IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エッグトロニック エンジニアリング エス.アール.エル.の特許一覧

特許7154320電子デバイスの間でのエネルギー伝達およびデータ交換のためのシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-06
(45)【発行日】2022-10-17
(54)【発明の名称】電子デバイスの間でのエネルギー伝達およびデータ交換のためのシステム
(51)【国際特許分類】
   H02J 50/80 20160101AFI20221007BHJP
   H02J 50/05 20160101ALI20221007BHJP
   H02J 50/10 20160101ALI20221007BHJP
   H04B 5/02 20060101ALI20221007BHJP
【FI】
H02J50/80
H02J50/05
H02J50/10
H04B5/02
【請求項の数】 10
(21)【出願番号】P 2020570794
(86)(22)【出願日】2019-06-05
(65)【公表番号】
(43)【公表日】2021-11-18
(86)【国際出願番号】 IB2019054668
(87)【国際公開番号】W WO2020003027
(87)【国際公開日】2020-01-02
【審査請求日】2022-04-20
(31)【優先権主張番号】102018000006612
(32)【優先日】2018-06-25
(33)【優先権主張国・地域又は機関】IT
【早期審査対象出願】
(73)【特許権者】
【識別番号】517426362
【氏名又は名称】エッグトロニック エンジニアリング エス.ピー.エー.
(74)【代理人】
【識別番号】100118913
【弁理士】
【氏名又は名称】上田 邦生
(74)【代理人】
【識別番号】100142789
【弁理士】
【氏名又は名称】柳 順一郎
(74)【代理人】
【識別番号】100163050
【弁理士】
【氏名又は名称】小栗 眞由美
(74)【代理人】
【識別番号】100201466
【弁理士】
【氏名又は名称】竹内 邦彦
(72)【発明者】
【氏名】イゴール スピネッラ
【審査官】辻丸 詔
(56)【参考文献】
【文献】独国特許発明第19705301(DE,C1)
【文献】独国特許出願公開第04436592(DE,A1)
【文献】特表2017-521030(JP,A)
【文献】特表2018-534894(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/80
H02J 50/05
H02J 50/10
H04B 5/02
(57)【特許請求の範囲】
【請求項1】
一次回路および二次回路を備える、電気エネルギーおよびデータを伝達するためのシステムであって、
a)前記一次回路が
i)電気エネルギー電源モジュールと
ii)該電源モジュールに接続され、一組の接続端子を備える一次誘導性要素と
iii)データを電磁的信号へとエンコードし、電磁的信号をデータへとデコードするように構成された一次トランシーバモジュールと
iv)該一次トランシーバモジュールに接続された一組の一次送受信アーマチュアと
を備え、
b)前記二次回路が
i)電気エネルギー変換モジュールと
ii)該変換モジュールに接続され、一組の接続端子を備える二次誘導性要素と
iii)データを電磁的信号へとエンコードし、電磁的信号をデータへとデコードするように構成された二次トランシーバモジュールと
iv)該二次トランシーバモジュールに接続された一組の二次送受信アーマチュアと
を備え、
前記一次誘導性要素および前記二次誘導性要素が、互いに誘導結合されて、前記電源モジュールから前記変換モジュールへの電気エネルギーの伝達を可能とするように構成され、
各一次送受信アーマチュアが、それぞれの二次送受信アーマチュアに容量結合されて、前記一次トランシーバモジュールと前記二次トランシーバモジュールとの間でのデータの交換を可能とするように構成され、
前記一次送受信アーマチュアのうちの少なくとも一つが、一次回路部分によって定められ、少なくとも一つの対応する第1の二次送受信アーマチュアが、二次回路部分によって定められ、
前記一次回路部分および前記二次回路部分が互いに結合して、所定の容量のキャパシタを定めるように構成され、
前記一次回路部分が、前記一次誘導性要素の前記接続端子のうちの1つに近接した前記一次誘導性要素の一部分を備え、
前記二次回路部分が、前記二次誘導性要素の前記接続端子のうちの1つに近接した前記二次誘導性要素の一部分を備えるシステム。
【請求項2】
前記一次トランシーバモジュールが、前記一次誘導性要素の接続端子に接続され、前記二次トランシーバモジュールが、前記二次誘導性要素の接続端子に接続される、請求項1に記載のシステム。
【請求項3】
第2の一次送受信アーマチュアが、追加的な一次回路部分によって定められ、第2の二次送受信アーマチュアが、追加的な二次回路部分によって定められ、前記追加的な一次回路部分および前記追加的な二次回路部分が、互いに相互作用して、所定の容量の追加的なキャパシタを定めるように構成される請求項1または2に記載のシステム。
【請求項4】
少なくとも1つの一次送受信アーマチュアが、前記一次誘導性要素によって区切られた領域内に位置付けられた導電性要素を備え、少なくとも1つの二次送受信アーマチュアが、前記二次誘導性要素によって区切られた領域内に位置付けられた導電性要素を備える請求項1から3のいずれか一項に記載のシステム。
【請求項5】
各導電性要素が、開ループ形状を有する請求項4に記載のシステム。
【請求項6】
各導電性要素が、数十または数百分の1ミリメートルほどの厚さを有する導電性材料のトラックによって得られる請求項4または5に記載のシステム。
【請求項7】
前記一次回路が、第1の電子デバイスに組み込まれ、前記二次回路が、第2の電子デバイスに組み込まれ、前記第2の電子デバイスが、前記第1の電子デバイスから離間されるとともにこれに対して移動可能である請求項1から6のいずれか一項に記載のシステム。
【請求項8】
前記第1の電子デバイスが、前記一次トランシーバモジュールに接続されて、これとバイナリフォーマットのデータを交換するように構成された一次処理モジュールを少なくとも備え、前記第2の電子デバイスが、前記二次トランシーバモジュールに接続されて、これとバイナリフォーマットのデータを交換するように構成された二次処理モジュールを備える請求項7に記載のシステム。
【請求項9】
前記第1の電子デバイスが、前記一次トランシーバモジュールに接続されて、これと通信チャンネルの規格に従ってエンコードされたデータを交換する一次通信チャンネルを備え、前記第2の電子デバイスが、前記一次トランシーバモジュールに接続されて、これと通信チャンネルの規格に従ってエンコードされたデータを交換する二次通信チャンネルを備え、前記一次通信チャンネルおよび前記二次通信チャンネルが、USB、I2C、SPI、PCI Express、HDMI(登録商標)、Display Port、Ethernet、CAN、LIN、Flexrayまたは他の標準通信バスから選択された同一の技術に属する請求項7または8に記載のシステム。
【請求項10】
請求項1から9のいずれか一項に記載のシステムを介した全二重データ交換のための方法であって、
a)一次トランシーバモジュールまたは二次トランシーバモジュールにおいて、前記二次トランシーバモジュールまたは前記一次トランシーバモジュールに送信されるべき第1のバイナリデータをそれぞれ受信するステップと、
b)前記一次トランシーバモジュールまたは前記二次トランシーバモジュールにおいて、一次送受信アーマチュアとそれぞれの二次送受信アーマチュアとの間の容量結合を介して、前記二次トランシーバモジュールまたは前記一次トランシーバモジュールによって送信された第2のバイナリデータをそれぞれ受信するステップと、
c)マルチレベルシグナルであって、
i)もしも前記第1のバイナリデータおよび前記第2のバイナリデータの両方が論理値0を表すならば、第1の電圧値、
ii)もしも前記第1のバイナリデータおよび前記第2のバイナリデータの両方が異なる論理値を表すならば、第2の電圧値、または、
iii)もしも前記第1のバイナリデータおよび前記第2のバイナリデータの両方が論理値1を表すならば、第3の電圧値、
を有するマルチレベルシグナルを生成するステップと、
を備える方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子回路の分野に関する。より詳細には、本発明の実施形態に従う解決策は、電気的接触なしに、すなわちワイヤレスで、デバイスの間でエネルギーを伝達するためのシステムであって、このようなデバイス間でのデータの交換も可能とするように適合された機能を有するシステムを指す。
【背景技術】
【0002】
