IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オムロン株式会社の特許一覧 ▶ オムロンヘルスケア株式会社の特許一覧

特許7154803生体情報測定装置、方法およびプログラム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-07
(45)【発行日】2022-10-18
(54)【発明の名称】生体情報測定装置、方法およびプログラム
(51)【国際特許分類】
   A61B 5/02 20060101AFI20221011BHJP
   A61B 5/022 20060101ALI20221011BHJP
   A61B 5/11 20060101ALI20221011BHJP
【FI】
A61B5/02 310Z
A61B5/022 400Z
A61B5/11 110
【請求項の数】 17
(21)【出願番号】P 2018076707
(22)【出願日】2018-04-12
(65)【公開番号】P2019180925
(43)【公開日】2019-10-24
【審査請求日】2021-02-08
(73)【特許権者】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(73)【特許権者】
【識別番号】503246015
【氏名又は名称】オムロンヘルスケア株式会社
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100189913
【氏名又は名称】鵜飼 健
(74)【代理人】
【識別番号】100199565
【弁理士】
【氏名又は名称】飯野 茂
(72)【発明者】
【氏名】岩出 彩花
(72)【発明者】
【氏名】鎌田 啓吾
(72)【発明者】
【氏名】八瀬 哲志
(72)【発明者】
【氏名】小澤 尚志
(72)【発明者】
【氏名】菅野 真行
(72)【発明者】
【氏名】齋藤 啓介
(72)【発明者】
【氏名】川端 康大
【審査官】亀澤 智博
(56)【参考文献】
【文献】国際公開第2012/033232(WO,A1)
【文献】特開2015-077395(JP,A)
【文献】特開2013-042840(JP,A)
【文献】特開2013-000177(JP,A)
【文献】特開2012-157435(JP,A)
【文献】特表2011-507583(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/00 - 5/113
(57)【特許請求の範囲】
【請求項1】
ユーザの生体情報を測定する生体情報測定装置であって、
前記ユーザの被測定部位に向けて電波を送信する送信部と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信部と、
前記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、
前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する第1の判定部と、
前記第1の判定部による判定結果を表す情報を出力する出力部と、
前記送信部、前記受信部、前記特徴抽出部および前記第1の判定部による一連の動作を制御する制御部と、を具備し、
前記送信部および前記受信部は、前記被測定部位と対向可能な面に分散配置される第1および第2のアンテナを有し、これら第1および第2のアンテナによりそれぞれ前記電波の送信および前記反射波の受信を行い、
前記制御部は、前記第1のアンテナを選択して第1回目の前記一連の動作を実行させ、この第1回目の前記一連の動作により前記生体情報測定装置の設置位置が前記条件を満たさないと判定された場合に、前記第2のアンテナを選択して第2回目の前記一連の動作を実行させる、
体情報測定装置。
【請求項2】
ユーザの生体情報を測定する生体情報測定装置であって、
前記ユーザの被測定部位に向けて電波を送信する送信部と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信部と、
前記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、
前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する第1の判定部と、
前記第1の判定部による判定結果を表す情報を出力する出力部と、
前記送信部、前記受信部、前記特徴抽出部および前記第1の判定部による一連の動作を制御する制御部と、を具備し、
前記送信部および前記受信部は、前記被測定部位と対向可能な面に分散配置される、第1の送信アンテナと、第1および第2の受信アンテナとを有し、これら第1の送信アンテナと第1および第2の受信アンテナとによりそれぞれ前記電波の送信および前記反射波の受信を行い、
前記制御部は、前記第1の送信アンテナと前記第1の受信アンテナとを選択して第1回目の前記一連の動作を実行させ、この第1回目の前記一連の動作により前記生体情報測定装置の設置位置が前記条件を満たさないと判定された場合に、前記第1の送信アンテナと前記第2の受信アンテナとを選択して第2回目の前記一連の動作を実行させる、
生体情報測定装置。
【請求項3】
ユーザの動脈情報を測定する生体情報測定装置であって、
前記ユーザの動脈に向けて電波を送信する送信部と、
前記電波の前記動脈による反射波を受信し、当該反射波の波形信号を出力する受信部と、
前記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、
前記抽出された波形の特徴を表す情報に基づいて、前記動脈に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する第1の判定部と、
前記第1の判定部による判定結果を表す情報を出力する出力部と、
を具備する生体情報測定装置。
【請求項4】
前記特徴抽出部は、前記波形信号の波形の特徴として、前記波形信号の振幅に係る情報を抽出し、
前記第1の判定部は、前記抽出された波形の振幅に係る情報に基づいて、前記波形信号の振幅が前記基準位置に対応して予め設定された第1の振幅の範囲内であるか否かを判定する、請求項1乃至3のいずれか一項に記載の生体情報測定装置。
【請求項5】
前記特徴抽出部は、前記波形信号の波形の特徴として、前記波形信号の繰り返し区間ごとの波形の形状に係る情報を抽出し、
前記第1の判定部は、
前記抽出された波形の形状に係る情報に基づいて、前記抽出された波形の形状と、前記基準位置に対応して予め設定された参照波形の形状との相関値を算出し、当該相関値が予め設定された第1の相関値の範囲内であるか否かを判定する、請求項1乃至3のいずれか一項に記載の生体情報測定装置。
【請求項6】
ユーザの生体情報を測定する生体情報測定装置であって、
前記ユーザの被測定部位と対向可能な面に分散配置される第1および第2のアンテナを有し、これら第1および第2のアンテナによりそれぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する送受信部と、
前記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、
前記第1のアンテナによる前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第1の波形の特徴を表す情報と、前記第2のアンテナによる前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する第2の判定部と、
前記判定された修正方向を表す情報を出力する出力部とを具備する生体情報測定装置。
【請求項7】
ユーザの生体情報を測定する生体情報測定装置であって、
前記ユーザの被測定部位と対向可能な面に分散配置される、第1の送信アンテナと、第1および第2の受信アンテナとを有し、これら第1の送信アンテナと第1および第2の受信アンテナとによりそれぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する送受信部と、
前記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、
前記第1の送信アンテナによる前記電波の送信および前記第1の受信アンテナによる前記反射波の受信動作において前記特徴抽出部により抽出される第1の波形の特徴を表す情報と、前記第1の送信アンテナによる前記電波の送信および前記第2の受信アンテナによる前記反射波の受信動作において前記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する第2の判定部と、
前記判定された修正方向を表す情報を出力する出力部とを具備する生体情報測定装置。
【請求項8】
前記第2の判定部は、前記第1の波形の特徴を表す情報と、前記第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正量をさらに算出し、
前記出力部は、前記判定された修正方向と前記算出された修正量とを表す情報を出力する、請求項またはに記載の生体情報測定装置。
【請求項9】
前記第2の判定部は、前記第1の波形の特徴を表す情報と前記第2の波形の特徴を表す情報とに基づく線形近似により前記修正量を算出する、請求項に記載の生体情報測定装置。
【請求項10】
前記第2の判定部は、前記第1の波形の特徴を表す情報と前記第2の波形の特徴を表す情報とに基づく非線形近似により前記修正量を算出する、請求項に記載の生体情報測定装置。
【請求項11】
前記出力部は、前記第1の判定部による判定結果を表す情報、または前記第2の判定部により判定された前記修正方向および修正量を、文字、画像、音声、振動、または光の点灯もしくは点滅のうちの少なくとも1つにより前記ユーザに通知する、請求項1乃至10のいずれか一項に記載の生体情報測定装置。
【請求項12】
ユーザの生体情報を測定する生体情報測定装置が実行する、生体情報測定方法であって、
前記ユーザの被測定部位に向けて電波を送信する送信過程と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信過程と、
前記波形信号から波形の特徴を表す情報を抽出する抽出過程と、
前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する判定過程と、
前記判定過程による判定結果を表す情報を出力する過程と、
前記送信過程、前記受信過程、前記抽出過程および前記判定過程による一連の動作を制御する制御過程と、を具備し、
前記送信過程および前記受信過程は、前記被測定部位と対向可能な面に分散配置される第1および第2のアンテナによりそれぞれ前記電波の送信および前記反射波の受信を行い、
前記制御過程は、前記第1のアンテナを選択して第1回目の前記一連の動作を実行させ、この第1回目の前記一連の動作により前記生体情報測定装置の設置位置が前記条件を満たさないと判定された場合に、前記第2のアンテナを選択して第2回目の前記一連の動作を実行させる、
体情報測定方法。
【請求項13】
ユーザの生体情報を測定する生体情報測定装置が実行する、生体情報測定方法であって、
前記ユーザの被測定部位に向けて電波を送信する送信過程と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信過程と、
前記波形信号から波形の特徴を表す情報を抽出する抽出過程と、
前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する判定過程と、
前記判定過程による判定結果を表す情報を出力する過程と、
前記送信過程、前記受信過程、前記抽出過程および前記判定過程による一連の動作を制御する制御過程と、を具備し、
前記送信過程および前記受信過程は、前記被測定部位と対向可能な面に分散配置される第1の送信アンテナと、第1および第2の受信アンテナとによりそれぞれ前記電波の送信および前記反射波の受信を行い、
前記制御過程は、前記第1の送信アンテナと前記第1の受信アンテナとを選択して第1回目の前記一連の動作を実行させ、この第1回目の前記一連の動作により前記生体情報測定装置の設置位置が前記条件を満たさないと判定された場合に、前記第1の送信アンテナと前記第2の受信アンテナとを選択して第2回目の前記一連の動作を実行させる、
生体情報測定方法。
【請求項14】
ユーザの動脈情報を測定する生体情報測定装置が実行する、生体情報測定方法であって、
前記ユーザの動脈に向けて電波を送信する過程と、
前記電波の前記動脈による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記抽出された波形の特徴を表す情報に基づいて、前記動脈に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する判定過程と、
前記判定過程による判定結果を表す情報を出力する過程と、
を具備する生体情報測定方法。
【請求項15】
ユーザの生体情報を測定する生体情報測定装置が実行する、生体情報測定方法であって、
前記ユーザの被測定部位と対向可能な面に分散配置される第1および第2のアンテナにより、それぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記第1のアンテナによる前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第1の波形の特徴を表す情報と、前記第2のアンテナによる前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する過程と、
前記判定された修正方向を表す情報を出力する過程とを具備する生体情報測定方法。
【請求項16】
ユーザの生体情報を測定する生体情報測定装置が実行する、生体情報測定方法であって、
前記ユーザの被測定部位と対向可能な面に分散配置される第1の送信アンテナと第1および第2の受信アンテナとにより、それぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記第1の送信アンテナによる前記電波の送信および前記第1の受信アンテナによる前記反射波の受信動作において前記抽出する過程により抽出される第1の波形の特徴を表す情報と、前記第1の送信アンテナによる前記電波の送信および前記第2の受信アンテナによる前記反射波の受信動作において前記抽出する過程により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する過程と、
前記判定された修正方向を表す情報を出力する過程とを具備する生体情報測定方法。
【請求項17】
請求項1乃至請求項11のいずれか一項に記載の装置の各部による処理をプロセッサに実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば、電波を用いて生体情報を測定する生体情報測定装置、方法、およびプログラムに関する。
【背景技術】
【0002】
