(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-11
(45)【発行日】2022-10-19
(54)【発明の名称】操舵制御装置
(51)【国際特許分類】
B62D 6/00 20060101AFI20221012BHJP
B62D 5/04 20060101ALI20221012BHJP
【FI】
B62D6/00 ZYW
B62D5/04
(21)【出願番号】P 2018106412
(22)【出願日】2018-06-01
【審査請求日】2021-05-25
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】小寺 隆志
【審査官】岡崎 克彦
(56)【参考文献】
【文献】特開2017-165219(JP,A)
【文献】特開2004-314891(JP,A)
【文献】特開2004-130964(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
B62D 5/04
(57)【特許請求の範囲】
【請求項1】
操舵部と、前記操舵部に入力される操舵に応じて転舵輪を転舵させる転舵部とが機械的に分離した構造又は機械的に断接可能な構造を有する操舵装置を制御対象とし、
前記操舵部に入力される操舵に抗する力である操舵反力を与える操舵側モータの作動を制御する制御部を備え、
前記制御部は、
前記操舵装置に入力される駆動トルクに対して運転者が入力すべき操舵トルクの目標値に対応するトルク指令値を演算するトルク指令値演算部と、
前記操舵トルクを前記トルク指令値に追従させるトルクフィードバック制御の実行に基づいて入力トルク基礎成分を演算するトルクフィードバック制御部と、
前記入力トルク基礎成分に基づいて、前記操舵部に連結されるステアリングホイールの操舵角の目標値となる目標操舵角を演算する目標操舵角演算部と
、
前記操舵角を前記目標操舵角に追従させる角度フィードバック制御の実行に基づいて前記操舵反力の目標値となる目標反力トルクを演算
する目標反力トルク演算部と、
前記転舵輪が連結される転舵軸に作用する複数種の軸力を互いに異なる状態量に基づいて演算する複数の軸力演算部と、
前記複数種の軸力に基づいてグリップ状態量を演算するグリップ状態量演算部とを備え、
前記トルク指令値演算部は、前記グリップ状態量を考慮して前記トルク指令値を演算するように構成されており、
前記トルク指令値演算部は、
前記駆動トルクに基づいて前記トルク指令値の基礎となる指令基礎値を演算する指令基礎値演算部と、
前記指令基礎値に乗算する基礎調整ゲインを演算する基礎調整ゲイン演算部とを備え、
前記基礎調整ゲイン演算部は、前記グリップ状態量に基づいて前記基礎調整ゲインを変更する操舵制御装置。
【請求項2】
請求項
1に記載の操舵制御装置において、
前記基礎調整ゲイン演算部は、前記基礎調整ゲインを車速に応じて変更する操舵制御装置。
【請求項3】
請求項
1又は請求項2に記載の操舵制御装置において、
前記トルク指令値演算部は、前記トルク指令値が前記駆動トルクの方向に応じてヒステリシス特性を有するように、該駆動トルクに基づいてヒステリシス成分を演算するヒステリシス成分演算部と、
前記ヒステリシス成分に乗算するヒステリシス調整ゲインを演算するヒステリシス調整ゲイン演算部とを備え、
前記ヒステリシス調整ゲイン演算部は、前記グリップ状態量に基づいて前記ヒステリシス調整ゲインを変更する操舵制御装置。
【請求項4】
請求項
3に記載の操舵制御装置において、
前記ヒステリシス調整ゲイン演算部は、前記ヒステリシス調整ゲインを車速に応じて変更する操舵制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、操舵制御装置に関する。
【背景技術】
【0002】
従来、操舵装置の一種として、運転者により操舵される操舵部と運転者の操舵に応じて転舵輪を転舵させる転舵部との間の動力伝達が分離されたステアバイワイヤ式のものがある。こうした操舵装置では、転舵輪が受ける路面反力等が機械的にはステアリングホイールに伝達されない。そのため、同形式の操舵装置を制御対象とする操舵制御装置には、ステアリングホイールに対して路面情報を考慮した操舵反力を操舵側アクチュエータ(操舵側モータ)によって付与するものがある。例えば特許文献1には、転舵輪に連結される転舵軸に作用する軸力に着目し、ステアリングホイールの目標操舵角に応じた目標転舵角から算出される理想軸力と、転舵側アクチュエータの駆動源である転舵側モータの駆動電流から算出される路面軸力とを所定配分比率で配分した配分軸力を考慮して操舵反力を決定する操舵制御装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ステアバイワイヤ式の操舵装置を制御対象とする操舵制御装置においては、より優れた操舵フィーリングの実現、特に運転者が入力すべき操舵トルク(操舵反力)と当該操舵トルクに対する操舵装置の出力である転舵輪の転舵角との関係である操舵特性の最適化が求められている。また、こうした操舵制御装置では、上記のように路面情報等を操舵反力によって運転者に伝達するため、最適な操舵特性への調整はできるだけ容易であることが望ましい。
【0005】
本発明は、こうした実情に鑑みてなされたものであり、その目的は、最適な操舵特性への調整を容易に実現できる操舵制御装置を提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決する操舵制御装置は、操舵部と、前記操舵部に入力される操舵に応じて転舵輪を転舵させる転舵部とが機械的に分離した構造又は機械的に断接可能な構造を有する操舵装置を制御対象とし、前記操舵部に入力される操舵に抗する力である操舵反力を与える操舵側モータの作動を制御する制御部を備え、前記制御部は、前記操舵装置に入力される駆動トルクに対して運転者が入力すべき操舵トルクの目標値に対応するトルク指令値を演算するトルク指令値演算部と、前記操舵トルクを前記トルク指令値に追従させるトルクフィードバック制御の実行に基づいて入力トルク基礎成分を演算するトルクフィードバック制御部と、前記入力トルク基礎成分に基づいて、前記操舵部に連結されるステアリングホイールの操舵角の目標値となる目標操舵角を演算する目標操舵角演算部とを備え、前記操舵角を前記目標操舵角に追従させる角度フィードバック制御の実行に基づいて前記操舵反力の目標値となる目標反力トルクを演算する。
【0007】
上記構成によれば、入力トルク基礎成分は、運転者が入力すべき操舵トルクを操舵装置に入力される駆動トルクに基づき演算されるトルク指令値に追従させるトルクフィードバック制御を実行することにより演算される。このように演算される入力トルク基礎成分は、目標操舵角を演算するのに用いられるものであり、目標操舵角を変化させ、当該変化に基づき操舵反力を変化させるように機能する。これにより、入力トルク基礎成分は、運転者が入力すべき操舵トルクを、駆動トルクに応じた適切な値に維持させるように作用する操舵反力として操舵装置に付与される。つまり、運転者が入力すべき操舵トルクと、当該操舵トルクに対する操舵装置の出力である転舵輪の転舵角との関係を示す操舵特性を最適化する場合、トルク指令値演算部の調整を通じて入力トルク基礎成分を調整すれば済むようになる。したがって、最適な操舵特性への調整については、入力トルク基礎成分を調整すればよく、例えば他の成分との間で相互に調整を図る必要がある場合と比較して、容易に調整できる。
【0008】
上記操舵制御装置において、前記転舵輪が連結される転舵軸に作用する複数種の軸力を互いに異なる状態量に基づいて演算する複数の軸力演算部と、前記複数種の軸力に基づいてグリップ状態量を演算するグリップ状態量演算部とを備え、前記トルク指令値演算部は、前記グリップ状態量を考慮して前記トルク指令値を演算することが好ましい。
【0009】
上記構成によれば、グリップ状態量を考慮してトルク指令値を演算し、このトルク指令値に基づいて操舵反力を変更する。このようにトルク指令値の演算にグリップ状態量を考慮することで、転舵輪のグリップ状態(例えば転舵輪がどの程度路面をグリップしているかを示すグリップ度)に応じて操舵特性を最適化できる。
【0010】
上記操舵装置において、前記トルク指令値演算部は、前記駆動トルクに基づいて前記トルク指令値の基礎となる指令基礎値を演算する指令基礎値演算部と、前記指令基礎値に乗算する基礎調整ゲインを演算する基礎調整ゲイン演算部とを備え、前記基礎調整ゲイン演算部は、前記グリップ状態量に基づいて前記基礎調整ゲインを変更することが好ましい。
【0011】
上記構成によれば、基礎調整ゲインを乗算することによりトルク指令値の指令基礎値を調整する。そして、グリップ状態量に基づいて基礎調整ゲインを変更するため、グリップ状態の影響を指令基礎値の勾配の変化として操舵特性に対して反映させることができる。
【0012】
上記操舵制御装置において、前記基礎調整ゲイン演算部は、前記基礎調整ゲインを車速に応じて変更することが好ましい。
上記構成によれば、基礎調整ゲインの演算に車速を加味することで、指令基礎値を車速に応じて好適に調整できる。
【0013】