携帯型および据え置き型の電子デバイスの広く普及した使用は、これらが迅速に、高い信頼性で、実際的に電力供給または再充電されることを可能とするエネルギー伝達システムの必要性の増加につながっている。可能な電力供給モードの中で、特に利便性が高く、汎用的なものは、ワイヤレス電力供給であり、これは、電源からユーザデバイスへとエネルギーを伝達するために物理的な電気接続を必要としない。加えて、生産または処理産業、車両において使用される、または単一のユーザまたはユーザの集団によって所有される民生品の形態で直接的に製造されるこれらのデバイスの数、および、これもIoT技術の発展による電子デバイス間でのデータ共有およびインタフェースの増加傾向は、異なる技術および異なる目的を有する電子デバイス間でのデータのワイヤレスでの交換のためのシステムの広範な発展につながっている。
【0003】
例えば、電気エネルギーを受け取ることおよび/またはデータを交換することを必要とし得るデバイスは、携帯電話、スマートフォン、タブレット、固定型およびラップトップ型コンピュータ、アーカイブシステム、NAS、モデム、ルータ、スイッチ、アクセスポイント、ポインティングシステム、キーボード、電子書籍リーダ、ビデオカメラ、写真カメラ、衛星ナビゲータ、従来のテレビセットおよびスマートテレビセット、光学的または磁気的デバイスのリーダなど、消費者市場のためのデバイスを含む。電気器具、サーモスタット、照明システムおよびより全体的にはホームオートメーションシステムなどのデバイスも、ワイヤレスでのエネルギー伝達およびデータ交換を必要とし、またはこれから利益を得る場合がある。同様に、産業装置または車両における過酷な環境に設置されたセンサおよびアクチュエータ、例えば、圧力、温度、加速度および変形のセンサ、ボタン、スクリーンなど、ならびに、例えばペースメーカー、注入器、移植可能な除細動器などといった生物医学装置などの特定の機器も、エネルギーを伝達し、データを交換するためのワイヤレスシステムを実現する向上された性能、機能、および効率を得ることができる。
【0004】
ワイヤレスエネルギー送信システムを介した電力の伝達が、当技術分野において知られている。これらのシステムは、典型的には、一次回路すなわち送信回路と二次回路すなわち受信回路との間の誘導結合または容量結合に基づき、一次回路は電力供給装置またはバッテリをベースとしたデバイスに一体化され、二次回路は、電力供給デバイスから離間された独立的な電力供給/再充電されるべきユーザデバイスに一体化される。
【0005】
データの交換に関しては、知られたシステムにおいて典型的に実現される解決策は、カバーされる距離、コスト、消費電力、および帯域幅について異なる性能を有する高周波ワイヤレス接続(例えば、Wi-Fi、Bluetooth(登録商標)、RF、NFC、RFID、Zigbee(登録商標)、UWB、CWUSB、WiMAXまたはその他のもの)を利用する。しかしながら、これらの解決策は、選択された送信規格に従って送受信するように適合された回路部分を必要とし、これは電力のワイヤレス伝達専用の回路部分に対して追加的なものになる。更には、実現される情報伝達は、干渉に晒されることがあり、または、電気エネルギーの同時的な伝達に干渉することがある。
【0006】
他の知られた解決策は、エネルギーの伝達と同時にまたはエネルギー伝達が行われていないときにデータを交換するために、ワイヤレスエネルギー送信システム、具体的は、誘導結合に基づくものを用い、誘導性回路を電力の伝達のためおよびデータの伝達のための両方に利用する。誘導結合によってデータを交換するための知られた方法論は、電力搬送波の周波数変調から成り、これは周波数シフトとしても知られており、電力送信システムから受信システムへとデータを送信するために特に有用であり、接続および切断による見かけ上の負荷の変化によって、送信されるべきビットの関数として得られる振幅変調においては、典型的には容量性または抵抗性である負荷は電力負荷または電力変換ステージに対して並列に配置され、この技術は、二次回路から一次回路へとデータを送信するために特に有用である。
【0007】
このようにして、単純な情報、すなわち、単位時間当たりの量が限定的なデータ、例えば、充電および/または電力供給の状態についての情報、システムに備えられるデバイスの識別番号、充電および/または電力供給を開始/中断/制限するための情報を伝達することが可能である。二次から一次へとおよびその逆方向に伝達されるユーザデータなどのより複雑な情報を交換することも可能であり、例えば、データバックアップのコピーの作成、識別証明、マルチメディアコンテンツの交換、支払い、メッセージの送信、ソフトウェアアップデートの実行、などのために有用である。
【0008】
これらの知られたシステムの主たる欠陥の1つは、送信および/または受信インダクタンスのディメンショニングによって主にもたらされる。典型的な動作周波数において十分な電力を送信するために、これらの要素は高い誘導値を有するが、このことは関連する帯域幅の極端な減少を引き起こし、これは低いデータ交換性能(すなわち、著しく低いビットレート、しばしば2~3kbpよりも低いビットレート)として反映される。これらは、結果として、大規模な、一般的にはMBまたはGBほどのユーザデータの伝達の場合に、長い時間または実際的でない時間を必要とし、特に不利益な欠点をもたらす。
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、従来技術の前述された欠陥を、近接データ交換に関するその利点を維持しつつ、単純で、合理的で、低コストの解決策によって、克服することである。
【0010】
具体的には、本発明の目的は、エネルギーの伝達とデータの交換とを同時におよび独立的に行うことができるシステムを提供することである。
【0011】
これらの目的は、独立請求項において記載される本発明の特徴によって達成される。従属請求項は、本発明の好ましいおよび/または特に有利な態様を概説する。
【課題を解決するための手段】
【0012】
本発明は、一次回路および二次回路を備える、電気エネルギーおよびデータを伝達するためのシステムを使用可能とする。一次回路が、電気エネルギー電源モジュールと、電源モジュールに接続された一次誘導性要素と、データを電磁的信号へとエンコードし、電磁的信号をデータへとデコードするように構成された一次トランシーバモジュールと、一次トランシーバモジュールに接続された一組の(電気的に導電性の)一次送受信アーマチュアと、を備える。二次回路が、電気エネルギー変換モジュールと、変換モジュールに接続された二次誘導性要素と、データを電磁的信号へとエンコードし、電磁的信号をデータへとデコードするように構成された二次トランシーバモジュールと、二次トランシーバモジュールに接続された一組の(電気的に導電性の)二次送受信アーマチュアと、を備える。一次誘導性要素および二次誘導性要素が、互いに対して誘導結合されて、電源モジュールから変換モジュールへと電気エネルギーが伝達されること可能とするように構成される。更には、一次送受信アーマチュアの各組が、二次送受信アーマチュアのそれぞれの組に容量結合されて、一次トランシーバモジュールと二次トランシーバモジュールとの間でのデータの交換を可能とするように構成される。
【0013】
この解決策によれば、一次回路から二次回路へとエネルギーを伝達し、これと同時に、2つの個別の互いに独立した物理チャンネルを介して、経済的および効率的に、双方向にデータを交換することが可能である。更には、エネルギー伝達およびデータ交換は、互いに対して悪影響を与えることなく最適化され得る。具体的には、データの容量性交換のための帯域幅のサイズが、容量性チャンネルの物理的特性によって、エネルギー伝達の効率性を損なうことなく、および既存の規格に変更を加えることなく、実質的に随意に設定され得る。
【0014】
実施形態において、少なくとも第1の一次送受信アーマチュアが、一次回路部分によって定められ、少なくとも1つの対応する第1の二次送受信アーマチュアが、二次回路部分によって定められる。好ましくは、前記一次回路部分および前記二次回路部分が互いに対して結合して、所定の容量を有するキャパシタを定めるように構成される。
【0015】
このようにして、主たる機能を既に有する一次および二次回路の一部分を使用して所望の容量のキャパシタを得ることが可能である。したがって、これは、コンパクトな構造を有するシステム、および限定的な数のコンポーネントの使用によって容量性データ伝達を得ることを可能とする。
【0016】
実施形態において、前記一次誘導性要素および二次誘導性要素の各々が、一組の接続端子を備える。好ましくは、前記一次回路部分が、前記一次誘導性要素の接続端子のうちの1つに近接した一次誘導性要素の一部分を備える。更には、前記二次回路部分が、前記二次誘導性要素の接続端子のうちの1つに近接した二次誘導性要素の一部分を備える。
【0017】