従来、電波を用いて生体情報を測定する装置として、被測定部位に対向して配置される送信アンテナと受信アンテナを備え、上記送信アンテナから電波(測定信号)を被測定部位(ターゲットオブジェクト)へ向けて送波し、この送波された電波の上記被測定部位による反射波(反射信号)を上記受信アンテナで受信して、生体情報を測定するものが知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第5879407号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、生体情報として例えば脈波(または脈波に関する信号)を測定する場合、一般には手首や上腕部が被測定部位になる。例えば、ウェアラブル型の機器を手首に装着して測定を行う場合には、機器の手首装着用ベルトに、送信アンテナと受信アンテナ(適宜、これらを併せて「送受信アンテナ対」または単に「アンテナ」と呼ぶ。)を設置し、上記送受信アンテナ対によって脈波信号を測定する態様が想定される。この態様では、ウェアラブル機器を身体に装着した際に、送受信アンテナ対が被測定部位に適切に対向するようにする必要がある。しかしながら、従来のこの種の機器には、被測定部位に対する当該機器の装着位置が適切であるか否かを簡易に判断するための指標がなかった。
【0005】
この発明は、上記課題を解決するために、その一側面においては、位置合わせに必要なデバイスを別途設けることなく、簡単かつ安価な構成で、被測定部位に対する生体情報測定装置の設置位置に関する指標を取得できるようにした生体情報測定装置、方法およびプログラムを提供しようとするものである。
【課題を解決するための手段】
【0006】
上記課題を解決するため、この発明の第1の態様は、ユーザの生体情報を測定する生体情報測定装置が、当該ユーザの被測定部位に向けて電波を送信する送信部と、上記電波の上記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信部と、上記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、上記抽出された波形の特徴を表す情報に基づいて、上記被測定部位に対する上記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する第1の判定部と、当該第1の判定部による判定結果を表す情報を出力する出力部と、を具備するようにしたものである。
【0007】
この発明の第1の態様によれば、被測定部位に対する電波の送受波により得られる波形信号から波形の特徴を表す情報が抽出され、この情報に基づいて、生体情報測定装置の被測定部位に対する設置位置が基準位置に対応する所定の条件を満たすか否かが判定され、その結果が出力される。したがって、位置合わせに必要なデバイスを別途設けることなく、被測定部位に対する装置の設置位置に関する指標を得ることができる。このため、装置を簡単な構成でかつ安価に提供することが可能となる。また、ユーザは上記出力された判定結果を表す情報に基づいて設置位置に関する指標を確認することが可能となり、例えばこの指標をもとに被測定部位に対する装置の設置位置を適切に調整することが可能となる。
【0008】
この発明の第2の態様は、上記第1の態様において、上記特徴抽出部が、上記波形信号の波形の特徴として上記波形信号の振幅に係る情報を抽出し、上記第1の判定部が、上記抽出された波形の振幅に係る情報に基づいて、当該波形信号の振幅が上記基準位置に対応して予め設定された第1の振幅の範囲内であるか否かを判定するようにしたものである。
【0009】
この発明の第2の態様によれば、波形信号の特徴として当該波形信号の振幅に係る情報が抽出され、波形信号の振幅が基準位置に対応する所定の振幅範囲内にあるか否かが判定される。したがって、波形信号の振幅のみに着目した簡易な判定に基づいて、被測定部位に対する装置の設置位置に関する指標を得ることが可能となる。
【0010】
この発明の第3の態様は、上記第1の態様において、上記特徴抽出部が、上記波形信号の波形の特徴として上記波形信号の繰り返し区間ごとの波形の形状に係る情報を抽出し、上記第1の判定部が、上記抽出された波形の形状に係る情報に基づいて、当該抽出された波形の形状と、上記基準位置に対応して予め設定された参照波形の形状との相関値を算出し、当該相関値が予め設定された第1の相関値の範囲内であるか否かを判定するようにしたものである。
【0011】
この発明の第3の態様によれば、波形信号の特徴として当該波形の繰り返し区間ごとの波形の形状に係る情報が抽出され、この情報に基づいて、抽出された波形の形状と、基準位置に対応する所定の参照波形の形状との相関値が、基準位置に対応する所定の範囲内にあるか否かが判定される。したがって、波形信号の繰り返し区間ごとの波形の形状のみに着目した簡易な判定に基づいて、被測定部位に対する装置の設置位置に関する指標を得ることが可能となる。
【0012】
この発明の第4の態様は、上記第1乃至第3のいずれかの態様において、上記生体情報測定装置が、上記送信部、上記受信部、上記特徴抽出部、上記第1の判定部および上記出力部による一連の動作を制御する第1の制御部をさらに具備し、当該第1の制御部が、第1回目の上記一連の動作を実行させ、この第1回目の一連の動作により上記生体情報測定装置の設置位置が上記条件を満たさないと判定された場合に、第2回目の一連の動作を実行させるようにしたものである。
【0013】
この発明の第4の態様によれば、電波の送受信、波形の特徴の抽出、設置位置に関する判定、および判定結果の出力を含む一連の動作において、設置位置が所定の条件を満たさないと判定された場合には、上記一連の動作が繰り返し実行される。したがって、被測定部位に対する装置の設置位置が適切でないと判定された場合に直ちに処理を終了するのではなく、一連の動作を繰り返すことにより、判定結果の信頼性を高めることができる。
【0014】
この発明の第5の態様は、上記第4の態様において、上記第1の制御部が、上記第1回目の一連の動作により上記生体情報測定装置の設置位置が上記条件を満たさないと判定された場合に、当該判定後からの所定時間の経過と、上記ユーザによる測定指示の入力と、上記生体情報測定装置の設置位置の所定量以上の変化のいずれかに応じて、上記第2回目の一連の動作を実行させるようにしたものである。
【0015】
この発明の第5の態様によれば、一連の動作において被測定部位に対する装置の設置位置が適切でないと判定された場合にも、時間の経過、ユーザによる入力、または装置の位置の変化のうちのいずれかが検出されたときに、上記一連の動作が繰り返される。したがって、装置の設置位置が適切でないと判定された場合に直ちに処理を終了するのではなく、一定時間待機してから自動的に、ユーザによる指示の入力に応答して、または装置の位置の変化が検出されたら、装置の設置位置について条件を満たすか否かの判定を再度行うようにすることにより、判定結果の信頼性を高めるとともに、ユーザの利便性を向上させることができる。
【0016】
この発明の第6の態様は、上記第1乃至第3のいずれかの態様において、上記生体情報測定装置が、上記送信部、上記受信部、上記特徴抽出部および上記第1の判定部による一連の動作を制御する第2の制御部をさらに具備し、上記送信部および上記受信部が、上記被測定部位と対向可能な面に分散配置される第1および第2のアンテナを有し、これら第1および第2のアンテナによりそれぞれ上記電波の送信および上記反射波の受信を行い、上記第2の制御部が、上記第1のアンテナを選択して第1回目の上記一連の動作を実行させ、この第1回目の一連の動作により上記生体情報測定装置の設置位置が上記条件を満たさないと判定された場合に、上記第2のアンテナを選択して第2回目の上記一連の動作を実行させるようにしたものである。
【0017】
この発明の第6の態様によれば、第1のアンテナが選択された状態で、電波の送受信、波形の特徴の抽出、および設置位置に関する判定を含む一連の動作が実行され、その一連の動作において設置位置が条件を満たさないと判定された場合には、第2のアンテナが選択されて上記一連の動作が繰り返し実行される。したがって、被測定部位に対する生体情報測定装置の設置位置が適切でないと判定された場合にも直ちに処理を終了するのではなく、アンテナを切り替えて一連の動作を繰り返すことにより、装置の装着位置を動かさずに、分散配置された異なるアンテナを用いた2回の判定を行うことができ、装置の位置合わせに係る煩雑さを低減することができる。
【0018】
この発明の第7の態様は、上記第1乃至第3のいずれかの態様において、上記生体情報測定装置が、上記送信部、上記受信部、上記特徴抽出部および上記第1の判定部による一連の動作を制御する第2の制御部をさらに具備し、上記送信部および上記受信部が、上記被測定部位と対向可能な面に分散配置される、第1の送信アンテナと、第1および第2の受信アンテナとを有し、これら第1の送信アンテナと第1および第2の受信アンテナとによりそれぞれ上記電波の送信および上記反射波の受信を行い、上記第2の制御部が、上記第1の送信アンテナと上記第1の受信アンテナとを選択して第1回目の上記一連の動作を実行させ、この第1回目の上記一連の動作により上記生体情報測定装置の設置位置が上記条件を満たさないと判定された場合に、上記第1の送信アンテナと上記第2の受信アンテナとを選択して第2回目の上記一連の動作を実行させるようにしたものである。
【0019】
この発明の第7の態様によれば、第1の送信アンテナと第1の受信アンテナとが選択された状態で、電波の送受信、波形の特徴の抽出、および設置位置に関する判定を含む一連の動作が実行され、その一連の動作において設置位置が条件を満たさないと判定された場合には、第2の受信アンテナが選択されて上記一連の動作が繰り返し実行される。したがって、被測定部位に対する生体情報測定装置の設置位置が適切でないと判定された場合にも直ちに処理を終了するのではなく、少なくとも受信アンテナを切り替えて一連の動作を繰り返すことにより、装置の装着位置を動かさずに、分散配置された異なるアンテナを用いた2回の判定を行うことができ、装置の位置合わせに係る煩雑さを低減することができる。
【0020】
この発明の第8の態様は、ユーザの生体情報を測定する生体情報測定装置が、当該ユーザの被測定部位に向けて電波を送信する送信部と、上記電波の上記被測定部位による反射波を受信し、当該反射波の波形信号を出力する受信部と、上記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、第1回目の上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第1の波形の特徴を表す情報と、第2回目の上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて上記被測定部位に対する上記生体情報測定装置の設置位置の修正方向を判定する第2の判定部と、上記判定された修正方向を表す情報を出力する出力部と、を具備するようにしたものである。
【0021】
この発明の第8の態様によれば、被測定部位に対する電波の送受波とそれにより得られる波形信号からの波形の特徴を表す情報の抽出とが2回にわたって実施され、第1回目に抽出された第1の波形の特徴を表す情報と、第2回目に抽出された第2の波形の特徴を表す情報とを比較することにより、被測定部位に対する生体情報測定装置の設置位置を修正すべき方向が判定され、その結果が出力される。したがって、複雑な評価デバイスを別途設けることなく、簡単かつ安価な構成で、生体情報測定装置を被測定部位に対してどの方向に移動させるべきかの指標を得ることができる。ユーザは、上記出力された判定結果に基づいて装置をどの方向に移動させるべきかを確認した上で被測定部位に対する装置の位置を調整できるので、装置を効率的に位置合わせすることができ、ユーザの利便性を向上させることができる。
【0022】
この発明の第9の態様は、上記第8の態様において、上記第2の判定部が、上記第1回目の上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第1の波形の特徴を表す情報と、上記第2回目の上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて上記被測定部位に対する上記生体情報測定装置の設置位置の修正量をさらに算出し、上記出力部は、上記判定された修正方向と上記算出された修正量とを表す情報を出力するようにしたものである。
【0023】
この発明の第9の態様によれば、上記第1回目に抽出された第1の波形の特徴を表す情報と、上記第2回目に抽出された第2の波形の特徴を表す情報とを比較することにより、被測定部位に対する生体情報測定装置の設置位置を修正すべき方向に加えて、修正すべき量が算出され、その結果が出力される。したがって、複雑な評価デバイスを別途設けることなく、簡単かつ安価な構成で、2回の測定結果に基づいて、生体情報測定装置を被測定部位に対してどの方向にどの程度移動させるべきかの指標を得ることができる。ユーザは、上記出力された判定結果に基づいて装置をどの方向にどの程度移動させるべきかを確認した上で被測定部位に対する装置の位置を調整できるので、装置をより効率的に位置合わせすることができ、ユーザの利便性をいっそう向上させることができる。
【0024】
この発明の第10の態様は、ユーザの生体情報を測定する生体情報測定装置が、上記ユーザの被測定部位と対向可能な面に分散配置される第1および第2のアンテナを有し、これら第1および第2のアンテナによりそれぞれ上記被測定部位に向けて電波を送信すると共に上記電波の上記被測定部位による反射波を受信し、当該反射波の波形信号を出力する送受信部と、上記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、上記第1のアンテナによる上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第1の波形の特徴を表す情報と、上記第2のアンテナによる上記電波の送信および上記反射波の受信動作において上記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて上記被測定部位に対する上記生体情報測定装置の設置位置の修正方向を判定する第2の判定部と、上記判定された修正方向を表す情報を出力する出力部と、を具備するようにしたものである。
【0025】
この発明の第10の態様によれば、被測定部位に対する電波の送受波とそれにより得られる波形信号からの波形の特徴を表す情報の抽出とが、第1および第2のアンテナのそれぞれを用いて実施され、第1のアンテナを用いた場合に抽出された第1の波形の特徴を表す情報と、第2のアンテナを用いた場合に抽出された第2の波形の特徴を表す情報とを比較することにより、被測定部位に対する生体情報測定装置の設置位置を修正すべき方向が判定され、その結果が出力される。したがって、複雑な評価デバイスを別途設けることなく、簡単かつ安価な構成で、装置の設置位置を動かさずに複数のアンテナを用いた測定結果に基づいて、生体情報測定装置を被測定部位に対してどの方向に移動させるべきかの指標を得ることができる。ユーザは、上記出力された判定結果に基づいて装置をどの方向に移動させるべきかを確認した上で被測定部位に対する設置位置を調整できるので、装置を効率的に位置合わせすることができ、ユーザの利便性を向上させることができる。
【0026】
この発明の第11の態様は、ユーザの生体情報を測定する生体情報測定装置が、上記ユーザの被測定部位と対向可能な面に分散配置される、第1の送信アンテナと、第1および第2の受信アンテナとを有し、これら第1の送信アンテナと第1および第2の受信アンテナとによりそれぞれ上記被測定部位に向けて電波を送信すると共に上記電波の上記被測定部位による反射波を受信し、当該反射波の波形信号を出力する送受信部と、上記波形信号から波形の特徴を表す情報を抽出する特徴抽出部と、上記第1の送信アンテナによる上記電波の送信および上記第1の受信アンテナによる上記反射波の受信動作において上記特徴抽出部により抽出される第1の波形の特徴を表す情報と、上記第1の送信アンテナによる上記電波の送信および上記第2の受信アンテナによる上記反射波の受信動作において上記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて上記被測定部位に対する上記生体情報測定装置の設置位置の修正方向を判定する第2の判定部と、上記判定された修正方向を表す情報を出力する出力部と、を具備するようにしたものである。