上記操舵制御装置において、前記トルク指令値演算部は、前記トルク指令値が前記駆動トルクの方向に応じてヒステリシス特性を有するように、該駆動トルクに基づいてヒステリシス成分を演算するヒステリシス成分演算部と、前記ヒステリシス成分に乗算するヒステリシス調整ゲインを演算するヒステリシス調整ゲイン演算部とを備え、前記ヒステリシス調整ゲイン演算部は、前記グリップ状態量に基づいて前記ヒステリシス調整ゲインを変更することが好ましい。
【0014】
上記構成によれば、ヒステリシス調整ゲインを乗算することによりトルク指令値のヒステリシス成分を調整する。そして、グリップ状態量に基づいてヒステリシス調整ゲインを変更するため、グリップ状態の影響を主として操舵フィーリングにおける摩擦感の変化として操舵特性に対して反映させることができる。
【0015】
上記操舵制御装置において、前記ヒステリシス調整ゲイン演算部は、前記ヒステリシス調整ゲインを車速に応じて変更することが好ましい。
上記構成によれば、ヒステリシス調整ゲインの演算に車速を加味することで、ヒステリシス成分を車速に応じて好適に最適化できる。
【発明の効果】
【0016】
本発明によれば、最適な操舵特性への調整を容易に実現できる。
【図面の簡単な説明】
【0017】
【
図1】第1実施形態のステアバイワイヤ式の操舵装置の概略構成図。
【
図3】第1実施形態の入力トルク基礎成分演算部のブロック図。
【
図4】第1実施形態の反力成分演算部のブロック図。
【
図5】第1実施形態のグリップ状態量演算部のブロック図。
【
図6】着力点に作用する横力、セルフアライニングトルク、及びニューマチックトレールの関係を示す模式図。
【
図7】スリップ角の変化に対する理想軸力、横力(車両状態両軸力)、セルフアライニングトルク(路面軸力)、及びニューマチックトレールの変化を示すグラフ。
【
図8】第1実施形態のトルク指令値演算部のブロック図。
【
図9】第1実施形態のヒステリシス成分演算部のブロック図。
【
図10】(a)は切り込み操舵時における駆動トルクとベース値との関係を示すグラフ、(b)は切り戻し操舵時における駆動トルクとベース値の関係を示すグラフ。
【
図11】サイン操舵した場合の駆動トルクとベース値との関係を示すグラフ。
【
図12】第1実施形態の配分軸力調整部のブロック図。
【
図13】第1実施形態の目標操舵角演算部のブロック図。
【
図14】第1実施形態の慣性制御演算部のブロック図。
【
図15】第1実施形態の粘性制御演算部のブロック図。
【
図16】第1実施形態の戻り時粘性制御演算部のブロック図。
【
図17】第1実施形態の角速度F/B制御演算部のブロック図。
【
図18】第1実施形態の比例補償制御部のブロック図。
【
図19】第1実施形態の位置補償制御部のブロック図。
【
図20】第2実施形態の配分軸力調整部のブロック図。
【
図21】変形例のステアバイワイヤ式の操舵装置の概略構成図。
【発明を実施するための形態】
【0018】
(第1実施形態)
以下、操舵制御装置の第1実施形態を図面に従って説明する。
図1に示すように、操舵制御装置1の制御対象となるステアバイワイヤ式の操舵装置2は、運転者により操舵される操舵部3と、運転者による操舵部3の操舵に応じて転舵輪4を転舵させる転舵部5とを備えている。
【0019】
操舵部3は、ステアリングホイール11が固定されるステアリングシャフト12と、ステアリングシャフト12に操舵反力を付与可能な操舵側アクチュエータ13とを備えている。操舵側アクチュエータ13は、駆動源となる操舵側モータ14と、操舵側モータ14の回転を減速してステアリングシャフト12に伝達する操舵側減速機15とを備えている。
【0020】
転舵部5は、転舵輪4の転舵角に換算可能な回転軸としての第1ピニオン軸21と、第1ピニオン軸21に連結されたラック軸22と、ラック軸22を往復動可能に収容するラックハウジング23とを備えている。第1ピニオン軸21とラック軸22とは、所定の交差角をもって配置されており、第1ピニオン軸21に形成された第1ピニオン歯21aとラック軸22に形成された第1ラック歯22aとを噛合することによって第1ラックアンドピニオン機構24が構成されている。なお、ラック軸22は、第1ラックアンドピニオン機構24によりその軸方向一端側が往復動可能に支持されている。ラック軸22の両端には、ボールジョイントからなるラックエンド25を介してタイロッド26が連結されており、タイロッド26の先端は、転舵輪4が組み付けられた図示しないナックルに連結されている。
【0021】
また、転舵部5には、ラック軸22に転舵輪4を転舵させる転舵力を付与する転舵側アクチュエータ31が第2ピニオン軸32を介して設けられている。転舵側アクチュエータ31は、駆動源となる転舵側モータ33と、転舵側モータ33の回転を減速して第2ピニオン軸32に伝達する転舵側減速機34とを備えている。第2ピニオン軸32とラック軸22とは、所定の交差角をもって配置されており、第2ピニオン軸32に形成された第2ピニオン歯32aとラック軸22に形成された第2ラック歯22bとを噛合することによって第2ラックアンドピニオン機構35が構成されている。なお、ラック軸22は、第2ラックアンドピニオン機構35によりその軸方向他端側が往復動可能に支持されている。
【0022】
このように構成された操舵装置2では、運転者によるステアリング操作に応じて転舵側アクチュエータ31により第2ピニオン軸32が回転駆動され、この回転が第2ラックアンドピニオン機構35によりラック軸22の軸方向移動に変換されることで、転舵輪4の転舵角が変更される。このとき、操舵側アクチュエータ13からは、運転者の操舵に抗する操舵反力がステアリングホイール11に付与される。
【0023】
次に、本実施形態の電気的構成について説明する。
操舵制御装置1は、操舵側アクチュエータ13(操舵側モータ14)及び転舵側アクチュエータ31(転舵側モータ33)に接続されており、これらの作動を制御する。なお、操舵制御装置1は、図示しない中央処理装置(CPU)やメモリを備えており、所定の演算周期ごとにメモリに記憶されたプログラムをCPUが実行することによって、各種制御が実行される。
【0024】
操舵制御装置1には、車両の車速Vを検出する車速センサ41、及びステアリングシャフト12に付与された操舵トルクThを検出するトルクセンサ42が接続されている。なお、トルクセンサ42は、ステアリングシャフト12における操舵側アクチュエータ13(操舵側減速機15)との連結部分よりもステアリングホイール11側に設けられている。また、操舵制御装置1には、操舵部3の操舵量を示す検出値として操舵側モータ14の回転角θsを360°の範囲内の相対角で検出する操舵側回転センサ43、及び転舵部5の転舵量を示す検出値として転舵側モータ33の回転角θtを相対角で検出する転舵側回転センサ44が接続されている。また、操舵制御装置1には、車両のヨーレートγを検出するヨーレートセンサ45、及び車両の横加速度LAを検出する横加速度センサ46が接続されている。なお、操舵トルクTh及び回転角θs,θtは、一方向(本実施形態では、右)に操舵した場合に正の値、他方向(本実施形態では、左)に操舵した場合に負の値として検出する。そして、操舵制御装置1は、これらの各種状態量に基づいて操舵側モータ14及び転舵側モータ33の作動を制御する。
【0025】
以下、操舵制御装置1の構成について詳細に説明する。
図2に示すように、操舵制御装置1は、操舵側モータ制御信号Msを出力する制御部としての操舵側制御部51と、操舵側モータ制御信号Msに基づいて操舵側モータ14に駆動電力を供給する操舵側駆動回路52とを備えている。操舵側制御部51には、操舵側駆動回路52と操舵側モータ14の各相のモータコイルとの間の接続線53を流れる操舵側モータ14の各相電流値Ius,Ivs,Iwsを検出する電流センサ54が接続されている。なお、
図2では、説明の便宜上、各相の接続線53及び各相の電流センサ54をそれぞれ1つにまとめて図示している。
【0026】
また、操舵制御装置1は、転舵側モータ制御信号Mtを出力する転舵側制御部55と、転舵側モータ制御信号Mtに基づいて転舵側モータ33に駆動電力を供給する転舵側駆動回路56とを備えている。転舵側制御部55には、転舵側駆動回路56と転舵側モータ33の各相のモータコイルとの間の接続線57を流れる転舵側モータ33の各相電流値Iut,Ivt,Iwtを検出する電流センサ58が接続されている。なお、
図2では、説明の便宜上、各相の接続線57及び各相の電流センサ58をそれぞれ1つにまとめて図示している。本実施形態の操舵側駆動回路52及び転舵側駆動回路56には、複数のスイッチング素子(例えば、FET等)を有する周知のPWMインバータがそれぞれ採用されている。そして、操舵側モータ制御信号Ms及び転舵側モータ制御信号Mtは、それぞれ各スイッチング素子のオンオフ状態を規定するゲートオンオフ信号となっている。
【0027】
操舵制御装置1は、所定の演算周期毎に以下の各制御ブロックに示される各演算処理を実行して、操舵側モータ制御信号Ms及び転舵側モータ制御信号Mtを生成する。そして、操舵側モータ制御信号Ms及び転舵側モータ制御信号Mtが操舵側駆動回路52及び転舵側駆動回路56に出力されることにより、各スイッチング素子がオンオフし、操舵側モータ14及び転舵側モータ33に駆動電力がそれぞれ供給される。これにより、操舵側アクチュエータ13及び転舵側アクチュエータ31の作動が制御される。
【0028】
先ず、操舵側制御部51の構成について説明する。
