(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-05
(45)【発行日】2022-10-14
(54)【発明の名称】燃料電池システムにおける希釈器
(51)【国際特許分類】
H01M 8/04 20160101AFI20221006BHJP
H01M 8/04291 20160101ALI20221006BHJP
B60L 50/70 20190101ALN20221006BHJP
B60L 58/30 20190101ALN20221006BHJP
【FI】
H01M8/04 N
H01M8/04291
B60L50/70
B60L58/30
(21)【出願番号】P 2019091687
(22)【出願日】2019-05-14
【審査請求日】2021-10-04
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】本村 浩平
【審査官】大内 俊彦
(56)【参考文献】
【文献】特開2010-218803(JP,A)
【文献】特開2011-146351(JP,A)
【文献】特開2012-99394(JP,A)
【文献】特開2014-219171(JP,A)
【文献】特開平8-47612(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04- 8/0668
B60L 50/00-58/40
(57)【特許請求の範囲】
【請求項1】
水素と酸素を含む空気とを反応させる燃料電池に対して水素を含むアノードオフガスが流動する水素配管と空気を含むカソードオフガスが流動する吸気配管とを介して接続される箱状のケースと、
前記ケースの内部を第1室と第2室とに仕切るとともに基端が前記ケースの側壁に固定され、且つ先端と前記ケースの側壁の内側面との間に前記第1室と前記第2室とを連通させる隙間が形成される状態で設けられている仕切り板と、
前記ケースに取り付けられるとともに前記アノードオフガス及び前記カソードオフガスにより前記ケースの内部に流入する生成水を貯留するタンクと、を備える燃料電池システムにおける希釈器であって、
前記第1室と前記第2室とが並ぶ水平方向を第1方向、前記第1方向に直交するとともに前記ケースと前記タンクとが並ぶ鉛直方向を第2方向、前記第1方向及び前記第2方向に直交する方向を第3方向とすると、
前記吸気配管は、前記第1室に直接的に連通するように前記ケースに接続されるとともに前記第3方向において前記仕切り板の前記基端寄りの位置に配置され、
前記水素配管は、前記第2室に直接的に連通するように前記ケースに接続され、
前記第2方向において前記タンクが取り付けられている前記ケースの底壁には、前記タンクに連通する孔が形成され、
前記第1方向における前記第1室を構成する前記ケースの側壁には、前記第3方向において前記吸気配管よりも前記隙間寄りの位置に配置される排気管が設けられ、
前記排気管が設けられている前記ケースの側壁は、第2方向において前記底壁と反対側に位置する前記ケースの上壁から前記底壁に向かうにつれて前記第1方向の外側に広がるように傾斜している傾斜部位を少なくとも有し、
前記排気管は、前記第1方向に沿って前記傾斜部位を貫通して前記第1室の内部に達していることを特徴とする燃料電池システムにおける希釈器。
【請求項2】
前記傾斜部位は、前記排気管が設けられている前記ケースの側壁の全体に亘って形成されていることを特徴とする請求項1に記載の燃料電池システムにおける希釈器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムにおける希釈器に関する。
【背景技術】
【0002】
従来、特許文献1に記載されるような燃料電池システムが知られている。
上記の燃料電池システムは、燃料電池を備えている。燃料電池は、水素タンクから供給される水素と、コンプレッサから供給される酸素を含む空気とを反応させることで発電する。燃料電池は、水素を含むアノードオフガスが流動する水素配管としてのパージガス用配管と、空気を含むカソードオフガスが流動する吸気配管としての排気流路を介して希釈器としての気液分離器に接続されている。
【0003】
気液分離器は、四角箱状をなすケースと、仕切り板と、四角箱状のタンクとを有している。気液分離器のケースは、第1室と第2室とを仕切り板により区画されている。仕切り板は、基端がケースの側壁に固定されるとともに仕切り板の先端とケースの内壁面との間に第1室と第2室とを連通させる隙間が形成される状態で設けられている。タンクは、ケースに取り付けられている。
【0004】