【0027】
この発明の第11の態様によれば、第1の送信アンテナおよび第1の受信アンテナを用いた被測定部位に対する電波の送受波により得られた波形信号の第1の波形の特徴を表す情報と、第1の送信アンテナおよび第2の受信アンテナを用いた場合に得られた波形信号の第2の波形の特徴を表す情報とを比較することによって、被測定部位に対する生体情報測定装置の設置位置を修正すべき方向が判定され、その結果が出力される。したがって、複雑な評価デバイスを別途設けることなく、簡単かつ安価な構成で、装置の設置位置を動かさずに異なる受信アンテナを用いた測定結果に基づいて、生体情報測定装置を被測定部位に対してどの方向に移動させるべきかの指標を得ることができる。やはりユーザは、上記出力された判定結果に基づいて装置をどの方向に移動させるべきかを確認した上で被測定部位に対する設置位置を調整できるので、装置を効率的に位置合わせすることができ、ユーザの利便性を向上させることができる。
【0028】
この発明の第12の態様は、上記第10または第11の態様において、上記第2の判定部が、上記第1の波形の特徴を表す情報と、上記第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて上記被測定部位に対する上記生体情報測定装置の設置位置の修正量をさらに算出し、上記出力部は、上記判定された修正方向と上記算出された修正量とを表す情報を出力するようにしたものである。
【0029】
この発明の第12の態様によれば、第1のアンテナ(対)を用いた場合に抽出された第1の波形の特徴を表す情報と、第2のアンテナ(対)を用いた場合に抽出された第2の波形の特徴を表す情報とを比較することにより、被測定部位に対する生体情報測定装置の設置位置を修正すべき方向に加えて、修正すべき量が算出され、その結果が出力される。したがって、複雑な評価デバイスを別途設けることなく、複数のアンテナを用いた測定結果に基づいて、生体情報測定装置を被測定部位に対してどの方向にどの程度移動させるべきかの指標を得ることができる。また、装置の位置を動かさずに、相対位置を予め知ることのできる2つのアンテナを用いた2回の測定結果から修正量を算出できるので、より信頼性の高い判定結果を得ることができる。ユーザは、上記出力された判定結果に基づいて装置をどの方向にどの程度移動させるべきかを確認した上で被測定部位に対する設置位置を調整できるので、装置をより効率的に位置合わせすることができ、ユーザの利便性をいっそう向上させることができる。
【0030】
この発明の第13の態様は、上記第9または第12の態様において、上記第2の判定部が、上記第1の波形の特徴を表す情報と上記第2の波形の特徴を表す情報とに基づく線形近似により上記修正量を算出するようにしたものである。
【0031】
この発明の第13の態様によれば、2回の測定で得られた2つの波形の特徴を表す情報に線形関係があると仮定して近似関数を求めることにより、基準位置までの距離が推定される。したがって、複雑な評価デバイスを別途設けることなく、得られた測定結果から簡易な計算により、設置位置を修正すべき量を推定することができる。
【0032】
この発明の第14の態様は、上記第9または第12の態様において、上記第2の判定部が、上記第1の波形の特徴を表す情報と上記第2の波形の特徴を表す情報とに基づく非線形近似により上記修正量を算出するようにしたものである。
【0033】
この発明の第14の態様によれば、2回の測定で得られた2つの波形の特徴を表す情報に非線形関係があると仮定して近似関数を求めることにより、基準位置までの距離が推定される。したがって、複雑な評価デバイスを別途設けることなく、得られた測定結果から、設計者の選好に応じた任意の近似曲線を用いて、設置位置を修正すべき量を簡易に推定することができる。
【0034】
この発明の第15の態様は、上記第1乃至第14の態様のいずれかにおいて、上記出力部が、上記第1の判定部による判定結果を表す情報、または上記第2の判定部により判定された上記修正方向および修正量を、文字、画像、音声、振動、または光の点灯もしくは点滅のうちの少なくとも1つにより上記ユーザに通知するようにしたものである。
【0035】
この発明の第15の態様によれば、生体情報測定装置の設置位置が適切か否かを表す判定結果、または設置位置を修正すべき方向もしくは修正すべき量が、文字、画像、音声、振動、または光の点灯もしくは点滅のうちの少なくとも1つによりユーザに通知される。このため、ユーザは、装置の位置合わせをする過程において、設置位置が適切であるか否かを簡易に判断しながら設置位置の調整をすることができる。また、多様な通知方法により動作環境またはユーザの多様性に対応しつつ、装置の設置位置が不適切な場合にとるべき動作について、装置の使用に不慣れなユーザにも明確な指示をすることができるので、ユーザの利便性が向上する。
【発明の効果】
【0036】
すなわちこの発明の各態様によれば、位置合わせに必要なデバイスを別途設けることなく、簡単かつ安価な構成で、被測定部位に対する生体情報測定装置の設置位置に関する指標を取得できるようにした生体情報測定装置、方法およびプログラムを提供することができる。
【図面の簡単な説明】
【0037】
図1図1は、この開示の一実施形態に係る生体情報測定装置の1つの適用例を説明するためのブロック図である。
図2図2は、図1に示した生体情報測定装置の処理手順の一例を示すフローチャートである。
図3図3は、図1に示した生体情報測定装置に係る一実施形態の手首式血圧計の外観を示す斜視図である。
図4図4は、図3に示した血圧計が左手首に装着された状態でのアンテナの平面レイアウトの一例を示す図である。
図5図5は、この開示の一実施形態に係る生体情報測定装置の機能構成の一例を示すブロック図である。
図6図6は、図5に示した生体情報測定装置の処理手順の一例を示すフローチャートである。
図7A図7Aは、図6に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図7B図7Bは、図6に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の他の例を示す模式図である。
図8図8は、図5に示した生体情報測定装置の処理手順の他の例を示すフローチャートである。
図9図9は、図8に示した処理手順で用いることのできる、取得された信号から脈波由来の波形信号を抽出するための手法の一例を示すフローチャートである。
図10図10は、図5に示した生体情報測定装置の処理手順の他の例を示すフローチャートである。
図11A図11Aは、図10に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図11B図11Bは、図10に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の他の例を示す模式図である。
図12図12は、この開示の一実施形態に係る生体情報測定装置の機能構成の一例を示すブロック図である。
図13図13は、図12に示した生体情報測定装置の処理手順の一例を示すフローチャートである。
図14図14は、図13に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図15図15は、この開示の一実施形態に係る生体情報測定装置の機能構成の一例を示すブロック図である。
図16図16は、図15に示した生体情報測定装置の処理手順の一例を示すフローチャートである。
図17A図17Aは、図16に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図17B図17Bは、図16に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の他の例を示す模式図である。
図17C図17Cは、表示器に表示される通知イメージを示す模式図である。
図18図18は、この開示の一実施形態に係る生体情報測定装置の機能構成の一例を示すブロック図である。
図19図19は、図18に示した生体情報測定装置の処理手順の一例を示すフローチャートである。
図20A図20Aは、図19に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図20B図20Bは、表示器に表示される通知イメージを示す模式図である。
図21図21は、図18に示した生体情報測定装置の処理手順の他の例を示すフローチャートである。
図22A図22Aは、図21に示した処理手順で想定される、動脈とアンテナの相対的な位置関係とそれにより得られる脈波信号の一例を示す模式図である。
図22B図22Bは、表示器に表示される通知イメージを示す模式図である。
図23図23は、図21に示した処理のうち、移動すべき方向および量の推定手順の一例を示すフローチャートである。
図24A図24Aは、図23に示した推定手順における回帰直線の一例を示す図である。
図24B図24Bは、図23に示した推定手順における回帰直線の他の例を示す図である。
図25図25は、図21に示した処理のうち、移動すべき方向および量の推定手順の他の例を示すフローチャートである。
図26A図26Aは、図25に示した推定手順における回帰曲線の一例を示す図である。
図26B図26Bは、図25に示した推定手順における回帰曲線の他の例を示す図である。
図27図27は、この開示の他の実施形態に係る生体情報測定装置の機能構成の一部と、動脈とアンテナの相対的な位置関係とを示す模式図である。
図28図28は、図3に示した血圧計を備えるシステムの一例の概略図である。
【発明を実施するための形態】
【0038】
以下、本発明の一側面に係る実施の形態を、図面に基づいて説明する。
【0039】
[適用例]
(構成)
まず、本発明が適用される場面の一例について説明する。
図1は、この発明の実施形態に係る生体情報測定装置の一適用例を模式的に示したものである。
【0040】
図1の例では、生体情報測定装置1は、センサ部2と、特徴抽出部121と、判定部122と、出力部5と、表示器50とを備えている。生体情報測定装置1は、生体の被測定部位TGにセンサ部2が対向するように配置される。
【0041】
被測定部位TGは、例えば、ヒトの手首の橈骨動脈を含む部分である。生体情報測定装置1は、例えば腕時計型のウェアラブル機器であり、装着時にセンサ部2が手首の掌側面に対向するように配置され、生体情報として、例えば脈波(または脈波に関する信号)が測定される。
【0042】
センサ部2は、例えばユーザの橈骨動脈における脈波を計測する脈波センサであり、送信部3と受信部4とを備える。
【0043】
送信部3は、送信アンテナ素子と送信回路とを含み、被測定部位TGに向けて測定信号としての電波を送波する。
【0044】
受信部4は、受信アンテナ素子と受信回路とを含み、上記電波の被測定部位TGによる反射波を受信し、その反射波の波形信号を出力する。
【0045】
特徴抽出部121は、受信部4から出力された波形信号を受け取り、当該波形信号をもとに脈波信号を生成したのち、当該脈波信号から波形の特徴を表す情報を抽出する。
【0046】
判定部122は、特徴抽出部121によって抽出された、脈波信号の波形の特徴を表す情報に基づいて、被測定部位TGに対する生体情報測定装置1の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する。設置位置(「装着位置」とも言う)とは、この例では、被測定部位TGとしての橈骨動脈に対するセンサ部2の位置、特に、橈骨動脈に対する送受信アンテナ対の相対的な位置を表すが、他に手首表面または橈骨動脈に対する送受信アンテナ対の角度等を含めた設置状態を包括的に指すものであってもよい。基準位置とは、この例では、センサ部2による脈波の取得に適した、橈骨動脈に対する理想的な設置位置を指すが、設計者により適宜設定されることもできる。基準位置に対応する条件とは、この例では、基準位置(理想位置)で取得される理想的な脈波に関する波形の特徴(振幅値、周期性、スペクトル強度、S/N比など)を表す。これらの特徴に対して、測定値が許容範囲にあるか否かを判断することによって、装置の設置位置が適切であるか否かを判定することができる。
【0047】
出力部5は、判定部122による判定結果を出力する。例えば、出力部5は、生体情報測定装置1の設置位置が予め設定された条件を満たすことを示す情報、すなわち、生体情報測定装置1が被測定部位に対して適切な設置位置にあることを示す情報を出力することができ、それにより、ユーザに測定開始を促すことができる。または、出力部5は、生体情報測定装置1の設置位置が予め設定された条件を満たさないことを示す情報、すなわち、生体情報測定装置1が被測定部位に対して適切な設置位置にないことを示す情報を出力することができ、それにより、測定開始前に装置の位置の調整が必要であることをユーザに通知することができる。あるいは、出力部5は、装置の設置位置が不適切である旨を警告する、または位置の修正を促すメッセージを生成し、表示器50に出力することもできる。
【0048】
表示器50は、例えば、生体情報測定装置1に設けられたディスプレイまたはスピーカ、或いはその両方を含むものであり、出力部5から出力された表示メッセージをユーザに対して視覚的または聴覚的に提示する。または、表示器50は、検出結果を振動によりユーザに報知するものであってもよい。表示器50は、また、LED(Light-emitting diode)等の光源を用いて、光の点灯または点滅によりユーザに報知するものであってもよい。なお、表示器50は生体情報測定装置1とは別体とすることもでき、または省略することもできる。
【0049】
(動作)
次に、一適用例に係る生体情報測定装置1の動作について説明する。図2は、図1に示した生体情報測定装置1の処理手順の一例を示すフローチャートである。
生体情報測定装置1は、送信部3により被測定部位TGに向けて測定信号としての電波を一定の周期で送波する。そうすると、上記一定周期で上記電波の被測定部位TGによる反射波が受信部4により受信される。受信部4では、上記反射波の波形信号が生成され、特徴抽出部121に出力される。なお、送信部3によって送波される電波は、連続的に送波されるものであっても、間欠的に送波されるものであってもよい。
【0050】
ステップS21において、生体情報測定装置1は、上記受信部4から出力された波形信号を、例えば、先ず当該波形信号をディジタル信号に変換したのち、雑音成分等の不要波成分を除去するためのフィルタリング処理を行って脈波信号を取得する。脈波信号は、上記被測定部位TGを通る橈骨動脈の拍動を表す波形信号である。
【0051】
ステップS22において、生体情報測定装置1は、特徴抽出部121の制御の下、上記脈波信号から波形の特徴を抽出する。例えば、特徴抽出部121は上記脈波信号の波形からその振幅値を抽出する。なお、波形の特徴としては、振幅値に限るものではなく、他に、波形の周期性、波形の所定の周波数帯域のスペクトル強度、波形の形状等を抽出するようにしてもよい。特徴抽出部121は、上記抽出された波形の特徴を表す情報を判定部122へ出力する。
【0052】
