IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マジック リープ, インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-07
(45)【発行日】2022-10-18
(54)【発明の名称】メタ表面のための反射防止コーティング
(51)【国際特許分類】
   G02B 1/111 20150101AFI20221011BHJP
   G02B 27/02 20060101ALI20221011BHJP
   G02B 26/10 20060101ALI20221011BHJP
   G02B 5/18 20060101ALI20221011BHJP
【FI】
G02B1/111
G02B27/02 Z
G02B26/10 109
G02B26/10 C
G02B5/18
【請求項の数】 25
(21)【出願番号】P 2019539228
(86)(22)【出願日】2018-01-24
(65)【公表番号】
(43)【公表日】2020-03-05
(86)【国際出願番号】 US2018015057
(87)【国際公開番号】W WO2018140502
(87)【国際公開日】2018-08-02
【審査請求日】2021-01-14
(31)【優先権主張番号】62/451,587
(32)【優先日】2017-01-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】リン, ディアンミン
(72)【発明者】
【氏名】クルグ, マイケル アンソニー
(72)【発明者】
【氏名】サン ティレール, ピエール
(72)【発明者】
【氏名】メッリ, マウロ
(72)【発明者】
【氏名】ぺロス, クリストフ
(72)【発明者】
【氏名】ポリアコフ, エフゲニー
【審査官】渡邊 吉喜
(56)【参考文献】
【文献】国際公開第2016/205249(WO,A1)
【文献】特開2012-230246(JP,A)
【文献】特開2005-018061(JP,A)
【文献】特開2006-320807(JP,A)
【文献】特開2003-344630(JP,A)
【文献】特開平11-295524(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 1/111
G02B 27/02
G02B 26/10
G02B 5/18
(57)【特許請求の範囲】
【請求項1】
ディスプレイシステムであって、前記ディスプレイシステムは、
画像コンテンツを有する画像光を受信および出力するための導波管アセンブリであって、前記導波管アセンブリは、導波管のスタックを備え、前記導波管アセンブリは、
光学的に透過性の基板と、
前記基板を覆うメタ表面を備える内部結合光学要素であって、前記メタ表面は、反復するユニットセルを形成する複数のナノ構造を備え、上から見たときに、各ユニットセルは、
第1の長さおよび第1の幅を有する複数の第1のナノ構造であって、前記第1の長さは、第1の方向に細長く、前記第1の幅は、相互に異なる、複数の第1のナノ構造と、
第2の長さおよび第2の幅を有する複数の第2のナノ構造であって、前記第2の長さは、第2の方向に細長く、前記第2の幅は、相互に異なる、複数の第2のナノ構造と
を備え、前記第2の方向は、前記第1の方向と交差する、内部結合光学要素と、
前記メタ表面のナノ構造にわたって共形的に配置される光学的に透明な材料の層を備える反射防止コーティングであって、前記光学的に透明な材料は、前記ナノ構造の屈折率未満の屈折率を有する、反射防止コーティングと
を備える、導波管アセンブリと、
各内部結合光学要素の前記メタ表面を介して前記画像光を前記導波管アセンブリの各導波管の中に指向するように構成される画像投入デバイスと
を備え、上から見たときに、前記導波管のうちの異なる導波管の内部結合光学要素は、相互から側方にオフセットされている、ディスプレイシステム。
【請求項2】
前記反射防止コーティングは、干渉コーティングである、請求項1に記載のディスプレイシステム。
【請求項3】
前記メタ表面は、回折格子を備える、請求項1に記載のディスプレイシステム。
【請求項4】
前記メタ表面は、非対称回折格子を備える、請求項3に記載のディスプレイシステム。
【請求項5】
前記メタ表面は、パンチャラトナムベリー位相光学要素(PBOE)を備える、請求項1に記載のディスプレイシステム。
【請求項6】
前記メタ表面は、多段ナノ構造を備える、請求項1に記載のディスプレイシステム。
【請求項7】
前記光学的に透明な材料は、ポリマーを含む、請求項1に記載のディスプレイシステム。
【請求項8】
前記光学的に透明な材料は、フォトレジストを含む、請求項7に記載のディスプレイシステム。
【請求項9】
前記光学的に透明な材料は、屈折率約1.2~約2を有する、請求項1に記載のディスプレイシステム。
【請求項10】
前記ナノ構造の最上表面から前記反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、請求項1に記載のディスプレイシステム。
【請求項11】
前記ナノ構造の最上表面から前記反射防止コーティングの最上表面までの距離は、約30nm~約250nmである、請求項10に記載のディスプレイシステム。
【請求項12】
前記反射防止コーティングは、前記ナノ構造間にかつ前記ナノ構造にわたって延在する平面化層を形成する、請求項1~11のいずれか1項に記載のディスプレイシステム。
【請求項13】
ディスプレイシステムであって、前記ディスプレイシステムは、
画像コンテンツを有する画像光を受信および出力するための導波管アセンブリであって、前記導波管アセンブリは、導波管のスタックを備え、前記導波管アセンブリは、
光学的に透過性の基板と、
前記基板を覆うメタ表面を備える内部結合光学要素であって、前記メタ表面は、反復するユニットセルを形成する複数のナノ構造を備え、上から見たときに、各ユニットセルは、
第1の長さおよび第1の幅を有する複数の第1のナノ構造であって、前記第1の長さは、第1の方向に細長く、前記第1の幅は、相互に異なる、複数の第1のナノ構造と、
第2の長さおよび第2の幅を有する複数の第2のナノ構造であって、前記第2の長さは、第2の方向に細長く、前記第2の幅は、相互に異なる、複数の第2のナノ構造と
を備え、前記第2の方向は、前記第1の方向と交差する、内部結合光学要素と、
メタ表面を備える内部結合光学要素のための反射防止コーティング
を備え、前記反射防止コーティングは、
1よりも大きく、かつ、前記メタ表面を構成する材料の屈折率未満である屈折率を有する光学的に透明な材料の層を備える、導波管アセンブリと、
前記メタ表面を介して前記画像光を前記導波管アセンブリの中に指向するように構成される画像投入デバイスと
を備え、
前記光学的に透明な材料の層が、前記メタ表面にわたって共形的に配置される、ディスプレイシステム。
【請求項14】
前記光学的に透明な材料は、ポリマーを含む、請求項13に記載のディスプレイシステム。
【請求項15】
前記光学的に透明な材料は、フォトレジストを含む、請求項14に記載のディスプレイシステム。
【請求項16】
前記光学的に透明な材料は、屈折率約1.2~約2を有する、請求項13に記載のディスプレイシステム。
【請求項17】
前記メタ表面の最上表面から前記反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、請求項13に記載のディスプレイシステム。
【請求項18】
前記反射防止コーティングは、前記反射防止コーティングを含まない実質的に類似するメタ表面によって反射された入射光の量と比較して、約50%よりも多く前記メタ表面によって反射された入射光の量を低減させる、請求項13に記載のディスプレイシステム。
【請求項19】
前記入射光は、入射角約-20°~20°を有する、請求項18に記載のディスプレイシステム。
【請求項20】
導波管アセンブリを備えるディスプレイシステムのための反射防止コーティングをメタ表面上に形成するための方法であって、前記方法は、
メタ表面を備える光学的に透過性の基板を提供することであって、前記メタ表面は、反復するユニットセルを形成する複数のナノ構造を備え、上から見たときに、各ユニットセルは、
第1の長さおよび第1の幅を有する複数の第1のナノ構造であって、前記第1の長さは、第1の方向に細長く、前記第1の幅は、相互に異なる、複数の第1のナノ構造と、
第2の長さおよび第2の幅を有する複数の第2のナノ構造であって、前記第2の長さは、第2の方向に細長く、前記第2の幅は、相互に異なる、複数の第2のナノ構造と
を備え、前記第2の方向は、前記第1の方向と交差する、ことと、
光学的に透明な材料の層を前記複数のナノ構造にわたって堆積させることと
を含み、
前記光学的に透明な材料の層は、前記反射防止コーティングを形成し、
前記ディスプレイシステムは、前記メタ表面を介して画像光を前記導波管アセンブリの中に指向するように構成される画像投入デバイスをさらに備える、方法。
【請求項21】
前記光学的に透明な材料は、ポリマーを含む、請求項20に記載の方法。
【請求項22】
前記光学的に透明な材料は、フォトレジストを含む、請求項21に記載の方法。
【請求項23】
前記ナノ構造の最上表面から前記形成される反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、請求項20~22のいずれか1項に記載の方法。
【請求項24】
前記光学的に透明な材料を共形的に堆積させることは、前記光学的に透明な材料を前記ナノ構造にわたってスピンコーティングすることを含む、請求項20に記載の方法。
【請求項25】
前記光学的に透明な材料を共形的に堆積させることは、化学蒸着(CVD)プロセスを実施することを含む、請求項20に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、米国仮出願第62/451,587号(出願日2017年1月27日)の35 U.S.C.§119(e)のもとでの優先権の利益を主張するものであり、該米国仮出願の全開示は、参照により本明細書中に援用される。
【0002】
本願は、以下の特許出願の各々の全体を参照により援用するものである:米国出願第14/555,585号(出願日2014年11月27日),米国出願第14/690,401号(出願日2015年4月18日);米国出願第14/212,961号(出願日2014年3月14日);米国出願第14/331,218号(出願日2014年7月14日);米国特許出願第15/342,033号(出願日2016年11月2日)(代理人管理番号MLEAP.027A);米国仮出願第62/333,067号(出願日2016年5月6日)(代理人管理番号MLEAP.066PR);米国仮出願第62/451,608号,発明の名称”DIFFRACTION GRATINGS FORMED BY METASURFACES HAVING DIFFERENTLY ORIENTED NANOBEAMS”(出願日2017年1月27日)(代理人管理番号MLEAP.092PR);および米国仮出願第62/451,615号,発明の名称”DIFFRACTION GRATINGS BASED ON METASURFACES HAVING ASYMMETRIC OPTICAL- ELEMENTS”(出願日2017年1月27日)(代理人管理番号MLEAP.103PR)。
【0003】
本開示は、拡張現実システムを含む、ディスプレイシステム等の光学システムに関する。
【背景技術】
【0004】
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式でユーザに提示される。仮想現実または「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実または「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実または「MR」シナリオは、一種のARシナリオであって、典型的には、自然世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオは、実世界内のオブジェクトによってブロックされて見える、または別様にそれと相互作用するように知覚される、AR画像コンテンツを含んでもよい。
【0005】
図1を参照すると、拡張現実場面10が、描写されている。AR技術のユーザには、人々、木々、背景における建物、およびコンクリートプラットフォーム30を特徴とする実世界公園状設定20が見える。ユーザはまた、実世界プラットフォーム30上に立っているロボット像40と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚する。これらの要素50、40は、実世界には存在しないという点で、「仮想」である。ヒトの視知覚系は、複雑であって、他の仮想または実世界画像要素間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、AR技術の生成は、困難である。
【0006】
本明細書に開示されるシステムおよび方法は、ARまたはVR技術に関連する種々の課題に対処する。
【発明の概要】
【課題を解決するための手段】
【0007】
いくつかの実施形態によると、光学システムが、本明細書に提示される。いくつかの実施形態では、光学システムは、光学的に透過性の基板と、基板を覆うメタ表面であって、複数のナノ構造を備える、メタ表面と、メタ表面のナノ構造にわたって共形的に配置される、光学的に透明な材料を含む反射防止コーティングであって、光学的に透明な材料は、ナノ構造の屈折率未満の屈折率を有する、反射防止コーティングとを備えてもよい。
【0008】
