められる。
【0031】
また以下においては、低圧引込線が単相3線式のものであるものとする。よって、第1のイベント回数管理部30がイベント情報40を取得すべき各スマートメーターのイベントは、スマートメーターの1側端子に接続された低圧引込線の1側電線の電圧が低下した「1側電圧低下」と、当該1側電線からの電力供給が停止した「1側停電」と、スマートメーターの3側端子に接続された低圧引込線の3側電線の電圧が低下し又は当該3側電線からの電力供給が停止した「3側電圧低下」との3種類である。
【0032】
ただし本実施の形態においては、点検作業のために作業員等によりスマートメーターのカバーが開閉された「カバー開閉」をもイベント情報40を取得すべきイベントとする。この場合においても、第1のイベント回数管理部30が、「カバー開閉」を除外した「1側電圧低下」、「1側停電」及び「3側電圧低下」の3種類のイベントのみを上述の「特定イベント」としてその発生回数をそれぞれカウントする。
【0033】
イベントレベリング部31は、第1のイベント回数管理部30が取得したイベント情報40に基づいて、スマートメーターごとに、そのスマートメーターが検出した学習データ取得期間内の各特定イベントをそれぞれ「1」~「5」までの5段階のレベルにレベリングする機能を有する。
【0034】
具体的に、イベントレベリング部31は、
図5(A)及び(B)並びに
図6に示すように、スマートメーターがレベリング対象となる特定イベント(以下、適宜、これをレベリング対象特定イベントと呼ぶ)を検出している場合に、そのスマートメーターが直前の所定時間(
図6の「N時間」であり、例えば3時間)内に同一種別の特定イベントを検出した回数が0~1回の場合には、そのレベリング対象特定イベントを「レベル1(Lv.1)」にレベリングする。
【0035】
またイベントレベリング部31は、レベリング対象特定イベントをスマートメーターが検出した時点から直前のかかる所定時間内にそのスマートメーターが同一種別の特定イベントを検知した回数が2~4回の場合には「レベル2(Lv.2)」、5~8回の場合には「レベル3(Lv.3)」、9~13回の場合には「レベル4(Lv.4)」、14回以上の場合には「レベル5(Lv.5)」にそのレベリング対象特定イベントをそれぞれレベリングする。
【0036】
さらにイベントレベリング部31は、「全特定イベント」と、「『1側停電』又は『1側電圧低下』」とについてもそれぞれ同様にレベリングする。
【0037】
具体的に、イベントレベリング部31は、「全特定イベント」については、何らかの特定イベント(レベリング対象特定イベント)をスマートメーターが検出した時点から直前のかかる所定時間内にそのスマートメーターがいずれかの特定イベントを検知した回数が0~1回の場合には「レベル1(Lv.1)」、2~4回の場合には「レベル2(Lv.2)」、5~8回の場合には「レベル3(Lv.3)」、9~13回の場合には「レベル4(Lv.4)」、14回以上の場合には「レベル5(Lv.5)」にそのレベリング対象特定イベントをそれぞれレベリングする。
【0038】
またイベントレベリング部31は、「『1側停電』又は『1側電圧低下』」については、「1側停電」又は「1側電圧低下」の特定イベント(レベリング対象特定イベント)をスマートメーターが検出した時点から直前のかかる所定時間内にそのスマートメーターが「1側停電」又は「1側電圧低下」の特定イベントを検知した回数が0~1回の場合には「レベル1(Lv.1)」、2~4回の場合には「レベル2(Lv.2)」、5~8回の場合には「レベル3(Lv.3)」、9~13回の場合には「レベル4(Lv.4)」、14回以上の場合には「レベル5(Lv.5)」にそのレベリング対象特定イベントをそれぞれレベリングする。
【0039】
なお「『1側停電』又は『1側電圧低下』」をレベリング対象としているのは、スマートメーターが、1側端子に発生した停電及び電圧低下をそれぞれ「1側停電」及び「1側電圧低下」という異なるイベントとして検出及び出力できるのに対して、3側端子に発生した停電及び電圧低下を「3側電圧低下」という1種類のイベントとしてしか検出できないことを考慮し、1側端子及び3側端子の出力単位を揃えるためである。
【0040】
そしてイベントレベリング部31は、このようなレベリングによって、取得した
図2のようなイベント情報40を、「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」のそれぞれについて、対応する特定イベント(「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」又は「『1側停電』又は『1側電圧低下』」)のレベリング結果のみをそれぞれ纏めた
図7に示すようなイベントレベリング情報41に加工する。
【0041】