次に、ステップS23において、生体情報測定装置1は、判定部122の制御の下、上記特徴抽出部121から出力された波形の特徴を表す情報に基づいて、被測定部位TGに対する前記生体情報測定装置1の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する。例えば、判定部122は、波形信号の振幅値が上記基準位置に対応して予め設定された第1の振幅の範囲内であるか否かを判定する。これにより、波形信号の振幅値が第1の振幅の範囲内にある場合には、測定に適した位置にセンサ部2が位置合わせされていると判断することができ、波形信号の振幅値が第1の振幅の範囲内にない場合には、測定に適した位置にセンサ部2が位置合わせされていないと判断することができる。
【0053】
なお、予め設定された基準位置に対応する条件を満たすか否かを判定する手法は上記手法に限るものではなく、他にも、時区間に分割された波形の形状と参照波形の形状との相関値、波形信号の繰り返し周期、または信号強度の最大値をしきい値と比較することにより判定してもよい。また、判定部122は、複数回の測定の結果に基づいて、どの測定結果が最も所定の条件に近いかを判定することにより、設置位置を修正すべき方向を判定するようにしてもよい。さらに、判定部122は、複数回の測定の結果に基づいて、基準位置からどの程度離れているか、すなわち設置位置を修正すべき量を推定するようにしてもよい。
【0054】
ステップS23において、波形の特徴を表す情報が所定の条件を満たさないと判定された場合、ステップS24に移行する。ステップS24において、生体情報測定装置1は、上記判定結果を出力する。例えば、生体情報測定装置1は、被測定部位に対して適切な設置位置にないことを通知するメッセージを生成し、表示器50に出力することができる。これにより、ユーザは装置1の位置が適切でないことを確認し、装置1の位置合わせをやり直すことができる。ステップS23において、波形の特徴を表す情報が所定の条件を満たすと判定された場合、動作は終了する。ただし、この場合にも、当該装置が適切な設置位置にあることを通知するメッセージを生成し、表示器50に出力することが可能である。これにより、ユーザは、装置1に設けられた測定開始ボタン(図示せず)を押下するなど、生体情報の測定処理を開始させることができる。
【0055】
(効果)
以上述べたように一適用例によれば、特徴抽出部121において、被測定部位TGに対する電波の送受波により得られた脈波信号からその波形の特徴、例えば振幅値が抽出され、判定部122において、上記抽出された波形の特徴に基づいて、予め設定された基準位置に対応する条件を満たすか否かが判定され、それにより、被測定部位TGに対する生体情報測定装置1の設置位置が、予め設定された基準位置に対して許容可能な範囲内にあるか否かが判定される。このため、例えば加速度センサ等の位置検出用デバイスを別途設けることなく、簡単かつ安価な構成で、装置1の設置位置が適切か否かを判定するための指標を得ることが可能となる。
【0056】
また、出力部5において、上記判定の結果をもとに、例えば装置の位置を動かす必要があるか否かを示す表示メッセージが生成され、表示器50に表示される。この結果、ユーザは、上記表示メッセージにより装置の装着が適切でないことを確認し、装置の位置を適切に調整することができる。またユーザは、上記表示メッセージにより測定の準備ができたと判断して、生体情報の測定を開始することができる。
【0057】
[第1の実施形態]
[実施例1-1]
(構成例)
(1)ウェアラブル機器の構造
図3は、この発明の第1の実施形態に係る生体情報測定装置としてのウェアラブル機器(全体を符号1で示す)の外観を示す斜視図である。ウェアラブル機器1として、ここでは特に、電波式脈波センサを備えた手首式の血圧計を例に挙げて説明する。図4は、この血圧計1が被測定部位としての左手首90に装着された状態(以下「装着状態」と呼ぶ。)において、脈波センサのアンテナ素子TA1,RA1の配置位置を模式的に示した平面図である。なお、図4において、90aは左手首90の掌側面を、また91は橈骨動脈91の位置を例示している。
【0058】
図3および図4に示すように、血圧計1は、大別して、ユーザの左手首90を取り巻いて装着されるベルト20と、このベルト20に一体に取り付けられた本体10とを備えている。この血圧計1は、全体として、1対の脈波センサを含む血圧測定装置に対応するものとして構成されている。これらの図では、橈骨動脈91をまたぐように離間して配置された送信アンテナ素子TA1と受信アンテナ素子RA1が対となって脈波センサを形成している。
【0059】
図3に示すように、ベルト20は、左手首90を周方向に沿って取り巻くように細長い帯状の形状を有し、左手首90に接する内周面20aと、この内周面20aと反対側の外周面20bとを有している。ベルト20の幅方向Yの寸法(幅寸法)は、この例では約30mmに設定されている。
【0060】
本体10は、ベルト20のうち、周方向に関して一方の端部20eに、この例では一体成形により一体に設けられている。なお、ベルト20と本体10とを別々に形成し、ベルト20に対して本体10を係合部材(例えばヒンジなど)を介して一体に取り付けてもよい。この例では、本体10が配置された部位は、装着状態で左手首90の背側面(手の甲側の面)に対応することが予定されている。
【0061】
図3によって分かるように、本体10は、ベルト20の外周面20bに対して垂直な方向に厚さを有する立体的形状を有している。この本体10は、ユーザの日常活動の邪魔にならないように、小型で、薄厚に形成されている。この例では、本体10は、ベルト20から外向きに突起した四角錐台状の輪郭を有している。
【0062】
本体10の頂面(被測定部位から最も遠い側の面)10aには、表示画面をなす表示器50が設けられている。表示器50は、この例では有機EL(Electro Luminescence)ディスプレイからなり、図示しない制御部からの制御信号に従って、血圧測定結果などの血圧測定に関する情報、その他の情報を表示する。なお、表示器50は、有機ELディスプレイに限られるものではなく、例えばLCD(Liquid Cristal Display)など、他のタイプの表示器からなっていてもよい。
【0063】
また、本体10の側面(図2における左手前側の側面)10fには、ユーザからの指示を入力するための操作部52が設けられている。操作部52は、この例ではプッシュ式スイッチからなり、ユーザによる血圧測定開始又は停止の指示に応じた操作信号を入力する。なお、操作部52は、プッシュ式スイッチに限られるものではなく、例えば感圧式(抵抗式)または近接式(静電容量式)のタッチパネル式スイッチなどであってもよい。また、図示しないマイクロフォンを備えて、ユーザの音声によって血圧測定開始の指示を入力するようにしてもよい。
【0064】
ベルト20のうち、周方向に関して一方の端部20eと他方の端部20fとの間の部位に、脈波センサを構成する送受信部40が設けられている。ベルト20のうち、送受信部40が配置された部位の内周面20aには、アンテナ素子TA1,RA1を含むセンサ部2として送受信アンテナ部40Eが搭載されている。この例では、ベルト20の長手方向Xに関して送受信アンテナ部40Eが占める範囲は、装着状態で左手首90の橈骨動脈91に対応することが予定されている(図4参照)。
【0065】
図3中に示すように、本体10の底面(被測定部位に最も近い側の面)10bとベルト20の端部20fとは、三つ折れバックル24によって接続されている。このバックル24は、外周側に配置された第1の板状部材25と、内周側に配置された第2の板状部材26とを含んでいる。第1の板状部材25の一方の端部25eは、幅方向Yに沿って延びる連結棒27を介して本体10に対して回動自在に取り付けられている。第1の板状部材25の他方の端部25fは、幅方向Yに沿って延びる連結棒28を介して第2の板状部材26の一方の端部26eに対して回動自在に取り付けられている。第2の板状部材26の他方の端部26fは、固定部29によってベルト20の端部20f近傍に固定されている。なお、ベルト20の長手方向X(装着状態では、左手首90の周方向に相当する。)に関して固定部29の取り付け位置は、ユーザの左手首90の周囲長に合わせて予め可変して設定されている。これにより、この血圧計1(ベルト20)は、全体として略環状に構成されるとともに、本体10の底面10bとベルト20の端部20fとが、バックル24によって矢印B方向に開閉可能になっている。
【0066】
この血圧計1を左手首90に装着する際には、バックル24を開いてベルト20の環の径を大きくした状態で、図2中に矢印Aで示す向きに、ユーザがベルト20に左手を通す。そして、ユーザは、左手首90の周りのベルト20の角度位置を調節して、左手首90を通っている橈骨動脈91上にベルト20の送受信部40を位置させる。これにより、送受信部40の送受信アンテナ部40Eが左手首90の掌側面90aのうち橈骨動脈91に対応する部分に当接する状態になる。この状態で、ユーザが、バックル24を閉じて固定する。このようにして、ユーザは血圧計1(ベルト20)を左手首90に装着する。
【0067】
図4に示すように、装着状態では、送受信部40の送受信アンテナ部40Eは、左手首90の橈骨動脈91に対応して、送信アンテナ素子TA1と受信アンテナ素子RA1とを含んでいる。
【0068】
この例では、送信アンテナ素子TA1または受信アンテナ素子RA1は、24GHz帯の周波数の電波を発射または受信し得るように、面方向(図3において紙面の方向を意味する。)に関して、縦横いずれも約3mmの正方形のパターン形状を有している。
【0069】
また、アンテナ素子TA1は、電波の発射のための導電体層を有している(図示せず)。導電体層のうち左手首90に対向する面に沿って、誘電体層が取り付けられている(受信アンテナ素子RA1において同じ構成になっている。)。装着状態では、左手首90の掌側面90aに導電体層が対向し、誘電体層は、スペーサとして働いて、左手首90の掌側面90aと導電体層との間の距離を一定に保つ。これにより、左手首90からの生体情報を精度よく測定することを可能にする。
【0070】
導電体層は、例えば金属(銅など)からなる。誘電体層は、例えばポリカーボネートからなり、それにより、誘電体層の比誘電率は、均一にεr≒3.0に設定されている。なお、この比誘電率は、送受信に用いられる電波の24GHz帯の周波数での比誘電率を意味している。
【0071】
このような送受信アンテナ部40Eは、面方向に沿って偏平に構成され得る。したがって、この血圧計1では、ベルト20を全体として薄厚に構成できる。
【0072】
なお、図3および図4では、脈波センサとして1対のアンテナを備える血圧計1を示したが、アンテナの数はこれに限るものではない。例えば、より多くのアンテナ対を設け、多数の地点で脈波のセンシングを行えるようにしてもよい。また、必ずしも送信アンテナと受信アンテナとを備えたアンテナ対を用いる必要はなく、送受共用のアンテナであってもよい。さらに、送信アンテナと受信アンテナの対が固定である必要はなく、1つの送信アンテナに対して複数の受信アンテナを設け、受波に用いるアンテナを任意に切り替えて電波の送受波を行ってもよく、1つの受信アンテナに対して複数の送信アンテナを設け、送波に用いるアンテナを任意に切り替えて行ってもよい。また、血圧計1の血圧測定手法は、脈波センサを用いる手法であっても、脈波センサを用いない手法であってもよく、例えば、脈波伝播時間(Pulse Transit Time;PTT)方式やオシロメトリック方式など多様なものであってよい。
【0073】
(2)ウェアラブル機器の機能構成
図5は、この発明の第1の実施形態に係る血圧計1の機能構成の一例を示すブロック図である。
血圧計1は、センサ部2と、処理ユニット12と、記憶ユニット14と、入出力インタフェース16と、通信インタフェース17と、表示器50と、操作部52とを備える。このうち、処理ユニット12、記憶ユニット14、入出力インタフェース16、通信インタフェース17、表示器50および操作部52は、本体10に設けられる。
【0074】
入出力インタフェース16は、例えば、上記操作部52を介してユーザが入力した指示を受け取るとともに、処理ユニット12により生成された表示データを表示器50に出力する機能を有する。
【0075】
通信インタフェース17は、例えば有線または無線インタフェースを有しており、通信ネットワークNWを介して、ユーザが所持する端末やクラウド上に配置されたサーバ(図示省略)等との間での情報の送受信を可能にする。この実施形態において、ネットワークNWは、インターネットであるが、これに限定されず、病院内LAN(Local Area Network)のような他の種類のネットワークであってもよいし、USBケーブルなどを用いた1対1の通信であってもよい。通信インタフェース17は、マイクロUSBコネクタ用のインタフェースであってもよい。
【0076】
記憶ユニット14は、記憶媒体として例えばHDD(Hard Disk Drive)またはSSD(Solid State Drive)等の随時書込および読み出しが可能な不揮発性メモリと、RAM等の揮発性メモリとを併用したものであり、この実施形態を実現するために必要な記憶領域として、プログラム記憶部(図示省略)と、参照値記憶部141とを備える。
【0077】
参照値記憶部141には、基準位置(理想位置)に対応する参照波形または参照波形の特徴を表す情報が記憶されている。参照波形とは、血圧計1の脈波センサが基準位置に設置されたときに取得されると予想される、理想的な脈波の波形を表す。参照波形は、実際の測定データから抽出された(例えば、所定の期間に取得された実測データから統計処理によって算出された)ユーザ固有の波形であってもよく、または平均的な成人の脈波として算出された波形であってもよい。
【0078】
センサ部2は、脈波センサとしてのアンテナ対AT(以下、単に「アンテナAT」と言う)と、アンテナATに接続された制御回路CCとを備える。アンテナATは、対をなす送信アンテナ素子TA1および受信アンテナ素子RA1を備えている。制御回路CCは、送信アンテナ素子TA1および受信アンテナ素子RA1にそれぞれ接続された送信回路TC1および受信回路RC1を備えている。送信アンテナ素子TA1および受信アンテナ素子RA1は、いずれも橈骨動脈91を含む被測定部位の方向に指向性を有する。送信回路TC1は、一定の周期で測定信号を上記送信アンテナ素子TA1に給電し、これにより送信アンテナ素子TA1から被測定部位に対し測定信号の電波を送波する。受信アンテナ素子RA1は、上記測定信号の電波の橈骨動脈91による反射波を受波する。受信回路RC1は、上記受信アンテナ素子RA1により受波された反射波に対応する波形信号を生成し、処理ユニット12へ出力する。
【0079】
処理ユニット12は、例えば、中央処理ユニット(Central Processing Unit:CPU)等のハードウェアプロセッサと作業用のメモリを備えたもので、一実施形態に係る処理機能部として、脈波検出部101と、特徴抽出部121と、判定部122と、出力部5とを有している。これらの処理機能部は、いずれも図示しない記憶ユニットに格納されたプログラムを上記ハードウェアプロセッサに実行させることにより実現される。
【0080】
脈波検出部101は、例えば、AD変換部ADC1と、フィルタ部F1とを備える。AD変換部ADC1は、受信回路RC1から出力された波形信号をディジタル信号に変換する。フィルタ部F1は、上記ディジタル信号に変換された波形信号に対し例えば雑音成分を除去するためのフィルタリング処理を施し、これにより脈波信号PS1を生成し、特徴抽出部121に出力する。脈波信号は、左手首90を通る橈骨動脈91の、上記アンテナATの配置位置における拍動を表すものである。
【0081】