いくつかの実施形態によると、反射防止コーティングは、干渉コーティングである。いくつかの実施形態では、メタ表面は、回折格子を備える。いくつかの実施形態では、メタ表面は、非対称回折格子を備える。いくつかの実施形態では、メタ表面は、パンチャラトナムベリー位相光学要素(PBOE)を備える。いくつかの実施形態では、メタ表面は、多段ナノ構造を備える。いくつかの実施形態では、光学的に透明な材料は、ポリマーを含む。いくつかの実施形態では、光学的に透明な材料は、フォトレジストを含む。いくつかの実施形態では、光学的に透明な材料は、屈折率約1.2~約2を有する。いくつかの実施形態では、ナノ構造の最上表面から反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである。いくつかの実施形態では、ナノ構造の最上表面から反射防止コーティングの最上表面までの距離は、約30nm~約250nmである。いくつかの実施形態では、反射防止コーティングは、ナノ構造間にかつそれにわたって延在する、平面化層を形成する。
【0009】
いくつかの他の実施形態によると、メタ表面を備える光学要素のための反射防止コーティングであって、1よりも大きく、メタ表面を構成する材料の屈折率未満の屈折率を有する、光学的に透明な材料の層を備える、反射防止コーティングを備え、ポリマー材料層の層は、メタ表面にわたって共形的に配置される、光学システムが、本明細書に提示される。
【0010】
いくつかの実施形態によると、光学的に透明な材料は、ポリマーを含む。いくつかの実施形態では、光学的に透明な材料は、フォトレジストを含む。いくつかの実施形態では、光学的に透明な材料は、屈折率約1.2~約2を有する。いくつかの実施形態では、メタ表面の最上表面から反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである。いくつかの実施形態では、反射防止コーティングは、反射防止コーティングを含まない実質的に類似するメタ表面によって反射された入射光の量と比較して、約50%よりも多くメタ表面によって反射された入射光の量を低減させる。いくつかの実施形態では、入射光は、入射角約-50°~50°を有する。
【0011】
さらに他の実施形態によると、反射防止コーティングをメタ表面上に形成するための方法が、提供される。いくつかの実施形態では、本方法は、メタ表面を備える、光学的に透過性の基板を提供するステップであって、メタ表面は、複数のナノ構造を備える、ステップと、光学的に透明な材料の層を複数のナノ構造にわたって堆積させるステップであって、光学的に透明な材料の層は、反射防止コーティングを形成する、ステップとを含んでもよい。
【0012】
いくつかの実施形態によると、光学的に透明な材料は、ポリマーを含む。いくつかの実施形態では、光学的に透明な材料は、フォトレジストを含む。いくつかの実施形態では、ナノ構造の最上表面から形成される反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである。いくつかの実施形態では、光学的に透明な材料を共形的に堆積させるステップは、光学的に透明な材料をナノ構造にわたってスピンコーティングするステップを含む。いくつかの実施形態では、光学的に透明な材料を共形的に堆積させるステップは、化学蒸着(CVD)プロセスを実施するステップを含む。
【0013】
種々の付加的実施形態が、下記に提供される。
【0014】
1.光学システムであって、
光学的に透過性の基板と、
基板を覆うメタ表面であって、該メタ表面は、複数のナノ構造を備える、メタ表面と、
メタ表面のナノ構造にわたって共形的に配置される光学的に透明な材料を含む反射防止コーティングであって、光学的に透明な材料は、ナノ構造の屈折率未満の屈折率を有する、反射防止コーティングと
を備える、光学システム。
【0015】
2.反射防止コーティングは、干渉コーティングである、実施形態1に記載の光学システム。
【0016】
3.メタ表面は、回折格子を備える、実施形態1に記載の光学システム。
【0017】
4.メタ表面は、非対称回折格子を備える、実施形態3に記載の光学システム。
【0018】
5.メタ表面は、パンチャラトナムベリー位相光学要素(PBOE)を備える、実施形態1-3のいずれか1項に記載の光学システム。
【0019】
6.メタ表面は、多段ナノ構造を備える、実施形態1に記載の光学システム。
【0020】
7.光学的に透明な材料は、ポリマーを含む、実施形態1-6のいずれか1項に記載の光学システム。
【0021】
8.光学的に透明な材料は、フォトレジストを含む、実施形態7に記載の光学システム。
【0022】
9.光学的に透明な材料は、屈折率約1.2~約2を有する、実施形態1-8のいずれか1項に記載の光学システム。
【0023】
10.ナノ構造の最上表面から反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、実施形態1-9のいずれか1項に記載の光学システム。
【0024】
11.ナノ構造の最上表面から反射防止コーティングの最上表面までの距離は、約30nm~約250nmである、実施形態10に記載の光学システム。
【0025】
12.反射防止コーティングは、ナノ構造間にかつそれにわたって延在する平面化層を形成する、実施形態1-11のいずれか1項に記載の光学システム。
【0026】
13.光学システムであって、
メタ表面を備える光学要素のための反射防止コーティングであって、該反射防止コーティングは、
1よりも大きく、かつ、メタ表面を構成する材料の屈折率未満である屈折率を有する光学的に透明な材料の層を備え、
ポリマー材料層の層は、メタ表面にわたって共形的に配置される、
反射防止コーティング
を備える、光学システム。
【0027】
14.光学的に透明な材料は、ポリマーを含む、実施形態13に記載の反射防止コーティング。
【0028】
15.光学的に透明な材料は、フォトレジストを含む、実施形態14に記載の反射防止コーティング。
【0029】
16.光学的に透明な材料は、屈折率約1.2~約2を有する、実施形態13-15のいずれか1項に記載の反射防止コーティング。
【0030】
17.メタ表面の最上表面から反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、実施形態13-16のいずれか1項に記載の反射防止コーティング。
【0031】
18.反射防止コーティングは、反射防止コーティングを含まない実質的に類似するメタ表面によって反射された入射光の量と比較して、約50%よりも多くメタ表面によって反射された入射光の量を低減させる、実施形態13-17のいずれか1項に記載の反射防止コーティング。
【0032】
19.入射光は、入射角約-20°~20°を有する、実施形態18に記載の反射防止コーティング。
【0033】
20.反射防止コーティングをメタ表面上に形成するための方法であって、該方法は、
メタ表面を備える光学的に透過性の基板を提供することであって、メタ表面は、複数のナノ構造を備える、ことと、
光学的に透明な材料の層を複数のナノ構造にわたって堆積させることと
を含み、
光学的に透明な材料の層は、反射防止コーティングを形成する、ことを含む、方法。
【0034】
21.光学的に透明な材料は、ポリマーを含む、実施形態20に記載の方法。
【0035】
22.光学的に透明な材料は、フォトレジストを含む、実施形態21に記載の方法。
【0036】
23.ナノ構造の最上表面から形成される反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、実施形態20-22のいずれか1項に記載の方法。
【0037】
24.光学的に透明な材料を共形的に堆積させることは、光学的に透明な材料をナノ構造にわたってスピンコーティングすることを含む、実施形態20-23のいずれか1項に記載の方法。
【0038】
25.光学的に透明な材料を共形的に堆積させることは、化学蒸着(CVD)プロセスを実施することを含む、実施形態20-23のいずれか1項に記載の方法。
本発明は、例えば、以下を提供する。
(項目1)
光学システムであって、
光学的に透過性の基板と、
前記基板を覆うメタ表面であって、前記メタ表面は、複数のナノ構造を備える、メタ表面と、
前記メタ表面のナノ構造にわたって共形的に配置される光学的に透明な材料を含む反射防止コーティングであって、前記光学的に透明な材料は、前記ナノ構造の屈折率未満の屈折率を有する、反射防止コーティングと
を備える、光学システム。
(項目2)
前記反射防止コーティングは、干渉コーティングである、項目0に記載の光学システム。
(項目3)
前記メタ表面は、回折格子を備える、項目0に記載の光学システム。
(項目4)
前記メタ表面は、非対称回折格子を備える、項目0に記載の光学システム。
(項目5)
前記メタ表面は、パンチャラトナムベリー位相光学要素(PBOE)を備える、項目0に記載の光学システム。
(項目6)
前記メタ表面は、多段ナノ構造を備える、項目0に記載の光学システム。
(項目7)
前記光学的に透明な材料は、ポリマーを含む、項目0に記載の光学システム。
(項目8)
前記光学的に透明な材料は、フォトレジストを含む、項目0に記載の光学システム。
(項目9)
前記光学的に透明な材料は、屈折率約1.2~約2を有する、項目0に記載の光学システム。
(項目10)
前記ナノ構造の最上表面から前記反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、項目0に記載の光学システム。
(項目11)
前記ナノ構造の最上表面から前記反射防止コーティングの最上表面までの距離は、約30nm~約250nmである、項目0に記載の光学システム。
(項目12)
前記反射防止コーティングは、前記ナノ構造間にかつそれにわたって延在する平面化層を形成する、項目0-0のいずれか1項に記載の光学システム。
(項目13)
光学システムであって、
メタ表面を備える光学要素のための反射防止コーティングであって、前記反射防止コーティングは、
1よりも大きく、かつ、前記メタ表面を構成する材料の屈折率未満である屈折率を有する光学的に透明な材料の層を備え、
ポリマー材料層の層が、前記メタ表面にわたって共形的に配置される、
反射防止コーティング
を備える、光学システム。
(項目14)
前記光学的に透明な材料は、ポリマーを含む、項目0に記載の反射防止コーティング。
(項目15)
前記光学的に透明な材料は、フォトレジストを含む、項目0に記載の反射防止コーティング。
(項目16)
前記光学的に透明な材料は、屈折率約1.2~約2を有する、項目0に記載の反射防止コーティング。
(項目17)
前記メタ表面の最上表面から前記反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、項目0に記載の反射防止コーティング。
(項目18)
前記反射防止コーティングは、前記反射防止コーティングを含まない実質的に類似するメタ表面によって反射された入射光の量と比較して、約50%よりも多く前記メタ表面によって反射された入射光の量を低減させる、項目0に記載の反射防止コーティング。
(項目19)
前記入射光は、入射角約-20°~20°を有する、項目18に記載の反射防止コーティング。
(項目20)
反射防止コーティングをメタ表面上に形成するための方法であって、前記方法は、
メタ表面を備える光学的に透過性の基板を提供することであって、前記メタ表面は、複数のナノ構造を備える、ことと、
光学的に透明な材料の層を前記複数のナノ構造にわたって堆積させることと
を含み、
前記光学的に透明な材料の層は、前記反射防止コーティングを形成する、方法。
(項目21)
前記光学的に透明な材料は、ポリマーを含む、項目0に記載の方法。
(項目22)
前記光学的に透明な材料は、フォトレジストを含む、項目0に記載の方法。
(項目23)
前記ナノ構造の最上表面から前記形成される反射防止コーティングの最上表面までの距離は、約10nm~約1ミクロンである、項目0-0のいずれか1項に記載の方法。
(項目24)
前記光学的に透明な材料を共形的に堆積させることは、前記光学的に透明な材料を前記ナノ構造にわたってスピンコーティングすることを含む、項目0に記載の方法。
(項目25)
前記光学的に透明な材料を共形的に堆積させることは、化学蒸着(CVD)プロセスを実施することを含む、項目0に記載の方法。
【図面の簡単な説明】
【0039】
図1図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
【0040】
図2図2は、ウェアラブルディスプレイシステムの実施例を図示する。
【0041】
図3図3は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
【0042】
図4図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
【0043】
図5図5A-5Cは、曲率半径と焦点半径との間の関係を図示する。
【0044】
図6図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
【0045】
図7図7は、導波管によって出力された出射ビームの実施例を図示する。
【0046】
図8図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。
【0047】
図9A図9Aは、それぞれが内部結合光学要素を含むスタックされた導波管のセットの実施例の断面側面図を図示する。
【0048】
図9B図9Bは、図9Aの複数のスタックされた導波管の実施例の斜視図を図示する。
【0049】
図9C図9Cは、図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。
【0050】
図10図10は、メタ表面および反射防止コーティングを含む、例示的光学構造の断面側面図を図示する。
【0051】
図11A図11Aは、非対称パンチャラトナムベリー位相光学要素(PBOE)を備える、例示的メタ表面の上下図を図示する。
【0052】