操舵側制御部51には、上記車速V、操舵トルクTh、回転角θs、横加速度LA、ヨーレートγ、各相電流値Ius,Ivs,Iws及びq軸電流値Iqtが入力される。そして、操舵側制御部51は、これら各状態量に基づいて操舵側モータ制御信号Msを生成して出力する。
【0029】
詳しくは、操舵側制御部51は、操舵側モータ14の回転角θsに基づいてステアリングホイール11の操舵角θhを演算する操舵角演算部61を備えている。また、操舵側制御部51は、ステアリングホイール11を回転させる力である入力トルク基礎成分Tb*を演算する入力トルク基礎成分演算部62と、ステアリングホイール11の回転に抗する力である反力成分Firを演算する反力成分演算部63とを備えている。また、操舵側制御部51は、車速V、操舵トルクTh、入力トルク基礎成分Tb*及び反力成分Firに基づいて目標操舵角θh*を演算する目標操舵角演算部64を備えている。また、操舵側制御部51は、操舵角θh及び目標操舵角θh*に基づいて目標反力トルクTs*を演算する目標反力トルク演算部65と、目標反力トルクTs*に基づいて操舵側モータ制御信号Msを生成する操舵側モータ制御信号生成部66とを備えている。さらに、操舵側制御部51は、グリップ状態量Grを演算するグリップ状態量演算部67を備えている。
【0030】
操舵角演算部61は、入力される回転角θsを、例えばステアリング中立位置からの操舵側モータ14の回転数をカウントすることにより、360°を超える範囲の絶対角に換算して取得する。そして、操舵角演算部61は、絶対角に換算された回転角に操舵側減速機15の回転速度比に基づく換算係数Ksを乗算することで、操舵角θhを演算する。
【0031】
入力トルク基礎成分演算部62には、操舵トルクTh、車速V及びグリップ状態量Grが入力される。
図3に示すように、入力トルク基礎成分演算部62は、操舵トルクThとともに入力トルク基礎成分Tb*が入力される加算器71を備えており、加算器71においてこれらを足し合わせることにより駆動トルクTcを演算する。また、入力トルク基礎成分演算部62は、駆動トルクTcに対して運転者が入力すべき操舵トルクThの目標値に対応するトルク指令値Th*を演算するトルク指令値演算部72を備えている。また、入力トルク基礎成分演算部62は、操舵トルクThをトルク指令値Th*に追従させるべくトルクフィードバック制御の実行により入力トルク基礎成分を演算するトルクフィードバック制御部(以下、トルクF/B制御部)73を備えている。
【0032】
トルク指令値演算部72には、駆動トルクTc、車速V及びグリップ状態量Grが入力される。トルク指令値演算部72は、後述するようにこれらの状態量に基づいてトルク指令値Th*を演算し、減算器74に出力する。減算器74には、トルク指令値Th*に加え、操舵トルクThが入力される。トルクF/B制御部73には、減算器74において操舵トルクThからトルク指令値Th*を減算したトルク偏差ΔTが入力される。そして、トルクF/B制御部73は、トルク偏差ΔTに基づき、操舵トルクThをトルク指令値Th*にフィードバック制御するための制御量として入力トルク基礎成分Tb*を演算する。具体的には、トルクF/B制御部73は、トルク偏差ΔTを入力とする比例要素、積分要素及び微分要素のそれぞれの出力値の和を、入力トルク基礎成分Tb*として演算する。
【0033】
図2に示すように、目標操舵角演算部64には、操舵トルクTh、車速V及び入力トルク基礎成分Tb*に加え、後述する反力成分演算部63において演算される反力成分Fir及びグリップ状態量演算部67において演算されるグリップ状態量Grが入力される。目標操舵角演算部64は、入力トルク基礎成分Tb*に操舵トルクThを加算するとともに反力成分Firを減算した値である入力トルクTin*と目標操舵角θh*とを関係づけるモデル(ステアリングモデル)式を利用して、目標操舵角θh*を演算する。このモデル式は、ステアリングホイール11(操舵部3)と転舵輪4(転舵部5)とが機械的に連結されたものにおいて、ステアリングホイール11の回転に伴って回転する回転軸のトルクと回転角との関係を定めて表したものである。そして、このモデル式は、操舵装置2の摩擦等をモデル化した粘性係数C、操舵装置2の慣性をモデル化した慣性係数Jを用いて表される。なお、粘性係数C及び慣性係数Jは、車速Vに応じて可変設定される。そして、このようにモデル式を用いて演算された目標操舵角θh*は、減算器69及び転舵側制御部55に加え、反力成分演算部63に出力される。
【0034】
目標反力トルク演算部65には、入力トルク基礎成分Tb*に加え、減算器69において目標操舵角θh*から操舵角θhが差し引かれた角度偏差Δθsが入力される。そして、目標反力トルク演算部65は、角度偏差Δθsに基づき、操舵角θhを目標操舵角θh*にフィードバック制御するための制御量として操舵側モータ14が付与する操舵反力の基礎となる基礎反力トルクを演算し、該基礎反力トルクに入力トルク基礎成分Tb*を加算することで目標反力トルクTs*を演算する。具体的には、目標反力トルク演算部65は、角度偏差Δθsを入力とする比例要素、積分要素及び微分要素のそれぞれの出力値の和を、基礎反力トルクとして演算する。
【0035】
操舵側モータ制御信号生成部66には、目標反力トルクTs*に加え、回転角θs及び相電流値Ius,Ivs,Iwsが入力される。本実施形態の操舵側モータ制御信号生成部66は、目標反力トルクTs*に基づいて、d/q座標系におけるq軸上のq軸目標電流値Iqs*を演算する。なお、本実施形態では、d軸上のd軸目標電流値Ids*はゼロに設定される。
【0036】
操舵側モータ制御信号生成部66は、d/q座標系における電流フィードバック制御を実行することにより、上記操舵側駆動回路52に出力する操舵側モータ制御信号Msを生成(演算)する。具体的には、操舵側モータ制御信号生成部66は、操舵側モータ制御信号生成部66は、回転角θsに基づいて相電流値Ius,Ivs,Iwsをd/q座標上に写像することにより、d/q座標系における操舵側モータ14の実電流値であるd軸電流値Ids及びq軸電流値Iqsを演算する。そして、操舵側モータ制御信号生成部66は、d軸電流値Idsをd軸目標電流値Ids*に追従させるべく、またq軸電流値Iqsをq軸目標電流値Iqs*に追従させるべく、d軸及びq軸上の各電流偏差に基づいて電圧指令値を演算し、該電圧指令値に基づくデューティ比を有する操舵側モータ制御信号Msを生成する。このように演算された操舵側モータ制御信号Msが上記操舵側駆動回路52に出力されることにより、操舵側モータ制御信号Msに応じた駆動電力が操舵側モータ14に出力され、その作動が制御される。
【0037】
次に、転舵側制御部55について説明する。
転舵側制御部55には、上記回転角θt、目標操舵角θh*及び転舵側モータ33の各相電流値Iut,Ivt,Iwtが入力される。そして、転舵側制御部55は、これら各状態量に基づいて転舵側モータ制御信号Mtを生成して出力する。
【0038】
詳しくは、転舵側制御部55は、転舵輪4の転舵角に換算可能な回転軸である第1ピニオン軸21の回転角(ピニオン角)に相当する転舵対応角θpを演算する転舵対応角演算部81を備えている。また、転舵側制御部55は、転舵対応角θp及び目標操舵角θh*に基づいて目標転舵トルクTt*を演算する目標転舵トルク演算部82と、目標転舵トルクTt*に基づいて転舵側モータ制御信号Mtを生成する転舵側モータ制御信号生成部83とを備えている。なお、本実施形態の操舵装置2では、操舵角θhと転舵対応角θpとの比である舵角比が一定に設定されており、目標転舵対応角は、目標操舵角θh*と等しい。
【0039】
転舵対応角演算部81は、入力される回転角θtを、例えば車両が直進する中立位置からの転舵側モータ33の回転数をカウントすることにより、360°を超える範囲の絶対角に換算して取得する。そして、転舵対応角演算部81は、絶対角に換算された回転角に転舵側減速機34の回転速度比、第1及び第2ラックアンドピニオン機構24,35の回転速度比に基づく換算係数Ktを乗算して転舵対応角θpを演算する。つまり、転舵対応角θpは、第1ピニオン軸21がステアリングシャフト12に連結されていると仮定した場合におけるステアリングホイール11の操舵角θhに相当する。
【0040】
目標転舵トルク演算部82には、減算器84において目標操舵角θh*(目標転舵対応角)から転舵対応角θpが差し引かれた角度偏差Δθpが入力される。そして、目標転舵トルク演算部82は、角度偏差Δθpに基づき、転舵対応角θpを目標操舵角θh*にフィードバック制御するための制御量として、転舵側モータ33が付与する転舵力の目標値となる目標転舵トルクTt*を演算する。具体的には、目標転舵トルク演算部82は、角度偏差Δθpを入力とする比例要素、積分要素及び微分要素のそれぞれの出力値の和を、目標転舵トルクTt*として演算する。
【0041】
転舵側モータ制御信号生成部83には、目標転舵トルクTt*に加え、回転角θt及び相電流値Iut,Ivt,Iwtが入力される。そして、転舵側モータ制御信号生成部83は、目標転舵トルクTt*に基づいて、d/q座標系におけるq軸上のq軸目標電流値Iqt*を演算する。なお、本実施形態では、d軸上のd軸目標電流値Idt*はゼロに設定される。
【0042】