特徴抽出部121は、脈波検出部101から出力された脈波信号PS1を受け取り、その脈波信号PS1から波形の特徴(例えば、振幅、波形の形状、ピーク電圧など)を抽出する。
【0082】
判定部122は、特徴抽出部121によって抽出された波形の特徴を表す情報を受け取り、被測定部位である動脈91に対する血圧計1の設置位置が所定の条件を満たすか否かを判定する。この判定方法については、後に詳述する。
【0083】
(動作例)
次に、以上のように構成された血圧計1の動作例について説明する。
図6は、図5に示した血圧計1の処理手順と処理内容の一例を示すフローチャートである。
【0084】
血圧計1は、例えば手首周りに装着された後、ユーザが操作部52により入力した測定開始信号を受信することに応じて、動作を開始する。血圧計1は、センサ部2により、送信回路TC1から送信アンテナTA1を介して橈骨動脈91を含む被測定部位の異なる複数の位置に向けて、一定の周期で測定信号としての電波を送波する。そうすると、上記各電波の上記被測定部位による反射波がそれぞれ受信アンテナRA1で受波され、受信回路RC1によりそれぞれ上記反射波に対応する波形信号が生成される。これらの波形信号は処理ユニット12の脈波検出部101にそれぞれ入力される。
【0085】
ステップS61において、血圧計1は、処理ユニット12の脈波検出部101により、上記受信回路RCから出力された波形信号に対してAD変換およびフィルタリング処理等を行って、脈波信号PS1を取得する。この脈波信号PS1は特徴抽出部121に入力される。
【0086】
ステップS62において、血圧計1は、特徴抽出部121により、上記入力された脈波信号PS1から、その波形の特徴として、一定の繰り返し周期における最大振幅(最大振幅値-最小振幅値)を取得する。最大振幅は、例えば、サンプリング間隔を1ミリ秒(msec)とし、1秒周期で算出することができる。
【0087】
図7Aおよび図7Bは、図6に示した処理動作を説明するためのもので、(a)は想定される橈骨動脈91に対するアンテナの位置を示し、(b)は得られる脈波信号の一例を示している。脈波信号は時間軸に対する電圧値の変化として検出される。ただし、図7Aおよび図7Bにおいて(b)に示した脈波信号は、第1の実施形態に係る判定手法を説明するために便宜的に例示するものにすぎず、これに限定されるものではない。以降の図についても同様である。
【0088】
左手首に血圧計1を装着した状態で、図7A(a)に示されるように、送信アンテナ素子TA1および受信アンテナ素子RA1が橈骨動脈91の両側において対称となる位置に配置されたとき、センサ部2によって、比較的雑音の少ない、主に動脈の脈動を表す理想的な波形が得られる。このとき、最大振幅AM7-1は、他の設置位置に対し、最も大きな値をとると考えられる。
【0089】
これに対し、図7B(a)に示されるように、センサ部2が橈骨動脈91から離れた位置に配置されているとき、得られる脈波信号には雑音成分が重畳し、脈動の特定が困難となることがある。雑音成分としては、尺骨動脈からの脈波や他の体組織の動きに由来するものが考えられる。このとき、最大振幅AM7-2は、上記最大振幅AM7-1に比べて小さくなると予想される。なお、図7Aおよび図7Bの(a)に示した配置位置と、(b)に示した脈波の波形イメージとの関係は、説明のために例示したものにすぎず、図7Aの(a)に示した配置位置が必ずしも基準位置(理想位置)に相当するわけではない。以降の図についても同様である。
【0090】
ステップS63において、血圧計1は、判定部122の制御の下、取得された最大振幅が予め設定されたしきい値よりも大きいか否かを判定する。しきい値は、固定の値であっても動的に調整されてもよい。また、しきい値は、過去の測定結果や測定精度等に基づいて任意に設定されることができる。
【0091】
ステップS63において、取得された脈波信号の最大振幅がしきい値以下と判定された場合、血圧計1は、ステップS64に移行し、出力部5により、上記判定結果に基づいて、設置位置が不適切である旨を警告する通知を出力することができる。例えば、出力部5は、装置の位置を動かすようユーザに促すための警告メッセージを生成し、出力することができる。このメッセージは、例えば、入出力インタフェース16を介して表示器50に送られる。表示器50による表示は、例えば数秒程度保持されるものとすることができる。メッセージは、言語、画像、音声、光の明滅、もしくは振動など、任意の形式であってよい。ユーザは、上記メッセージにより、血圧計1の設置位置が適切でないことを認識し、血圧計1を手首の周方向に回動させたり、血圧計1のベルト20を締め直したりすることができる。
【0092】
ステップS63において、取得された脈波信号の最大振幅がしきい値よりも大きいと判定された場合、処理は終了する。その後、血圧計1は、生体情報の測定など、任意の後続の動作に移行することができる。ただし、この場合にも、設置位置が適切であることをユーザに通知するため、または操作部52により測定開始指示を入力するようユーザに促すための出力処理を行うことができる。
【0093】
[実施例1-2]
図8は、第1の実施形態に係る血圧計1の処理手順の他の一例を示すフローチャートである。なお、図8において上記図6と同一部分には同一符号を付して詳しい説明は省略する。
【0094】
血圧計1は、実施例1-1に関して説明したように、ユーザが操作部52により入力した測定開始信号を受信することに応じて動作を開始する。はじめに、血圧計1は、ステップS61において脈波信号を取得する。次いで、血圧計1は、ステップS81において、特徴抽出部121の制御の下、脈波信号から脈波由来成分を抽出するための信号処理を行う。
【0095】
図9は、ステップS81において採用できる、信号処理の一例を示すフローチャートである。
取得される脈波信号は、多種多様な信号の混合であり、脈波に由来する信号の特徴を十分に抽出できない場合がある。そこで、例えばウェーブレット変換を用いて特徴を抽出することができる。以下でその一例を簡単に説明する。
【0096】
特徴抽出部121は、ステップS91において、脈波信号を時区間(例えば1秒ごとの時間ブロック)に分割する。一般に、橈骨動脈91の脈波を測定した場合、周期は約1秒となることが知られている。時区間分割は、既知の任意の手法により行うことができる。
【0097】
特徴抽出部121は、ステップS92において、分割した脈波信号に対してウェーブレット変換を適用し、ウェーブレット係数を得る。ウェーブレット変換は、小さい波(ウェーブレット)を拡大縮小、平行移動して足し合わせることにより、波形を解析しようとする手法である。マザーウェーブレットと呼ばれる基本参照波
【数1】
およびそれを拡大縮小し、平行移動した参照波
【数2】
をいくつか用意して、これらとパターンの関係を調べる。ここで、aは伸張パラメータ(scale)、bは移動パラメータ(translation)を表す。ウェーブレット変換は次式で表され、変換によって得られた結果はウェーブレット係数と呼ばれる。
【数3】
【0098】
特徴抽出部121は、ステップS93において、得られたウェーブレット係数を予め設定された比較波形から得られる係数と比較し、それらの差分を計算する。比較波形は、脈波成分の抽出のために用いられる、予め時区間に分割可能な周期性を有する任意の波形である。例えば、比較波形として、理想的な脈波に基づいて設定された波形を用いることもでき、正弦波などの単純な波形を用いることも考えられる。この処理により、非脈波成分に起因する周波数帯域が取り除かれる。
【0099】
次いで、ステップS94において、特徴抽出部121は、比較波形との相関をとるため、相関係数αを計算する。
【0100】
ステップS95において、特徴抽出部121は、相関係数αをしきい値βと比較し、相関係数がしきい値に達するまでステップS93からステップS95の処理を繰り返す。相関係数αがしきい値βに達したら、所望の信号が抽出されたと判定され、ステップS96に移行する。特徴抽出部121は、ステップS96において波形の特徴を抽出し、処理を終了する。
【0101】
次いで、ステップS82において、血圧計1は、脈波信号との相関をとるための参照波形を参照値記憶部141から取得する。この参照波形は、図9で説明した基本参照波または比較波形とは異なるものであってよい。
【0102】
次いで、ステップS83において、血圧計1は、対応する任意の時区間について、脈波信号から抽出された波形と参照波形との相互相関をとり、得られた相関値が予め設定された相関しきい値(例えば、0.7など)よりも大きいか否かを判定する。相関値の求め方は一般に知られているのでここでは詳細には説明しない。
【0103】
ステップS83において、相関値がしきい値よりも大きいと判定された場合、基準位置に対応する条件を満たすと判定され、処理は終了する。ステップS83において、相関値がしきい値以下と判定された場合、基準位置に対応する条件を満たしていないと判定され、ステップS64に移行し、警告を出力する。
【0104】
[実施例1-3]
図10は、図5に示した血圧計1の処理手順の他の一例を示すフローチャートである。なお、図10において上記図6と同一部分には同一符号を付し、同一または同様の処理については詳しい説明は省略する。
【0105】
血圧計1は、実施例1-1に関して説明したように、ユーザが操作部52により入力した測定開始信号を受信することに応じて動作を開始し、ステップS101において脈波検出部101により脈波信号PS1-1を取得し、ステップS102において特徴抽出部121により脈波信号PS1-1から最大振幅AM1-1を抽出する。
【0106】
次いで、ステップS103において、血圧計1は、判定部122の制御の下、抽出された最大振幅AM1-1が所定の条件を満たすか否か、この例では、最大振幅AM1-1が予め設定されたしきい値よりも大きいか否かを判定する。ただし、ステップS103では、上述した実施例1-2と同様に参照波形との相関をとることにより所定の条件を満たすか否かの判定を行うこともでき、周期やスペクトル強度など、波形の他の特徴に基づく判定を行うこともできる。ステップS103において、最大振幅AM1-1がしきい値よりも大きいと判定された場合、血圧計1の設置位置は適切であると判定され、処理は終了する。
【0107】
ステップS103において、最大振幅AM1-1がしきい値以下と判定された場合、血圧計1はステップS64に移行し、出力部5により、上記判定結果を表す情報を出力する。例えば、出力部5は、設置位置が不適切であることをユーザに通知する警告メッセージを生成し、表示器50に出力する。
【0108】
図11Aおよび図11Bは、図10に示した処理動作を説明するためのもので、(a)は橈骨動脈91に対するアンテナの位置を示し、(b)は得られる脈波信号の一例を示している。例えば、センサ部2が図11Aの(a)に示す位置にあるときには、アンテナが橈骨動脈91から離れているので、得られる脈波信号は基準位置に対応する条件を満たさず、血圧計1の設置位置が不適切と判定されて警告が出力される。この実施例では、血圧計1は、警告を出力した後、ただちに動作を終了するのではなく、所定の条件が満たされるまで待機状態に入る。この間に、通知を受けたユーザは、血圧計1を手首の周りで回動させたり、送受信アンテナ部40Eが皮膚に密着するようにベルト20を締め直すなどして、設置位置を調整することができる。ただし、以下の処理は、必ずしもユーザによる位置の調整を開始要件とするものではない。
【0109】
待機状態にある血圧計1は、所定の条件が満たされたら、例えば、一定時間が経過したら、ユーザからの入力操作を受け取ったら、または血圧計1が備える加速度センサ(図示せず)により血圧計1の移動を検知したら、ステップS104に移行して第2回目の処理を行うことができる。すなわち、ステップS104において、血圧計1は、再び脈波信号PS1-2の取得を行い、ステップS105において最大振幅AM1-2を抽出し、ステップS106において最大振幅AM1-2が所定の条件を満たすか否か、この例では、最大振幅AM1-2が予め設定されたしきい値よりも大きいか否かの判定を行う。このとき、センサ部2の位置は、図11Aの(a)に示す位置のまま変更されていないかもしれないし、図11Bの(a)に示す位置に移動されたかもしれないが、この実施例ではその検知は必ずしも必要ではない。
【0110】
ステップS106において、抽出された最大振幅AM1-2が予め設定されたしきい値よりも大きいと判定された場合、血圧計1の設置位置は適切であると推定され、処理は終了する。一方、ステップS106において、最大振幅AM1-2がしきい値以下と判定された場合、ステップS64に移行し、血圧計1は、出力部5により、判定結果として再び警告を出力する。なお、アンテナが図11Bの(a)に示す位置にあるときに、基準位置に対応する条件を満たすか否かは、しきい値の設定による。また、図10では位置合わせの過程において条件を満たすまで少なくとも2回の測定を実施する手法を説明したが、位置合わせの過程において条件を満たすまでさらに多くの回数の測定を行うように設定することもできる。
【0111】
なお、上記実施例では、基準位置に対応する条件を満たすか否かの判定手法として、最大振幅を予め設定されたしきい値と比較する手法を説明したが、実施例1-2と同様に参照波形に対する相関値をしきい値と比較する手法を用いることもでき、周期やスペクトル強度など、波形の他の特徴に基づく判定手法を用いることもできる。また、上記ステップS104~S106の動作は、上記ステップS101~S103と同じものであっても異なるものであってもよい。例えば、ステップS103で用いられるしきい値と、ステップS106で用いられるしきい値とは、同じものであっても異なるものであってもよい。また、ステップS103では最大振幅を比較し、ステップS106では参照波形との相関をとるなど、ステップS103とステップS106とで異なる判定手法を用いることもできる。
【0112】
[実施例1-4]
図12は、この発明の第1の実施形態に係る血圧計1の機能構成の他の一例を示すブロック図である。なお、図12において上記図5と同一部分には同一符号を付して詳しい説明は省略する。
【0113】
血圧計1は、センサ部2内に、複数のアンテナAT1,AT2,・・・と、各アンテナにそれぞれ接続された複数の制御回路CC1,CC2,・・・とを備える。各アンテナおよび各制御回路は、図5で説明したアンテナATおよび制御回路CCと同じ構成および機能を有する。
【0114】
処理ユニット12は、複数の脈波検出部101-1,101-2,・・・を備える。各脈波検出部は、やはり図5で説明した脈波検出部101と同様に、複数の制御回路CC1,CC2,・・・の各々に接続され、各受信回路RC1,RC2,・・・から出力された波形信号から脈波信号PS1,PS2,・・・をそれぞれ生成する。
【0115】
処理ユニット12は、アンテナ制御部111をさらに備える。アンテナ制御部111は、上記複数のアンテナAT1,AT2,・・・のうち、測定に用いる1つまたは複数のアンテナを選択することができる。
【0116】
図13は、図12に示した血圧計1の処理手順の一例を示すフローチャートである。なお、図13において上記図6と同一部分には同一符号を付して詳しい説明は省略する。
【0117】
血圧計1は、実施例1-1に関して説明したように、ユーザが操作部52により入力した測定開始信号を受信することに応じて動作を開始する。はじめに、ステップS131において、血圧計1は、測定に用いるアンテナとしてアンテナAT1を選択する。次いで、血圧計1は、実施例1-1と同様に、ステップS132において脈波検出部101により脈波信号PS1を取得し、ステップS133において特徴抽出部121により脈波信号PS1から最大振幅AM1を抽出し、ステップS134において最大振幅AM1が予め設定されたしきい値よりも大きいか否かを判定する。ステップS134において、最大振幅AM1がしきい値よりも大きいと判定された場合、処理を終了することができる。