図11B図11Bは、上層反射防止コーティングを伴う、図11Aのメタ表面の斜視図を図示する。
【0053】
図11C図11Cは、図11A-11Bに示される一般的構造を有する光学構造に関する光の入射角の関数としての透過および反射のプロットである。
【0054】
図12A図12Aは、非対称回折格子および反射防止コーティングを備える、例示的メタ表面の断面斜視図を図示する。
【0055】
図12B図12Bは、図12の例示的メタ表面および反射防止コーティングの断面側面図を図示する。
【0056】
図12C図12Cは、図12A-12Bの光学構造に関する透過および反射スペクトルのプロットである。
【0057】
図13図13A-13Dは、いくつかの実施形態による、メタ表面を備える例示的光学構造の加工の種々の段階における中間構造の断面図である。
【0058】
図14図14A-14Dは、いくつかの実施形態による、メタ表面を備える例示的光学構造の加工の種々の段階における中間構造の断面図である。
【0059】
図15図15は、共形反射防止コーティングを有するメタ表面の断面側面図を図示する。
【発明を実施するための形態】
【0060】
メタ材料表面とも称される、メタ表面は、幾何学的光学と比較してはるかに小さいスケールにおいて、事実上平坦な無収差の光学を実現する機会を提供する。理論によって限定されるわけではないが、いくつかの実施形態では、メタ表面は、共振光学アンテナとして機能する、表面構造またはナノ構造の稠密配列を含む。光と表面構造の相互作用の共振性質は、光学波面を操作する能力を提供する。ある場合には、メタ表面は、単純パターン化プロセスによって形成される薄い平面要素を用いて、嵩張るまたは製造が困難な光学コンポーネントに取って代わることを可能にし得る。
【0061】
メタ表面から形成される光学要素は、反射および/または透過モードで機能し得ることを理解されたい。反射モードでは、メタ表面は、光を所望の角度で反射させ得る。透過モードでは、メタ表面は、メタ表面の本体を通して光を透過させながら、また、その光を所望の角度で偏向させ得る。望ましくないことに、透過モードで作用するメタ表面はまた、例えば、他の材料との界面におけるフレネル反射に起因して、入射光を反射させ得る。加えて、反射モードで作用するメタ表面に関して、メタ表面が光を反射させるように構成される角度は、光が界面から反射される角度と異なり得る。
【0062】
望ましくないことに、メタ表面による意図されない反射は、光学アーチファクトを生じさせ得る。例えば、メタ表面が画像コンテンツでエンコードされた光(例えば、空間光変調器によって修正される光)を指向するための光学要素として使用される、ディスプレイデバイスでは、反射は、ユーザに到達する前の光学経路に沿った光の一部の往復反射に起因して、残影画像を生じさせ得る。例えば、メタ表面は、光を導波管の中に内部結合し、ひいては、画像コンテンツをユーザに出力するように構成される、内部結合光学要素を形成してもよい。本光の一部が、導波管の中に内部結合されるのではなく、反射される場合、反射された光は、光プロジェクタまたは光源に逆伝搬し得、これは、次いで、導波管の中に内部結合するために、光をメタ表面に反射させ、最終的には、ユーザに出力し得る。本往復反射に起因して、前のビデオ画像フレームからの光が、現在の画像フレームをエンコードする光とともに、導波管に提供され得る。前の画像フレームをエンコードする光は、ディスプレイデバイスの画質を減少させる残影画像として、ユーザに可視となり得る。
【0063】
いくつかの実施形態では、反射防止コーティングが、メタ表面からの光の反射を低減または排除させ得る。反射防止コーティングは、ポリマー層等の材料の光学的に透過性の層、例えば、フォトレジストの層から形成されてもよい。いくつかの実施形態では、いかなる空気または他の材料も、メタ表面と反射防止コーティングとの間に存在し得ない。すなわち、反射防止コーティングは、直接、メタ表面に接触し得る。反射防止コーティングを形成する材料は、メタ表面のナノ構造の屈折率より低いが、メタ表面と反対の反射防止コーティングとの界面を形成する材料または媒体(例えば、空気)の屈折率より高い、屈折率を有してもよい。
【0064】
いくつかの実施形態では、反射防止コーティングは、干渉コーティングであってもよく、材料の層の厚さは、層の上部表面および底部表面から反射する光間に破壊的干渉を提供するように選択される。好ましくは、層の厚さは、可視波長の光のために、本干渉を提供するように選択される。いくつかの実施形態では、メタ表面は、複数の原色を利用するカラーディスプレイの一部であってもよい。その結果、特定のメタ表面が、特定の原色に対応する関連付けられた限定範囲の波長の光のみに暴露され得、反射防止コーティングは、本関連付けられた限定範囲の波長を有する光のための干渉を提供するように選択される厚さを有してもよい。
【0065】
いくつかの実施形態では、反射防止コーティングは、メタ表面を形成するナノ構造にわたってかつその間に延在し、ナノ構造の平面表面を形成する、平面層であってもよい。そのような平面層は、有利には、広範囲の入射角光にわたって反射防止性質を提供し得る。いくつかの実施形態では、反射防止コーティングは、メタ表面を形成するナノ構造の表面上に配置される、共形層であってもよい。共形層は、連続的であって、複数のナノ構造にわたってかつその間に延在してもよい、またはナノ構造の個々のもの上で隔離されてもよい。
【0066】
有利には、反射における低減は、残影画像等の光学効果を低減または排除させ、それによって、ディスプレイデバイスが、より高い知覚品質を伴う画像を出力することを可能にし得る。いくつかの実施形態では、反射防止コーティングは、反射防止コーティングを伴わない同じ構造と比較して、約50%、75%、85%、90%、95%、99%、またはそれよりも多く、メタ表面によって反射される光の量を低減させ得る。反射防止コーティングは、特に有利には、反射がメタ表面の設計の一部ではない透過モードで動作する、メタ表面に適用され得る。
【0067】
ここで、図面を参照するが、同様の参照番号は、全体を通して同様の部分を指す。
【0068】
いくつかの実施形態では、メタ表面は、有利には、ARまたはVRディスプレイシステムのためのディスプレイデバイス等のディスプレイデバイス内の光学要素を形成するために適用され得る。これらのディスプレイシステムは、仮想コンテンツをユーザまたは視認者に表示し得、ARシステムはまた、周囲環境からの光をユーザの眼に透過させることによって、ユーザが彼らの周囲の世界を見ることを可能にし得る。好ましくは、本仮想コンテンツは、例えば、画像情報をユーザの眼に投影するアイウェアの一部としてのウェアラブル頭部搭載型ディスプレイ上に表示される。本明細書で使用されるように、「頭部搭載型」ディスプレイは、視認者の頭部上に搭載され得る、ディスプレイであることを理解されたい。
【0069】
図2は、ウェアラブルディスプレイシステム80の実施例を図示する。ディスプレイシステム80は、頭部搭載型ディスプレイ62と、そのディスプレイ62の機能をサポートするための種々の機械的および電子的なモジュールおよびシステムとを含む。ディスプレイ62は、フレーム64に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者60によって装着可能であって、ディスプレイ62をユーザ60の眼の正面に位置付けるように構成される。ディスプレイ62は、いくつかの実施形態では、アイウェアと見なされ得る。いくつかの実施形態では、スピーカ66が、フレーム64に結合され、ユーザ60の外耳道に隣接して位置付けられる(いくつかの実施形態では、示されない別のスピーカが、ユーザの他の外耳道に隣接して位置付けられ、ステレオ/調節可能音制御を提供する)。いくつかの実施形態では、ディスプレイシステムはまた、1つ以上のマイクロホン67または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが、入力またはコマンド(例えば、音声メニューコマンドの選択、自然言語質問等)をシステム80に提供することを可能にするように構成され、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータを持続的に収集してもよい(例えば、ユーザおよび/または環境から受動的に収集するため)。そのようなオーディオデータは、荒い息づかい等のユーザ音または近傍イベントを示す大騒動等の環境音を含んでもよい。ディスプレイシステムはまた、周辺センサ30aを含んでもよく、これは、フレーム64と別個であって、ユーザ60の身体(例えば、ユーザ60の頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ30aは、本明細書にさらに説明されるように、いくつかの実施形態では、ユーザ60の生理学的状態を特性評価するデータを入手するように構成されてもよい。例えば、センサ30aは、電極であってもよい。
【0070】
図2は、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子的なモジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態におけるアイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される(いくつかの実施形態では、示されない別のスピーカが、随意に、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供してもよい)。ディスプレイシステムはまた、1つ以上のマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが、入力またはコマンドをシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータ(例えば、ユーザおよび/または環境からの音)を収集してもよい。いくつかの実施形態では、ディスプレイシステムもまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを取得するように構成されてもよい。例えば、センサ120aは、電極であってもよい。
【0071】
図2を継続して参照すると、ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、ローカルデータ処理モジュール140に動作可能に結合され、これは、フレーム80に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホン内に埋設される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成、ベルト結合式構成において)等、種々の構成で搭載されてもよい。同様に、センサ120aは、通信リンク120b、例えば、有線導線または無線コネクティビティによって、ローカルデータ処理モジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサおよび不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを備えてもよく、両方とも、データの処理、キャッシュ、および記憶を補助するために利用されてもよい。データは、a)センサ(画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る))から捕捉されたデータ、および/またはb)可能性として処理または読出後にディスプレイ70への通過のための遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して取得および/または処理されたデータを含む。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンクを介して等、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つ以上のものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つ以上のものは、フレーム80に取り付けられてもよい、または有線または無線通信経路によってローカル処理およびデータモジュール140と通信する、独立構造であってもよい。
【0072】
図2を継続して参照すると、いくつかの実施形態では、遠隔処理モジュール150は、データおよび/または画像情報を分析および処理するように構成される、1つ以上のプロセッサを備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であり得る、デジタルデータ記憶設備を備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、1つ以上の遠隔サーバを含んでもよく、これは、情報、例えば、拡張現実コンテンツをローカル処理およびデータモジュール140および/または遠隔処理モジュール150に生成するための情報を提供する。いくつかの実施形態では、全てのデータが、記憶され、全ての計算は、ローカル処理およびデータモジュール内で行われ、遠隔モジュールからの完全に自律的使用を可能にする。
【0073】
ここで図3を参照すると、「3次元」または「3-D」としての画像の知覚は、視認者の各眼への画像の若干異なる提示を提供することによって達成され得る。図3は、ユーザに関する3次元画像をシミュレートするための従来のディスプレイシステムを図示する。各眼210、220に対して1つである2つの明確に異なる画像190、200が、ユーザに出力される。画像190、200は、視認者の視線と平行な光学軸またはz-軸に沿って距離230だけ眼210、220から離間される。画像190、200は、平坦であって、眼210、220は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのような3-Dディスプレイシステムは、ヒト視覚系に依拠し、画像190、200を組み合わせ、組み合わせられた画像の深度および/または尺度の知覚を提供する。