このイベントレベリング情報41は、
図7からも明らかなように、「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」のそれぞれについて、その発生直前の所定時間内に対応する特定イベントが発生した回数と、上述のレベリングによりその特定イベントに付与されたレベルとを対応付けた情報である。
【0042】
またイベントレベリング部31は、かかる加工により得られたイベントレベリング情報41に基づいて、スマートメーターごとに、そのスマートメーターが検出した「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」のレベルごとの発生回数をそれぞれカウントし、カウント結果をそれぞれ
図14について後述する「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」ごとにそれぞれ生成されたイベントレベリングテーブル15に格納して管理する。
【0043】
電力使用量管理部32は、提供された各需要家の30分値42(
図4)の中から上述の学習データ取得期間における各需要家の30分値42を抽出し、抽出した需要家ごとの30分値42に基づいて、春、夏、秋及び冬の各季節における1日分の電力使用量の最大値(以下、これを日毎電力使用量最大値と呼ぶ)と、30分値42の最大値(以下、これを30分値最大値と呼ぶ)とをそれぞれ算出及び抽出し、算出結果及び抽出結果を
図15について後述する電力使用量管理テーブル16に格納して管理する機能を有する。なお、本実施の形態の場合、電力使用量管理部32は、「春」を5月、「夏」を8月、「秋」を11月、「冬」を2月として、これらの月における日毎電力使用量最大値と、30分値最大値とをそれぞれ算出及び抽出する。
【0044】
設備情報管理部33は、上述のように提供された設備情報の中から各スマートメーターの取付け日をそれぞれ抽出し、抽出結果を
図16について後述する設備情報管理テーブル17に格納して管理する機能を有する。また経過時間管理部34は、設備情報管理テーブル17に格納されている各スマートメーターの設備情報に基づいて各スマートメーターの取付け日からの経過日数をそれぞれ算出し、算出結果を
図17について後述する経過時間管理テーブル18に登録して管理する機能を有する。
【0045】
第2のイベント回数管理部35は、上述のように提供されたイベント情報40に基づいて、所定期間内に各スマートメーターがそれぞれ検出した「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」の発生回数をスマートメーターごと及びイベント種別ごとにそれぞれカウントし、カウント結果を後述する第2のイベント回数管理テーブル19に格納して管理する機能を有する。
【0046】
なお第2のイベント回数管理部35が発生回数をカウントするイベントは、上述した「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」のうち、未だ低圧引込線以下の設備不良が発生していない事案に関連するイベントのみである。従って、第2のイベント回数管理部35は、スマートメーターの3側端子に接続された電線からの電力供給の停止(停電)を含まない「3側電圧低下」と、「1側停電」、「1側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」との発生回数をそれぞれカウントする。
【0047】
予測モデル生成部36は、第1のイベント回数管理テーブル14、イベントレベリングテーブル15、電力使用量管理テーブル16、設備情報管理テーブル17及び経過時間管理テーブル18にそれぞれ格納された各種情報を学習データとして、スマートメーターの種類ごとに特定イベントの発生頻度と、低圧引込線以下の設備不良の発生との相関関係を機械学習し、かかる設備不良の発生を予測するための予測モデル20をスマートメーターの種類ごとにそれぞれ生成する機能を有する。
【0048】
実際上、予測モデル生成部36は、
図8に示すように、第1のイベント回数管理テーブル14(
図4)に格納されたスマートメーターごとの各特定イベントの発生回数を表す情報50Aと、イベントレベリングテーブル15(
図4)に格納されたスマートメーターごとの各レベルのイベントの発生回数を表す情報50Bと、電力使用量管理テーブル16(
図4)に格納された各スマートメーターに対応する需要家ごとの各季節における日毎最大電力使用量及び30分値最大値を表す情報50Cと、設備情報管理テーブル17(
図4)に格納された各スマートメーターの需要家への取付け日を表す情報50Dと、経過時間管理テーブル18(
図4)に格納されたスマートメーターごとの需要家への取付け日からの経過時間を表す情報50Eとを、計器IDをキーとしてスマートメーターごとに纏めるようにして学習データ50を生成する。