【0118】
一方、ステップS134において最大振幅AM1がしきい値以下と判定された場合、ステップS135に移行し、血圧計1は、アンテナ制御部111の制御の下、測定に用いるアンテナをAT1からAT2へと切り替える。次いで、アンテナAT2を用いて、ステップS132~S134で説明した処理と同様に、ステップS136において脈波信号PS2を取得し、ステップS137において脈波信号PS2から最大振幅AM2を抽出し、ステップS138において最大振幅AM2がしきい値よりも大きいか否かを判定する。
【0119】
ステップS138において、最大振幅AM2がしきい値よりも大きいと判定された場合、処理を終了することができる。一方、ステップS138において、最大振幅AM2がしきい値以下と判定された場合、ステップS64に移行し、設置位置が不適切である旨の警告を出力する。
【0120】
ステップS135におけるアンテナの切替えは、アンテナ制御部111の制御下で自動的に実施されてもよい。あるいは、ステップS134において最大振幅AM1がしきい値以下と判定された場合に警告等を出力し、ユーザに操作部52を介してアンテナ切替えを操作させることもできる。
【0121】
図14は、図13に示した処理動作を説明するためのもので、(a)は橈骨動脈91に対するアンテナAT1,AT2の位置を示し、(b),(c)はそれぞれアンテナAT1,AT2により得られる脈波信号PS1,PS2の一例を示している。
【0122】
はじめに、ステップS131においてアンテナAT1が選択され、ステップS132~S134の一連の処理が実施される。図14の(a)に示した位置では、アンテナAT1は橈骨動脈91から離れているので、ステップS134において最大振幅AM1がしきい値以下と判定される。この場合に、血圧計1は、直ちに動作を終了するのでなく、アンテナ制御部111により自動的にアンテナを切り替え、またはユーザにアンテナ切替え操作を促して、アンテナAT2を用いて再び一連の処理(ステップS136~S138)を行う。図14の(a)に示した位置では、アンテナAT1に比べてアンテナAT2を用いたときに、より大きな最大振幅の脈波波形が得られると予想される。このように、アンテナAT1,AT2を切り替えることによって、血圧計1の装着位置を動かさずに適切なアンテナ位置を評価することができ、設置位置の調整がより簡単になる。
【0123】
なお、上記実施例では、基準位置に対応する条件を満たすか否かの判定手法として、最大振幅を予め設定されたしきい値と比較する手法を説明したが、実施例1-2と同様に参照波形に対する相関値をしきい値と比較する手法を用いることもでき、周期やスペクトル強度など、波形の他の特徴に基づく判定手法を用いることもできる。また、上記ステップS136~S138の動作は、上記ステップS132~S134と同じものであっても異なるものであってもよい。例えば、ステップS134で用いられるしきい値と、ステップS138で用いられるしきい値とは、同じものであっても異なるものであってもよい。また、ステップS134では最大振幅を比較し、ステップS134では参照波形との相関をとるなど、ステップS134とステップS134とで異なる判定手法を用いることもできる。
【0124】
また、上記実施例で説明した手法は、送信アンテナ素子TA1,TA2と受信アンテナ素子RA1,RA2とが対になっていない場合にも適用可能である。例えば、第1回目の一連の動作(ステップS132~ステップS134)では、第1の送信アンテナ素子TA1と第1の受信アンテナ素子RA1とを用いて電波の送受波を行い、第2回目の一連の動作(ステップS136~S138)では、第1の送信アンテナ素子TA1と第2の受信アンテナ素子RA2とを用いて電波の送受波を行うことが考えられる。すなわち、ステップS135において、受信に用いるアンテナ素子のみまたは送信に用いるアンテナ素子のみを切り替えて一連の動作を繰り返してもよい。したがって、送信アンテナ素子の数と受信アンテナ素子の数は、同じである必要はない。
【0125】
(第1の実施形態の作用効果)
以上詳述したように、第1の実施形態では、血圧計1の特徴抽出部121において、脈波検出部101から出力された脈波信号PS1から波形の特徴を抽出し、次いで、血圧計1の判定部122において、上記抽出された波形の特徴に基づいて、被測定部位である橈骨動脈91に対するアンテナATの設置位置が予め設定された基準位置に対応する条件を満たすか否かを判定するようにしている。
【0126】
このため、加速度センサ等の位置検出センサを別途設けることなく、簡単かつ安価な構成で、血圧計1の設置位置が適切か否かを判定するための指標を得ることが可能となる。またユーザにとっては、血圧計1の装着位置が適切でないことを確認し、血圧計1の装着位置を適切に調整することができる。
【0127】
また第1の実施形態によれば、位置合わせをする過程で取得された脈波信号から最大振幅を抽出して予め設定されたしきい値と比較することにより、または取得された脈波信号と参照波形との相関をとり、その相関値を予め設定されたしきい値と比較することにより、簡潔かつ容易に設置位置が適切か否かを判定することができ、ユーザの利便性が向上する。
【0128】
また、血圧計1の設置位置が適切であることが確認されてから測定を開始できるので、測定精度および信頼性の向上も期待できる。さらに、複雑な評価デバイスを必要としないので、センサの設置ロバスト性を高めながら、装置の簡単小型化および低価格化を実現できる。また、位置合わせをする過程において複数回の測定および判定を行うように構成することにより、例えば同じ設置位置で反復処理することで判定の信頼性を高めることができ、あるいは、血圧計1の設置位置をずらしてから、または皮膚との接触面積や角度の微調整を行ってから再測定するなど、ユーザが自由に調整しながら適不適を判定でき、利便性が大きく向上する。さらに、血圧計1が複数のアンテナを備える場合にアンテナを切り替えて測定を繰り返すように構成することにより、血圧計1の装着位置を動かさずに、単一の装着位置について複数のアンテナ位置の評価を行うことができ、設置位置の調整がさらに簡易になる。
【0129】
[第2の実施形態]
[実施例2-1]
図15は、この発明の第2の実施形態に係る、1対のアンテナATを備える血圧計1の機能構成を示すブロック図である。なお、同図において上記図5と同一部分には同一符号を付して詳しい説明は省略する。
【0130】
処理ユニット12は、移動方向推定部123をさらに備えている。移動方向推定部123は、複数の測定結果に基づいて設置位置を移動(修正)すべき方向を推定する。
【0131】
図16は、図15に示した血圧計1の処理手順の一例を示すフローチャートである。なお、図16において上記図10と同一部分には同一符号を付して詳しい説明は省略する。
【0132】
第1の実施形態と同様に、血圧計1は、ユーザが操作部52により入力した測定開始信号を受信することに応じて、動作を開始する。血圧計1は、第1回目の一連の動作として、ステップS101において脈波信号PS1-1を取得し、ステップS102において脈波信号PS1-1から最大振幅AM1-1を抽出し、ステップS103において最大振幅AM1-1が予め設定されたしきい値よりも大きいか否かを判定する。ステップS103において最大振幅AM1-1がしきい値よりも大きいと判定された場合、処理を終了することができる。
【0133】
一方、ステップS103において最大振幅AM1-1がしきい値以下と判定された場合、血圧計1は、ステップS160に移行し、橈骨動脈91に対するアンテナATの位置が不適切であることをユーザに通知し、設置位置の修正を促す。警告を出力した後、血圧計1は待機状態に入る。
【0134】
待機状態にある血圧計1は、図10に関して説明したのと同様に、所定の条件が満たされたら(例えば、一定時間が経過したら)、ステップS105に移行して第2回目の一連の処理を行うことができる。すなわち、ステップS104において、血圧計1は、再び脈波信号PS1-2の取得を行い、ステップS105において最大振幅AM1-2を抽出し、ステップS106において最大振幅AM1-2が所定の条件を満たすか否か、この例では、最大振幅AM1-2が予め設定されたしきい値よりも大きいか否かの判定を行う。ステップS106において最大振幅AM1-2がしきい値よりも大きいと判定された場合、処理を終了することができる。
【0135】
一方、ステップS106において最大振幅AM1-2がしきい値以下と判定された場合、血圧計1は、ステップS161に移行し、移動方向推定部123の制御の下、第1回目に得られた脈波信号PS1-1と第2回目に得られた脈波信号PS1-2の波形の特徴を比較して、いずれの脈波信号が基準位置に対応する条件に近いかを判定する。例えば、ステップS102およびS105で得られた最大振幅AM1-1とAM1-2を比較し、最大振幅がより大きい方が基準位置に近い位置で得られた脈波信号であるとみなすことができる。
【0136】
なお、上記ステップS161では、任意の判定手法を用いることができ、例えば、第1回目の処理で取得された脈波信号PS1-1と、第2回目の処理で取得された脈波信号PS1-2について、参照波形とのそれぞれの相関値を比較してもよいし、単に信号強度を比較してもよい。
【0137】
ステップS161の比較結果に基づいて、血圧計1は、出力部5の制御下、ステップS162において、移動すべき方向(以下、「修正方向」とも言う)を表す情報を出力し、表示器50に表示させる。例えば、第1回目よりも第2回目の測定の方が良い結果が得られたと判定された場合、ステップS160の後で実際に移動された方向と同じ方向を示すように矢印を表示させることができる。実際に移動された方向は、例えば、センサで回転方向を検出することにより判定することができる。また、ステップS160における移動指示として、表示器50上に任意の方向を示す矢印を表示し、この方向に実際に移動されたものと推定することもできる。成人の橈骨動脈91の直径が3.0mm前後であることから、方向の指示に加えて、数mm程度の調整が好ましいことを指示してもよい。
【0138】
図17Aおよび図17Bは、図16に示した処理動作を説明するためのもので、(a)は橈骨動脈91に対するアンテナの位置を示し、(b)は得られる脈波信号の一例を示している。図17Cは、表示器50に表示される通知イメージの一例を示す。
【0139】
例えば、第1回目の測定において図17Aの(a)に示す位置で脈波信号PS1-1が取得され、その後血圧計1を周方向に回して装着位置を図17Bの(a)に示す位置に移動させた後に、第2回目の測定が実施されて脈波信号PS1-2が取得されたとする。
【0140】
この場合、例えばいずれも脈波信号の信号レベルが基準位置に対応する条件を満たさなかったが、第2回目の脈波信号PS1-2の方が大きな振幅値を示したので図17Cに示すように、表示器50上に、図17Aの(a)に示す位置から図17Bの(a)に示す位置への移動方向と同じ方向に、血圧計1をさらに移動(位置調整)すべきことを示す矢印が表示される。
【0141】
なお、調整すべき方向の指示は、光の明滅や音声等、他の任意の形式であってもよい。例えば、表示器50として複数のLEDを設け、これら複数のLEDが順番に点灯することによって方向を示してもよい。手首90に装着されたとき、通常、腕時計型の血圧計1の表示器50は手首90の背側面に位置し、センサ部2は手首90の掌側面90aに位置することになるが、血圧計1を手首周りで回動させて位置を調整する場合、表示器50上に示される矢印の向きとセンサ部2の移動方向は対応する。
【0142】
上述のように、基準位置に対応する条件を満たすか否かの判定手法としては任意の手法を用いることができ、上記ステップS104~S106の動作は、上記ステップS101~S103と同じものであっても異なるものであってもよい。
【0143】
[実施例2-2]
図18は、第2の実施形態に係る血圧計1の機能構成の他の一例を示すブロック図である。図18において図12および図15と同一部分には同一符号を付して詳しい説明は省略する。
図18の血圧計1は、図12と同様に、複数のアンテナAT1,AT2,・・・と、複数の制御回路CC1,CC2,・・・と、複数の脈波検出部101-1,101-2,・・・と、アンテナ制御部111を備え、さらに、図15と同様に、移動方向推定部123を備える。
【0144】
図19は、図18に示した血圧計1の処理手順の一例を示すフローチャートである。なお、図19において上記図13と同一部分には同一符号を付して詳しい説明は省略する。
【0145】
血圧計1は、ユーザの操作により入力された測定開始指示信号を操作部52から受信すると、ステップS131においてアンテナAT1を選択し、先ずアンテナAT1を用いてステップS132~ステップS134による一連の処理動作を実行する。例えば、ステップS132においてアンテナAT1を用いて受信された脈波信号PS1を取得し、ステップS133において上記取得された脈波信号PS1から最大振幅AM1を抽出する。そして、ステップS134において、上記脈波信号PS1の最大振幅AM1が所定の条件を満たすか否かを判定する。この例では、最大振幅AM1を予め設定されたしきい値と比較し、最大振幅AM1がしきい値よりも大きいか否かを判定する。ステップS134において最大振幅AM1がしきい値よりも大きいと判定された場合、処理を終了することができる。
【0146】
上記判定の結果、最大振幅AM1がしきい値以下と判定された場合、血圧計1は、ステップS135に移行する。次いで、血圧計1は、ステップS135においてアンテナをAT1からAT2に切り替え、ステップS136~ステップS138による一連の処理動作を実行する。例えば、ステップS136において、アンテナAT2を用いて受信された脈波信号PS2を取得し、ステップS137において脈波信号PS2から最大振幅AM2を抽出する。そして、ステップS138において、上記脈波信号PS2の最大振幅AM2が所定の条件を満たすか否か、この例では、最大振幅AM2がしきい値よりも大きいか否かを判定する。ステップS138において最大振幅AM2がしきい値よりも大きいと判定された場合、処理を終了することができる。ステップ138において最大振幅AM2がしきい値以下と判定された場合、ステップS191に移行する。
【0147】
ステップS191において、血圧計1は、移動方向推定部123の制御の下、脈波信号PS1と脈波信号PS2の波形の特徴を比較して、いずれの脈波信号が基準位置に対応する条件に近いかを判定する。例えば、最大振幅AM1とAM2とを比較し、振幅値の大きい方が、基準位置に近いアンテナにより得られた脈波信号であるとみなすことができる。
【0148】
なお、上記ステップS191では、任意の判定手法を用いることができ、例えば、最大振幅を比較する代わりに、脈波信号の他の特徴、例えば参照波形との相関値を比較してもよいし、信号のピーク強度を比較してもよい。
【0149】
ステップS191の比較結果に基づいて、血圧計1は、出力部5の制御下、ステップS192において、移動すべき方向を表す情報を出力し、表示器50に表示させる。例えば、アンテナAT1よりもアンテナAT2を用いた測定の方が良い結果が得られたと判定された場合、アンテナAT1からアンテナAT2に向かうベクトルと同じ向きを示すように矢印を表示させる。
【0150】