【0074】
しかしながら、ヒト視覚系は、より複雑であって、深度の現実的知覚を提供することは、より困難であることを理解されたい。例えば、従来の「3-D」ディスプレイシステムの多くの視認者は、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散運動(vergence)および遠近調節(accmmodation)の組み合わせに起因して、オブジェクトを「3次元」として知覚し得ると考えられる。相互に対する2つの眼の輻輳・開散運動の移動(すなわち、瞳孔が、眼の視線を収束させ、オブジェクトを固視するために相互に向かって、またはそこから離れるように移動する、眼の回転)は、眼の水晶体および瞳孔の集束(または「遠近調節」)と密接に関連付けられる。通常条件下では、眼の水晶体の焦点を変化させる、または眼を遠近調節し、1つのオブジェクトから異なる距離における別のオブジェクトに焦点を変化させることは、「遠近調節-輻輳・開散運動反射」および瞳孔拡張または収縮として知られる関係下、同一距離までの輻輳・開散運動における整合変化を自動的に生じさせるであろう。同様に、輻輳・開散運動における変化は、正常条件下では、水晶体形状および瞳孔サイズの遠近調節における整合変化を誘起するであろう。本明細書に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、3次元視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、とりわけ、単に、場面の異なる提示を提供するが、眼が全画像情報を単一の遠近調節された状態において視認すると、「遠近調節-輻輳・開散運動反射」に対抗して機能するため、多くの視認者にとって不快である。遠近調節と輻輳・開散運動との間のより優れた整合を提供するディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し得る。
【0075】
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。図4を参照すると、z-軸上の眼210、220からの種々の距離におけるオブジェクトは、それらのオブジェクトが合焦するように、眼210、220によって遠近調節される。眼210、220は、特定の遠近調節された状態をとり、z-軸に沿って異なる距離においてオブジェクトに合焦させる。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部が、眼がその深度平面のための遠近調節された状態にあるとき合焦するように、関連付けられた焦点距離を有する、深度平面240のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3次元画像は、各眼210、220に対して画像の異なる提示を提供することによって、また、深度平面のそれぞれに対応する画像の異なる提示を提供することによってシミュレートされてもよい。例証を明確にするために、別個であるように示されるが、眼210、220の視野は、例えば、z-軸に沿った距離が増加するにつれて重複し得ることを理解されたい。加えて、例証を容易にするために、平坦として示されるが、深度平面の輪郭は、例えば、深度平面内の全ての特徴が特定の遠近調節された状態における眼と合焦するように、物理的空間内で湾曲され得ることを理解されたい。
【0076】
オブジェクトと眼210または220との間の距離はまた、その眼によって視認されるようなそのオブジェクトからの光の発散の量を変化させ得る。図5A-5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。図5A-5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成されるライトフィールドは、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と視認者の眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、図5A-5Cおよび本明細書の種々の他の図に図示されるが、眼210に関する議論は、視認者の両眼210および220に適用され得ることを理解されたい。
【0077】
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。異なる提示は、視認者の眼によって別個に集束され、それによって、異なる深度平面上に位置する場面のための異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または焦点がずれている異なる深度平面上の異なる画像特徴の観察に基づいて、ユーザに深度合図を提供することに役立ててもよい。
【0078】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、図2のシステム60であって、図6は、そのシステム60のいくつかの部分をより詳細に概略的に示す。例えば、導波管アセンブリ260は、図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。
【0079】
いくつかの実施形態では、単一導波管が、単一または限定数の深度平面に対応する設定量の波面発散を伴う光を出力するように構成されてもよく、および/または導波管は、限定範囲の波長の光を出力するように構成されてもよい。その結果、いくつかの実施形態では、複数の導波管または導波管のスタックが、異なる深度平面のために異なる量の波面発散を提供し、および/または異なる範囲の波長の光を出力するために利用されてもよい。本明細書で使用されるように、深度平面は、平坦または湾曲表面の輪郭に追従し得ることを理解されたい。いくつかの実施形態では、有利には、便宜上、深度平面は、平坦表面の輪郭に追従し得る。
【0080】
図6を継続して参照すると、導波管アセンブリ260はまた、複数の特徴320、330、340、350を導波管間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つ以上のレンズであってもよい。導波管270、280、290、300、310および/または複数のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かって出力のために各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または視認者の眼210に直接面する導波管表面のうちの1つ)であってもよい。導波管の主要表面は、その間に導波管の厚さが延在する、導波管の比較的に大面積表面に対応することを理解されたい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、クローン化されたコリメートビームの全体場を出力してもよく、これは、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一の1つは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
【0081】
いくつかの実施形態では、画像投入デバイス360、370、380、390、400はそれぞれ、それぞれが対応する導波管270、280、290、300、310の中への投入のために画像情報を生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス360、370、380、390、400は、例えば、画像情報を1つ以上の光学導管(光ファイバケーブル等)を介して画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含んでもよいことを理解されたい。
【0082】
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光プロジェクタシステム520によって提供され、これは、光モジュール530を備え、これは、発光ダイオード(LED)等の光エミッタを含んでもよい。光モジュール530からの光は、ビームスプリッタ550を介して、光変調器540、例えば、空間光変調器によって指向および修正されてもよい。光変調器540は、導波管270、280、290、300、310の中に投入される光の知覚される強度を変化させ、光を画像情報でエンコードするように構成されてもよい。空間光変調器の実施例は、液晶ディスプレイ(LCD)を含み、シリコン上液晶(LCOS)ディスプレイを含む。画像投入デバイス360、370、380、390、400は、図式的に図示され、いくつかの実施形態では、これらの画像投入デバイスは、光を導波管270、280、290、300、310の関連付けられたものの中に出力するように構成される、共通投影システム内の異なる光経路および場所を表し得ることを理解されたい。いくつかの実施形態では、導波管アセンブリ260の導波管は、導波管の中に投入された光をユーザの眼に中継しながら、理想的レンズとして機能し得る。本概念では、オブジェクトは、空間光変調器540であってもよく、画像は、深度平面上の画像であってもよい。
【0083】
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つ以上の導波管270、280、290、300、310の中に、最終的には、視認者の眼210に投影するように構成される、1つ以上の走査ファイバを備える、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つまたは複数の導波管270、280、290、300、310の中に投入するように構成される、単一走査ファイバまたは走査ファイバの束を図式的に表し得る。いくつかの他の実施形態では、図示される画像投入デバイス360、370、380、390、400は、複数の走査ファイバまたは走査ファイバの複数の束を図式的に表し得、それぞれ、光を導波管270、280、290、300、310のうちの関連付けられた1つの中に投入するように構成される。1つ以上の光ファイバは、光を光モジュール530から1つ以上の導波管270、280、290、300、310に透過するように構成されてもよいことを理解されたい。1つ以上の介在光学構造が、1つまたは複数の走査ファイバと、1つ以上の導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つ以上の導波管270、280、290、300、310の中に再指向してもよいことを理解されたい。
【0084】
コントローラ560は、画像投入デバイス360、370、380、390、400、光源530、および光モジュール540の動作を含む、スタックされた導波管アセンブリ260のうちの1つ以上のものの動作を制御する。いくつかの実施形態では、コントローラ560は、ローカルデータ処理モジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよびプロビジョニングを調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一の一体型デバイスまたは有線または無線通信チャネルによって接続される分散型システムであってもよい。コントローラ560は、いくつかの実施形態では、処理モジュール140または150(図2)の一部であってもよい。
【0085】
図6を継続して参照すると、導波管270、280、290、300、310は、全内部反射(TIR)によって各個別の導波管内で光を伝搬するように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要上部表面および主要底部表面およびそれらの主要上部表面と主要底部表面との間に延在する縁を伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、各個別の導波管内で伝搬する光を導波管から再指向し、画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、外部結合光学要素はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内を伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。説明の容易性および図面の明確性のために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、本明細書にさらに議論されるように、上部主要表面および/または底部主要表面に配置されてもよい、および/または導波管270、280、290、300、310の容積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、材料のモノリシック部品であってもよく、外部結合光学要素570、580、590、600、610は、材料のその部品の表面上および/またはその内部に形成されてもよい。
【0086】
図6を継続して参照すると、本明細書に議論されるように、各導波管270、280、290、300、310は、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。そのような第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるように解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1のレンズ350および第2のレンズ340の両方を通して通過させる。第1のレンズ350および第2のレンズ340の組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が次の上方の導波管280からの光であったよりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるように解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