転舵側モータ制御信号生成部83は、d/q座標系における電流フィードバック制御を実行することにより、上記転舵側駆動回路56に出力する転舵側モータ制御信号Mtを生成(演算)する。具体的には、転舵側モータ制御信号生成部83は、回転角θtに基づいて相電流値Iut,Ivt,Iwtをd/q座標上に写像することにより、d/q座標系における転舵側モータ33の実電流値であるd軸電流値Idt及びq軸電流値Iqtを演算する。そして、転舵側モータ制御信号生成部83は、d軸電流値Idtをd軸目標電流値Idt*に追従させるべく、またq軸電流値Iqtをq軸目標電流値Iqt*に追従させるべく、d軸及びq軸上の電流偏差に基づいて電圧指令値を演算し、該電圧指令値に基づくデューティ比を有する転舵側モータ制御信号Mtを生成する。このように演算された転舵側モータ制御信号Mtが上記転舵側駆動回路56に出力されることにより、転舵側モータ制御信号Mtに応じた駆動電力が転舵側モータ33に出力され、その作動が制御される。なお、転舵側モータ制御信号Mtを生成する過程で演算したq軸電流値Iqtは、反力成分演算部63に出力される。
【0043】
次に、反力成分演算部63の構成について説明する。
反力成分演算部63には、車速V、操舵トルクTh、転舵側モータ33のq軸電流値Iqt及び目標操舵角θh*が入力される。反力成分演算部63は、これらの状態量に基づいてラック軸22に作用する軸力に応じた反力成分Fir(ベース反力)を演算し、目標操舵角演算部64に出力する。
【0044】
図4に示すように、反力成分演算部63は、路面軸力Ferを演算する軸力演算部としての路面軸力演算部91と、理想軸力Fibを演算する軸力演算部としての理想軸力演算部92とを備えている。なお、路面軸力Fer及び理想軸力Fibは、トルクの次元(N・m)で演算される。また、反力成分演算部63は、転舵輪4に対して路面から加えられる軸力(路面から伝達される路面情報)が反映されるように、理想軸力Fib及び路面軸力Ferを所定割合で配分して配分軸力Fdを演算する配分軸力演算部93を備えている。
【0045】
理想軸力演算部92には、目標操舵角θh*(目標転舵対応角)及び車速Vが入力される。理想軸力演算部92は、転舵輪4に作用する軸力(転舵輪4に伝達される伝達力)の理想値であって、路面情報が反映されない理想軸力Fibを目標操舵角θh*に基づいて演算する。具体的には、理想軸力演算部92は、目標操舵角θh*の絶対値が大きくなるにつれて理想軸力Fibの絶対値が大きくなるように演算する。また、理想軸力演算部92は、車速Vが大きくなるにつれて理想軸力Fibの絶対値が大きくなるように演算する。このように演算された理想軸力Fibは、乗算器94及びグリップ状態量演算部67に出力される。
【0046】
路面軸力演算部91には、転舵側モータ33のq軸電流値Iqtが入力される。路面軸力演算部91は、転舵輪4に作用する軸力(転舵輪4に伝達される伝達力)の推定値であって、路面情報が反映された路面軸力Ferをq軸電流値Iqtに基づいて演算する。具体的には、路面軸力演算部91は、転舵側モータ33によってラック軸22に加えられるトルクと、転舵輪4に対して路面から加えられる力に応じたトルクとが釣り合うとして、q軸電流値Iqtの絶対値が大きくなるほど、路面軸力Ferの絶対値が大きくなるように演算する。このように演算された路面軸力Ferは、乗算器95及びグリップ状態量演算部67に出力される。
【0047】
配分軸力演算部93には、車速Vに加え、路面軸力Fer及び理想軸力Fibが入力される。配分軸力演算部93は、車速Vに基づいて理想軸力Fibと路面軸力Ferとを配分するためのそれぞれの配分割合である配分ゲインGib、配分ゲインGerを演算する配分ゲイン演算部96を備えている。本実施形態の配分ゲイン演算部96は、車速Vと配分ゲインGib,Gerとの関係を定めたマップを備えており、同マップを参照することにより車速Vに応じた配分ゲインGib,Gerを演算する。配分ゲインGibは、車速Vが大きい場合に小さい場合よりも値が小さくなり、配分ゲインGerは車速Vが大きい場合に小さい場合よりも値が大きくなる。なお、本実施形態では、配分ゲインGib,Gerの和が「1」となるように値が設定されている。このように演算された配分ゲインGibは乗算器94に出力され、配分ゲインGerは乗算器95に出力される。
【0048】
配分軸力演算部93は、乗算器94において理想軸力Fibに配分ゲインGibを乗算するとともに、乗算器95において路面軸力Ferに配分ゲインGerを乗算し、加算器97においてこれらの値を足し合わせて配分軸力Fdを演算する。このように演算された配分軸力Fdは、後述する配分軸力調整部98に出力される。そして、配分軸力調整部98において調整された配分軸力Fdが反力成分Firとして目標操舵角演算部64に出力される。
【0049】
次に、グリップ状態量演算部67について説明する。
図2に示すように、グリップ状態量演算部67には、理想軸力Fib、路面軸力Fer、車速V、ヨーレートγ及び横加速度LAが入力される。グリップ状態量演算部67は、これらの各状態量に基づいてグリップ状態量Grを演算する。
【0050】
詳しくは、
図5に示すように、グリップ状態量演算部67は、車両状態量軸力Fyrを演算する軸力演算部としての車両状態量軸力演算部101を備えている。なお、車両状態量軸力Fyrは、トルクの次元(N・m)で演算される。車両状態量軸力演算部101には、車両状態量としてのヨーレートγ及び横加速度LAが入力される。車両状態量軸力演算部101は、下記(1)式にヨーレートγ及び横加速度LAを入力することにより横力Fyを演算する。
【0051】
横力Fy=Kla×横加速度LA+Kγ×γ’…(1)
なお、「γ’」は、ヨーレートγの微分値を示し、「Kla」及び「Kγ」は、試験等により予め設定された係数を示す。そして、車両状態量軸力演算部101は、このように演算される横力Fyが近似的にラック軸22に作用する軸力とみなすことができることを踏まえ、該横力Fyを車両状態量軸力Fyrとして出力する。
【0052】
ここで、転舵輪のスリップ角βと該転舵輪に作用する力との関係について、
図6及び
図7を参照して説明する。
図6は、スリップ角βが付いている転舵輪の接地面を上から見た図である。転舵輪の向きに向かう中心線xが元々の転舵輪の向きを示しており、転舵輪の進行方向はこれに対して線αで示している。同図において、A点が転舵輪の接地開始点で、B点が接地終了点とすると、スリップ角β分だけ、トレッド面が路面に引きずられて中心線xから線αのラインに沿ってずれて撓む。なお、
図6において、トレッド面がずれて撓んだ領域をハッチングで示す。この撓んだ領域のうち、A点側の領域が粘着域であり、B点側の領域が滑り域である。そして、このようなスリップ角βで旋回したときの転舵輪の接地面の着力点には、横力Fyが働き、鉛直軸周りのモーメントがセルフアライニングトルクSATとなる。なお、転舵輪の接地中心と着力点間の距離がニューマチックトレールであり、ニューマチックトレールとキャスタトレールの和がトレールである。
【0053】
図7は、スリップ角βの変化に対する、理想軸力Fib、横力Fy(車両状態量軸力Fyr)、セルフアライニングトルクSAT(路面軸力Fer)、及びニューマチックトレールの変化を示している。同図に示すように旋回中の転舵輪において、スリップ角βが小さい領域では、スリップ角βの増大に従って理想軸力Fib、横力Fy及びセルフアライニングトルクSATがそれぞれ略線形(リニア)に増大し、これらの各値の差は小さい。一方、スリップ角βがある程度大きな領域では、スリップ角βの増大に従って、理想軸力Fibは引き続き略線形に増大するものの、横力Fyは増大を続けた後に略一定又はやや減少傾向を示す。また、セルフアライニングトルクSATは、スリップ角βの増大に従って、しばらくは増大を続けるが、ニューマチックトレールの減少に伴って大きく減少する傾向を示す。このように各値が略線形に変化し、これらの差が小さい領域を通常領域とし、横力Fy及びセルフアライニングトルクSATが非線形に変化し、これらの差が大きくなる領域を限界領域とする。なお、
図7に示す通常領域と限界領域との区切りは便宜上のものである。
【0054】
ここで、旋回時の軸力をセルフアライニングトルクSATと捉えると、セルフアライニングトルクSATと横力Fyの関係は、
図6に示すように、転舵輪と路面との接地中心から横力の着力点までのニューマチックトレールに相当するパラメータを用いた下記(2)式で表現できる。
【0055】
セルフアライニングトルクSAT=横力Fy×ニューマチックトレール…(2)
そして、セルフアライニングトルクSATを「軸力≒路面からの反力」と考えると、転舵側モータ33の駆動電流(すなわち、q軸電流値Iqt)に基づく路面軸力FerがセルフアライニングトルクSATを近似的に表現しているといえる。
【0056】
また、横力Fyは、転舵輪4に発生している力であり、「横力Fy≒車両横向きに発生している力」と置き換えて、横力Fyを横加速度LAによって近似的に表現することができる。なお、横加速度LAだけでは、実際の軸力に対し、動き出し時の応答性が不足するため、応答性を改善するためにヨーレートγの微分を加算して、上記式(1)が得られる。
【0057】
また、上記(2)式により、転舵輪4がどの程度グリップしているかを示すグリップ度からなるグリップ状態量Grは、下記(3)式のように表わすことができる。
グリップ状態量Gr=セルフアライニングトルクSAT/横力Fy…(3)