図20Aは、図19に示した処理動作を説明するためのもので、(a)は橈骨動脈91に対するアンテナAT1,AT2の位置を示し、(b),(c)はそれぞれアンテナAT1,AT2により得られる脈波信号PS1,PS2の一例を示している。図20Bは、表示器50に表示される通知イメージの一例を示す。
【0151】
図20Aの(a)に示されるように、センサ部2は2つのアンテナAT1,AT2を備える。図20Aに示した例では、アンテナAT1およびアンテナAT2のいずれも橈骨動脈91から離れている。このため、ステップS134およびステップS138においては脈波信号の最大振幅がしきい値以下と判定される。したがって、血圧計1は、図19のステップS138からステップS191に移行し、ステップS191において脈波信号PS1とPS2の特徴を比較する。
【0152】
例えば、ステップS191において、アンテナAT2を用いて得られた脈波信号PS2の最大振幅AM2の方が大きいと判定されると、血圧計1は、ステップS192において、ステップS191の判定(比較)結果を出力部5から出力し、図20Bに示されるように、表示器50上に、アンテナAT1からアンテナAT2に向かうベクトルと同じ向きにさらに移動すべきことを示す矢印を表示する。
【0153】
上述のように、基準位置に対応する条件を満たすか否かの判定手法としては任意の手法を用いることができ、上記ステップS136~S138の動作は、上記ステップS132~S134と同じものであっても異なるものであってもよい。
【0154】
なお、実施例2-2では、2対のアンテナを備える血圧計1の動作について説明したが、より多くのアンテナを備える血圧計1においてアンテナを切り替えて得られる、より多くの測定結果に基づいて修正方向を推定するようにしてもよい。例えば、3対以上のアンテナによって得られたすべての脈波信号のうち、最も悪い結果が得られた(例えば、最も振幅が小さい)脈波信号に対応するアンテナから、最も良い結果が得られた(例えば、最も振幅が大きい)脈波信号に対応するアンテナへと向かうベクトルの向きを導出することができる。あるいは、3対以上のアンテナによって得られたすべての脈波信号の振幅値をアンテナの相対位置に基づいてプロットし、回帰式を求めることにより最適な位置(基準位置)を推定するようにしてもよい。回帰式を用いる推定手法の一例については、後で詳述する。
【0155】
なお、上述のように、ステップS135において、受信に用いるアンテナ素子のみまたは送信に用いるアンテナ素子のみを切り替えて一連の動作を繰り返してもよい。例えば、第1回目の一連の動作(ステップS132~ステップS134)では、第1の送信アンテナ素子TA1と第1の受信アンテナ素子RA1とを用いて電波の送受波を行い、第2回目の一連の動作(ステップS136~S138)では、第1の送信アンテナ素子TA1と第2の受信アンテナ素子RA2とを用いて電波の送受波を行うことができる。したがって、送信アンテナ素子の数と受信アンテナ素子の数は、同じである必要はない。
【0156】
(第2の実施形態の作用効果)
以上詳述したように、第2の実施形態では、複数の測定により得られた脈波信号から抽出された特徴を比較することにより、血圧計1の設置位置が適切になるように移動させるべき方向を算出し出力するようにしている。このため、加速度センサ等の位置検出センサを別途設けることなく、簡単かつ安価な構成で、血圧計1の設置位置が適切か否かを判定し、適切でない場合にはさらに、複数の測定結果に基づいて、血圧計1をどの方向に移動させるべきかについての指標を得ることが可能となる。
【0157】
また、ユーザは、例えば表示器50上に表示された矢印により調整方向を確認した上で、血圧計1を手首の周方向に回動させて測定に適した位置を探す。このため、手首に対して血圧計1を効率的に位置合わせすることができ、ユーザの利便性およびセンサの設置ロバスト性が大きく向上する。
【0158】
[第3の実施形態]
[実施例3-1]
図21は、この発明の第3の実施形態に係る、血圧計1の処理手順の一例を示すフローチャートである。この処理手順は、例えば、複数のアンテナAT1,AT2,・・・を備える図18に示した血圧計1によって実施され、移動方向推定部123が、移動すべき方向に加えて移動すべき量(以下、「修正量」とも言う)を推定する。なお、図21において上記図13と同一部分には同一符号を付して詳しい説明は省略する。
【0159】
血圧計1は、ユーザの操作により入力された測定開始指示信号を操作部52から受信すると、ステップS131においてアンテナAT1を選択し、先ずアンテナAT1を用いてステップS132~ステップS134による一連の処理動作を実行する。例えば、ステップS132においてアンテナAT1を用いて受信された脈波信号PS1を取得し、ステップS133において上記取得された脈波信号PS1から最大振幅AM1を抽出する。そして、ステップS134において、上記脈波信号PS1の最大振幅AM1が所定の条件を満たすか否かを判定する。この例では、最大振幅AM1を予め設定されたしきい値と比較し、最大振幅AM1がしきい値よりも大きいか否かを判定する。ステップS134において最大振幅AM1がしきい値よりも大きいと判定された場合、処理を終了することができる。
【0160】
ステップS134において、最大振幅AM1がしきい値以下と判定された場合、血圧計1は、ステップS135に移行し、ステップS135においてアンテナをAT1からAT2に切り替え、ステップS136~ステップS138による一連の処理動作を実行する。例えば、ステップS136において、脈波信号PS2を取得し、ステップS137において脈波信号PS2から最大振幅AM2を抽出する。そして、ステップS138において、上記脈波信号PS2の最大振幅AM2が所定の条件を満たすか否かを判定する。この例では、最大振幅AM2を上記しきい値と比較し、最大振幅AM2がしきい値を超えているか否かを判定する。ステップS138において最大振幅AM2がしきい値よりも大きいと判定された場合、処理を終了することができる。ステップ138において最大振幅AM2がしきい値以下と判定された場合、ステップS211に移行する。
【0161】
図22Aは、図21に示した処理動作を説明するためのもので、(a)は橈骨動脈91に対するアンテナAT1,AT2の位置を示し、(b),(c)はそれぞれアンテナAT1,AT2により得られる脈波信号PS1,PS2の一例を示している。図22Bは、表示器50に表示される通知イメージの一例を示す。
【0162】
図22Aの(a)に示されるように、センサ部2は2つのアンテナAT1,AT2を備える。図22Aの(a)に示した例では、アンテナAT1およびアンテナAT2のいずれも橈骨動脈91から離れている。このため、ステップS134およびステップS138においては脈波信号が所定の条件を満たさないと判定される。したがって、血圧計1は、図21のステップS138からステップS211に移行する。
【0163】
ステップS211において、血圧計1は、移動方向推定部123の制御の下、アンテナAT1を用いて得られた脈波信号PS1とアンテナAT2を用いて得られた脈波信号PS2の波形の特徴を比較して、移動すべき方向および移動すべき量(修正方向および修正量)を推定する。
【0164】
図23は、ステップS211で採用できる、線形近似を用いて移動すべき方向および量を算出(推定)する処理の手順と処理内容の一例を示すフローチャートである。図24Aおよび図24Bは、図23で用いる線形近似の概要を示す。
【0165】
図24Aおよび図24Bでは、得られる脈波信号の波形と参照波形との相関値が基準位置(理想位置)からの距離に応じて線形に変化すると仮定し、1次関数f(x)=y=ax+bの式を定義する。すなわち、アンテナAT1とアンテナAT2との間の距離と、各アンテナを用いて得られた脈波信号と参照波形の振幅比とに基づいて、1次の近似式(回帰式)を導出し、得られた近似式に基づいて、参照波形が得られると期待される基準位置までの距離を推定する。
【0166】
より具体的には、図24Aおよび図24Bでは、基準位置(理想位置)をx=0として、基準位置からの距離をx軸、参照波形との相関値(1に近いほど参照波形との相関が高い)をy軸にとった1次関数y=ax+bを定義する(ただし、0≦xのときa<0、x<0のときa>0)。これにより、関数y=f(x)は、y軸上(x=0)で最大の値bをとり、切片bは、基準位置で取得される脈波信号の波形と参照波形との相関値を表すので、近似的に1とみなすことができる。なお、橈骨動脈91とセンサ部2との位置関係(例えば、アンテナAT1とアンテナAT2のいずれの方が橈骨動脈91に近いか)に応じて、図24Aまたは図24Bに示すように、x座標が正または負の値をとる。
【0167】
図23を参照して、修正方向および修正量の算出方法の一例についてより詳細に説明する。
ステップS231において、移動方向推定部123は、参照値記憶部141等から参照波形の最大振幅Rを取得する。Rは、例えば、実際に得られた過去の測定結果から算出されてもよく、任意に設定された値であってもよい。
【0168】
ステップS232において、移動方向推定部123は、1次関数f(x)=y=ax+bを設定する。切片bは、理想位置で得られる脈波信号の最大振幅と参照波形の最大振幅Rとの比を表すので、近似的に1とすることができ、上記1次関数は、y=ax+1と表される。
【0169】
ステップS233において、移動方向推定部123は、アンテナAT1を用いて取得された脈波信号PS1について、その波形の特徴として最大振幅Aを抽出し、参照波形の最大振幅Rとの振幅比A/Rを得る。アンテナAT1について得られたデータは、(x,y)=(x,y)=(x,A/R)と表される。
【0170】
ステップS234において、移動方向推定部123は、アンテナAT1の受信アンテナ素子RA1と、アンテナAT2の受信アンテナ素子RA2との間の距離Δxを、図示しない記憶部等から取得する。
【0171】
ステップS235において、移動方向推定部123は、アンテナAT2を用いて取得された脈波信号PS2について、その波形の特徴として最大振幅Aを抽出し、振幅比A/Rを得る。脈波信号PS2により得られたデータは、(x,y)=(x,y)=(x+Δx,A/R)と表される。
【0172】
ステップS236において、移動方向推定部123は、1次関数f(x)の傾きaを次式により取得する。
a=(A/R-A/R)/Δx
【0173】
以上より、aおよびbが算出されたので、ステップS237において、移動方向推定部123は、1次関数f(x)の式y=ax+bを得る。
【0174】
ステップS238において、移動方向推定部123は、アンテナAT2の振幅比y=A/Rを式y=ax+bに代入してx座標(x)を得る。これが、アンテナAT2の受信アンテナ素子RA2から理想位置までの距離(移動すべき量・修正量)となる。
【0175】
ステップS239において、移動方向推定部123は、移動すべき方向(修正方向)を取得する。例えば、実施例2-2に関して上述した手法を採用することができる。この後、処理は図21のステップS212に戻る。
【0176】
ステップS212において、算出(推定)された修正方向および修正量を表す情報が出力部5により出力され、例えば図22Bのように、表示器50に表示される。
【0177】
[実施例3-2]
図25は、ステップS211で採用できる、非線形近似を用いて移動すべき方向および量を算出(推定)する所定の手順と処理内容の他の例を示すフローチャートである。図26Aおよび図26Bは、図25で用いる非線形近似の概要を示す。
【0178】
図26Aおよび図26Bでは、得られる脈波信号の振幅値(この例ではピーク電圧(V))が基準位置(理想位置)からの距離に応じて曲線的に変化すると仮定し、2次関数f(x)=y=ax+bの式を定義している。すなわち、アンテナAT1とアンテナAT2との間の距離と、各アンテナを用いて得られた脈波信号の振幅値とに基づいて、2次の近似式(回帰式)を導出し、得られた近似式に基づいて、参照波形が得られると期待される基準位置までの距離を推定する。
【0179】
より具体的には、図26Aおよび図26Bでは、基準位置(理想位置)をx=0として、基準位置からの距離をx軸、振幅値(電圧(V))をy軸にとった、単純な2次関数f(x)=y=ax+b(a<0)を定義する。これにより、関数y=f(x)は、y軸上(x=0)に頂点をもつ上に凸の曲線となる。切片bは、基準位置で取得される脈波信号の振幅値を表すので、参照値記憶部141等に記憶されている参照波形の振幅値(V)として取得することができる。なお、橈骨動脈91とセンサ部2との位置関係(例えば、アンテナAT1とアンテナAT2のいずれの方が橈骨動脈91に近いか)に応じて、図26Bのようにx座標が正または負の値をとる。
【0180】
図25を参照して、修正方向および修正量の算出方法の一例についてより詳細に説明する。
ステップS251において、移動方向推定部123は、参照値記憶部141等から参照波形のピーク電圧VRmax(V)を取得する。VRmax(V)は、例えば、例えば、実際に得られた過去の測定結果から算出されてもよく、任意に設定された値であってもよい。
【0181】
ステップS252において、移動方向推定部123は、2次関数f(x)=y=ax+bを設定する(a<0)。切片bは、理想位置で得られる脈波信号のピーク電圧(V)を表すので、上記2次関数は、y=ax+VRmaxと表される。
【0182】
ステップS253において、移動方向推定部123は、アンテナAT1を用いて取得された脈波信号PS1についてピーク電圧V(V)を得る。アンテナAT1について得られたデータは、(x,y)=(x,y)=(x,V)と表される。
【0183】
ステップS254において、移動方向推定部123は、アンテナAT1の受信アンテナ素子RA1と、アンテナAT2の受信アンテナ素子RA2との間の距離Δxを、図示しない記憶部等から取得する。
【0184】
ステップS255において、移動方向推定部123は、アンテナAT2を用いて取得された脈波信号PS2についてピーク電圧V(V)を得る。アンテナAT2について得られたデータは、(x,y)=(x,y)=(x+Δx,V)と表される。
【0185】
ステップS256において、移動方向推定部123は、2次関数f(x)に脈波信号PS1およびPS2について得られた上記2つのデータを代入し、以下の2式の連立方程式を解くことにより係数a(および未知数x)が得られる。
=ax +VRmax
=ax +VRmax=a(x+Δx)+VRmax
【0186】
以上より、aおよびbが算出されたので、ステップS257において、移動方向推定部123は、2次関数f(x)の式y=ax+bを得る。
【0187】
ステップS258において、移動方向推定部123は、アンテナAT2について得られたピーク電圧Vを式y=ax+bに代入してx座標(x)を得る。これが、アンテナAT2の受信アンテナ素子RA2から理想位置までの距離(移動すべき量・修正量)となる。なお、より簡潔に、ステップS256で連立方程式を解くことにより算出されるxから、x=x+Δxとして算出してもよい。
【0188】
ステップS259において、移動方向推定部123は、移動すべき方向(修正方向)を取得する。例えば、実施例2-2に関して説明した手法を採用することができる。この後、処理は図21のステップS212に戻る。なお、図25では非線形近似として2次関数を用いて説明したが、3次、4次など、任意のn次曲線を用いることができる。
【0189】