【0049】
そして予測モデル生成部36は、このようにして生成した学習データ50に基づいて、既存の手法を用いて例えば
図9に示すような決定木モデルを予測モデル20として生成する。
【0050】
モデル評価部37は、予測モデル生成部36により生成された予測モデル20の精度を評価する機能を有する。実際上、モデル評価部37は、第1のイベント回数管理テーブル14、イベントレベリングテーブル15、電力使用量管理テーブル16、設備情報管理テーブル17及び経過時間管理テーブル18にそれぞれ格納された各種データのうち、既に対応が完了している低圧引込線以下の設備不良(停電)に関連する各種データを検証データ51として、当該検証データ51を予測モデル20に投入する。
【0051】
なお、
図10に示すように、予測モデル生成部36が予測モデル20の生成に用いる学習データ50は、低圧引込線以下の設備不良となるまでのサンプルをより多く取得するために長期間のデータを必要とするのに対して、モデル評価部37が予測モデル20の精度検証のために用いる検証データ51は、かかる検証を行える程度の期間(以下、これを検証期間と呼ぶ)のデータであればよい。ただし、検証期間のデータに加えて所定期間(以下、これを付加期間と呼ぶ)の各種データを付加したものを検証データ51として利用するようにする。これは検証期間の開始前後に発生した低圧引込線以下の設備不良を、予測モデル20を用いて予測できるようにするためである。
【0052】
この場合において、
図11に示すように、低圧引込線以下の設備不良が発生した日から遡った過去の日数を横軸、かかる不良が発生するまでに対応するスマートメーターにより検知された特定イベントの発生回数の累積回数を縦軸にとって幾つかの実例のグラフを作成してみたところ、最終的に低圧引込線以下の設備不良が発生するまでに検知された特定イベントの80%が当該設備不良が発生する60日前までに発生していることが確認できた。そこで、本実施の形態では、かかる付加期間を60日とすると共に、検証期間についても、最後の特定イベントが発生してから、又は、低圧引込線以下の設備不良に対応した実績がある時点から60日前までの期間を検証期間として選定するものとする。
【0053】
そしてモデル評価部37は、上述の検証データを予測モデル20に投入することにより得られた低圧引込線以下の設備不良の予測結果を実際の低圧引込線以下の設備不良と比較することにより、予測モデルの精度を評価する。この場合、かかる評価は、予測モデル20による設備不良の発生予測の的中率及びカバー率を算出することにより行う。
【0054】
ここで、
図12(A)に示すように、低圧引込線の設備不良(停電)が実際に発生した事象の集合を「A」、予測モデルが低圧引込線の設備不良が発生すると予測した事象の集合を「C」とすると、集合「A」及び集合「C」の重複部である集合「B」が予測モデルが正しく低圧引込線の設備不良を予測できた事象の集合である。
【0055】
よって、かかる的中率は、集合「B」に属する事象の数を集合「C」に属する事象の数で除算(B/C)することにより算出することができ、かかるカバー率は、集合「B」に属する事象の数を集合「A」に属する事象の数で除算(B/A)することにより算出することができる。なお、的中率が100%のときの集合「A」、集合「B」及び集合「C」の関係は
図12(B)のようになり、カバー率が100%のときの集合「A」、集合「B」及び集合「C」の関係は
図12(C)のようになる。
【0056】
そしてモデル評価部37は、このようにして算出した予測モデル20を用いた低圧引込線以下の設備不良の発生の的中率及びカバー率を表示装置12(
図1)に表示する。
【0057】
この結果、ユーザは、この表示結果に基づいてそのとき作成された予測モデル20の予測精度を確認することができる。またユーザは、この予測精度が低い場合には、再度、前回よりもより長期間の学習データ50を予測モデル生成部36に与えるようにして予測モデル20を再生成させることを繰り返す。これにより予測モデル20の精度を徐々に向上させることができる。そしてユーザは、やがて予測モデル20の精度が一定以上となった段階で、その予測モデル20を用いて低圧引込線以下の設備不良の発生を予測するよう予測モデル生成装置1に指示を与えるようにする。
【0058】
この結果、かかる指示を受けた不良発生予測部38は、そのときイベントレベリングテーブル15や、電力使用量管理テーブル16、設備情報管理テーブル17及び経過時間管理テーブル18に格納されている各データと、第2のイベント回数管理テーブル19に格納されている各データとのうち、未だ発覚していない低圧引込線以下の設備不良の予兆となり得るデータを実データ52として取り込み、この実データ52を予測モデル20に投入するようにして今後発覚又は発生するであろう低圧引込線以下の設備不良を予測する。そして不良発生予測部38は、この予測結果53を自社や委託会社の設備保守担当者に通知し、予測された低圧引込線以下の設備の点検を指示する。