【0087】
他の導波管層300、310およびレンズ330、320も同様に構成され、スタック内の最高導波管310は、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出する。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管の外部結合光学要素およびレンズの集束側面は両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、一方または両方とも、電気活性特徴を使用して動的であってもよい。
【0088】
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つ以上のものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310が、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットが、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイル化された画像を形成する利点を提供し得る。
【0089】
図6を継続して参照すると、外部結合光学要素570、580、590、600、610は、導波管と関連付けられた特定の深度平面のために、光をその個別の導波管から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられた深度平面に応じて、異なる量の発散を伴う光を出力する。いくつかの実施形態では、光抽出光学要素570、580、590、600、610は、体積特徴または表面特徴であってもよく、これは、具体的角度において光を出力するように構成されてもよい。例えば、光抽出光学要素570、580、590、600、610は、立体ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサ(例えば、クラッディング層および/または空隙を形成するための構造)であってもよい。
【0090】
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンを形成する回折特徴または「回折光学要素」(また、本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差点で眼210に向かって偏向される一方、残りがTIRを介して導波管を通して移動し続けるように、十分に低回折効率を有する。画像情報を搬送する光は、したがって、様々な場所において導波管から出射するいくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一パターンの出射放出となる。
【0091】
いくつかの実施形態では、1つ以上のDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を備えてもよく、その中で微小液滴は、ホスト媒体中に回折パターンを備え、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
【0092】
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光および赤外線光カメラを含む、デジタルカメラ)が、眼210および/または眼210の周囲の組織の画像を捕捉し、例えば、ユーザ入力を検出する、および/またはユーザの生理学的状態を監視するために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光源とを含んでもよく、該光源は、光(例えば、赤外線光)を眼に投影し、次いで、眼によって反射され、画像捕捉デバイスによって検出され得る。いくつかの実施形態では、カメラアセンブリ630は、フレーム80(図2)に取り付けられてもよく、カメラアセンブリ630からの画像情報を処理し得る、処理モジュール140および/または150と電気通信してもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、各眼に対して利用され、各眼を別個に監視してもよい。
【0093】
ここで図7を参照すると、導波管によって出力された出射ビームの実施例が、示される。1つの導波管が図示されるが、導波管アセンブリ260(図6)内の他の導波管も同様に機能し得、導波管アセンブリ260は、複数の導波管を含むことを理解されたい。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640がDOE570上に衝突する点では、光の一部は、導波管から出射ビーム650として出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられた深度平面に応じて、ある角度(例えば、発散出射ビームを形成する)において眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットは、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
【0094】
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つ以上の原色のそれぞれにおける画像をオーバーレイすることによって、各深度平面において形成されてもよい。図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、それと関連付けられた3つ以上の原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタに関する異なる数字によって図に示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、視認者からの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な場所は、変動してもよい。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得、および/または色収差を減少させ得る。
【0095】
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列されてもよいことを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
【0096】
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、赤色、緑色、または青色のうちの1つ以上のものに加えて使用されてもよい、またはそれらに取って代わってもよい。
【0097】
本開示全体を通した所与の光の色の言及は、その所与の色として視認者によって知覚される、光の波長の範囲内の1つ以上の波長の光を包含するものと理解されると理解されたい。例えば、赤色光は、約620~780nmの範囲内である1つ以上の波長の光を含んでもよく、緑色光は、約492~577nmの範囲内である1つ以上の波長の光を含んでもよく、青色光は、約435~493nmの範囲内である1つ以上の波長の光を含んでもよい。
【0098】
いくつかの実施形態では、光源530(図6)は、視認者の視覚的知覚範囲外の1つ以上の波長、例えば、赤外線および/または紫外線波長の光を放出するように構成されてもよい。加えて、ディスプレイ250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、結像および/またはユーザ刺激用途のために、本光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
【0099】
ここで図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、その光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。図9Aは、それぞれが内部結合光学要素を含む、複数またはセット660のスタックされた導波管の実施例の断面側面図を図示する。導波管はそれぞれ、1つ以上の異なる波長または1つ以上の異なる波長範囲の光を出力するように構成されてもよい。スタック660は、スタック260(図6)に対応してもよく、スタック660の図示される導波管は、複数の導波管270、280、290、300、310の一部に対応してもよいが、画像投入デバイス360、370、380、390、400のうちの1つ以上のものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを理解されたい。
【0100】
スタックされた導波管の図示されるセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、例えば、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つ以上のものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つ以上の内部結合光学要素は、反射性偏向光学要素である)。図示されるように、内部結合光学要素700、710、720は、その個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過しながら、1つ以上の光の波長を選択的に再指向するような波長選択的である。その個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、その個別の導波管670、680、690の他の面積内に配置されてもよいことを理解されたい。
【0101】
図示されるように、内部結合光学要素700、710、720は、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、その光が別の内部結合光学要素を通して通過せずに、光を受信するようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、図6に示されるように、光を異なる画像投入デバイス360、370、380、390、および400から受信するように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受信しないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
【0102】
各導波管はまた、関連付けられた光分散要素を含み、例えば、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部主要表面および底部主要表面の両方の上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部主要表面および底部主要表面の異なるもの上に配置されてもよい。
【0103】
導波管670、680、690は、例えば、材料のガス、液体および/または固体層によって離間および分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率と比較して0.05以上または0.10以下である。有利には、より低い屈折率層760a、760bは、導波管670、680、690を通して光の全内部反射(TIR)(例えば、各導波管の上部主要表面および底部主要表面間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されないが、導波管の図示されるセット660の上部および底部は、直近クラッディング層を含んでもよいことを理解されたい。
【0104】
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つ以上の導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、前述の種々の屈折率関係を保持しながら、異なってもよい。
【0105】
図9Aを継続して参照すると、光線770、780、790が、導波管のセット660に入射する。光線770、780、790は、1つ以上の画像投入デバイス360、370、380、390、400(図6)によって導波管670、680、690の中に投入されてもよいことを理解されたい。
【0106】
いくつかの実施形態では、光線770、780、790は、異なる色に対応し得る、異なる性質、例えば、異なる波長または異なる波長範囲を有する。内部結合光学要素700、710、720はそれぞれ、光が、TIRによって、導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向させる。いくつかの実施形態では、内部結合光学要素700、710、720はそれぞれ、他の波長を下層導波管および関連付けられた内部結合光学要素に透過させながら、1つ以上の特定の光の波長を選択的に偏向させる。
【0107】
例えば、内部結合光学要素700は、それぞれ、異なる第2および第3の波長または波長範囲を有する、光線1242および1244を透過させながら、第1の波長または波長範囲を有する、光線770を選択的に偏向させるように構成されてもよい。透過された光線780は、第2の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素710に衝突し、それによって偏向される。光線790は、第3の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素720によって偏向される。
【0108】