このようにして、著しくコンパクトな構造を得ることが可能である。具体的には、誘導結合および容量結合の両方が発生し、一次回路および二次回路のそれぞれの一部分においてだけ互いに対して接近する。
【0018】
実施形態において、一次トランシーバモジュールが一次トランシーバモジュールの接続端子に接続され、二次トランシーバモジュールが二次誘導性要素の接続端子に接続される。
【0019】
この解決策によれば、単純な回路レイアウトによって、各回路の誘導性要素を、エネルギーの誘導性送信から独立して、容量性データ交換のためにも使用することが可能である。
【0020】
実施形態において、前記一次回路部分が、一次回路を収容する第1のケーシングの一部分を備え、前記二次回路部分が、二次回路を収容する第2のケーシングの一部分を備える。有利には、第1および第2のケーシングの前記部分が、導電性材料で作られる。
【0021】
追加的にまたは代替的に、一次回路部分が、一次回路の電磁的干渉を遮蔽するための要素を備え、前記二次回路部分が、二次回路の電磁的干渉を遮蔽するための要素を備える。
【0022】
追加的にまたは代替的に、一次回路部分が一次回路のグラウンド平面を備え、二次回路部分が二次回路のグラウンド平面を備える。
【0023】
更なる追加または代替として、一次回路部分および二次回路部分のうちの1つが、一次誘導性要素と二次誘導性要素との間に介在する遮蔽材を備える。
【0024】
これらの解決策によれば、一次回路および二次回路の、ならびに/またはこれらをアーマチュアまたはアーマチュアの一部として含むそれぞれのデバイスの、1つもしくは複数の構造的/回路要素を、データの交換を可能とする容量性接続を生じさせるために使用することが可能である。
【0025】
実施形態において、第2の一次送受信アーマチュアが、追加的な一次回路部分によって定められ、第2の二次送受信アーマチュアが、追加的な二次回路部分によって定められる。好ましくは、追加的な一次回路部分および追加的な二次回路部分が、互いに対して相互作用して、所定の容量を有する追加的なキャパシタを定めるように構成される。
【0026】
このようにして、容量結合を生じさせるように適合された互いに個別のアーマチュアの組の一次および二次回路の両方を提供し、これらの回路の間での効率的なデータの交換を可能とすることが可能である。
【0027】
実施形態において、少なくとも1つの一次送受信アーマチュアが、一次誘導性要素によって区切られた領域内に位置付けられた導電性要素を備え、少なくとも1つの二次送受信アーマチュアが、二次誘導性要素によって区切られた領域内に位置付けられた導電性要素を備える。
【0028】
好ましくは、しかし必須ではないが、この実施形態において、各一次および二次誘導性要素が、平坦な構造によって形成され得、同様に、前記少なくとも1つの一次送受信アーマチュアおよび前記少なくとも1つの二次送受信アーマチュアの導電性要素もまた平坦であり得る。
【0029】
この解決策は、非常にコンパクトで効率的な容量結合のための専用のアーマチュアをシステムに提供することを可能とする。
【0030】
実施形態において、各一次送受信アーマチュアが、一次誘導性要素によって区切られた領域内に位置付けられたそれぞれの、例えば平坦な、導電性要素を備え、各二次送受信アーマチュアが、二次誘導性要素によって区切られた領域内に位置付けられたそれぞれの、例えば平坦な、導電性要素を備える。
【0031】
このようにして、前の場合よりもなおもコンパクトな構造が得られる。
【0032】
実施形態において、各一次送受信アーマチュアおよび二次送受信アーマチュアが、同心状、チェッカーボード状、並列状から選ばれた配置に従って位置付けられた1つまたは複数の、例えば平坦な、導電性要素を備える。
【0033】
この解決策によれば、十分な回転または並進の自由を有する、すなわち、一次回路と二次回路との間の相対的な向きに実質的に無関係な、容量結合が得られる。
【0034】
実施形態において、例えば平坦な各導電性要素が、開ループ形状を有する。
【0035】
この解決策によれば、これらの平坦な導電性要素に浸透する磁界の効果による寄生電流を除去、またはその限度において最小化し、システムの性能を向上させることが可能である。
【0036】
実施形態において、同心状、チェッカーボード状、並列状に配置され、開ループを有する、例えば平坦な、導電性要素、およびこれらの要素を連結させる他の配置にある導電性要素の場合、例えば平坦な各導電性要素は、数十から数百分の1ミリメートルほどの厚さを得ることを可能とする標準的なプリント基板生産技術によって経済的に製造され得る。
【0037】
これらの寸法は、容量結合および誘導結合をそれぞれ保証するなどのために容量性アーマチュアおよび誘導性要素を得ることを可能とし、これらは、効率的であると同時に、電力コンポーネントとデータコンポーネントとの間の相互作用によるネガティブな寄生効果の発生を除去または少なくとも減衰することができる。
【0038】
本発明の追加的な態様は、先行する請求項のうちのいずれかに記載のシステムを使用可能とし、一次回路が、第1の電子デバイスに組み込まれ、二次回路は第2の電子デバイスに組み込まれる。好ましくは、第2の電子デバイスが、第1の電子デバイスから離間されるとともにこれに対して移動可能である。
【0039】
実施形態において、第1の電子デバイスが、一次トランシーバモジュールに接続されて、これとバイナリフォーマットのデータを交換するように構成された少なくとも1つの一次処理モジュールを備える。更には、第2の電子デバイスが、二次トランシーバモジュールに接続されて、これとバイナリフォーマットのデータを交換するように構成された二次処理モジュールを備える。
【0040】
このようにして、システムは、処理モジュールによって処理されたデータを、高速で信頼性の高いやり方で送信することを可能とする。
【0041】
実施形態において、第1のデバイスが、一次トランシーバモジュールに接続されて、これと通信チャンネルの規格に従ってエンコードされたデータを交換する一次通信チャンネルを備える。更には、第2の電子デバイスが、一次トランシーバモジュールに接続されて、これと通信チャンネルの規格に従ってエンコードされたデータを交換する二次通信チャンネルを備える。有利には、一次通信チャンネルおよび二次通信チャンネルが、USB、I2C、SPI、PCI Express、HDMI(登録商標)、Display Port、Ethernet、CAN、LIN、Flexrayまたは他の標準通信バスから選択された同一の技術に属する。
【0042】
この解決策によれば、容量結合を介したデータ送信は、互いに個別でおよび独立的な電子デバイスに設けられた通信チャンネルの2つの部分を接続する仮想的なワイヤリングを生む。
【0043】
本発明の異なる態様は、前に述べられたシステムを介した全二重データ交換のための方法に関する。具体的には、方法は、一次送信モジュールまたは二次送受信モジュールにおいて、二次送信モジュールまたは一次送受信モジュールに送信されるべき第1のバイナリデータをそれぞれ受信するステップと、一次送信モジュールまたは二次送受信モジュールにおいて、一次送受信アーマチュアとそれぞれの二次送受信アーマチュアとの間の容量結合を介して、二次送信モジュールまたは一次送受信モジュールによって送信された第2のバイナリデータをそれぞれ受信するステップと、マルチレベルシグナルであって、もしも第1のバイナリデータおよび第2のバイナリデータの両方が論理値0を表すならば、第1の電圧値、もしも第1のバイナリデータおよび第2のバイナリデータが異なる論理値を表すならば、第2の電圧値、または、もしも第1のバイナリデータおよび第2のバイナリデータの両方が論理値1を表すならば、第3の電圧値を有するマルチレベルシグナルを生成するステップと、を備える。
【0044】
このようにして、データの送信および受信の両方のために単一の容量結合を使用して全二重データ交換を管理することが可能である。
【0045】
本発明の更なる特徴および利点は、添付の表において示された図面の助けを借りて、非限定的な例として提供される以下の説明を読むことによって容易に明らかになるであろう。
【図面の簡単な説明】
【0046】
図1】本発明の実施形態に係るエネルギーの伝達およびデータの交換のためのシステムのブロック図である。
図2A】本発明の実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図2B】本発明の実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図2C】本発明の実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図2D】本発明の実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図3A】本発明の異なる実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図3B】本発明の異なる実施形態に係る誘導性要素とそれに外接される容量性アーマチュアとの概略図である。