第1室と第2室とが並ぶ水平方向を第1方向、第1方向に直交するとともにケースとタンクとが並ぶ鉛直方向を第2方向、第1方向及び第2方向に直交する方向を第3方向とする。排気流路は、第1方向における第1室を構成するケースの側壁に設けられている。排気流路は、第3方向において仕切り板の基端寄りの位置に配置されている。排気流路は、第1室に直接的に連通するようにケースに接続されている。同様に、第1方向における第1室を構成するケースの側壁には、排気管が設けられている。排気管は、第3方向において排気流路よりも隙間寄りの位置に配置されている。排気管は、第1室に連通するようにケースに接続されている。また、パージガス用配管は、第2室に直接的に連通するようにケースに接続されている。
【0005】
ここで、燃料電池では、水素と酸素を含む空気とを反応させたときに水(生成水)が生成される。生成水は、アノードオフガス及びカソードオフガスに含まれており、パージガス用配管及び排気流路を介してケースの内部に流入する。そのため、第2方向においてタンクが取り付けられているケースの底壁には、タンクに連通する孔が形成され、生成水は孔を介してタンクに貯留される。
【0006】
このように構成されている燃料電池システムにおける気液分離器では、排出流路から第1室に導入されたカソードオフガスは、仕切り板に当たって拡がりながら仕切り板の先端に向けて移動し、隙間から第2室に流入する。カソードオフガスに含まれる生成水の一部は、ケースの側板等に付着してカソードオフガスから分離された後、孔を経てタンクに貯留される。パージガス用配管から第2室に導入されたアノードオフガスに含まれる生成水の一部は、第2室を構成するケースの壁部等に付着してアノードオフガスから分離された後、孔を経てタンクに貯留される。また、第2室内では、アノードオフガスはカソードオフガスにより水素濃度が希釈される。そして、カソードオフガスとアノードオフガスとの混合ガスは、第1室へ押し出され、排気管から気液分離器の外部へ排出される。
【0007】
また、排気管の下流側には、混合ガスの出口が形成された流路形成ブロックが設けられている。流路形成ブロックには、ベンチュリ部が設けられている。ベンチュリ部には、タンクに貯留された生成水が導入される。そして、ベンチュリ部は導入された当該生成水を霧化するため、生成水を霧化した状態で排気管の出口から放出できる。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
第1方向において第1室を構成するケースの側壁には、排気流路及び排気管が設けられている。そのため、排気流路を通じて第1室に導入されたカソードオフガスに含まれる生成水が第1方向において第1室を構成するケースの側壁に付着した場合、付着した生成水は液化し、排気管に入り込むことがある。より具体的には、第1方向において第1室を構成するケースの側壁に付着している液化した生成水は、重力によりケースの底壁に向けて移動しながらも排気流路から吐出されるカソードオフガスの流速により排気管に向けて移動する頻度が多い。そして、液化した生成水は、排気管の下側から排気管に入り込む。排気管に液化した生成水が入り込んだとしても流路形成ブロックに設けられているベンチュリ部により生成水を霧化した状態で排気管の出口から放出することができる。
【0010】
ところで、排気管の内部に液化した生成水が入り込まなければ排気管の下流にベンチュリ部を設けることなく排気管の出口から霧化した状態の生成水を放出することができる。そのため、排気管の内部に液化した生成水が入り込まない希釈器の構成が検討されている。
【0011】
本発明の目的は、排気管に液化した生成水が入り込むことを抑制できる新たな燃料電池システムにおける希釈器を提供することである。
【課題を解決するための手段】
【0012】
上記課題を解決する燃料電池システムにおける希釈器は、水素と酸素を含む空気とを反応させる燃料電池に対して水素を含むアノードオフガスが流動する水素配管と空気を含むカソードオフガスが流動する吸気配管とを介して接続される箱状のケースと、前記ケースの内部を第1室と第2室とに仕切るとともに基端が前記ケースの側壁に固定され、且つ先端と前記ケースの側壁の内側面との間に前記第1室と前記第2室とを連通させる隙間が形成される状態で設けられている仕切り板と、前記ケースに取り付けられるとともに前記アノードオフガス及び前記カソードオフガスにより前記ケースの内部に流入する生成水を貯留するタンクと、を備える燃料電池システムにおける希釈器であって、前記第1室と前記第2室とが並ぶ水平方向を第1方向、前記第1方向に直交するとともに前記ケースと前記タンクとが並ぶ鉛直方向を第2方向、前記第1方向及び前記第2方向に直交する方向を第3方向とすると、前記吸気配管は、前記第1室に直接的に連通するように