そして、路面軸力FerがセルフアライニングトルクSATを近似的に表現でき、車両状態量軸力Fyrが横力を近似的に表現できることを踏まえると、グリップ状態量Grは、下記(4)式のように表すことができる。
【0058】
グリップ状態量Gr=(Ker×路面軸力)/(Ky×車両状態量軸力)…(4)
なお、「Ker」及び「Ky」は、試験等により予め設定された係数を示す。
ここで、車両状態はその走行状態に応じて変化するため、ヨーレートγ及び横加速度LAに基づく車両状態量軸力Fyrを用いることで、車両の挙動が大きく変化する場合においてラック軸22に実際に作用している軸力を、理想軸力Fibと比べて正確に推定できる。しかし、ヨーレートγ及び横加速度LAは、車両が停止状態を含む低速状態である場合には、その値が小さくなるため、ヨーレートセンサ45及び横加速度センサ46の出力値に対するノイズの大きさが相対的に大きくなる。この場合、ヨーレートγ及び横加速度LAでは、目標操舵角θh*と比べて軸力を精度良く検出できない。
【0059】
この点を踏まえ、
図5に示すように、本実施形態のグリップ状態量演算部67は、理想軸力Fib及び路面軸力Ferに基づく第1グリップ成分Gr1を演算する第1グリップ成分演算部102と、車両状態量軸力Fyr及び路面軸力Ferに基づく第2グリップ成分Gr2を演算する第2グリップ成分演算部103とを備えている。そして、グリップ状態量演算部67は、車両の走行状態を示す走行状態量としての車速V及び横加速度LAが低速状態であることを示す場合には、第1グリップ成分Gr1が含まれる配分比率でグリップ状態量Grを演算する。一方、グリップ状態量演算部67は、車速V及び横加速度LAが中高速状態であることを示す場合には、第2グリップ成分Gr2が含まれる配分比率でグリップ状態量を演算する。
【0060】
詳しくは、第1グリップ成分演算部102には、路面軸力Fer及び理想軸力Fibが入力される。第1グリップ成分演算部102は、路面軸力Ferを理想軸力Fibにより除算することで第1グリップ成分Gr1を演算し、乗算器154に出力する。本実施形態の第1グリップ成分演算部102は、理想軸力Fibの絶対値がゼロ閾値F0以下の場合には、路面軸力Ferを理想軸力Fibによって除算せず、第1グリップ成分Gr1を「0」として出力する。つまり、第1グリップ成分演算部102は、路面軸力Ferをゼロで除算することにより第1グリップ成分Gr1が発散することを防止するゼロ割防止機能を有している。なお、ゼロ閾値F0は、ゼロに近い極小さな値に設定されている。第2グリップ成分演算部103には、路面軸力Fer及び車両状態量軸力Fyrが入力される。第2グリップ成分演算部103は、路面軸力Ferを車両状態量軸力Fyrで除算することで第2グリップ成分Gr2を演算し、乗算器105に出力する。本実施形態の第2グリップ成分演算部103は、ゼロ割防止機能を有しており、車両状態量軸力Fyrの絶対値がゼロ閾値F0以下の場合には除算を行わず、第2グリップ成分Gr2を「0」として出力する。
【0061】
グリップ状態量演算部67は、第1グリップ成分Gr1と第2グリップ成分Gr2との配分比率Ggrを設定する配分比率設定部106を備えている。配分比率設定部106には、車速V及び横加速度LAが入力される。配分比率設定部106は、
図5に示すようなマップを備えており、同マップを参照することにより配分比率Ggrを設定する。このマップは、車速V及び横加速度LAが低速状態を示す値から中高速状態を示す値に近づくほど、第2グリップ成分Gr2の含まれる比率が大きくなるように配分比率Ggrが設定されている。
【0062】
具体的には、配分比率Ggrは、横加速度LAが横加速度閾値LAth以下の領域では、配分比率Ggrが「0」となり、横加速度LAが横加速度閾値LAthよりも大きくなると、該横加速度LAの増大に応じて配分比率Ggrが大きくなり、その後、配分比率Ggrが一定となるように設定されている。また、配分比率Ggrは、車速Vが車速閾値Vth以下の領域では、配分比率Ggrが「0」となり、車速Vが車速閾値Vthよりも大きくなると、該車速Vの増大に応じて配分比率Ggrが大きくなるように設定されている。なお、配分比率Ggrの最大値は「1」に設定されている。また、横加速度閾値LAth及び車速閾値Vthは、それぞれノイズに対して検出値が大きく、センサの精度を確保できる値であり、予め実験等により設定されている。そして、横加速度LAが横加速度閾値LAth以下である場合には、当該横加速度LAの値は車両の走行状態が低速状態であることを示し、横加速度LAが横加速度閾値LAthよりも大きい場合には、当該横加速度LAの値は車両の走行状態が中高速であることを示す。同様に、車速Vが車速閾値Vth以下である場合には、当該車速Vの値は車両の走行状態が低速状態であることを示し、車速Vが車速閾値Vthよりも大きい場合には、当該車速Vの値は車両の走行状態が中高速であることを示す。
【0063】
このように設定された配分比率Ggrは、減算器107及び乗算器105に出力される。減算器107には、配分比率Ggrに加え、定数「1」が常に入力され、該定数「1」から配分比率Ggrを減算した値を乗算器154に出力する。つまり、第1グリップ成分Gr1の配分比率と第2グリップ成分Gr2の配分比率との和は、「1」となるように設定されている。
【0064】
グリップ状態量演算部67は、乗算器154において第1グリップ成分Gr1に減算器107からの出力値(1-配分比率Ggr)を乗算した値を第1グリップ配分量Agr1としてグリップ演算処理部108に出力する。また、グリップ状態量演算部67は、乗算器105において第2グリップ成分Gr2に配分比率Ggrを乗算した値を第2グリップ配分量Agr2としてグリップ演算処理部108に出力する。そして、グリップ演算処理部108は、第1グリップ配分量Agr1と第2グリップ配分量Agr2とを足し合わせた値をグリップ状態量Grとして出力する。
【0065】
図2に示すように、上記のように演算されたグリップ状態量Grは、入力トルク基礎成分演算部62(トルク指令値演算部72)、反力成分演算部63(配分軸力調整部98)及び目標操舵角演算部64に入力される。
【0066】
次に、トルク指令値演算部72の構成について詳細に説明する。
図8に示すように、トルク指令値演算部72は、駆動トルクTcに基づいてトルク指令値Th*の基礎となる指令基礎値Thb*を演算する指令基礎値演算部111と、指令基礎値Thb*を調整する基礎調整ゲインKhbaを演算する基礎調整ゲイン演算部112とを備えている。
【0067】
指令基礎値演算部111には、駆動トルクTcが入力される。指令基礎値演算部111は、駆動トルクTcと指令基礎値Thb*との関係を定めたマップを備えており、同マップを参照することにより駆動トルクTcに応じた指令基礎値Thb*を演算する。このマップは、駆動トルクTcの増大に基づいて指令基礎値Thb*が非線形的に増加するように設定されている。このように演算された指令基礎値Thb*は、乗算器113に出力される。
【0068】
基礎調整ゲイン演算部112には、グリップ状態量Gr及び車速Vが入力される。基礎調整ゲイン演算部112は、グリップ状態量Gr及び車速Vと基礎調整ゲインKhbaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた基礎調整ゲインKhbaを演算する。このマップは、グリップ状態量Grがグリップ閾値Grth以下の領域では基礎調整ゲインKhbaが「1」となり、グリップ状態量Grがグリップ閾値Grthよりも大きくなると、該グリップ状態量Grの増大に基づいて基礎調整ゲインKhbaが大きくなるように設定されている。なお、グリップ閾値Grthは、通常領域と限界領域との境となるスリップ角βでのグリップ状態量Grを示す値であり、予め試験等により設定されている。また、マップは、グリップ状態量Grがグリップ閾値Grthよりも大きな領域では、車速Vの増大に基づいて、基礎調整ゲインKhbaが大きくなるように設定されている。なお、マップの形状は、適宜変更可能であり、グリップ状態量Grがグリップ閾値Grthよりも大きな領域において、該グリップ状態量Grの増大に基づいて基礎調整ゲインKhbaが小さくなるように設定してもよく、また、車速Vの増大に基づいて基礎調整ゲインKhbaが小さくなるように設定してもよい。このように演算された基礎調整ゲインKhbaは、乗算器113に出力される。そして、トルク指令値演算部72は、乗算器113において、指令基礎値Thb*に基礎調整ゲインKhbaを乗算した値を指令基礎値Thb*’として演算し、加算器114に出力する。
【0069】
また、トルク指令値演算部72は、指令基礎値Thb*に加算するヒステリシス成分Thy*を演算するヒステリシス成分演算部115を備えている。
図9に示すように、ヒステリシス成分演算部115は、ベース値Thyb*を演算するベース値演算部121を備えている。ベース値演算部121には、駆動トルクTcが入力される。ベース値演算部121は、駆動トルクTcに基づいて、該駆動トルクTcの方向に応じたヒステリシス特性を有するベース値Thyb*を演算する。
【0070】
具体的には、ベース値演算部121は、駆動トルクTcの符号及び増減に基づいて、切り込み操舵であるか、又は切り戻し操舵であるかを判定し、切り込み操舵時には、