図4A】本発明の別の実施形態に係るシステムの一次回路および二次回路のブロック図である。
図4B図4Aの一次回路において実現される誘導性要素の概略図である。
図5図4Aのブロック図に対する代替的な一次回路および二次回路のブロック図である。
図6A】本発明の2つの追加的な実施形態に係るシステムの第1のデバイスおよび第2のデバイスの回路部分が結合アーマチュアとして使用される一次回路および二次回路のそれぞれのブロック図である。
図6B】本発明の2つの追加的な実施形態に係るシステムの第1のデバイスおよび第2のデバイスの回路部分が結合アーマチュアとして使用される一次回路および二次回路のそれぞれのブロック図である。
図7A】本発明の2つの追加的な実施形態に係る遮蔽要素が結合アーマチュアとして使用される一次回路および二次回路のそれぞれのブロック図である。
図7B】本発明の2つの追加的な実施形態に係る遮蔽要素が結合アーマチュアとして使用される一次回路および二次回路のそれぞれのブロック図である。
【発明を実施するための形態】
【0047】
図面を具体的に参照すると、符号1は、その全体において、本発明の実施形態に従う、電気エネルギーおよびデータを伝達するためのシステムを指す。
【0048】
システム1は、一次回路10と二次回路20とを備える。回路10および20は、互いに物理的に分離し、独立している。具体的には、一次回路10は、2つの回路の間の直接的な電気的接続によって、二次回路20との間で電気エネルギーを伝達し、データを交換するように適合される。例えば、一次回路10は、ドッキングステーションなどの第1の据え置き型電子デバイス30に備えられ得る一方、二次回路20は、携帯電話、スマートフォン、テーブル、パーソナルコンピュータ、写真/ビデオカメラなどの第2の携帯型電子デバイス40に備えられ得る。
【0049】
以下において、形容詞「一次」は、これが言及する要素が一次回路10に属することを示すために使用される。同様に、形容詞「二次」は、これが言及する要素が二次回路20に属することを示すために使用される。
【0050】
第1の実施形態において、一次回路10は、電気エネルギー電源モジュール(以下において、電源モジュール11として示される)と、一次誘導性要素12、例えば送信誘導体または誘導コイルと、一次トランシーバモジュール13と、一組の一次送受信アーマチュア、またはより簡潔には一次アーマチュア14aおよび14bとを備える。
【0051】
実施形態において、電源モジュール11は、第1のデバイスの電力供給モジュール31に接続される。例えば、電力供給モジュール31は、バッテリ、電力回路および/または電力供給網に接続されたワイヤリングを備え、さもなければ、電気的接続なしに別の送信システムからエネルギーを引き出し得る。好ましくは、電源モジュール11は、DC/ACまたはAC/AC変換回路、例えば、スイッチング変換回路を備える。
【0052】
一次送受信モジュール13は、データ、例えばバイナリフォーマットのデータを電気信号へと変換、すなわちエンコードするように適合された回路を備える。有利には、一次送受信モジュール13の回路は、逆の動作も実行するように、すなわち電気信号をデータへと変換、すなわちデコードするようにも適合される。
【0053】
一次誘導性要素12は、端子のそれぞれの組を介して、電源モジュール11に接続される。一次送受信モジュール13は、一次アーマチュア14aおよび14bの両方に接続される。図1の例において、第1の一次アーマチュア14aは、一次送受信モジュール13の第1の出力端子に接続される一方、第2の一次アーマチュア14bは、一次送受信モジュール13の第2の出力端子に接続され、これは一次回路10の基準端子にも接続される。有利には、一次送受信モジュール13は、第1のデバイス30のプロセッサモジュール33および/またはメモリモジュール35(揮発性および/または不揮発性)に接続される。
【0054】
二次回路20は、電気エネルギー変換モジュール(以下において、変換モジュール21として示される)と、二次誘導性要素22、例えば受信誘導体または誘導コイルと、二次トランシーバモジュール23と、一組の二次送受信アーマチュア、またはより簡潔には二次アーマチュア24aおよび24bとを備える。
【0055】
変換モジュール21は、負荷41、例えばバッテリ43、1つまたは複数の処理モジュール45、1つまたは複数のメモリモジュール47、またはセンサ、アクチュエータ、もしくは他の電気装置などの任意の他の電気的負荷に電力供給するために、時間とともに可変的な(AC)電圧の波を別の電圧、例えば直流(DC)へと変換するように適合された回路を備える。別の実施形態において、変換モジュール21は、抵抗要素、電気モータ、または他の電気装置などの、交流電流によって動作する任意のタイプの電気的負荷に電力供給するために、時間とともに可変的な(AC)電圧の波を、異なる特性の振幅または周波数を有する、時間とともに可変的な(AC)別の波に変換し得る。
【0056】
二次送受信モジュール23は、必要な変更を加えたうえで一次送受信モジュール13に実質的に対応する構造を有するが、これらの説明は簡潔さのために繰り返されない。
【0057】
二次誘導性要素22は、端子のそれぞれの組を介して、変換モジュール21に接続される。二次送受信モジュール23は、二次アーマチュア24aおよび24bの両方に接続される。
【0058】
この場合も、第1の二次送受信アーマチュア(以下において、第1の二次アーマチュア24aとして示される)は、二次送受信モジュール23の第1の出力端子に接続される一方、第2の二次送受信アーマチュア(以下において、第2の二次アーマチュア24bとして示される)は、一次送受信モジュール23の第2の出力端子に接続され、これは二次回路20の基準端子にも接続される。
【0059】
有利には、二次送受信モジュール23は、例えばバイナリフォーマットで、前記データモジュールから受信またはこれへ送信するために、第2のデバイス40の処理モジュール45および/またはメモリモジュール47に接続される。
【0060】
本発明の実施形態に従う解決策において、一次回路10は、誘導結合を介して二次回路20へと電気エネルギーを伝達するように適合される。加えて、一次回路10および二次回路20は、容量結合を介してデータを交換するように適合される。有利には、エネルギーの伝達およびデータの交換は、互いに独立しており、同時にまたは異なる時間的瞬間に実行され得る。
【0061】
使用時には、電気エネルギーの伝達は、以下のやり方で実現される。電源モジュール11は、所定のまたは定義済みの間隔内に含まれた、好ましくは数百KHzまたはMHzほどの第1の周波数fを有する、時間とともに可変的な一次電波SE1を生成するように構成される。一次電波SE1は、一次誘導性要素12を励起し、これは時間とともに可変的な対応する電磁界を生成する。この電磁界は、少なくとも部分的に、二次誘導性要素22によって収集され、これは、二次電波SE2を生成する。換言すれば、一次誘導性要素12および二次誘導性要素22は互いに対して誘導結合され、すなわち、これらは実質的にトランスフォーマとして動作し、一次回路10から二次回路20への電気エネルギーの伝達を可能とする。二次電波SE2は、変換モジュール21に電力供給し、これは、二次電波SE2自体を変換し、適切に調整、例えば、異なる電圧または適切な電流へと変換された二次電波SE2を第2のデバイス40の負荷41に提供するように適合される。具体的には、変換モジュール21は、二次電圧波SE2を、第2のデバイス40の負荷41に電力供給するように適合された一組の電力供給電圧VDDおよび電力供給電圧IDDへと変換するように適合され、故に、一組の電圧および電力供給電流VDDおよびIDDを介して電気エネルギーを負荷41へと供給する。
【0062】
代わりに、一次回路10と二次回路20との間でのデータ交換は、以下のやり方で実現される。ここでは、一次回路10から二次回路20へのデータ送信が考察される。一次送受信モジュール13は、第2のデバイス40に送信されるべきデータ、例えばバイナリ値のストリングまたはストリングのシーケンス、を第1のデバイス30のプロセッサモジュール33からまたはメモリモジュール35から受信する。その結果、一次送受信モジュール13は、データを、例えば定義済みの間隔内に含まれた、好ましくは数MHzまたはGHzほどの所定の第2の周波数fを有する、時間とともに可変的な一次電気信号SD1へと変換(エンコード)する。好ましくは、第2の周波数fは第1の周波数fよりも高い。例えば、第2の周波数fは、第1の周波数fよりも、少なくとも大きさが一桁、より好ましくは二桁高い。第2の周波数fは、例えば最小値の周波数f2_minと最大値の周波数f2_maxとによって区切られた周波数の間隔または帯域幅内で可変的であることも可能であり、最小値の周波数f2_minは好ましくは、第1の周波数fよりも高い。