【0059】
なお実データ52としては、
図10に示すように、現時点から低圧引込線以下の設備不良の予測を行える程度の直前の期間(以下、これを分析期間と呼ぶ)のデータであればよい。分析期間に加えて所定の付加期間を付加した期間を実データ取得期間として、当該実データ取得期間の各種データを実データ52として利用する。これは分析期間の開始前後に発生した低圧引込線の設備不良を、予測モデル20を用いて予測できるようにするためである。
【0060】
一方、第1のイベント回数管理テーブル14は、第1のイベント回数管理部30(
図4)によりカウントされた直近の所定期間内に各スマートメーターがそれぞれ検知した各特定イベントの発生回数を保持及び管理するために利用されるテーブルである。第1のイベント回数管理テーブル14は、
図13に示すように、管理番号欄14A、計器ID欄14B、1側電圧低下欄14C、1側停電欄14D及び3側電圧低下欄14Eを備えて構成される。第1のイベント回数管理テーブル14では、1つの行が1つのスマートメーターに対応する。
【0061】
そして管理番号欄14Aには、第1のイベント回数管理テーブル14におけるその行の情報に対して付与された管理番号(本実施の形態では通し番号)が格納され、計器ID欄14Bには、その情報に対応するスマートメーターに付与されたそのスマートメーターに固有の識別子(計器ID)が格納される。
【0062】
また1側電圧低下欄14Cには、第1のイベント回数管理部30によりカウントされた、対応するスマートメーターがかかる所定期間内に検知した「1側電圧低下」の発生回数が格納され、1側停電欄14Dには、第1のイベント回数管理部30によりカウントされた、そのスマートメーターがその所定期間内に検知した「1側停電」の発生回数が格納される。さらに3側電圧低下欄14Eには、第1のイベント回数管理部30によりカウントされた、対応するスマートメーターがかかる所定期間内に検知した「3側電圧降下(3側停電を含む)」の発生回数が格納される。
【0063】
従って、
図13の例の場合、「計器A」という計器IDのスマートメーターが、かかる所定期間内に「1側電圧低下」を「11」回、「1側停電」を「1」回、「3側電圧低下」を「0」回検知したことが示されている。
【0064】
イベントレベリングテーブル15は、イベントレベリング部31(
図4)によりレベリングされた、「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」といったイベントのレベルごとの発生回数の集計結果を保持及び管理するために利用されるテーブルであり、「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」ごとにそれぞれ作成される。イベントレベリングテーブル15は、
図14に示すように、整理番号欄15A及び計器ID欄15Bと、複数のレベル欄15Cとを備えて構成される。イベントレベリングテーブル15では、1つの行が1つのスマートメーターに対応する。
【0065】
そして整理番号欄15Aには、イベントレベリングテーブル15におけるその行の情報に対して付与された管理番号(本実施の形態では通し番号)が格納され、計器ID欄15Bには、その情報に対応するスマートメーターに付与されたそのスマートメーターの計器IDが格納される。
【0066】
また各レベル欄15Cは、それぞれレベル1~5の5つのレベルにそれぞれ対応させて設けられており、各レベル欄15Cには、それぞれイベントレベリング部31によりカウントされた対応するレベルの発生回数が格納される。
【0067】
従って、
図14の例の場合、「計器A」という計器IDのスマートメーターについては、レベル1(「Lv.1」)にレベリングされたイベントの検知回数が「10」回、レベル2(「Lv.2」)にレベリングされたイベントの検知回数が「4」回、レベル3(「Lv.3」)、レベル4(「Lv.4」)、レベル5(「Lv.5」)にレベリングされたイベントの検知回数がいずれも「0」回であったことが示されている。
【0068】
電力使用量管理テーブル16は、電力使用量管理部32により算出及び抽出された各需要家の季節ごとの1日分の電力使用量の最大値(以下、これを日毎最大値と呼ぶ)と、30分値の最大値(以下、これを30分値最大値と呼ぶ)とを管理するために利用されるテーブルである。電力使用量管理テーブル16は、
図15に示すように整理番号欄16A及び計器ID欄16Bと、季節ごとの日毎最大値欄16C及び30分値最大値欄16Dとを備えて構成される。電力使用量管理テーブル16では、1つの行が一人の需要家に設置された1つのスマートメーターに対応する。