図10(a)に示すマップに基づいてベース値Thyb*を演算する。本実施形態のマップでは、駆動トルクTcの絶対値が大きくなるほど、ベース値Thyb*の絶対値が大きくなるとともに、駆動トルクTcに対するベース値Thyb*の変化率の絶対値が小さくなるようにベース値Thyb*が設定されている。また、駆動トルクTcが所定駆動トルク以上になった場合には、ベース値Thyb*の絶対値が予め設定された最大値Tmax以下となるように設定されている。そして、ベース値演算部121は、右方向への切り込み操舵を行う場合、その切り込み操舵の開始位置での駆動トルクTcを同マップの原点として第1象限に示されるベース値Thyb*を用いる。また、左方向への切り込み操舵を行う場合、その切り込み操舵の開始位置での駆動トルクTcを同マップの原点として第3象限に示されるベース値Thyb*を用いる。
【0071】
一方、ベース値演算部121は、切り戻し操舵時には、
図10(b)に示すマップに基づいてベース値Thyb*を演算する。本実施形態のマップでは、駆動トルクTcに比例してベース値Thyb*が大きくなるように設定されるとともに、所定トルク範囲内にのみ設定されている。そして、ベース値演算部121は、右方向への切り戻し操舵を行う場合、その切り戻し操舵の開始位置での駆動トルクTcを同マップの原点として第1象限に示されるベース値Thyb*を用いる。さらに、切り込み操舵が所定トルク範囲の半分(
図10(a)におけるベース値Thyb*が設定されている範囲)の角度だけ行われた後は、その位置での駆動トルクTcを
図10(a)に示すマップの原点として第1象限に示されるベース値Thyb*を用いる。また、左方向への切り戻し操舵を行う場合、その切り戻し操舵の開始位置での駆動トルクTcを同マップの原点として第3象限に示されるベース値Thyb*を用いる。さらに、切り込み操舵が所定トルク範囲の半分の角度だけ行われた後は、その位置での駆動トルクTcを
図10(a)に示すマップの原点として第3象限に示されるベース値Thyb*を用いる。
【0072】
これにより、
図11に示すように、例えばステアリングホイール11を一定周波数で周期的に切り込み操舵及び切り戻し操舵を繰り返し行うサイン操舵した際において、ベース値演算部121は、駆動トルクTcの変化に対してヒステリシス特性を有するベース値Thyb*を演算する。このように演算されるベース値Thyb*は、乗算器122に出力される。
【0073】
また、
図9に示すように、ヒステリシス成分演算部115は、ベース値Thyb*を車速Vに応じて調整するベース値ゲインKhybを演算するベース値ゲイン演算部123を備えている。ベース値ゲイン演算部123には、車速Vが入力される。ベース値ゲイン演算部123は、車速Vとベース値ゲインKhybとの関係を定めたマップを備えており、同マップを参照することにより車速Vに応じたベース値ゲインKhybを演算する。このマップは、車速Vが低い領域ではベース値ゲインKhybが負の値となり、車速Vの増大に基づいてベース値ゲインKhybが大きくなり、正の値となってから略一定の大きさとなるように設定されている。このように演算されたベース値ゲインKhybは、乗算器122に出力される。そして、ヒステリシス成分演算部115は、乗算器122において、ベース値Thyb*にベース値ゲインKhybを乗算することで基礎ヒステリシス成分Thyb*’を演算し、乗算器124に出力する。
【0074】
また、ヒステリシス成分演算部115は、ヒステリシス成分Thy*を調整するヒステリシス調整ゲインKhyaを演算するヒステリシス調整ゲイン演算部125を備えている。ヒステリシス調整ゲイン演算部125には、グリップ状態量Gr及び車速Vが入力される。ヒステリシス調整ゲイン演算部125は、グリップ状態量Gr及び車速Vとヒステリシス調整ゲインKhyaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じたヒステリシス調整ゲインKhyaを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。
【0075】
このように演算されたヒステリシス調整ゲインKhyaは、乗算器124に出力される。ヒステリシス成分演算部115は、乗算器124において、基礎ヒステリシス成分Thyb*’にヒステリシス調整ゲインKhyaを乗算したヒステリシス成分Thy*を加算器114(
図8参照)に出力する。そして、
図8に示すように、トルク指令値演算部72は、指令基礎値Thb*’にヒステリシス成分Thy*を加算することで、トルク指令値Th*を演算し、上記のように入力トルク基礎成分演算部62において入力トルク基礎成分Tb*が演算される。
【0076】
次に、配分軸力調整部98の構成について詳細に説明する。
図12に示すように、配分軸力調整部98は、配分調整ゲイン演算部131を備えている。配分調整ゲイン演算部131には、グリップ状態量Gr及び車速Vが入力される。配分調整ゲイン演算部131は、グリップ状態量Gr及び車速Vと配分調整ゲインKaaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた配分調整ゲインKaaを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された配分調整ゲインKaaは、配分軸力Fdとともに乗算器132に入力される。
【0077】
配分軸力調整部98は、乗算器132において配分軸力Fdに配分調整ゲインKaaを乗算した値を勾配調整配分軸力Fd’として加算器133に出力する。また、配分軸力調整部98は、オフセット値演算部134と、非操舵ゲイン演算部135とを備えている。
【0078】
オフセット値演算部134には、グリップ状態量Gr及び車速Vが入力される。オフセット値演算部134は、グリップ状態量Gr及び車速Vとオフセット値Ofとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じたオフセット値Ofを演算する。このマップは、グリップ状態量Grがグリップ閾値Grth以下の領域ではオフセット値が「0」となり、グリップ状態量Grがグリップ閾値Grthよりも大きくなると、該グリップ状態量Grの増大に基づいてオフセット値Ofが大きくなるように設定されている。また、マップは、グリップ状態量Grがグリップ閾値Grthよりも大きな領域では、車速Vの増大に基づいて、オフセット値Ofが大きくなるように設定されている。なお、マップの形状は、適宜変更可能であり、例えばグリップ状態量Grがグリップ閾値Grthよりも大きな領域において、該グリップ状態量Grの増大に基づいてオフセット値Ofが小さくなる(負の値となる)ように設定してもよく、また、車速Vの増大に基づいてオフセット値Ofが小さくなるように設定してもよい。このように演算されたオフセット値Ofは、乗算器136に出力される。
【0079】
非操舵ゲイン演算部135には、操舵トルクThが入力される。非操舵ゲイン演算部135は、操舵トルクThと非操舵ゲインKns1との関係を定めたマップを備えており、同マップを参照することにより操舵トルクThに応じた非操舵ゲインKns1を演算する。このマップは、操舵トルクThの絶対値が「0」の場合に非操舵ゲインKns1が「1」となり、操舵トルクThの絶対値の増大に基づいて非操舵ゲインKns1が減少し、操舵トルクThの絶対値が非操舵閾値Tthよりも大きくなると、非操舵ゲインKns1が「0」となるように設定されている。なお、非操舵閾値Tthは、運転者によりステアリング操作が行われていると認められる値であり、ゼロ近傍の値に予め設定されている。このように演算された非操舵ゲインKns1は、乗算器136に出力される。
【0080】
配分軸力調整部98は、乗算器136においてオフセット値Ofに非操舵ゲインKns1を乗算したオフセット値Of’を加算器133に出力する。そして、配分軸力調整部98は、加算器133において、勾配調整配分軸力Fd’にオフセット値Of’を加算した値を反力成分Firとして演算する。上記のように非操舵ゲインKns1は、運転者によりステアリング操作が行われている場合に「0」となることから、非操舵時にのみオフセット値Ofが加算されて配分軸力Fdが調整されることとなる。
【0081】
次に、目標操舵角演算部64の構成について説明する。
図13に示すように、目標操舵角演算部64は、入力トルク基礎成分Tb*とともに操舵トルクThが入力される加算器141を備えており、加算器141においてこれらを足し合わせることにより駆動トルクTcを演算する。また、目標操舵角演算部64は、駆動トルクTcとともに反力成分Firが入力される減算器142を備えており、減算器142において駆動トルクTcから反力成分Firを差し引くことにより、入力トルクTin*を演算する。このように演算された入力トルクTin*は、目標モデル演算部143に入力される。
【0082】
目標モデル演算部143は、上記モデル式の慣性項に対応する慣性制御演算部144と、粘性項に対応する粘性制御演算部145とを備えている。また、目標モデル演算部143は、モデル式における粘性項に対応し、非操舵状態である場合に作用する戻り時粘性制御演算部146を備えている。また、目標モデル演算部143は、モデル式における回転軸の角速度の目標値である目標操舵速度ωh*を目標補償角速度ωr*に追従させる角速度フィードバック制御演算部(以下、角速度F/B制御演算部という)147を備えている。
【0083】