【0063】
一次電気信号SD1は、可変的電界を生成する一次アーマチュア14aおよび14bに蓄積される電荷を変化させるように適合され、この可変的電界は、二次アーマチュア4aおよび24bに符号が逆の対応する電荷の蓄積を起こし、それによって二次電気信号SD2を生成する。換言すれば、各一次アーマチュア14aおよび14bは、対応する二次アーマチュア24aおよび24bと容量結合して対応するキャパシタCおよびCを形成する。このようにして、2つの送受信モジュール13および23を接続する回路が形成され、一次回路10から二次回路20へと電気信号を伝達することを可能とする。
【0064】
必要に応じて、2つの一次アーマチュアのうちの1つおよび2つの二次アーマチュアのうちの1つ、例えば、一次アーマチュア14bおよび二次アーマチュア24bは、基準ノードに接続され得、したがって、一次回路10の対応する一次基準電位(GNDp)および二次回路20の対応する二次基準電位(GNDs)に接続され得、事実上2つの基準電位をデータ信号の送信の二次周波数fに結合する。
【0065】
第2の二次電気信号SD2は、二次送受信モジュール23によって受信され、二次送受信モジュール23は、これを一次送受信モジュール13に最初に提供されたデータへと変換(デコード)する。続いて、二次送受信モジュール23は、データを第2のデバイス40の処理モジュール45ならびに/またはメモリモジュール47(揮発性および/もしくは不揮発性)に提供する。
【0066】
双対的な動作、すなわち、二次回路20から一次回路10へのデータの送信が、必要な変更を加えたうえで実質的に対応するやり方によって起こることは、当業者には容易に明らかであろう。
【0067】
代替的な実施形態において、一次アーマチュア14aおよび14bと二次アーマチュア24aおよび24bとの間の容量結合は、一次回路10と二次回路20との間に連続的な(データ)通信チャンネルを定めるように一次通信チャンネルを二次通信チャンネルに結合する「ブリッジ」として使用され得る。
【0068】
例えば、容量結合は、相互接続されたデバイスの識別のために、およびに二次上に存在する負荷に対する誘導性電力制御に必要とされるフィードバックのために現在使用されているものに対して代替的に、データ通信手段として使用され得る。
【0069】
別の実施形態の例において、容量結合は、一次回路10と二次回路20との間に連続的な通信チャンネルを定め、USB、PCI Express、HDMI(登録商標)、Display Port、Ethernet、CAN、LIN、Flexray typeまたは任意の他の知られた規格の有線接続の間で選択された通信チャンネル間でデータを交換するために使用され得る。具体的には、本発明の実施形態に従う容量結合は、その各々がそれぞれのデバイス30または40に備えられ、それぞれの送受信モジュール13または23に接続された通信チャンネルの2つの部分(例えば、USBケーブルの2つの部分)を接続する仮想的なワイヤリングを生む。この場合、2つの送受信モジュール13および23は、選択された通信チャンネルの規格に従ってエンコードされたデータを受信し、これらを一次電気信号SD1および二次電気信号SD2にそれぞれ変換し、受信された二次電気信号SD2および一次電気信号SD1をそれぞれ、選択された通信チャンネルの規格に従ってコーディングされたデータへと新たにデコードするように構成される。
【0070】
有利には、この変形例は、二次回路20を備える第2の電子デバイス40と一次回路10を備える第1の電子デバイス30に接続された1つまたは複数のデバイスとの間での、追加的な容量結合および有線での結合の両方を介した、安全で信頼性の高いデータ接続を可能とする。換言すれば、一次回路10備える第1の電子デバイス30は、これに接続された(第2のデバイス40のような)2つ以上のデバイスの間でのデータの交換のためにハブから動作するように構成され得る。
【0071】
本発明の実施形態において、以下において説明されるように、データの全二重交換を管理することが可能である。送受信モジュール13および23の両方は、全二重通信の管理のために構成され、すなわち、これらは、データフローを同時におよび独立的に送信および受信することができる。
【0072】
例えば、ある実施形態(本明細書においては示されていない)は、第3のキャパシタを定めるように互いに結合されることができる追加的な一次アーマチュアおよび追加的な二次アーマチュアを備える。このようにして、追加的なデータ交換チャンネルを定め、次いで、一次回路10から二次回路20へのデータ受信に平行してデータ送信を実行すること、およびその逆が可能である。
【0073】
代替的に、図1の回路において2つの二次アーマチュア24aおよび24bに結合された2つの一次アーマチュア14aおよび14bのみを使用して、単に、送信されるべきデータの一部を一時記憶するために適切な寸法を有し適切に構成されたバッファおよび容量チャンネルにおけるデータ送信の調停のための機構のシステムを提供し、全二重通信のビットレートを保証することが可能である。当業者には容易に明らかであろうように、このことは、図1のシステムが2つの全二重システムの間のインタフェースとして働く場合に特に有用であり、というのは、これは、全二重システムの帯域幅(したがって所望のビットレート)を、最小限の数のアーマチュアと半二重スキームとを使用して保証するからである。
【0074】
この解決策は、寸法が特に減少された実施態様において特に有利であることには、アーマチュアの数の増加を回避することを可能とし、ならびに/またはシステム1の生産コストおよび複雑性を抑制することを可能とする。
【0075】
出願者は、電圧の複数のレベルまたは値を想定できる単一のマルチレベル信号Mにおいて、送信されるべき(バイナリ)データおよび規定の時間間隔において受信される(バイナリ)データをエンコードするように構成された送受信モジュール13および23を提供する全二重通信を実現することが可能であることを見出した。
【0076】
送受信モジュール13は、一次電気信号SD1(例えば、処理モジュール33によって提供される)を介して送信されるべき(バイナリ)データおよびマルチレベル信号Mにおいて受信される二次電気信号SD2に含まれる(バイナリ)データをエンコードする。
【0077】
双対的な動作、すなわち、送受信モジュール23を介した二次におけるデータ送信および受信が、必要な変更を加えたうえで完全に同様のするやり方によって起こることは、当業者には容易に明らかであろう。
【0078】
より詳細には、一次送受信モジュール13、または同等には二次送受信モジュール23は、論理0が送信されるべきであると同時に他の二次送受信モジュール23または一次送受信モジュール13から論理0がそれぞれ受信されたことを示す(対応する通信時間間隔において)第1の電圧値、例えば0V、の対応する一次マルチレベル信号Mまたは二次マルチレベル信号Mを生成するように構成される。もしも、論理1が送信されるべきであると同時に論理0が受信されたなら、または論理0が送信されるべきであると同時に論理1が受信された双対的なケースの場合には、一次送受信モジュール13、または同等には二次送受信モジュール23は、第2の電圧値、例えば3.3V、を対応する一次マルチレベル信号Mまたは二次マルチレベル信号Mに与えるように構成される。有利には、一次送受信モジュール13または二次送受信モジュール23のうちの1つだけが論理1を送信するような考察ケースにおいて、どちらのトランシーバが論理値1を送信しているかを区別する必要はなく、というのは、各送受信モジュール13および23は、規定の通信間隔において論理1を送信しているか、または送信していないかが分かっているからである。最後に、もしも論理1が送信されるべきであると同時に論理1が受信されたなら、一次送受信モジュール13、または同等には二次送受信モジュール23は、第3の電圧値、例えば5V、の対応する一次マルチレベル信号Mまたは二次マルチレベル信号Mを生成するように構成される。
【0079】
たった今上述された構成のおかげで、送受信モジュール13および23によって全二重通信を管理する能力をなおも保証しつつ、更には必要とされるアーマチュアの数を増加することなく、送信および受信されるデータを記憶するバッファの必要性を回避し、したがって、効果的に全二重データ交換を実現することが可能である。更には、本発明に従う一次マルチレベル信号Mおよび二次マルチレベル信号Mのコーディングは、送信/受信されるバイナリデータの4つの有り得る組合せを電圧の3つのレベルだけによって表すことを可能とする。有利には、このように使用される電圧のレベルまたは値の数が減少されていることは、使用可能な電力供給ダイナミクス(ここで提供される数値例の場合、5Vの電力供給電圧など)に関して第1の電圧値(0V)、第2の電圧値(3.3V)および第3の電圧値(5V)をできる限り互いから大きな距離を有するように選択することによって、データ送信システムの干渉に対する良好な堅牢性を保証することを可能とする。