前記ケースに接続されるとともに前記第3方向において前記仕切り板の前記基端寄りの位置に配置され、前記水素配管は、前記第2室に直接的に連通するように前記ケースに接続され、前記第2方向において前記タンクが取り付けられている前記ケースの底壁には、前記タンクに連通する孔が形成され、前記第1方向における前記第1室を構成する前記ケースの側壁には、前記第3方向において前記吸気配管よりも前記隙間寄りの位置に配置される排気管が設けられ、前記排気管が設けられている前記ケースの側壁は、第2方向において前記底壁と反対側に位置する前記ケースの上壁から前記底壁に向かうにつれて前記第1方向の外側に広がるように傾斜している傾斜部位を少なくとも有し、前記排気管は、前記第1方向に沿って前記傾斜部位を貫通して前記第1室の内部に達している。
【0013】
これによれば、第1方向における第1室を構成するケースの側壁に付着する液化した生成水が吸気配管から吐出されるカソードオフガスの流速により排気管に向けて移動しているときにケースの傾斜部位に至ると、液化した生成水はケースの底壁に向けて移動し易くなる。そして、ケースの傾斜部位からケースの底壁に向けて移動した生成水は、ケースの傾斜部位を排気管に向けて再び移動し難くなる。また、排気管は、ケースの傾斜部位を第1方向に沿って貫通して第1室の内部に達している。そのため、たとえ生成水がケースの傾斜部位を底壁側から移動してきたとしても、第1室の内部に位置する排気管の端部が傾斜部位を底壁側から移動してくる生成水を排気管の内部に入り込み難くする構成として機能する。したがって、排気管に液化した生成水が入り込むことを抑制できる。
【0014】
上記の燃料電池システムにおける希釈器において、前記傾斜部位は、前記排気管が設けられている前記ケースの側壁の全体に亘って形成されているとよい。
第1方向において第1室を構成するケースの側壁の一部のみを傾斜部位とするとケースの加工が難しくなるとともにケースの設計変更が多くなる虞がある。
【0015】
その点、これによれば、ケースの加工が容易になるとともにケースの設計変更を少なくすることができる。
【発明の効果】
【0016】
この発明によれば、排気管に液化した生成水が入り込むことを抑制できる。
【図面の簡単な説明】
【0017】
【
図5】
図4の5-5線で切断したときの希釈器の断面図。
【発明を実施するための形態】
【0018】
以下、燃料電池システムにおける希釈器を具体化した一実施形態を
図1~
図5にしたがって説明する。なお、本実施形態の説明にあたり、燃料電池システムを搭載したフォークリフトの構成について説明した後、燃料電池システム及び燃料電池システムにおける希釈器について説明する。
【0019】
図1に示すように、フォークリフト100には、車体110の前方にマスト120が設けられている。マスト120にはフォーク130がリフトブラケット140を介して昇降可能に装備されるとともにリフトシリンダ150の伸縮運動によりフォーク130がリフトブラケット140とともに昇降される。車体110の前下部には前輪160が設けられるとともに前輪160は車軸に装備された差動装置及びギヤを介して走行用モータ170により駆動される。
【0020】
車体110の後方には、燃料電池システム10が搭載されるとともに燃料電池システム10はフード190で覆われている。燃料電池システム10は、リフトシリンダ150及びティルトシリンダ180の油圧源となる油圧ポンプを駆動させる油圧モータと走行用モータ170との電源として使用される。
【0021】
次に、燃料電池システム10について説明する。
図2に示すように、燃料電池システム10は、例えば固定高分子型の燃料電池20を備えている。燃料電池20の水素供給ポートには流路L1を介して水素タンク21が接続されている。燃料電池20の酸素供給ポートには流路L2を介してコンプレッサ22が接続されている。燃料電池20は、水素タンク21から供給される水素と、コンプレッサ22から供給される酸素を含む空気とを反応させることで発電する。
【0022】
燃料電池20は、水素配管23と、吸気配管24とを介して希釈器30に接続されている。水素配管23は、燃料電池20のアノード極に接続されている。水素配管23は、燃料電池20において水素と酸素を含む空気とを反応させたときのアノードオフガスが流動する。アノードオフガスは燃料電池20で反応しなかった水素と、燃料電池20で発生する生成水を含んでいる。吸気配管24は、燃料電池20のカソード極に接続されている。吸気配管24は、燃料電池20において水素と酸素を含む空気とを反応させたときのカソードオフガスが流動する。カソードオフガスは燃料電池20で反応しなかった空気と、燃料電池20で発生する生成水を含んでいる。燃料電池20で発生したアノードオフガス及びカソードオフガスはそれぞれ水素配管23及び吸気配管24を介して希釈器30に向けて流動する。