【0069】
そして整理番号欄16Aには、電力使用量管理テーブル16におけるその行の情報に対して付与された管理番号(本実施の形態では通し番号)が格納され、計器ID欄16Bには、その情報に対応するスマートメーターに付与されたそのスマートメーターの計器IDが格納される。
【0070】
また季節ごとの各日毎最大値欄16Cには、それぞれ対応する季節において電力使用量が最大であった日にちの電力使用量(日毎最大値)が格納され、季節ごとの30分値最大値欄16Dには、それぞれ対応する季節において最大であった30分値(30分値最大値)が格納される。
【0071】
なお、上述のように本実施の形態においては「冬」を2月、「春」を5月、「夏」を8月、「秋」を11月としているため、「冬」に対応する日毎最大値欄16C及び30分値最大値欄16Dには、それぞれ2月の日毎最大値や30分値最大値が格納され、「春」に対応する日毎最大値欄16C及び30分値最大値欄16Dには、それぞれ5月の日毎最大値や30分値最大値が格納される。また「夏」に対応する日毎最大値欄16C及び30分値最大値欄16Dには、それぞれ8月の日毎最大値や30分値最大値が格納され、「秋」に対応する日毎最大値欄16C及び30分値最大値欄16Dには、それぞれ11月の日毎最大値や30分値最大値が格納される。
【0072】
従って、
図15の例の場合、「計器A」という計器IDのスマートメーターが設置された需要家については、「冬」の日毎最大値が「550」、30分最大値が「40」、「春」の日毎最大値が「500」、30分最大値が「30」、「夏」の日毎最大値が「600」、30分最大値が「50」、「秋」の日毎最大値が「450」、30分最大値が「30」であったことが示されている。
【0073】
設備情報管理テーブル17は、設備情報管理部33(
図4)が取得した各スマートメーターの設置日を保持及び管理するために利用するテーブルであり、
図16に示すように、整理番号欄17A、計器ID欄17B及び計器取付け日欄17Cを備えて構成される。設備情報管理テーブル17では、1つの行が1つのスマートメーターに対応する。
【0074】
そして整理番号欄17Aには、電力使用量管理テーブル16におけるその行の情報に対して付与された管理番号(本実施の形態では通し番号)が格納され、計器ID欄17Bには、その情報に対応するスマートメーターに付与されたそのスマートメーターの計器IDが格納される。また計器取付け日欄17Cには、対応するスマートメーターが対応する需要家に取り付けられた日にちが格納される。
【0075】
従って、
図16の例の場合、「計器A」という計器IDのスマートメーターについては、「2018/3/16」に対応する需要家側に取り付けられたことが示されている。
【0076】
また経過時間管理テーブル18は、かかる設備情報管理テーブル17に格納された各スマートメーターの需要家先への取付け日に基づいて、経過時間管理部34(
図4)が算出した、これらスマートメーターが需要家先に取り付けられてからの経過日数を保持及び管理するために利用されるテーブルであり、
図17に示すように、整理番号欄18A、計器ID欄18B及び経過時間欄18Cを備えて構成される。経過時間管理テーブル18では、1つの行が1つのスマートメーターに対応する。
【0077】
そして整理番号欄18Aには、経過時間管理テーブル18におけるその行の情報に対して付与された管理番号(本実施の形態では通し番号)が格納され、計器ID欄18Bには、その情報に対応するスマートメーターに付与されたそのスマートメーターの計器IDが格納される。また経過時間欄18Cには、対応するスマートメーターが需要家先に設置されてからの経過時間(本実施の形態においては日数)が格納される。
【0078】
従って、
図17の例の場合、「計器A」という計器IDのスマートメーターについては、対応する需要家先に設置されてからの日数が「808」日であることが示されている。
【0079】
第2のイベント回数管理テーブル19は、
図10について上述した実データ取得期間の実データ52が格納されることを除いて第1のイベント回数管理テーブル14と同じ構成を有するものであるため、ここでの詳細説明は省略する。
【0080】
(2)本実施の形態の予測モデル生成装置の動作及び効果
以上の構成を有する本実施の形態の予測モデル生成装置1では、「1側停電」、「1側電圧低下」、「3側電圧低下」、「全特定イベント」及び「『1側停電』又は『1側電圧低下』」といったイベントごとに対応する特定イベントをそれぞれレベリングし、このレベリング結果と、各特定イベントの発生回数と、各需要家の季節ごとの日毎電力使用量最大値及び30分値最大値と、各スマートメーターがそれぞれ需要家側に設置されてからの経過時間とに基づいて学習データ50を生成し、生成した学習データ50に基づいて予測モデル20を生成する。
【0081】