慣性制御演算部144には、減算器148において、入力トルクTin*から、粘性制御演算部145から出力される目標粘性トルクTvb*、戻り時粘性制御演算部146から出力される目標戻り時粘性トルクTvr*、及び角速度F/B制御演算部147から出力される目標補償角速度トルクTvv*を減算した入力トルクTin*が入力される。また、慣性制御演算部144には、入力トルクTin*に加え、車速V及びグリップ状態量Grが入力される。慣性制御演算部144は、これら入力された状態量に基づいて、目標操舵加速度αh*(回転軸の目標角加速度)を演算する。そして、目標モデル演算部143は、目標操舵加速度αh*を積分することにより目標操舵速度ωh*(回転軸の目標角速度)を演算し、該目標操舵速度ωh*を積分することによりステアリングホイール11の目標操舵角θh*を演算する。このように演算された目標操舵速度ωh*は、粘性制御演算部145、戻り時粘性制御演算部146及び角速度F/B制御演算部147に出力され、目標操舵角θh*は、角速度F/B制御演算部147、上記減算器69及び反力成分演算部63(
図2参照)に出力される。なお、目標操舵加速度αh*、目標粘性トルクTvb*、目標戻り時粘性トルクTvr*及び目標補償角速度トルクTvv*の符号は、操舵トルクTh及び回転角θs,θtの符号と同様に設定される。そして、目標操舵加速度αh*が正の値となる場合、目標粘性トルクTvb*及び目標戻り時粘性トルクTvr*は正の値となり、目標補償角速度トルクTvv*は負の値となるように演算される。
【0084】
粘性制御演算部145には、目標操舵速度ωh*に加え、車速V及びグリップ状態量Grが入力される。粘性制御演算部145は、これらの状態量に基づいて、入力トルクTin*に加算する目標粘性トルクTvb*を演算する。戻り時粘性制御演算部146には、目標操舵速度ωh*に加え、操舵トルクTh、車速V及びグリップ状態量Grが入力される。戻り時粘性制御演算部146は、これらの状態量に基づいて、入力トルクTin*に加算する目標戻り時粘性トルクTvr*を演算する。角速度F/B制御演算部147には、目標操舵速度ωh*及び目標操舵角θh*に加え、操舵トルクTh、車速V及びグリップ状態量Grが入力される。角速度F/B制御演算部147は、これらの状態量に基づいて、入力トルクTin*に減算される目標補償角速度トルクTvv*を演算する。
【0085】
次に、慣性制御演算部144の構成について説明する。
図14に示すように、慣性制御演算部144は、目標操舵加速度αh*に基づいて慣性逆数ゲインKiiを演算する慣性逆数ゲイン演算部151と、慣性逆数ゲインKiiを調整する慣性調整ゲインKiiaを演算する慣性調整ゲイン演算部152とを備えている。
【0086】
慣性逆数ゲイン演算部151には、目標操舵加速度αh*が入力される。慣性逆数ゲイン演算部151は、目標操舵加速度αh*と慣性逆数ゲインKiiとの関係を定めたマップを備えており、同マップを参照することにより目標操舵加速度αh*に応じた慣性逆数ゲインKiiを演算する。このマップは、目標操舵加速度αh*の増大に基づいて慣性逆数ゲインKiiが非線形的に減少するように設定されている。このように演算された慣性逆数ゲインKiiは、乗算器153に出力される。
【0087】
慣性調整ゲイン演算部152には、グリップ状態量Gr及び車速Vが入力される。慣性調整ゲイン演算部152は、グリップ状態量Gr及び車速Vと慣性調整ゲインKiiaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた慣性調整ゲインKiiaを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された慣性調整ゲインKiiaは、乗算器153に出力される。
【0088】
慣性制御演算部144は、乗算器153において慣性逆数ゲインKiiに慣性調整ゲインKiiaを乗算した値を慣性逆数ゲインKii’として演算し、乗算器154に出力する。そして、慣性制御演算部144は、乗算器154において入力トルクTin*に慣性逆数ゲインKii’を乗算することにより目標操舵加速度αh*を演算する。
【0089】
次に、粘性制御演算部145の構成について説明する。
図15に示すように、粘性制御演算部145は、目標操舵速度ωh*に基づいて粘性ゲインKvbを演算する粘性ゲイン演算部161と、粘性ゲインKvbを調整する粘性調整ゲインKvbaを演算する粘性調整ゲイン演算部162とを備えている。
【0090】
粘性ゲイン演算部161には、目標操舵速度ωh*が入力される。粘性ゲイン演算部161は、目標操舵速度ωh*と粘性ゲインKvbとの関係を定めたマップを備えており、同マップを参照することにより目標操舵速度ωh*に応じた粘性ゲインKvbを演算する。このマップは、目標操舵速度ωh*の増大に基づいて粘性ゲインKvbが非線形的に増加した後、減少するように設定されている。このように演算された粘性ゲインKvbは、乗算器163に出力される。
【0091】
粘性調整ゲイン演算部162には、グリップ状態量Gr及び車速Vが入力される。粘性調整ゲイン演算部162は、グリップ状態量Gr及び車速Vと粘性調整ゲインKvbaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた粘性調整ゲインKvbaを演算する。このマップは、グリップ状態量Grがグリップ閾値Grth以下の領域では粘性調整ゲインKvbaが「1」となり、グリップ状態量Grがグリップ閾値Grthよりも大きくなると、該グリップ状態量Grの増大に基づいて粘性調整ゲインKvbaが小さくなるように設定されている。また、マップは、グリップ状態量Grがグリップ閾値Grthよりも大きな領域では、車速Vの増大に基づいて、粘性調整ゲインKvbaが小さくなるように設定されている。なお、マップの形状は、適宜変更可能であり、グリップ状態量Grがグリップ閾値Grthよりも大きな領域において、該グリップ状態量Grの増大に基づいて粘性調整ゲインKvbaが大きくなるように設定してもよく、また、車速Vの増大に基づいて粘性調整ゲインKvbaが大きくなるように設定してもよい。このように演算された粘性調整ゲインKvbaは、乗算器163に出力される。
【0092】
粘性制御演算部145は、乗算器163において粘性ゲインKvbに粘性調整ゲインKvbaを乗算した値を粘性ゲインKvb’として演算し、乗算器164に出力する。そして、粘性制御演算部145は、乗算器164において目標操舵速度ωh*に粘性ゲインKvb’を乗算することにより目標粘性トルクTvb*を演算する。
【0093】
次に、戻り時粘性制御演算部146の構成について説明する。
図16に示すように、戻り時粘性制御演算部146は、目標操舵速度ωh*に基づいて該目標操舵速度ωh*の符号を抽出する符号抽出部171と、戻り時粘性ゲインKvrを演算する戻り時粘性ゲイン演算部172と、戻り時粘性ゲインKvrを調整する戻り時粘性調整ゲインKvraを演算する戻り時粘性調整ゲイン演算部173とを備えている。
【0094】
符号抽出部171には、目標操舵速度ωh*が入力される。符号抽出部171は、目標操舵速度ωh*が正の値である場合には、「1」を示す符号信号Scを乗算器174に出力し、目標操舵速度ωh*が負の値である場合には、「-1」を示す符号信号Scを乗算器174に出力する。
【0095】
戻り時粘性ゲイン演算部172には、目標操舵速度ωh*が入力される。戻り時粘性ゲイン演算部172は、目標操舵速度ωh*と戻り時粘性ゲインKvrとの関係を定めたマップを備えており、同マップを参照することにより目標操舵速度ωh*に応じた戻り時粘性ゲインKvrを演算する。このマップは、目標操舵速度ωh*の増大に基づいて戻り時粘性ゲインKvrが非線形的に増加した後、減少するように設定されている。このように演算された戻り時粘性ゲインKvrは、乗算器175に出力される。
【0096】
戻り時粘性調整ゲイン演算部173には、グリップ状態量Gr及び車速Vが入力される。戻り時粘性調整ゲイン演算部173は、グリップ状態量Gr及び車速Vと戻り時粘性調整ゲインKvraとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた戻り時粘性調整ゲインKvraを演算する。本実施形態のマップは、上記粘性調整ゲイン演算部162のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された戻り時粘性調整ゲインKvraは、乗算器175に出力される。
【0097】
戻り時粘性制御演算部146は、乗算器175において戻り時粘性ゲインKvrに戻り時粘性調整ゲインKvraを乗算した値を戻り時粘性ゲインKvr’として演算し、乗算器174に出力する。そして、粘性制御演算部145は、乗算器174において符号信号Scに戻り時粘性ゲインKvr’を乗算することにより基礎戻り時粘性トルクTvrb*を演算し、乗算器176に出力する。
【0098】