【0023】
次に、燃料電池システム10における希釈器30について説明する。
図3に示すように、希釈器30は、長四角箱状のケース40と、仕切り板50と、長四角箱状のタンク60とを備えている。ケース40には、水素配管23及び吸気配管24が接続されている。そのため、ケース40は、燃料電池20に対して水素配管23と吸気配管24とを介して接続されている。ケース40は、四角板状の底壁41と、底壁41の外縁に立設する4つの側壁42と、底壁41と反対側に位置する上壁43とにより構成されている。
【0024】
図4に示すように、仕切り板50は、ケース40の内部を第1室G1と第2室G2とに仕切っている。仕切り板50は、基端51がケース40の長手方向に延びる側壁42の一方に固定されている。仕切り板50の基端51と反対側の先端52とケース40の長手方向に延びる側壁42の他方の内側面との間には、第1室G1と第2室G2とを連通させる隙間G3が形成されている。
【0025】
図5に示すように、仕切り板50の基端51がケース40の側壁42に固定された状態において、仕切り板50とケース40の底壁41との間には空隙G4が形成されている。
タンク60は、ケース40の底壁41に取り付けられている。タンク60は、アノードオフガス及びカソードオフガスによりケース40の内部に流入する生成水を貯留する機能を有している。
【0026】
図3及び
図4に示すように、第1室G1と第2室G2とが並ぶ水平方向を第1方向A、第1方向Aに直交するとともにケース40とタンク60とが並ぶ鉛直方向を第2方向B、第1方向A及び第2方向Bに直交する方向を第3方向Cとする。第2方向Bにおいてタンク60が設けられているケース40の底壁41には、タンク60に連通する孔41aが形成されている。孔41aは、吸気配管24から導入されるカソードオフガスの流れから外れた位置に形成されている。
【0027】
吸気配管24は、第1室G1に直接的に連通するようにケース40に接続されている。吸気配管24は、第1方向Aにおける第1室G1を構成するケース40の側壁42に接続されている。吸気配管24は、第1方向Aに沿ってケース40の側壁42を貫通して第1室G1の内部に達している。吸気配管24がケース40の側壁42を貫通した後、吸気配管24とケース40の側壁42との境界部分は、溶接される。これによりケース40の側壁42に対して吸気配管24が固定されている。吸気配管24は、第3方向Cにおいて仕切り板50の基端51寄りの位置に配置されている。水素配管23は、第2室G2に直接的に連通するようにケース40に接続されている。水素配管23は、第2室G2に連通するようにケース40の上壁43に接続されている。第1方向Aにおける第1室G1を構成するケース40の側壁42には、第3方向Cにおいて吸気配管24よりも隙間G3寄りの位置に排気管70が設けられている。排気管70が設けられているケース40の側壁42は、第2方向Bにおいてケース40の上壁43から底壁41に向かうにつれて第1方向Aの外側に広がるように傾斜している傾斜部位45を少なくとも有している。本実施形態では、傾斜部位45は、排気管70が設けられているケース40の側壁42の全体に亘って形成されている。すなわち、吸気配管24は、第1方向Aに沿ってケース40の傾斜部位45を貫通して第1室G1の内部に達している。排気管70は、第1方向Aに沿って傾斜部位45を貫通して第1室G1の内部に達している。排気管70がケース40の傾斜部位45を貫通した後、排気管70とケース40の傾斜部位45との境界部分は、溶接される。これによりケース40の傾斜部位45に対して排気管70が固定されている。
【0028】
図4に示すように、このように構成された燃料電池システム10における希釈器30では、吸気配管24から第1室G1に導入されたカソードオフガスは、仕切り板50に当たって拡がりながら仕切り板50の先端52に向けて移動し、隙間G3から第2室G2に流入する。カソードオフガスに含まれる生成水の一部は、ケース40の側壁42等に付着してカソードオフガスから分離された後、孔41aを経てタンク60に貯留される。水素配管23から第2室G2に導入されたアノードオフガスに含まれる生成水の一部は、第2室G2を構成するケース40の壁部である底壁41、側壁42、上壁43に付着してアノードオフガスから分離された後、空隙G4を介して第1室G1に移動し、孔41aを経てタンク60に貯留される。また、第2室G2内では、アノードオフガスはカソードオフガスにより水素濃度が希釈される。そして、カソードオフガスとアノードオフガスとの混合ガスは、第1室G1に押し出され、排気管70から希釈器30の外部へ排出される。