【0080】
代替的に、データ送信の信頼性を増加させるために、0Vの電圧値の検知を通じて送信/受信エラーまたは問題を特定するために、0Vとは異なる電圧値、例えば1V、を論理0に関連付けることが可能である。
【0081】
代替的な実施形態において、受信および送信されたデータの論理値の情報を、値自体にではなく、電圧値からの遷移または別の電圧値に関連付けるように、対応する一次マルチレベル信号Mまたは二次マルチレベル信号Mを生成するように送受信モジュール13および23を構成することが可能である。換言すれば、受信および送信されたデータの論理値の情報は、送受信モジュール13および23によって生成された一次マルチレベル信号Mまたは二次マルチレベル信号Mの波頭に含まれる。
【0082】
加えて、補助的なバイナリデータ(例えばパリティビット)を送信すること、ならびに/または送受信モジュール13および23によって交換されるデータの完全性を確認および保証するために有用なアルゴリズムを実現することが可能である。
【0083】
出願者は、エネルギー伝達およびデータ交換の両方の高い効率性および効果を維持し、誘導性エネルギー送信システムのみのものに典型的なコストに相当するコストを保ちつつ、一次回路10および二次回路20の構造をコンパクトに維持するように適合された解決策によって、一次アーマチュア14aおよび14bの一方または両方、ならびに二次アーマチュア24aおよび24bの一方または両方を形成することが可能であることを見出した。
【0084】
実施形態おいて、一次アーマチュア14aおよび14bならびに二次アーマチュア24aおよび24bは、第3の次元に対して優勢な2つの次元を有する、例えば平坦な、導電性要素を備える。好ましくは、各一次アーマチュア14aおよび14bならびに各二次アーマチュア24aおよび24bは、支持面に設けられた銅などの導電性材料のパッドを備える。支持面は、例えば、高分子またはセラミックの独立した絶縁材料であってよく、または、その上に一次回路10および二次回路20のコンポーネントがそれぞれ搭載されたプリント回路基板、もしくは電気基板であってもよい。
【0085】
もしも導電性材料の厚さが、十分な強度および剛性を導電性材料のパッドに授けるために十分であるなら、支持材料の使用は回避され得る。例えば、専用の支持面を必要とすることなく一次アーマチュア14aおよび14bならびに二次アーマチュア24aおよび24bを生産するように適合された導電性材料として、アルミニウムの銅のプレートまたは金属フレームが、有利に使用され得る。
【0086】
有利には、もしも誘導性要素12および22がプリント回路基板上に描かれた誘導体であり、巻かれたワイヤによって得られる従来の誘導体でないならば、平坦な導電性要素は、誘導性要素12および22が形成されるのと同一の技術および材料で生産され得る。
【0087】
特定の適用例に従うと、誘導性要素12および22の特定のタイプとは無関係に、一次アーマチュア14aおよび14bならびに二次アーマチュア24aおよび24bは、誘導性要素12および22に近接して、またはこれらから距離を空けてそれぞれ形成され得る。典型的には、特にコンパクトな構造を有する一次回路10および二次回路20を得るために、誘導性要素12および22に近接した、またはこれらに一体化された一次アーマチュア14aおよび14bならびに二次アーマチュア24aおよび24bを提供することが好都合で、有利である。
【0088】
好ましくは、一次アーマチュア14aおよび14b、二次アーマチュア24aおよび24bならびに誘導性要素12および22は平坦な形状であるが、これらを、適用例に適合される任意の形状に形成すること、例えば、スマートフォンのためには平坦に、電動歯ブラシ、除去コントローラ、または他の電気器具のような製品のためには筒状に形成することなどが禁止されることはない。
【0089】
図2Aの例に図示されるように、一次アーマチュア14aまたは14bのうちの少なくとも1つは、一次誘導性要素12によって区切られた領域内に位置付けられた平坦な導電性要素50を備える。同様に、二次アーマチュア24aまたは24bのうちの少なくとも1つは、二次誘導性要素22によって区切られた領域内に位置付けられた平坦な導電性要素(不図示)を備える。好ましくは、使用時に結合されて対応するキャパシタCを形成する一次アーマチュア14aおよび二次アーマチュア24a、または使用時に結合されて対応するキャパシタCを形成する一次アーマチュア14bおよび二次アーマチュア24bは、それぞれの誘導性要素12または22によって区切られた領域内に形成された平坦な導電性要素を備える。より好ましくは、前記導電性要素は、同一の表面積を有する形状を有する。有利には、平坦な導電性要素50の配置は、一次回路10と二次回路20との間での回転的または並進的な整列の自由を保証する。換言すれば、上述された形状を有する一次および二次アーマチュア14aおよび24aは、一次回路10および二次回路20の相対的な向きおよび位置付けとは無関係に、結合されてキャパシタCを形成する。有利には、キャパシタCの容量は、一次回路10および二次回路20の相対的な向きまたは位置付けとは関係なく、その限度において所定の値の範囲内で、実質的に均一である。
【0090】
代替的な実施形態において、一次アーマチュア14aおよび14bの両方は、誘導性要素12によって区切られた領域内に形成されたそれぞれの導電性要素を備え得る。必然的に、二次アーマチュア24aおよび24bも、誘導性要素22によって区切られた領域内に同様のやり方で形成されたそれぞれの導電性要素を備え得る。図2Bの例において、一次アーマチュア14aおよび14bの各々は、誘導性要素12によって区切られた領域内に、互いに対して同心状の形状を有するそれぞれの平坦な導電性要素51aおよび51bを備える。同様の配置が、対応する二次アーマチュア24aおよび24bにおいても設けられなければならない。このようにして、一次要素に対する二次要素の角度的な位置付けの自由が保障される。図2Cの例において、一次アーマチュア14aおよび14bの各々は、誘導性要素12によって区切られた領域内に、チェッカーボード状に配置された形状、すなわち2つの互いに垂直な軸に沿って交互に配置された形状を有する複数の平坦な導電性要素52aおよび52bを備える。同様の配置が、対応する二次アーマチュア24aおよび24bにおいても設けられなければならない。このようにして、2つのデカルト軸に沿った一次要素に対する二次要素の並進的な位置付けの自由が保障される。図2Dの例において、一次アーマチュア14aおよび14bの各々は、誘導性要素12によって区切られた領域内に、並列して配置された形状、すなわち所定の優先的な方向に沿って交互に配置された形状を有する複数の平坦な導電性要素53aおよび53bを備える。同様の配置が、二次アーマチュア24aおよび24bにおいても設けられなければならない。前述の場合と同様に、このようにしても、2つのデカルト軸に沿った一次要素に対する二次要素の並進的な位置付けの自由が保障される。有利には、平坦な導電性要素50、51aおよび51b、52aおよび52b、ならびに53aおよび53bの配置は、一次回路10と二次回路20との間の回転的なまたは並進的な自由を保証する。換言すれば、上述された形状を有する一次アーマチュア14aおよび14bならびにアーマチュア24aおよび24bは、結合されて、一次回路10および二次回路20の相対的な向きから実質的に独立的なやり方で、キャパシタCおよびCを形成する。有利には、キャパシタCおよびCの容量は、一次回路10および二次回路20の相対的な向きとは関係なく、その限度において所定の値の範囲内で、実質的に均一である。
【0091】
好ましくは、しかし必須ではないが、いかなる場合においても限定的にではなく、一次アーマチュア14aおよび14bとアーマチュア24aおよび24bとが結合されたときに実質的に均等な容量を有するキャパシタCおよびCを定めるように、平坦な導電性要素51a、52aおよび53aの総表面積は、平坦な導電性要素51b、52bおよび53bの総表面積にそれぞれ対応する。
【0092】
一次アーマチュア14aおよび14bならびにアーマチュア24aおよび24bのこれらの構造、または技術的専門用語ではレイアウトは、数MHzから数GHzの間などの高い値の周波数fにおける容量性データ伝達に適合された値の容量を有するキャパシタCおよびCを得ることを可能とする。例えば、平坦な導電性要素を包囲する誘導性要素12および22の構造への実質的な変更を必要とすることなく、2~3pFほどから数百pFまたはnFほどの容量の範囲の容量を有するキャパシタCおよびCを得ることが可能である。