図9Aを継続して参照すると、偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向される。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、TIRによって個別の導波管670、680、690を通して伝搬する。
【0109】
ここで図9Bを参照すると、図9Aの複数のスタックされた導波管の実施例の斜視図が、図示される。前述のように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬する。光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820に向かって伝搬するように、光線770、780、790を偏向させる。
【0110】
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。いくつかの実施形態では、OPEは、光を外部結合光学要素800、810、820に偏向または分散し、いくつかの実施形態では、また、外部結合光学要素に伝搬するにつれて、本光のビームまたはスポットサイズを増加させ得る。いくつかの実施形態では、光分散要素730、740、750は、省略されてもよく、内部結合光学要素700、710、720は、光を直接外部結合光学要素800、810、820に偏向させるように構成されてもよい。例えば、図9Aを参照すると、光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820と置換されてもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、光を視認者の眼210(図7)に指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、少なくとも1つの軸においてアイボックスの寸法を増加させるように構成されてもよく、EPEは、OPEの軸と交差する(例えば、直交する)軸においてアイボックスを増加させてもよいことを理解されたい。例えば、各OPEは、光の残りの部分が導波管を辿って伝搬し続けることを可能にしながら、OPEに衝打する光の一部を同一導波管のEPEに再指向するように構成されてもよい。OPEへの衝突に応じて、再び、残りの光の別の部分は、EPEに再指向され、その部分の残りの部分は、導波管等を辿ってさらに伝搬し続ける。同様に、EPEへの衝打に応じて、衝突光の一部は、導波管からユーザに向かって指向され、その光の残りの部分は、EPに再び衝打するまで、導波管を通して伝搬し続け、その時点で、衝突する光の別の部分は、導波管から指向される等となる。その結果、内部結合された光の単一ビームは、その光の一部がOPEまたはEPEによって再指向される度に、「複製」され、それによって、図6に示されるように、クローン化された光のビーム野を形成し得る。いくつかの実施形態では、OPEおよび/またはEPEは、光のビームのサイズを修正するように構成されてもよい。
【0111】
故に、図9Aおよび9Bを参照すると、いくつかの実施形態では、導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)730、740、750と、外部結合光学要素(例えば、EP)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙/クラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受信する異なる内部結合光学要素を用いて)入射光をその導波管の中に再指向または偏向させる。光は、次いで、個別の導波670、680、690内にTIRをもたらすであろう角度で伝搬する。示される実施例では、光線770(例えば、青色光)は、前述の様式において、第1の内部結合光学要素700によって偏向され、次いで、導波管を辿ってバウンスし続け、光分散要素(例えば、OPE)730、次いで、外部結合光学要素(例えば、EP)800と相互作用する。光線780および790(例えば、それぞれ、緑色光および赤色光)は、導波管670を通して通過し、光線780は、内部結合光学要素710上に入射し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、その光分散要素(例えば、OPE)740、次いで、外部結合光学要素(例えば、EP)810に進むであろう。最後に、光線790(例えば、赤色光)は、導波管690を通して通過し、導波管690の光内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって、光分散要素(例えば、OPE)750、次いで、TIRによって、外部結合光学要素(例えば、EP)820に伝搬するように、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、光線790を視認者に外部結合し、視認者はまた、他の導波管670、680からの外部結合した光も受信する。
【0112】
図9Cは、図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素は、好ましくは、非重複する(例えば、上下図に見られるように、側方に離間される)。本明細書でさらに議論されるように、本非重複空間配列は、1対1ベースで異なるリソースから異なる導波管の中への光の投入を促進し、それによって、具体的光源が具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の空間的に分離される内部結合光学要素を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
【0113】
ここで図10を参照すると、いくつかの実施形態による、複数のナノ構造1420によって形成される、メタ表面1418と、ナノ構造1420にわたって直接配置される、反射防止コーティング1430とを備える、例示的光学構造1400の断面側面図が、図示される。メタ表面1418および反射防止コーティング1430は、光学的に透過性の基板1410上に配置されてもよい。いくつかの実施形態では、図示されるように、反射防止コーティング1430は、少なくとも、メタ表面1418の広がりの大部分にわたって、いかなる空気または他の材料もナノ構造1420と反射防止コーティング1430との間に配置されないように、ナノ構造1420間の空間を充填する。反射防止コーティング1430は、光に対して光学的に透過性または実質的に透過性であってもよい。
【0114】
いくつかの実施形態では、反射防止コーティング1430は、略平坦上部表面1430aを有する。反射防止コーティング1430は、ナノ構造1420の下層非均一トポロジのための平面化層として機能し得る。いくつかの実施形態では、反射防止コーティング1430の上部表面1430aは、ナノ構造1420の上部表面1420aによって画定された略水平平面と略平行であってもよい。
【0115】
反射防止コーティング1430の厚さ1422は、ナノ構造1420の最上表面1420aから反射防止コーティング1430の上部表面までの距離として定義され得る。いくつかの実施形態では、厚さ1422は、約10nm~約2ミクロンの範囲内であってもよい。いくつかの実施形態では、厚さ1422は、約20nm~約1ミクロンであってもよい。いくつかの実施形態では、厚さ1422は、約25nm~約500nm、約30nm~約250nm、約40nm~約100nm、および約45nm~約55nmであってもよい。いくつかの実施形態では、厚さ1422は、約50nmであってもよい。いくつかの実施形態では、厚さ1422は、ナノ構造1420の高さよりも大きくてもよく、ナノ構造1420の高さは、ナノ構造1420の底部から最上表面1420aまでの距離である。
【0116】
理論によって拘束されるわけではないが、反射防止コーティング1430は、インピーダンス整合を上層媒体(例えば、空気)とナノ構造1420および基板1410の一方または両方との間に提供し、反射の発生を低減させ得る。また、反射防止コーティング1430は、反射防止コーティングの上部表面1430aおよび反射防止コーティングの底部表面1430bから反射された光および/またはナノ構造1420の表面および/または基板1410の表面から後方散乱された光との間に、破壊的干渉を生じさせ得ることが考えられる。本干渉は、光学構造1400から反射されるように知覚される光の量における低減または排除につながると考えられる。いくつかの実施形態では、光学構造1400から反射された光を低減または排除させる反射防止コーティング1430の能力は、反射防止コーティング1430の厚さおよび反射防止コーティング1430上に衝突する光の波長に依存し得る。好ましくは、厚さ1422は、上記に述べられたように、破壊的干渉を提供するために、ナノ構造1420の屈折率および寸法および破壊的干渉が所望される光の波長に対して選定される。
【0117】
反射防止コーティング1430は、ナノ構造の屈折率1420より低いが、反射防止コーティング1430を直接覆い、それとの界面を形成する、媒体または材料の屈折率より高い、屈折率を有する、光学的に透過性の材料を含んでもよい。例えば、反射防止コーティング1430を覆い、それと界面を形成する、媒体は、空気であってもよい。いくつかの実施形態では、反射防止コーティング1430は、屈折率約1.2~約2.0、約1.2~約1.7、約1.3~約1.6、または約1.4~約1.5を有してもよい。いくつかの実施形態では、反射防止コーティング1430は、屈折率約1.45を有してもよい。いくつかの実施形態では、反射防止コーティング1430の屈折率はまた、基板1410の屈折率より低くてもよい。いくつかの実施形態では、基板1410と比較した反射防止コーティング1430のより低い屈折率は、基板1410内の光のTIRを促進し、コーティング1430を覆う媒体と比較した反射防止コーティング1430の高屈折率は、基板1410の中に内部結合するためのメタ表面1418までの光の通過を促進することを理解されたい。
【0118】
図10を継続して参照すると、付加的材料間の界面によって生じる、潜在的反射を低減させるために、反射防止コーティング1430は、メタ表面が配置される面積の全てまたは実質的に全てにわたって、実質的にいかなる空気または他の材料もナノ構造1420と反射防止コーティング1430との間に存在しないように、ナノ構造1420の輪郭に追従してもよい。いくつかの実施形態では、図示されるように、反射防止コーティング1430は、反射防止コーティング1430が基板1410の表面の上方のナノ構造1420を封じ込めるするように、光学構造1400上に直接配置される。
【0119】
本明細書に議論されるように、反射防止コーティング1430は、好ましくは、光学的に透過性の材料を含む。実施例として、光学的に透過性の材料は、透明ポリマー等の光学的に透過性の有機材料であってもよい。いくつかの実施形態では、反射防止コーティング1430は、フォトレジスト材料等のレジスト材料を備えてもよい。フォトレジストの非限定的実施例は、正のレジストおよび負のレジストを含む。いくつかの実施形態では、反射防止コーティング1430は、UVフォトレジスト、EUVフォトレジスト、またはDUVフォトレジストを備えてもよい。
【0120】
反射防止コーティング1430は、種々の堆積プロセスによって、ナノ構造1420上に形成されてもよいことを理解されたい。いくつかの実施形態では、反射防止コーティング1430は、液体としてナノ構造1420に適用されてもよく、それによって、液体は、反射防止コーティング1430を形成する。例えば、反射防止コーティング1430は、スピンコーティングによって、液体としてナノ構造1420上に堆積されてもよい。いくつかの実施形態では、反射防止コーティング1430は、蒸着プロセス、例えば、化学蒸着(CVD)プロセスおよび原子層堆積(ALD)において、気相前駆体を使用して、ナノ構造1420上に堆積されてもよい。
【0121】
いくつかの実施形態では、反射防止コーティング1430は、反射防止コーティング1430を備えない実質的に類似する光学構造と比較して、約50%、75%、85%、90%、95%、99%、またはそれよりも多く、透過モードで動作する光学構造1400によって反射された入射光の量を低減させ得る。いくつかの実施形態では、反射防止コーティングは、-10°~10°、-20°~20°、-30°~30°、-40°~40°、-50°~50°、またはより広い入射角の範囲にわたって、そのような反射された光の低減を達成し得る。
【0122】
複数のナノ構造1420を備える、メタ表面1418は、ビーム操向、波面成形、波長および/または偏光分離、および異なる波長および/または偏光の組み合わせ等のために、光を操作するように構成されてもよい。好ましくは、光は、350nm~800nmの範囲内の波長を有する、可視光である。いくつかの実施形態では、反射防止コーティングが配置されるメタ表面は、可視光の波長未満のサイズおよび周期性を有する、ナノ構造を備えてもよい。いくつかの実施形態では、メタ表面1418は、光の一部の波長を選択的に再指向する一方、再指向されずに、光の他の波長が通過することを可能にすることを理解されたい。そのような性質は、典型的には、ミクロンスケール(例えば、フォトニック結晶ファイバまたは分布ブラッグ反射体)における構造を用いてエンジニアリングされる一方、本明細書における種々の実施形態は、ナノスケール(例えば、10~100分の1のより小さいスケール)の幾何学形状を含み、電磁スペクトルの可視部分内の光の選択的再指向を提供する。
【0123】