この場合において、特定イベントのレベリング結果を利用して低圧引込線以下の設備不良を予測するのは、装置や機器は寿命が近づくにつれて故障の発生頻度が多くなるという経験則に基づき、レベルの高い特定イベントの発生回数が増えるにつれて低圧引込線以下の設備不良の発生が近づくであろうという推測によるものであり、このように特定イベントのレベリング結果を利用することによって、より精度の高い予測モデル20を生成できるものと考えられる。
【0082】
また本予測モデル生成装置1では、各需要家の季節ごとの日毎電力使用量最大値及び30分値最大値を学習データとして利用することにより、一般的に季節ごとに変化する需要家の電力使用量を考慮した予測モデル20を生成でき、さらに各スマートメーターがそれぞれ需要家側に設置されてからの経過時間といった設備情報を学習データ50として利用することにより、経時劣化をも考慮した予測モデル20を生成できると考えられる。
【0083】
従って、本予測モデル生成装置1によれば、精度の高い予測モデル20を生成することができ、この予測モデル20に基づいて低圧引込線以下の設備不良の発生を精度高く予測することができるため、かかる設備不良の発生前に部品交換等の事前の対応を行うことで、緊急付託工事に起因する配電系統の保守管理業務のコストの増加や、停電対応の頻度を低減することができる。よって本予測モデル生成装置1によれば、配電系統の保守管理に要するコストを削減しながら、配電サービスの品質を向上させ、かつ停電対応への繁忙感を解消させることができる。
【0084】
(3)他の実施の形態
なお上述の実施の形態においては、予測モデル生成装置を1つのコンピュータ装置により構成するようにした場合について述べたが、本発明はこれに限らず、例えばネットワークを介して相互に接続された複数のコンピュータ装置により構成するようにしてもよい。この場合には、第1のイベント回数管理部30、イベントレベリング部31、電力使用量管理部32、設備情報管理部33、経過時間管理部34、第2のイベント回数管理部35、予測モデル生成部36、モデル評価部37及び不良発生予測部38をこれら複数のコンピュータ装置に分散させて配置すればよい。
【0085】
また上述の実施の形態においては、
図8について上述したように、第1のイベント回数管理テーブル14(
図4)に格納されたスマートメーターごとの各特定イベントの発生回数を表す情報50Aと、イベントレベリングテーブル15(
図4)に格納されたスマートメーターごとの各レベルのイベントの発生回数を表す情報50Bと、電力使用量管理テーブル16(
図4)に格納された各スマートメーターに対応する需要家ごとの各季節における日毎最大電力使用量及び30分値最大値を表す情報50Cと、設備情報管理テーブル17(
図4)に格納された各スマートメーターの需要家への取付け日を表す情報50Dと、経過時間管理テーブル18(
図4)に格納されたーごとの需要家への取付け日からの経過時間を表す情報50Eとを、計器IDをキーとしてスマートメーターごとに纏めるようにして学習データ50を生成するようにした場合について述べたが、本発明はこれに限らず、これらの情報の一部を省略したり、これらの情報に加え又は代えて他の情報を学習データ50として加えるようにしてもよい。
【0086】
さらに上述の実施の形態においては、制御中止割引システム2、メータデータ管理システム3及び各種システム4が保持する各種情報を人手により予測モデル生成装置1に提供するようにした場合について述べたが、本発明はこれに限らず、例えば、予測モデル生成装置1をネットワークを介して制御中止割引システム2、メータデータ管理システム3及び各種システム4とそれぞれ接続し、予測モデル生成装置1が制御中止割引システム2、メータデータ管理システム3及び各種システム4からネットワークを介して必要な情報を取得するようにしてもよい。
【産業上の利用可能性】
【0087】
本発明は、低圧引込線以下の設備不良の発生を予測するための予測モデルを生成する予測モデル生成装置に適用することができる。
【符号の説明】
【0088】
1……予測モデル生成装置、10……CPU、13……分析ツール、14……第1のイベント回数管理テーブル、15……イベントレベリングテーブル、16……電力使用量管理テーブル、17……設備情報管理テーブル、18……経過時間管理テーブル、19……第2のイベント回数管理テーブル、20……予測モデル、30……第1のイベント回数管理部、31……イベントレベリング部、32……電力使用量管理部、33……設備情報管理部、34……経過時間管理部、35……第2のイベント回数管理部、36……予測モデル生成部、37……モデル評価部、38……不良発生予測部、40……イベント情報、42……30分値、43……構成情報、44……設備情報、50……学習データ、51……検証データ、52……実データ、53……予測結果。