図26Bに示したように、2次回帰では1つの電圧値について2つのx座標が存在し得るので、2対のアンテナAT1およびAT2が基準位置(橈骨動脈91)をまたいで配置された場合など、正しい修正方向および修正量が算出されないことがある。例えば、実際には図26Bの点PとP’に対応するにもかかわらず、点PとPに対応するものとして算出されることがあり得る。しかし、アンテナAT1とAT2との間の距離を適切に設定することによって、このような問題は最低限に抑えられると考えらえる。例えば、2対のアンテナがy軸をまたぐように配置された場合、少なくとも一方のアンテナは、理想位置に対応する条件を満たしていて、直ちに測定を実施できる可能性が高い。また、ユーザが血圧計1をゆっくりと動かしながら位置合わせすることが想定されるので、精確な算出よりも、簡易な処理による迅速な概算が好ましい場合が多い。
【0190】
以上、実施例3-1および3-2について、2対のアンテナを備え、アンテナ間の相対距離が既知である血圧計1の動作に関して説明したが、例えば、実施例2-1で説明したように、ユーザが血圧計1を動かすことによって異なる位置で複数回の測定がなされる場合にも、2地点間の距離(Δxに相当)がわかれば実施例3-1および3-2の手法を適用可能である。2地点間の距離を得るために、例えば、血圧計1のベルトに1mm単位の目盛を付しておき、1回目の測定と2回目の測定の間に、ユーザに移動方向と移動量を指示してユーザに移動させるようにしてもよい。ユーザの手作業が追加されるので修正量の算出精度は低下するが、位置合わせの際に大まかな指標を簡易かつ迅速に提供するという目的においては高い精度は要求されない。また、種々のセンサにより移動距離を検出することも考えられる。例えば、加速度センサ、超音波センサ、光電センサ、ドップラーセンサ、FMCW(Frequency Modulated Continuous Wave)レーダの利用が挙げられる。さらに、脈波センサ内のアンテナをそのまま電波センサとして利用することも考えられる。
【0191】
なお、上述のように、基準位置に対応する条件を満たすか否かの判定手法としては任意の手法を用いることができ、上記ステップS136~S138の動作は、上記ステップS132~S134と同じものであっても異なるものであってもよい。また、上述のように、ステップS135において、受信に用いるアンテナ素子のみまたは送信に用いるアンテナ素子のみを切り替えて一連の動作を繰り返してもよい。
【0192】
(第3の実施形態の作用効果)
以上詳述したように、第3の実施形態では、複数の測定により得られた脈波信号から抽出された特徴に基づいて、移動すべき方向および量を算出し出力するようにしている。このため、複雑な評価デバイスを別途設けることなく、簡単かつ安価な構成で、血圧計1の設置位置が適切か否かを判定し、適切でない場合にはさらに、複数の測定結果に基づいて、血圧計1をどの方向にどの程度移動させるべきかについての指標を得ることが可能となる。
【0193】
また、ユーザは、例えば表示器50上に表示された矢印が示す方向と基準位置までの推定距離を確認した上で、血圧計1を手首の周方向に回動させて測定に適した位置を探す。このため、手首に対する血圧計1の設置位置をより効率的に位置合わせすることができ、ユーザの利便性およびセンサの設置ロバスト性が大きく向上する。また、橈骨動脈91の精確な位置がわからなくても、少なくとも脈波信号が取得された2地点間の距離が既知であれば、比較的簡易な関数を用いた近似計算により移動すべき量を推定することができる。これにより、プロセッサに過剰な負荷をかけることなく、算出処理を組み込むことができる。また、ユーザは、自身の橈骨動脈91の大まかな位置を把握でき、その後の装着が容易になることも期待される。
【0194】
[変形例]
(1)マトリクス状に配置されたアンテナを備える例
図27は、複数のアンテナがマトリクス状に配置されたセンサ部2を備える血圧計1の機能構成の一部と、橈骨動脈91とアンテナとの相対的な位置関係を例示する。
図27では、センサ部2内に6対のアンテナAT1,AT2,・・・,AT6がマトリクス状に配置されている。各アンテナAT1,AT2,・・・,AT6を用いて受波された反射波は、それぞれ受信回路RC1,RC2,・・・,RC6に送られて波形信号が生成され、脈波検出部101-1,101-2,・・・,101-6によりAD変換およびフィルタリング処理等が施されたのち、脈波信号として特徴抽出部121に入力される。上記各反射波に対する処理は、同時並行して実施されてもよく、順次に実施されてもよい。また、1つのアンテナを用いて脈波の測定と基準位置に対応する条件を満たすか否かの判定とを行ってから、次のアンテナを用いた測定および判定動作に移行してもよく、すべてのアンテナについて脈波信号の取得を行ったのち、判定動作に進んでもよい。
【0195】
少なくとも1つのアンテナについて条件を満たす脈波信号が確認されたら、条件を満たしたアンテナのうち任意の1つまたは複数のアンテナを用いて生体情報の測定を開始することができる。このとき、血圧計1の設置位置が適切であることを示すメッセージを表示器50に出力してユーザに通知してもよいし、どのアンテナが測定に用いられるかを示す情報(例えば、アンテナの位置や識別番号など)を表示器50または他の外部装置に出力してもよい。
【0196】
一方、いずれのアンテナについても条件を満たす脈波信号が取得されなかった場合、最も良い結果が得られたアンテナと最も悪い結果が得られたアンテナとを判定し、その判定結果に基づいて、移動すべき方向を推定し出力することができる。これにより、動脈の走行方向に直交する方向だけでなく、動脈に平行な方向についても、より適した設置位置への移動調整を提示することができ、その後の測定がより信頼性の高いものとなる。
【0197】
図27に示した変形例についても、上述した実施形態および実施例を組み合わせることにより、修正方向に加えて修正量を算出して通知することが可能である。また、上述のように、基準位置に対応する条件との対比についても、最大振幅に限定されるものではなく、脈波信号の種々の特徴を用いることができる。なお、図27に示したアンテナの配置は例示的なものにすぎず、任意の数のアンテナを任意のパターンに配置した変形例にも上記手法を適用可能である。
【0198】
(2)血圧計1を含むシステムの例
図28は、第1乃至第3の実施形態で説明した血圧計1を備える生体情報管理システムの概略的な構成の一例を示す図である。血圧計1は、外部の情報処理装置であるサーバ30または携帯型端末10Bと、ネットワーク900を介し通信する。図28のシステムでは、血圧計1は無線LANまたはBluetooth(登録商標)等の小電力無線データ通信規格を採用した無線インタフェースを介して携帯型端末10Bと通信し、携帯型端末10Bはインターネットを介してサーバ30と通信する。
【0199】
このような構成であれば、例えば、被測定部位に対する血圧計1の装着位置に関する判定を血圧計1内で実行し、その判定結果を血圧計1から携帯端型端末10Bに転送してその表示部158に表示させることができる。また別の例としては、血圧計1から携帯型端末10Bへ波形信号もしくは脈波信号を伝送し、携帯型端末10Bにおいて血圧計1の装着位置に関する判定を実行し、その判定結果に基づいて血圧計1の装着位置を調整させるための表示情報を携帯型端末10Bの表示部158に表示するようにしてもよい。以上のようにすると、血圧計1における処理負荷を軽減することができ、しかも表示情報を血圧計1の表示器よりサイズの大きい携帯型端末10Bの表示部158に表示することができる。
【0200】
また、血圧の測定データと関連付けて、測定時の装着状態の判定結果をサーバ30へ伝送すれば、サーバ30において血圧の測定データを評価する際の信頼度を判定することが可能となる。
【0201】
したがって、血圧計1の処理ユニット12が実行するものとして上述した処理の一部またはすべては、携帯型端末10B上で動作するモバイルアプリケーション等のプログラムにより、携帯型端末10Bのプロセッサに実行させることもできる。
【0202】
(3)さらに、取得された脈波や算出された血圧値等に加えて、血圧計1の出力部5により、血圧計1の設置位置が適切であるか不適切であるかを示すメッセージを作成して出力し、血圧計1の表示器50に表示してもよく、または携帯型端末10Bに送信し、その表示部158に表示させるようにしてもよい。これにより、ユーザは、携帯型端末10B上で動作するアプリケーションプログラム等を通じて、より明りょうな表示をより大きな画面で視認することができる。さらに、血圧計1の表示器50と表示部158の両方に表示させることもできる。
【0203】
(4)上記各実施形態では、手首の橈骨動脈91において脈波を測定する場合を例にとって説明したが、上腕、足首、大腿、体幹など、他の部位において脈波を測定するようにしてもよい。
【0204】
(5)また、上記処理に用いられる各しきい値としては、予め固定的に初期設定した値を用いてもよいし、脈波が正常に取得できているときの平均値から自動算出してもよい。
【0205】
(6)上記各実施形態で説明したアンテナ対は、送受共用のアンテナに置き換えることも可能である。したがって、単に「アンテナ」と言うとき、送信アンテナと受信アンテナとを備えたアンテナ対だけでなく、送受共用のアンテナも含まれる。
【0206】
(7)なお、信号の極性が変われば、上記の詳細な条件は反転し得る。したがって、以上で述べた詳細な判定条件や回帰式は、回路設計や動作環境等に応じて多様な変形が可能であり、上記で示した実施例だけに限定されない。
【0207】
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
【0208】
[付記]
上記各実施形態の一部または全部は、特許請求の範囲のほか以下の付記に示すように記載することも可能であるが、これに限られない。
【0209】
(付記1)
ハードウェアプロセッサとメモリとを有する生体情報測定装置であって、
ユーザの被測定部位に向けて電波を送信し、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力し、
前記ハードウェアプロセッサが、前記メモリに記憶されたプログラムを実行することにより、
前記波形信号から波形の特徴を表す情報を抽出し、
前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定するように構成される、
生体情報測定装置。
【0210】
(付記2)
ハードウェアプロセッサとメモリとを有する生体情報測定装置であって、
ユーザの被測定部位に向けて電波を送信し、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力し、
前記ハードウェアプロセッサが、前記メモリに記憶されたプログラムを実行することにより、
前記波形信号から波形の特徴を表す情報を抽出し、
第1回目の前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第1の波形の特徴を表す情報と、第2回目の前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定するように構成される、
生体情報測定装置。
【0211】
(付記3)
ハードウェアプロセッサとメモリとを有する生体情報測定装置であって、
ユーザの被測定部位と対向可能な面に分散配置される第1および第2のアンテナにより、それぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力し、
前記ハードウェアプロセッサが、前記メモリに記憶されたプログラムを実行することにより、
前記波形信号から波形の特徴を表す情報を抽出し、
前記第1のアンテナによる前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第1の波形の特徴を表す情報と、前記第2のアンテナによる前記電波の送信および前記反射波の受信動作において前記特徴抽出部により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定するように構成される、
生体情報測定装置。
【0212】
(付記4)
ハードウェアプロセッサと当該ハードウェアプロセッサを実行させるプログラムを格納したメモリとを有する装置が実行する生体情報測定方法であって、
ユーザの被測定部位に向けて電波を送信する過程と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記ハードウェアプロセッサが、前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記ハードウェアプロセッサが、前記抽出された波形の特徴を表す情報に基づいて、前記被測定部位に対する前記生体情報測定装置の設置位置が、予め設定された基準位置に対応する条件を満たすか否かを判定する過程と
を具備する生体情報測定方法。
【0213】
(付記5)
ハードウェアプロセッサと当該ハードウェアプロセッサを実行させるプログラムを格納したメモリとを有する装置が実行する生体情報測定方法であって、
ユーザの被測定部位に向けて電波を送信する過程と、
前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記ハードウェアプロセッサが、前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記ハードウェアプロセッサが、第1回目の前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第1の波形の特徴を表す情報と、第2回目の前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する過程と
を具備する生体情報測定方法。
【0214】
(付記6)
ハードウェアプロセッサと当該ハードウェアプロセッサを実行させるプログラムを格納したメモリとを有する装置が実行する生体情報測定方法であって、
ユーザの被測定部位と対向可能な面に分散配置される第1および第2のアンテナにより、それぞれ前記被測定部位に向けて電波を送信すると共に前記電波の前記被測定部位による反射波を受信し、当該反射波の波形信号を出力する過程と、
前記ハードウェアプロセッサが、前記波形信号から波形の特徴を表す情報を抽出する過程と、
前記ハードウェアプロセッサが、前記第1のアンテナによる前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第1の波形の特徴を表す情報と、前記第2のアンテナによる前記電波の送信および前記反射波の受信動作において前記抽出する過程により抽出される第2の波形の特徴を表す情報とを比較し、その比較結果に基づいて前記被測定部位に対する前記生体情報測定装置の設置位置の修正方向を判定する過程と
を具備する生体情報測定方法。
【符号の説明】
【0215】
1…生体情報測定装置、ウェアラブル機器、血圧計、
2…センサ部、3…送信部、4…受信部、5…出力部、
10…本体、20…ベルト、40…送受信部、50…表示器、52…操作部、
12…処理ユニット、14…記憶ユニット、
16…入出力インタフェース、17…通信インタフェース
90…手首、91…橈骨動脈、
101…脈波検出部、121…特徴抽出部、122…判定部、141…参照値記憶部、
111…アンテナ制御部、123…移動方向推定部
30…サーバ、10B…携帯型端末、
158…表示部、900…ネットワーク。
図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11A
図11B
図12
図13
図14
図15
図16
図17A
図17B
図17C
図18
図19
図20A
図20B
図21
図22A
図22B
図23
図24A
図24B
図25
図26A
図26B
図27
図28