【0093】
加えて、平坦な導電性要素は、開ループまたは櫛構造を有するように得られ得る。図3Aおよび図3Bにおいて考察される例において、平坦な導電性要素54および55は、「多数の指を有する」構造に従って得られる。換言すれば、平坦な導電性要素54および55の各々は、複数の細長部分541および551、すなわち「指」をそれぞれ備え、これらは、ループを形成しないように互いから距離を空けて離間される。これらの多数の指を有する平坦な導電性要素54および55は、このようにして得られたアーマチュア14a、14b、24aまたは24bの総表面積を高く維持し、結合容量を最大化することを可能とする一方、エネルギーの伝達のための電流によって横切られる誘導性要素12および22によって生成される可変的な磁界によってアーマチュア14a、14b、24aまたは24bにおいて生成される寄生電流、具体的には、フーコー電流としても知られるいわゆる渦電流、の出現を軽減および場合によっては除去すること可能とする。このようにして、これらの寄生電流の生成によって引き起こされる伝達における電気エネルギーの損失とデータ交換システムに対する電力交換システムの任意の干渉とに起因する一次回路10と二次回路20との間でのエネルギーの伝達における効率性の低下が回避または制限される。更には、磁界によって誘引される寄生電流の軽減は、当技術分野において異物検知(FOD)として知られるが本明細書においては詳細には説明されない、一次回路10(またはデバイス30)に一体化され得る保護/エネルギー節約回路による偽性物体、すなわち、二次回路20とは異なるまたはこれを備えない導電性物体、の誤検知の可能性を回避し、または低下させる。
【0094】
好ましくは、各導電性要素、具体的には、多数の指を有する導電性要素54および55ならびに導電性要素51a、52aおよび53aは、1mmから数十mmほどの幅を有する電気的導電性材料のトラックで作られる。このようにして、導電性要素に誘引される寄生電流は、大幅に減少され、電気エネルギーの誘導性送信とデータの容量性交換との間の競合を軽減する。同時に、このような寸法のトレースは、高い値の周波数fにおける容量性データ伝達のために適合された値の容量、好ましくは1pFから1nFの値の容量を有するCおよびCを形成するように適合された多数の指を有する導電性要素54および55を定めることを可能とする。
【0095】
有利には、限定的にではないが、各導電性要素50、51a、52aおよび53a、54および55は、減少された厚さ、例えば50μm以下、好ましくは1μm未満の厚さを有する導電性材料のトラックによって得られ得る。加えて、誘導性要素12および22も、場合によっては、しかしながら必須ではないが、導電性要素50、51a、52a、53a、54および55と同一のまたは似通った厚さを有する電気的導電性材料で作られたトラックによって得られ得る。これらの寸法は、寄生電流の大きさを制限し、単一の支持体によって誘導コイルおよび容量性アーマチュアを取得し、表皮効果のような他の寄生効果を最小化することを更に可能とする。
【0096】
代替的にまたは追加的に、一次アーマチュア14aおよび14bのうちの1つもしくは複数、ならびに/または二次アーマチュア24aおよび24bのうちの1つまたは複数は、別の主たる目的を有する一次回路10および二次回路20の回路部分、または第1のデバイス30および第2のデバイス40の一部分を利用してそれぞれ実現され得る。換言すれば、システム1の一次アーマチュア14aまたは14bのうちの一方または両方は、それぞれの一次回路部分によって定められ、対応する二次アーマチュアのうちの一方または両方は、それぞれの二次回路部分によって定められる。各一次回路部分および各それぞれの二次回路部分は、これらが別の主たる目的を有しているにもかかわらず、互いに対して相互作用して所定の容量のキャパシタCおよびCを定めるようにも適合されまたは適合させられる。
【0097】
このようにして、一次回路10および二次回路20の特にコンパクトな構造を得ることが可能であり、これはデータの交換のために有用な結合容量を達成するために追加的なアーマチュアまたはコンポーネントを必要としない。それ故、この解決策では、全体として必要とする回路コンポーネントの数が減少されている。
【0098】
図4Bの例において、第1の一次回路部分61aは、第2の端子122とともに電源モジュール11などの他の回路コンポーネントとの接続のために設けられた一次誘導性要素12に備えられる第1の接続端子121に近接した一次誘導性要素12の一部分を備える。好ましくは、限定的にではないが、第2の一次回路部分61も利用され、これは第2の接続端子122に近接した一次誘導性要素12の一部分を備える。一次回路部分61aおよび61bの延長部分は、データ交換動作の動作周波数、すなわち第2の周波数fと、それぞれの誘導性要素12および22のインダクタンスとに依存する。詳細には、誘導性要素12または22の中央部分63は、第2の周波数fにおいて開回路のようにふるまい、一次回路部分61を互いから電気的に離間させる。同様に、二次回路20においても、二次誘導性要素22のそれぞれの接続端子(不図示)に各々が近接する一組の二次回路部分62aおよび62bが利用され得る。二次回路部分62aおよび62bの延長部分は、一次回路部分61aおよび61bの延長部分に実質的に対応し、誘導性要素12および22の結合動作が与えられる。
【0099】
図4Aの例において、一次回路部分61aおよび61bは、一次ブリッジキャパシタ71によって互いに対して接続され、一次テールキャパシタ71によって基準端子に接続される。同様に、二次回路部分62aおよび62bは、二次ブリッジキャパシタ73によって互いに対して接続され、二次テールキャパシタ74によって基準端子に接続される。有利には、キャパシタ71、72、73および74は、第2の周波数fにおいて短絡回路として、第1の周波数fにおいて開回路として実質的に動作するような寸法を有する。
【0100】
この構成のおかげで、第2の周波数fにおいて、一次部分61aおよび61bは、それぞれの基準端子を介して送受信モジュール13に直列な第2の一次アーマチュア14bを定め、二次部分62aおよび62bは、それぞれの基準端子を介して送受信モジュール23に直列な第2の二次アーマチュア24bを定める。
【0101】
アーマチュア14bおよび24bの間の結合によって形成される容量Cの実際の容量は、一次回路部分61aおよび62bならびに二次回路部分62aおよび62bの延長部分と、これらの距離と、誘導性要素12および22を構成する導電性フィラメントの寸法とに依存する。図4Bの場合においては、誘導性要素12(および、同様に、不図示の誘導性要素22)は、平坦なフォーマットを有し、したがって、これを定める導電性材料のトラックの幅wが、容量Cの容量の決定に寄与する。いずれにせよ、システム1の構造において特定の方策を必要とすることなく、知られた技術によって形成された誘導性要素12および22が、実施態様の必要性に従った2~3pFから数nFほどの間の容量を有するキャパシタCを定めることを可能とする。
【0102】
図5において示された実施形態において、周波数fにおいて誘導体の中央部によって与えられる電気的分離が、それぞれの端子に近接する誘導性要素12および22の各セグメントを独立した回路部分として利用することを可能とする。換言すれば、一次回路部分61aおよび61bは互いに独立して使用され、対応する2つの二次回路部分62aおよび62bは互いに独立して使用される。
【0103】
詳細には、第1の一次部分61aは、ブリッジキャパシタ72を介して一次送受信モジュール13に対して接続される一方、第2の一次部分61bは、テールキャパシタ71を介して基準端子に接続される。同様に、第1の二次部分62aは、ブリッジキャパシタ77を介して二次送受信モジュール23に対して接続される一方、第2の二次部分62bは、テールキャパシタ78を介して基準端子に接続される。有利には、キャパシタ75、76、77および78は、第2の周波数fにおいて短絡回路として、第1の周波数fにおいて開回路として実質的に動作するような寸法を有する。
【0104】
この構成において、第1の一次部分61aは第1の一次アーマチュア14aを定める一方、第2の一次部分61bは第2の一次アーマチュア14bを定める。同様に、第1の二次部分62aは第1の二次アーマチュア24aを定める一方、第2の二次部分62bは第2の二次アーマチュア24bを定める。この構成のおかげで、キャパシタCおよびCの両方が、誘導性要素12および22の間に、これらの通常動作中に形成される寄生容量を利用して得られる。このことは、より少ない数の処理ステップによって得られ得る、よりコンパクトな構造を有する一次回路10および二次回路20を得ることを可能とし、というのは、これは、データの交換の目的のためのアーマチュアを形成する必要がないからである。具体的には、同時に容量結合アーマチュアとしても働く誘導性部分を変更することを全く必要とせずに、データの高速な交換を得ることが可能である。この場合においても、システム1の構造において特定の方策を必要とすることなく、知られた技術によって形成された誘導性要素12および22が、実施態様の必要性に従った2~3pFから数nFほどの間のそれぞれの容量を有するキャパシタCおよびCを定めることを可能とする。