実施例として、メタ表面1418は、光が、メタ表面1418の第1の側からメタ表面上に入射し、メタ表面1418の本体を通して伝搬し、続いて、メタ表面1418の反対側上でメタ表面1418から離れるように伝搬する、透過モードで作用し得る。光は、メタ表面1418から離れるように、第1の側上の光の入射方向と異なる方向に伝搬する。いくつかの実施形態では、反射防止コーティング1430は、反射防止コーティング1430を備えないメタ表面1418と比較して、メタ表面1418から反射される光の量を低減または排除させ得る。いくつかの実施形態では、反射防止コーティング1430は、反射防止コーティング1430を備えないメタ表面1418と比較して、メタ表面1418を通してかつそこから離れるように伝搬する、光の量を実質的に低減させなくてもよい、または、それに影響を及ぼさなくてもよい。
【0124】
いくつかの実施形態では、反射防止コーティング1430が配置されるメタ表面1418を支持する、基板1410は、導波管であってもよく、入力画像情報を受信し、入力画像情報に基づいて、画像情報でエンコードされた光の形態で出力画像を生成するように構成される、導波管を用いて、直視型ディスプレイデバイスまたは接眼ディスプレイデバイスを形成してもよい。これらのデバイスは、装着可能であって、いくつかの実施形態では、アイウェアを構成してもよく、図1-9Cに関して本明細書に説明されるディスプレイデバイスであってもよい。いくつかの実施形態では、導波管によって受信された入力画像情報は、1つ以上の導波管の中に内部結合される、異なる波長(例えば、赤色光、緑色光、および青色光)の多重化されたライトストリーム内にエンコードされてもよい。内部結合された光は、全内部反射に起因して、導波管を通して伝搬してもよい。内部結合された光は、図9A-9Cに関して上記に説明されるように、1つ以上の外部結合光学要素によって、導波管から外部結合(または出力)されてもよい。
【0125】
いくつかの実施形態では、反射防止コーティング1430が共形的に配置される、メタ表面1418は、導波管の内部結合光学要素、外部結合光学要素、および/または光分散要素であってもよい。メタ表面1418および反射防止コーティング1430のコンパクト性および平面性は、コンパクトな導波管と、複数の導波管がスタックを形成する、コンパクトな導波管のスタックとを可能にする。加えて、メタ表面1418は、光を内部結合および/または外部結合する際、高画質を提供し得る、高精度を提供するように構成されてもよい。例えば、高選択性は、フルカラー画像が異なる色または波長の光を同時に出力することによって形成される構成におけるチャネルクロストークを低減させ得る一方、反射防止コーティング1430は、残影画像を低減させ得る。
【0126】
ナノ構造1420は、種々の用途のために、種々のサイズを有し、相互に対して種々の配向で配列され、メタ表面1418を形成してもよいことを理解されたい。例えば、本明細書に議論されるように、ナノ構造1420は、非対称または非対称回折格子等の回折格子を形成するように配列されてもよい。いくつかの実施形態では、メタ表面1418は、多レベルまたは多段である、ナノ構造1420から形成されてもよい。例えば、ナノ構造1420は、第1のレベル上では、比較的に広く、第2のレベル上では、比較的に狭くてもよい。いくつかの実施形態では、メタ表面1418は、単一レベル上に形成され、実質的に一定幅をそのレベル上に有してもよい。メタ表面1418として利用され得る、メタ表面の実施例は、2016年11月2日に出願された米国特許出願第15/342,033号(弁理士整理番号MLEAP.027A)、2016年5月6日に出願された米国仮出願第62/333,067号(弁理士整理番号MLEAP.066PR)、「DIFFRACTION GRATINGS FORMED BY METASURFACES HAVING DIFFERENTLY ORIENTED NANOBEAMS」と題され、2017年1月27日に出願された米国仮出願第62/451,608号(弁理士整理番号MLEAP.092PR)、および「DIFFRACTION GRATINGS BASED ON METASURFACES HAVING ASYMMETRIC OPTICAL ELEMENTS」と題され、2017年1月27日に出願された米国仮出願第62/451,615号(弁理士整理番号MLEAP.103PR)に説明される。これらの出願はそれぞれ、参照することによって本明細書に組み込まれる。本明細書に開示されるナノ構造1420は、これらの出願に説明される突出部、ナノビーム等に対応してもよいことを理解されたい。いくつかの実施形態では、光学構造1400は、当技術分野において公知のまたは将来的に開発される、複数のナノ構造を備える任意のメタ表面であってもよい。
【0127】
ナノ構造1420の異なる構成の実施例は、下記に説明される。説明を明確にするために、下記に議論されるナノ構造は、1420と異なる参照番号を有し得ることを理解されたい。しかしながら、下記に説明される種々のナノ構造(1520、1620)は、図10のナノ構造1420に対応することを理解されたい。
【0128】
ここで図11Aを参照すると、いくつかの実施形態による、とりわけ、光操向のために有利であり得る、非対称パンチャラトナムベリー位相光学要素(PBOE)を形成するナノ構造1520を備える、メタ表面1518を備える、例示的光学構造1500の上下図が、図示される。基板1410は、ナノ構造1520の下にある。いくつかの実施形態では、基板1410は、光学的に透過性の基板、例えば、導波管であってもよい。
【0129】
ここで図11Bを参照すると、いくつかの実施形態による、非対称パンチャラトナムベリー位相光学要素(PBOE)を備え、反射防止コーティング1430を含む、例示的光学要素1500の斜視図が、図示される。本明細書に説明されるように、反射防止コーティング1430は、実質的にいかなる空気または他の材料もナノ構造1520と反射防止コーティング1430との間に存在しないように、ナノ構造1520の輪郭に追従する。さらに、本明細書に説明されるように、反射防止コーティング1430は、略平坦上部表面1430aを有してもよい。反射防止コーティング1430は、ナノ構造1520の下層非均一トポロジのための平面化層として機能し得る。いくつかの実施形態では、反射防止コーティング1430の上部表面1430aは、ナノ構造1520の上部表面(図示せず)によって画定された略水平平面と略平行であってもよい。反射防止コーティング1430の厚さ1522は、ナノ構造1520の最上表面から反射防止コーティング1430の上部表面1430aまでの距離として定義され得る。いくつかの実施形態では、厚さ1522は、約10nm~約2ミクロンの範囲内であってもよい。いくつかの実施形態では、厚さ1522は、約20nm~約1ミクロンであってもよい。いくつかの実施形態では、厚さ1522は、約25nm~約500nm、約30nm~約250nm、約40nm~約100nm、および約45nm~約55nmであってもよい。いくつかの実施形態では、厚さ1522は、約50nmであってもよい。いくつかの実施形態では、厚さ1522は、メタ表面が再指向するように構成され、したがって、反射防止コーティング1430上に衝突することが予期される、光の波長に基づいて選定されてもよい。好ましくは、厚さ1522は、それぞれ、反射防止コーティング1430の上部表面および底部表面から反射された光の間に、破壊的干渉を提供するように選定され、底部表面(図示せず)は、ナノ構造1520の上部表面との界面を形成する、反射防止コーティングの表面である。
【0130】
図11Cは、図11A-11Bを参照して説明される一般的構造を有する光学構造に関する光の入射角の関数としての透過および反射のプロットである。種々の次数の回折された透過光は、「T」によって示され、反射光は、「R」によって示される。本実施例では、反射防止コーティング1430は、屈折率約1.45を有する光学的に透過性のフォトレジストであり、これは、ナノ構造1520の屈折率より低く、そして、約1.77であるポリシリコンから形成される基板1410の屈折率より低い。反射防止コーティング1430の厚さ1522は、約50nmであって、空気が、反射防止コーティング1430の最上表面との界面を形成する。
【0131】
プロットから分かり得るように、光学構造1500から反射された入射光のパーセンテージは、-20°超~20°超の広範囲の入射角にわたって、約2%を下回ったままである。比較として、反射防止コーティングを備えない実質的に類似するメタ表面1518から反射された光のパーセンテージが、同一範囲の入射角にわたって約10%(図示せず)であると決定された。したがって、本実施形態では、反射防止コーティング1430は、反射防止コーティング1430を備えない実質的に類似するメタ表面1518と比較して、メタ表面1518から反射される光の量において約80%の低減を提供する。
【0132】
一方、TIR(T)のために好適な角度に対して1次回折を受ける、反射防止コーティング1430を備えるメタ表面1518上に入射する光のパーセンテージは、入射角0°に関して約42%であって、入射角約-10°~約10°にわたって、ほぼ本レベルのままである。有利には、TIRのために好適な角度で回折される入射光の量は、反射防止コーティング1430を備えない実質的に類似するメタ表面1518に関するものと実質的に同一である。故に、反射防止コーティング1430を備えるメタ表面1518は、内部結合された光の量における実質的低減を伴わずに、反射される光の量を低減させ、それによって、光学要素が組み込まれるディスプレイデバイス内の潜在的残影画像を低減または排除させながら、本明細書に説明されるような光学要素1500、例えば、内部結合光学要素として使用されてもよい。
【0133】
ここで図12Aを参照すると、メタ表面1618および反射防止コーティング1430を備える、例示的光学要素1600の断面斜視図が、図示される。メタ表面1618は、異なる幅を有するナノ構造1620によって形成される、非対称回折格子を備える。図12Bは、図12Aの光学要素1600の断面側面図を図示する。本実施例では、基板1410は、屈折率約1.77を有する、サファイアを備える。複数のナノ構造1620は、非晶質シリコンを備える。反射防止コーティング1430は、材料屈折率約1.45を有する、光学的に透過性のフォトレジストを備えてもよく、いくつかの実施形態では、スピンコーティングによって、非対称回折格子1618に共形的に適用されてもよい。ナノ構造1620の最上表面1620aから反射防止コーティング1430の上部表面1430aまでの距離である、反射防止コーティング1430の厚さ1622は、約50nmである。
【0134】
図12Cは、図12A-12Bに示される一般的構造を有する光学要素に関する透過および反射スペクトルのプロットである。プロットから分かり得るように、反射防止コーティング1430を備える光学要素1600から反射された入射光のパーセンテージは、-30°超~30°超の広範囲の入射角にわたって、約2%を下回ったままである。反射防止コーティング1430を備える光学要素1600から反射された光のパーセンテージは、入射角約-15°~約15°にわたって約0である。
【0135】
比較として、反射防止コーティング1430を備えない実質的に類似する光学要素1600から反射された光のパーセンテージは、同一範囲の入射角にわたって約15%(図示せず)である。したがって、本実施形態では、反射防止コーティング1430は、反射防止コーティング1430を備えない実質的に類似する光学要素1600と比較して、光学要素1600から反射された光の量における約87%の低減を提供する。
【0136】
一方、TIR(T1)に対して1次回折を受ける反射防止コーティング1430を備える、光学要素1600に入射する光のパーセンテージは、入射角約-30°~約20°にわたって約30%よりも大きい。有利には、反射防止コーティング1430を備える光学要素1600に関するTIRに対して回折される入射光の量は、反射防止コーティング1430を備えない実質的に類似する光学要素1600に関するTIRに対して回折される光の量と実質的に同一である。故に、反射防止コーティング1430を備える光学要素1600は、内部結合される光の量の実質的低減を伴わずに、本明細書に議論されるように、反射される光の量を低減させ、それによって、潜在的残影画像を低減または排除させながら、本明細書に説明されるような光学要素、例えば、内部結合光学要素として使用されてもよい。
【0137】
本明細書に開示される金属表面およびナノ構造は、リソグラフィおよびエッチングによるパターン化等、パターン化によって形成されてもよいことを理解されたい。いくつかの実施形態では、メタ表面およびナノ構造は、ナノインプリントを使用してパターン化され、それによって、コストがかかるリソグラフィおよびエッチングプロセスを回避してもよい。いったんナノ構造が、パターン化されると、任意のマスク材料は、いくつかの実施形態では、除去されてもよく、反射防止コーティング1430が、本明細書に説明されるように、メタ表面に適用されてもよい、それにわたって堆積されてもよい、または形成されてもよい。いくつかの他の実施形態では、マスク材料自体が、反射防止コーティングとして利用されてもよい。図13A-13Dおよび図14A-14Dは、反射防止コーティングを有する光学構造を形成するためのプロセスフローの実施例を図示する。
【0138】