【0029】
ここで、仕切り板50の配置について説明する。
仕切り板50は、第1方向Aにおいて基端51と先端52との位置がずれている。すなわち、仕切り板50は、第3方向Cに対して傾斜するように配置されている。仕切り板50は、仕切り板50の基端51を中心として先端52が排気管70から離間するように設けられている。すなわち、仕切り板50の先端52とケース40の長手方向に延びる側壁42の内側面との間に形成される隙間G3が排気管70から離間するように設けられている。これは、可能な限り排気管70から離間させた位置でアノードオフガスとカソードオフガスの混合ガスを第2室G2から第1室G1に押し出し、アノードオフガスをカソードオフガスにより希釈した状態にするためである。また、仕切り板50の傾斜は、水素配管23から導入されるアノードオフガスが第1室G1から第2室G2に流入するカソードオフガスにより十分に希釈できる第2室G2の体積を確保する観点で設定されている。
【0030】
次に、ケース40の傾斜部位45の形成方法について従来技術の希釈器と本実施形態の希釈器30とのサイズの違いに触れつつ説明する。なお、従来技術の希釈器と本実施形態の希釈器30との第2方向B及び第3方向Cにおける寸法については変更がないことを前提として説明する。
【0031】
図3及び
図8に示すように、本実施形態の希釈器30は、従来技術の希釈器200よりも第1方向Aにおいて大きく形成されている。以下、従来技術の希釈器200と本実施形態の希釈器30の第1方向Aにおける寸法について説明するが、希釈器30,200において第2室を構成するケース40,210の側壁42,212を基準とする。なお、第2室を構成するケース40,210の側壁42,212は、第2方向Bに沿って設けられている。
【0032】
希釈器30におけるケース40の底壁41の第1方向Aにおける長さD1は、希釈器200におけるケース210の底壁211の第1方向Aにおける長さD10よりも長く形成されている。希釈器200におけるケース210の底壁211の第1方向Aにおける長さD10と、希釈器200におけるケース210の上壁213の第1方向Aにおける長さD20は同じである。また、希釈器30におけるケース40の上壁43の第1方向Aにおける長さD2は、希釈器200におけるケース210の上壁213の第1方向Aにおける長さD20と同じである。すなわち、本実施形態の希釈器30におけるケース40の傾斜部位45は、従来技術の希釈器200のケース210の底壁211を第1方向Aの外側に向けて延ばし、且つケース210の第1方向Aにおける上壁213の端部と第1方向Aにおける底壁211の端部とを接続するように変更することで構成されている。また、第1方向Aに向けて底壁211が延びた分だけ従来技術の希釈器200のタンク220を第1方向Aに向けて大きくすることで本実施形態のタンク60が形成されている。すなわち、希釈器30の第1室G1は、従来技術の第1室よりも体積が大きくなる。
【0033】
本実施形態の第1室G1は、従来技術の第1室よりも体積が大きいが、第1室G1の体積が大きくなる分には第2室G2から第1室G1に向けて押し出されるアノードオフガスとカソードオフガスとの希釈が更に促進されるため希釈器30の機能に影響はない。なお、第1室G1の体積を大きくする観点で従来技術のケース210の底壁211を第1方向Aに延ばし、第1方向Aにおいて第1室G1を構成するケース40の傾斜部位45の傾斜を緩やかにすることが考えられる。しかし、希釈器30のサイズが大きくなりすぎると燃料電池システム10の体格が大きくなりすぎてしまい、本実施形態においてはフォークリフト100のへの搭載性が低下する。そのため、ケース40の傾斜部位45の傾斜具合については、燃料電池システム10が搭載されるユニットへの搭載性を考慮して設定することが好ましい。
【0034】
本実施形態では以下の作用及び効果を得ることができる。
(1)本実施形態では、第1方向Aにおける第1室G1を構成するケース40の側壁42に付着する液化した生成水が吸気配管24から吐出されるカソードオフガスの流速により排気管70に向けて移動しているときにケース40の傾斜部位45に至ると、液化した生成水はケース40の底壁41に向けて移動し易くなる。そして、ケース40の傾斜部位45からケース40の底壁41に向けて移動した生成水は、ケース40の傾斜部位45を排気管70に向けて再び移動し難くなる。また、排気管70は、ケース40の傾斜部位45を第1方向Aに沿って貫通して第1室G1の内部に達している。そのため、たとえ生成水がケース40の傾斜部位45を底壁41側から移動してきたとしても、第1室G1の内部に位置する排気管70の端部が傾斜部位45を底壁41側から移動してくる生成水を排気管70の内部に入り込み難くする構成として機能する。したがって、排気管70に液化した生成水が入り込むことを抑制できる。