【0105】
代替的な実施形態に従うと、図6Aの例における第2の一次アーマチュア14bおよび第2の二次アーマチュア24bのような一次アーマチュア14aまたは14bならびに対応する二次アーマチュア24aまたは24bのうちの1つは、第1のデバイス30および第2のデバイス40の部分80および90をそれぞれ利用して形成され、具体的には、第1のデバイス30および第2のデバイス40のそれぞれのケーシングまたはフレームの導電性材料、EMI遮蔽要素、もしくはグラウンド平面で作られた部分を利用して形成される。このようにして、一次回路10および二次一次回路20に専用の追加的なコンポーネントを必要とすることなく、所望の容量を有する第2のキャパシタCを得ることが可能である。図6Aの例において、第1のデバイス30および第2のデバイス40の各部分80および90は、対応するブリッジキャパシタ81および91を介してそれぞれのトランシーバモジュール13および23に接続される一方、第1の一次アーマチュア14aおよび二次アーマチュア14bは、平坦な導電性要素50が対応する誘導性要素12または21によって区切られたエリア内に形成される図2Aに特に関連して上述されたように形成される。しかしながら、第1の一次アーマチュア14aおよび第2の一次アーマチュア24aを異なる技術に従って形成することが妨げられるものではない。
【0106】
代替的に、図6Bの例において図示されるように、例えば図4Aおよび図4Bに関連して上述されたように、第1の一次アーマチュア14aおよび第1の二次アーマチュア24aは、誘導性要素12および22の一次回路部分61および二次回路部分62をそれぞれ利用して得られ得、前記回路部分の間の容量結合を利用して所望の容量の対応する第1のキャパシタCを得る。この場合、一次回路部分61aおよび61bは互いに対して、および一次送受信モジュール13に対して、それぞれのブリッジキャパシタ82および83を介して接続される。同様に、二次回路部分62aおよび62bは互いに対して、および二次送受信モジュール23に対して、それぞれのブリッジキャパシタ92および93を介して接続される。有利には、キャパシタ81~83およびキャパシタ91~93は、第2の周波数fにおいて短絡回路として、第1の周波数fにおいて開回路として実質的に動作するような寸法を有する。
【0107】
このようにして、所望の容量のキャパシタCおよびCの両方が、単に少数のキャパシタを導入しただけの複雑さの低減された構造によって、互いに異なる回路部分を使用して実現される。
【0108】
データの交換に適合された容量結合をこの目的に専用のアーマチュアを設けることなく得るように、例えば、各回路10および20の電力供給平面をそれぞれの第1のアーマチュア14aおよび14bとして利用すること、および、例えば、各回路10および20のグラウンド平面をそれぞれの第2のパッド24aおよび24bとして利用することが妨げられるものではないことが確認される。
【0109】
これに関して、出願者は、第1のデバイス30および第2のデバイス40の部分80および90の寸法、例えば、質量および/または電力供給の平面の寸法を最適化し、部分80および90の本来の目的を備えることなく、一次回路10と二次回路20との間での信頼性が高く、効率的なデータ交換を可能とするように適合された容量結合面積を得ることが可能であることを確認した。
【0110】
図7Aにおいて図示される異なる実施形態において、一次アーマチュア、例えば第1の一次アーマチュア14a、は、一次回路10に備えられ得る遮蔽要素100であって、誘導性要素12および22によって前記誘導性要素が空間的に重なり合わない領域において生み出される磁界を減衰して、干渉現象を軽減、または少なくとも減衰するように構成された遮蔽要素100を利用して得られ得る。
【0111】
図7Aにおいて考察される例において、遮蔽要素100は、ブリッジキャパシタ101を介して一次送受信モジュール13に接続される一方、誘導体102を介して基準ノードに接続される。具体的には、キャパシタ101は、第2の周波数fにおいて短絡回路として、第1の周波数fにおいて開回路として実質的に動作するような寸法を有する。これとは逆に、誘導体102は、第1の周波数fにおいて、およびfよりも低い周波数において短絡回路として、第2の周波数fにおいて開回路として実質的に動作するような寸法を有する。
【0112】
図7Bの代替的な実施形態において図示されるように、もしも二次回路20にも遮蔽要素110が設けられているなら、後者もまた、考察された例における第1の二次アーマチュア24aのように、たった今説明されたものと同様に、二次アーマチュアを得るために利用され得る。詳細には、遮蔽要素110は、ブリッジキャパシタ111を介して二次送受信モジュール23に接続される一方、誘導体112を介して基準ノードに接続される。具体的には、キャパシタ111は、第2の周波数fにおいて短絡回路として、第1の周波数fにおいて開回路として実質的に動作するような寸法を有する。これとは逆に、誘導体112は、第1の周波数fにおいて、およびfよりも低い周波数において短絡回路として、第2の周波数fにおいて開回路として実質的に動作するような寸法を有する。
【0113】
このように考案された本発明は、発明的概念の範囲から逸脱することなく多くの変更および変形を受け入れる余地がある。例えば、誘導性要素の、したがって、相互に結合され得る任意の回路部分の形状、寸法およびレイアウトは、設計仕様および/または実施態様の要件に従って変更され得る。同様に、前記誘導性要素によって外接されるように形成される任意のパッドの形状、寸法およびレイアウトは、設計仕様および/または実施態様の要件に従って変更され得る。
【0114】
更には、誘導性要素に外接するアーマチュアパッドが、前記要素によって外接されるパッドに加えてまたはこれに代わって、形成され得る。他の点では、ワイヤ巻き線を備える誘導性要素および/または導電性材料のプレートで作られたアーマチュアのように、平坦な構造とは異なる構造を有する誘導性要素およびアーマチュアを形成することが妨げられるものではない。
【0115】
更に、並進的なおよび回転的な位置合わせ不良に対して同時的にシステムを堅牢にするように、それぞれのトランシーバモジュールに動的に接続された一次および二次アーマチュアを提供することが可能である。換言すれば、システム1は、図2Cまたは図2Dにおいて図示されたような複数の平坦な導電性要素によって形成された一次アーマチュアのうちの少なくとも1つを備え、平坦な導電性要素を感知するように構成されて、これらを区別する適切な方法(例えば、適切に較正されたインピーダンスの測定値を提供するように構成された配置によって、または一次回路と二次回路との間での、好ましくは専用の適切なプロトコルに従った情報の交換を通じて)を実現する。
【0116】
一次回路および二次回路の平坦な導電性要素の互いの位置がひとたび決定されると、システムは、一次回路の平坦な導電性要素のうちの一部分、例えば半分を、第1の二次アーマチュアを励起するように、一次回路の平坦な導電性要素の別の部分、例えば、残りの半分を、第2の二次アーマチュアを、反対位相の信号によって、または、基準端子において単にデータ回路を閉じることによって励起するように構成し得る。このタイプのアーキテクチャを得るために、一次アーマチュアの平坦な導電性要素の数は二次アーマチュアの平坦な導電性要素の数よりも多くなければならないことは明白である。更には、一次アーマチュアの平坦な導電性要素は、好ましくは、二次アーマチュアの導電性要素よりも小さな寸法で形成される。
【0117】
加えて、上述された実施形態は、本発明の範囲を逸脱することなく全て組み合わされ得る。例えば、遮蔽要素で形成されたアーマチュアは、誘導性要素によって外接されたパッドによって定められた、または誘導性要素に関連付けられた回路部分のうちの一方もしくは両方によって定められたアーマチュアに結合され得る。更に、結合されたキャパシタは、一次および二次回路を備えるデバイスの対応する要素によって形成され得、他のキャパシタは遮蔽要素によって定められたアーマチュアを備え得る。
【0118】
加えて、全ての詳細は、他の技術的に同等な要素によって置き換えられ得る。
【0119】
実際上は、用いられる材料ならびに特定の形状および寸法は、必要性に依存して任意であってよく、それによって以下の特許請求の範囲の保護の範囲から逸脱することはない。
図1
図2A
図2B
図2C
図2D
図3A
図3B
図4A
図4B
図5
図6A
図6B
図7A
図7B