図13A-13Dは、それぞれ、いくつかの実施形態による、リソグラフィおよびエッチングを使用した、メタ表面1418、1518、1618を有する光学要素1400、1500、1600の加工の種々の段階における、中間構造1700A-1700Dの断面図を図示する。図13Aの中間構造1700Aを参照すると、本方法は、メタ表面1418、1518、1618をその上に形成するために好適な表面1410Sを有する、基板1410を提供するステップを含む。基板1410は、屈折率nと、図10を参照して上記に説明される、種々の他の材料属性とを有する、光学的に透過性の材料を含む。本方法は、加えて、表面1410S上に、屈折率n1bulkを有する、高屈折率層1411を形成するステップを含む。高屈折率層1411は、図10-12を参照して上記に説明されるように、パターン化されるとき、1つ以上のナノ構造1420、1520、1620を形成するために好適である。高屈折率層1411は、いくつかの実施形態によると、プラズマ増強化学蒸着(PECVD)等のプラズマベースのCVDプロセスおよび低圧化学蒸着(LPCVD)等の熱ベースのCVDプロセスを含む、化学蒸着(CVD)等の任意の好適な技法を使用して、堆積されてもよい。高屈折率層1411はまた、他の技法の中でもとりわけ、物理蒸着(PVD)、蒸発、および原子層堆積を使用して、堆積されてもよい。本方法は、加えて、高屈折率層1411上に、マスク層1431Aを形成するステップを含む。マスク層1431Aは、下層高屈折率層1411の後続エッチングのためのテンプレートを提供するために好適な材料の1つ以上の層から形成される、またはそれを含んでもよい。いくつかの実施形態では、マスク層1431Aは、フォトレジストであってもよく、これは、スピンコーティングされた後、後焼締が続き得る。いくつかの他の実施形態では、マスク層1431Aは、高屈折率層1411上に形成される硬質マスク層と、硬質マスク層上に形成されるフォトレジスト層とを含む、複数の層を含んでもよい。硬質マスク層は、例えば、フォトレジスト層が、下層高屈折率層1411への後続エッチングパターン転写の間、十分なエッチング選択性を提供し得ないとき、含まれてもよい。硬質マスク層はまた、反射防止コーティングとしての役割を果たし、後続露光プロセスの間、反射を最小限にし得る。いくつかの実施形態では、硬質マスク層は、スピンコーティングされたポリマーまたは高屈折率層1411を堆積させるための堆積技法のいずれかによって堆積されるフィルムであってもよい。含まれるとき、硬質マスク層は、上層フォトレジスト層より優れたエッチング選択性を提供し得る。いくつかの実施形態では、フォトレジストは、正のフォトレジストまたは負のフォトレジストであってもよい。正のフォトレジストは、光に暴露されるフォトレジストの部分がフォトレジスト現像液に可溶性となる、フォトレジストのタイプである一方、負のレジストは、光に暴露されるフォトレジストの部分がフォトレジスト現像液に不可溶性となる、フォトレジストのタイプである。
【0139】
いくつかの実施形態では、フォトレジストおよび/または硬質マスク層は、フォトレジストおよび/または硬質マスク層が下層高屈折率層1411のエッチングを通して比較的に無傷のままであるように、高屈折率層1411に対して十分なエッチング選択性を有し得る、シリコンまたは酸化ケイ素を含有する材料から形成されてもよい。これらの実施形態では、シリコンまたは酸化ケイ素含有フォトレジストおよび/または硬質マスク層は、図10-12を参照して上記に説明されるように、パターン化後、1つ以上のナノ構造1420、1520、1620の上部に留まってもよい。
【0140】
図13Bの中間構造1700Bを参照すると、堆積および堆積後焼締後、本方法は、フォトレジストの一部を光のパターンに選択的に暴露することによって、マスク層1431のフォトレジスト層をパターン化するステップを含む。光、例えば、コヒーレントUV光または電子ビームへの暴露は、化学変化、例えば、ポリマー架橋結合をフォトレジスト内に生じさせ、これは、フォトレジストの暴露部分が正のフォトレジストのための現像液溶液によって選択的に除去されることを可能にする、またはフォトレジストの非暴露部分が負のフォトレジストのための現像液溶液によって選択的に除去されることを可能にする。選択的除去に応じて、結果として生じるパターン化されたマスクフォトレジストは、高屈折率層1411上に留まり、それによって、例えば、エッチングによって、含まれるとき、下層硬質マスク層の後続パターン化のためのテンプレートとしての役割を果たす。結果として生じる中間構造1700Cは、パターン化されたマスク層1411を示し、これは、パターン化されたフォトレジストと、随意に、含まれるとき、パターン化された硬質マスク層とを含む。
【0141】
図13Cの中間構造1700Cを参照すると、パターン化されたマスク層1431は、下層高屈折率層1411を1つ以上のナノ構造1420、1520、1620にエッチングするためのテンプレートとして使用されてもよい。ナノ構造1420、1520、1620は、結果として生じるメタ表面の所望の性質に基づいて、所望に応じて構成されてもよいことを理解されたい。いくつかの実施形態では、ナノ構造1420、1520、1620は、図10-12を参照して上記により詳細に説明されるように、第1の側方方向(例えば、y-方向)に延在する特徴と、第2の方向(例えば、x-方向)に延在する複数の第2のナノ構造1420、1520、1620とを含んでもよい。種々の実施形態では、高屈折率層1411は、エッチングされてもよく、例えば、異方的にドライエッチングされてもよい。採用されるエッチングプロセスは、マスク層1431を早期に除去することなしに、および/または望ましくなく基板1410の暴露部分を損傷することなしに、高屈折率層1411の一部が除去されるように、マスク層1431および/または基板1410に対して好適な選択性を有してもよい。
【0142】
中間構造1700Dを参照すると、いくつかの実施形態では、1つ以上のナノ構造1420、1520、1620上のマスク層1431が、そこから除去される。マスク層1431のレジスト部分は、アッシングと称されるプロセスにおいて、例えば、液体レジスト剥離液または酸素ベースのプラズマを使用することによって除去されてもよい。所望に応じて、含まれるとき、下層硬質マスク層が、続いて、1つ以上のナノ構造1420、1520、1620または基板1410に実質的に影響を及ぼさず、硬質マスクを選択的に除去する、ウェットまたはドライエッチングプロセスを使用して、除去されてもよい。続いて、反射防止コーティングが、例えば、スピンコーティングによってまたは化学蒸着および蒸着された層の後続平面化によって、ナノ構造1420、1520、1620上またはその側面に堆積されてもよい。
【0143】
いくつかの他の実施形態、例えば、図10-12を参照して上記に説明される実施形態では、マスク層1431、例えば、フォトレジスト/硬質マスクまたは硬質マスクは、除去されずに、残されてもよい。これらの実施形態では、マスク層1431は、図10-12を参照して本明細書に説明されるように、反射防止コーティング1430を備えてもよい。
【0144】
図14A-14Dは、それぞれ、いくつかの実施形態による、メタ表面1418、1518、1618を有する光学要素1400、1500、1600の加工の種々の段階における中間構造1800A-1800Dの断面図を図示する。いくつかの実施形態では、それぞれ、図14A、14C、および14Dの中間構造1800A、1800C、および1800Dを形成する方法は、それぞれ、図13A、13C、および13Dの中間構造1700A、1700C、および1700Dを形成する方法に類似する。しかしながら、図14Bの中間構造1800Bを形成する方法は、図13Bの中間構造1700Bを形成する方法と異なり、その差異は、下記に説明される。
【0145】
図14Bの中間構造1800Bを参照すると、図13Bを参照して上記に説明される方法と異なり、光または電子ビームを使用して、フォトレジストの一部を選択的に暴露および除去することによって、フォトレジスト層をパターン化する代わりに、図示される実施形態では、1つ以上のナノ構造1420、1520、1620の形成に従って所定のトポロジパターンを有する、ナノインプリントテンプレート1432またはナノインプリント金型が、マスク層1431Aのインプリントレジストと接触させられる。いくつかの実施形態では、テンプレート1432は、例えば、インプリントレジストのガラス遷移温度よりも高いある温度下、熱可塑性ポリマーから形成されるインプリントレジストの中に押圧され、それによって、テンプレート1432のパターンを軟化されたインプリントレジストに転送する。冷却後、テンプレート1432は、インプリントレジストから分離され、パターン化されたレジストは、高屈折率層1411上に残される。いくつかの他の実施形態では、インプリントレジストの中に押圧された後、インプリントレジストは、UV光下、架橋結合によって硬化される。
【0146】
図15を参照すると、いくつかの実施形態によると、図13Dおよび14Dに関して上記に説明されるように、1つ以上のナノ構造1420、1520、1620からのマスク層1431の除去後、反射防止コーティング1430は、例えば、化学蒸着プロセスまたは原子層堆積プロセス等の蒸着プロセスによって、ナノ構造1420、1520、1620上に共形的に堆積されてもよい。したがって、いくつかの実施形態では、堆積された反射防止コーティング1430は、それらのナノ構造を分離する体積を完全に充填せずに、ナノ構造1420、1520、1620を覆い、ナノ構造1420、1520、1620の輪郭に追従する、共形層であってもよい。
【0147】
前述の明細書では、種々の具体的実施形態が説明された。しかしながら、種々の修正および変更が、本発明のより広義の精神および範囲から逸脱することなくそこに行われ得ることが明白となるであろう。明細書および図面は、故に、限定的意味ではなく、例証と見なされるべきである。
【0148】
実際、本開示のシステムおよび方法は、それぞれ、いくつかの革新的側面を有し、そのうちのいかなるものも、本明細書に開示される望ましい属性に単独で関与しない、またはそのために要求されないことを理解されたい。上記に説明される種々の特徴およびプロセスは、相互に独立して使用され得る、または種々の方法で組み合わせられ得る。全ての可能な組み合わせおよび副次的組み合わせが、本開示の範囲内に該当することが意図される。
【0149】
別個の実施形態の文脈において本明細書に説明されるある特徴はまた、単一実施形態における組み合わせにおいて実装されてもよい。逆に、単一実施形態の文脈において説明される種々の特徴もまた、複数の実施形態において別個に、または任意の好適な副次的組み合わせにおいて実装されてもよい。さらに、特徴がある組み合わせにおいて作用するものとして上記に説明され、さらに、そのようなものとして最初に請求され得るが、請求される組み合わせからの1つ以上の特徴は、いくつかの場合では、組み合わせから削除されてもよく、請求される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象とし得る。いかなる単一の特徴または特徴のグループも、あらゆる実施形態に必要または必須なわけではない。
【0150】
とりわけ、「~できる(can)」、「~し得る(could)」、「~し得る(might)」、「~し得る(may)」、「例えば(e.g.)」、および同等物等、本明細書で使用される条件文は、別様に具体的に記載されない限り、または使用されるような文脈内で別様に理解されない限り、概して、ある実施形態がある特徴、要素、および/またはステップを含む一方、他の実施形態がそれらを含まないことを伝えることが意図されることを理解されたい。したがって、そのような条件文は、概して、特徴、要素、および/またはステップが、1つ以上の実施形態に対していかようにも要求されること、または1つ以上の実施形態が、著者の入力または促しの有無を問わず、これらの特徴、要素、および/またはステップが任意の特定の実施形態において含まれるかどうか、または、実施されるべきかどうかを決定するための論理を必然的に含むことを示唆することを意図されない。用語「~を備える」、「~を含む」、「~を有する」、および同等物は、同義語であり、非限定的方式で包括的に使用され、付加的要素、特徴、行為、動作等を除外しない。また、用語「または」は、その包括的意味において使用され(およびその排他的意味において使用されず)、したがって、例えば、要素のリストを接続するために使用されると、用語「または」は、リスト内の要素のうちの1つ、いくつか、または全てを意味する。加えて、本願および添付される請求項で使用されるような冠詞「a」、「an」、および「the」は、別様に規定されない限り、「1つ以上の」または「少なくとも1つ」を意味するように解釈されるべきである。同様に、動作は、特定の順序で図面に描写され得るが、これは、望ましい結果を達成するために、そのような動作が示される特定の順序でまたは連続的順序で実施されること、または全ての図示される動作が実施されることの必要はないと認識されるべきである。さらに、図面は、フローチャートの形態で1つ以上の例示的プロセスを図式的に描写し得る。しかしながら、描写されない他の動作も、図式的に図示される例示的方法およびプロセス内に組み込まれることができる。例えば、1つ以上の付加的動作が、図示される動作のいずれかの前に、その後に、それと同時に、またはその間に実施されることができる。加えて、動作は、他の実施形態において再配列される、または再順序付けられ得る。ある状況では、マルチタスクおよび並列処理が、有利であり得る。さらに、上記に説明される実施形態における種々のシステムコンポーネントの分離は、全ての実施形態におけるそのような分離を要求するものとして理解されるべきではなく、説明されるプログラムコンポーネントおよびシステムは、概して、単一のソフトウェア製品においてともに統合される、または複数のソフトウェア製品にパッケージ化され得ることを理解されたい。加えて、他の実装も、以下の請求項の範囲内である。いくつかの場合では、請求項に列挙されるアクションは、異なる順序で実施され、依然として、望ましい結果を達成することができる。
【0151】
故に、請求項は、本明細書に示される実装に限定されることを意図されず、本明細書に開示される本開示、原理、および新規の特徴と一貫する最も広い範囲を与えられるべきである。
図1
図2
図3
図4
図5A
図5B
図5C
図6
図7
図8
図9A
図9B
図9C
図10
図11A
図11B
図11C
図12A
図12B
図12C
図13
図14
図15