【0035】
(2)第1方向Aにおいて第1室G1を構成するケース40の側壁42の一部のみを傾斜部位45とするとケース40の加工が難しくなるとともにケース40の設計変更が多くなる虞がある。
【0036】
その点、本実施形態では、傾斜部位45は、排気管70が設けられているケース40の側壁42の全体に亘って形成されている。そのため、ケース40の加工が容易になるとともにケース40の設計変更を少なくすることができる。
【0037】
(3)吸気配管24及び排気管70がケース40の傾斜部位45に溶接により固定されている。従来技術の希釈器におけるケースの側板に吸気配管24及び排気管70を溶接により固定する場合と比較すると、吸気配管24及び排気管70とケース40の傾斜部位45との接触面積が大きくなる。したがって、ケース40の傾斜部位45が傾斜していることにより吸気配管24及び排気管70とケース40との溶接強度を向上させることができる。
【0038】
(4)本実施形態の希釈器30の第1室G1の体積は、従来技術における希釈器の第1室の体積よりも大きい。そのため、吸気配管24から導入されるカソードオフガスの第1室G1内での流速が低下し、ひいては第1室G1内でのカソードオフガスの拡散を抑制することができる。よって、ケース40の傾斜部位45に液化した生成水が付着し難くなる。したがって、排気管70に向けて流動する生成水の量を抑制できる。
【0039】
(5)燃料電池システム10における希釈器30において排気管70に対して生成水が入り込むことを抑制できるため、フォークリフト100が屋内で水を垂れ流して工場の床を濡らしてしまうことを抑制できる。
【0040】
なお、本実施形態は、以下のように変更して実施できる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
〇
図6に示すように、第1方向Aにおいて第1室G1を構成するケース40の側壁42の一部のみを傾斜部位45としてもよい。この場合、ケース40の傾斜部位45における吸気配管24が設けられている部分は、ケース40の底壁41の外縁から第2方向Bに向けて延びている。そして、第1方向Aにおいて第1室G1を構成するケース40の側壁42の吸気配管24が設けられている部分と、ケース40の傾斜部位45とは、第1方向Aに沿って延びる連結壁46により接続されている。このように変更することで、吸気配管24から導入されるカソードオフガスに含まれる生成水がケース40の傾斜部位45に付着して傾斜部位45に向けて移動したとしても、連結壁46が形成されている分だけ生成水が傾斜部位45に向かう経路が長くなる。したがって、排気管70に生成水がより入り込み難くなる。
【0041】
〇
図7に示すように、吸気配管24をケース40の傾斜部位45に対して垂直をなすように配置してもよい。このように変更することで、吸気配管24から第1室G1に導入されるカソードオフガスは、ケース40の底壁41に向けて導入されるため、ケース40の傾斜部位45に生成水が付着し難くなる。なお、吸気配管24は、第1室G1に連通するようにケース40に接続されるとともに第3方向Cにおいて仕切り板50の基端51寄りの位置に配置されていれば、例えばケース40の上壁43に設けるように変更してもよい。
【0042】
〇 仕切り板50は、例えば、ケース40の内部を第1室G1と第2室G2とに仕切るときに第2室G2の体積をカソードオフガスによりアノードオフガスを十分に希釈できる程度に設定できるのであれば、第3方向Cに対する傾きを適宜調整してもよい。
【0043】
〇 また、水素配管23は、第2室G2に連通するようにケース40の上壁43に設けられていたが、これに限らない。水素配管23は、第2室G2に直接的に連通するように設けられるのであればどのような位置に設けてもよい。
【0044】
〇 燃料電池システム10は、フォークリフト100に適用されていたが、これに限らず、例えば牽引車等の産業車両に適用されてもよい。また、燃料電池自動車や定置電源等に適用してもよい。
【符号の説明】
【0045】
10…燃料電池システム、20…燃料電池、23…水素配管、24…吸気配管、30…希釈器、40…ケース、41…ケースの底壁、41a…孔、42…ケースの側壁、43…ケースの上壁、45…傾斜部位、50…仕切り板、51…仕切り板の基端、52…仕切り板の先端、60…タンク、70…排気管、G1…第1室、G2…第2室、G3…隙間、A…第1方向、B…第2方向、C…第3方向。