また、戻り時粘性制御演算部146は、非操舵ゲイン演算部177を備えている。非操舵ゲイン演算部177には、操舵トルクThが入力される。非操舵ゲイン演算部177は、操舵トルクThと非操舵ゲインKns2との関係を定めたマップを備えており、同マップを参照することにより操舵トルクThに応じた非操舵ゲインKns2を演算する。本実施形態のマップは、非操舵ゲイン演算部135のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された非操舵ゲインKns2は、乗算器176に出力される。そして、戻り時粘性制御演算部146は、乗算器176において基礎戻り時粘性トルクTvrb*に非操舵ゲインKns2を乗算した値を目標戻り時粘性トルクTvr*として出力する。上記のように非操舵ゲインKns2は、運転者によりステアリング操作が行われている場合に「0」となることから、目標戻り時粘性トルクTvr*は非操舵状態である場合に出力されることとなる。
【0099】
次に、角速度F/B制御演算部147の構成について説明する。
図17に示すように、角速度F/B制御演算部147は、目標操舵角θh*に基づいて目標補償角速度ωr*を演算する目標補償角速度演算部181と、目標補償角速度ωr*を調整する補償角速度調整ゲインKraを演算する補償角速度調整ゲイン演算部182とを備えている。
【0100】
目標補償角速度演算部181には、目標操舵角θh*及び車速Vが入力される。目標補償角速度演算部181は、目標操舵角θh*及び車速Vと目標補償角速度ωr*との関係を定めたマップを備えており、同マップを参照することにより目標操舵角θh*及び車速Vに応じた目標補償角速度ωr*を演算する。このマップは、目標操舵角θh*の増大に基づいて目標補償角速度ωr*が非線形的に増大するように設定されている。また、本実施形態のマップは、車速Vの増大に基づいて目標補償角速度ωr*が大きくなるように設定されているが、車速Vの増大に基づいて目標補償角速度ωr*が小さくなるように設定してもよい。
【0101】
補償角速度調整ゲイン演算部182には、グリップ状態量Gr及び車速Vが入力される。補償角速度調整ゲイン演算部182は、グリップ状態量Gr及び車速Vと補償角速度調整ゲインKraとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた補償角速度調整ゲインKraを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された補償角速度調整ゲインKraは、乗算器183に出力される。
【0102】
角速度F/B制御演算部147は、乗算器183において目標補償角速度ωr*に補償角速度調整ゲインKraを乗算した値を目標補償角速度ωr*’として演算し、減算器184に出力する。減算器184には、目標補償角速度ωr*’に加え、目標操舵速度ωh*が入力される。そして、角速度F/B制御演算部147は、減算器184において目標補償角速度ωr*’から目標操舵速度ωh*を差し引くことにより角速度偏差Δωを演算する。
【0103】
また、角速度F/B制御演算部147は、目標操舵速度ωh*を目標補償角速度ωr*に追従させるべく、角速度偏差Δωに補償制御を行う比例補償制御部185及び位置補償制御部186を備えている。比例補償制御部185には、角速度偏差Δωに加え、車速V及びグリップ状態量Grが入力される。そして、比例補償制御部185は、これらの状態量に基づいて、比例成分Tpr*を演算する。
【0104】
詳しくは、
図18に示すように、比例補償制御部185は、車速Vに基づいて比例ゲインKprを演算する比例ゲイン演算部191と、比例ゲインKprを調整する比例調整ゲインKpraを演算する比例調整ゲイン演算部192とを備えている。
【0105】
比例ゲイン演算部191には、車速Vが入力される。比例ゲイン演算部191は、車速Vと比例ゲインKprとの関係を定めたマップを備えており、同マップを参照することにより車速Vに応じた比例ゲインKprを演算する。このマップは、車速Vの増大に基づいて比例ゲインKprが非線形的に増大するように設定されている。このように演算された比例ゲインKprは、乗算器193に出力される。
【0106】
比例調整ゲイン演算部192には、グリップ状態量Gr及び車速Vが入力される。比例調整ゲイン演算部192は、グリップ状態量Gr及び車速Vと比例調整ゲインKpraとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた比例調整ゲインKpraを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された比例調整ゲインKpraは、乗算器193に出力される。
【0107】
比例補償制御部185は、乗算器193において比例ゲインKprに比例調整ゲインKpraを乗算した値を比例ゲインKpr’として演算し、乗算器194に出力する。そして、比例補償制御部185は、乗算器194において角速度偏差Δωに比例ゲインKpr’を乗算することにより比例成分Tpr*を演算する。
【0108】
図17に示すように、比例補償制御部185において演算された比例成分Tpr*は、位置補償制御部186に出力される。位置補償制御部186には、比例成分Tpr*に加え、目標操舵角θh*、グリップ状態量Gr及び車速Vが入力される。そして、位置補償制御部186は、これらの状態量に基づいて、基礎補償角速度トルクTvvb*を演算する。
【0109】
詳しくは、
図19に示すように、位置補償制御部186は、目標操舵角θh*及び車速Vに基づいて位置ゲインKpoを演算する位置ゲイン演算部201と、位置ゲインKpoを調整する位置調整ゲインKpoaを演算する位置調整ゲイン演算部202とを備えている。
【0110】
位置ゲイン演算部201には、目標操舵角θh*及び車速Vが入力される。位置ゲイン演算部201は、目標操舵角θh*及び車速Vと位置ゲインKpoとの関係を定めたマップを備えており、同マップを参照することにより目標操舵角θh*に応じた位置ゲインKpoを演算する。このマップは、目標操舵角θh*の絶対値がゼロの場合に最大となり、目標操舵角θh*の絶対値の増大に基づいて減少した後、略一定となるように設定されている。つまり、このマップは、目標操舵角θh*がステアリング中立位置付近にある場合に大きくなるように設定されている。また、このマップは、車速Vの増大に基づいて位置ゲインKpoが大きくなるように設定されているが、車速Vの増大に基づいて小さくなるように設定してもよい。このように演算された位置ゲインKpoは、乗算器203に出力される。
【0111】
位置調整ゲイン演算部202には、グリップ状態量Gr及び車速Vが入力される。位置調整ゲイン演算部202は、グリップ状態量Gr及び車速Vと位置調整ゲインKpoaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた位置調整ゲインKpoaを演算する。本実施形態のマップは、基礎調整ゲイン演算部112のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された位置調整ゲインKpoaは、乗算器203に出力される。
【0112】
位置補償制御部186は、乗算器203において位置ゲインKpoに位置調整ゲインKpoaを乗算した値を位置ゲインKpo’として演算し、乗算器204に出力する。そして、位置補償制御部186は、乗算器204において比例成分Tpr*に位置ゲインKpo’を乗算することにより基礎補償角速度トルクTvvb*を演算する。
【0113】
図17に示すように、位置補償制御部186において演算された基礎補償角速度トルクTvvb*は、乗算器211に出力される。また、角速度F/B制御演算部147は、操舵トルクThに基づいて操舵トルク補償ゲインKtsを演算する操舵トルク補償ゲイン演算部212と、操舵トルク補償ゲインKtsを調整する操舵トルク補償調整ゲインKtsaを演算する操舵トルク補償調整ゲイン演算部213とを備えている。
【0114】
操舵トルク補償ゲイン演算部212には、操舵トルクThが入力される。操舵トルク補償ゲイン演算部212は、操舵トルクThと操舵トルク補償ゲインKtsとの関係を定めたマップを備えており、同マップを参照することにより操舵トルクThに応じた操舵トルク補償ゲインKtsを演算する。本実施形態のマップは、非操舵ゲイン演算部135のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された操舵トルク補償ゲインKtsは、乗算器214に出力される。
【0115】
操舵トルク補償調整ゲイン演算部213には、グリップ状態量Gr及び車速Vが入力される。操舵トルク補償調整ゲイン演算部213は、グリップ状態量Gr及び車速Vと操舵トルク補償調整ゲインKtsaとの関係を定めたマップを備えており、同マップを参照することによりグリップ状態量Gr及び車速Vに応じた操舵トルク補償調整ゲインKtsaを演算する。本実施形態のマップは、慣性調整ゲイン演算部152のマップと同様に設定されているが、異なる形状となるように設定されてもよい。このように演算された操舵トルク補償調整ゲインKtsaは、乗算器214に出力される。
【0116】
角速度F/B制御演算部147は、乗算器214において操舵トルク補償ゲインKtsに操舵トルク補償調整ゲインKtsaを乗算した値を操舵トルク補償ゲインKts’として演算し、乗算器211に出力する。そして、角速度F/B制御演算部147は、乗算器211において基礎補償角速度トルクTvvb*に操舵トルク補償ゲインKts’を乗算した値を目標補償角速度トルクTvv*として出力する。上記のように操舵トルク補償ゲインKtsは、運転者によりステアリング操作が行われている場合に「0」となることから、目標補償角速度トルクTvv*は非操舵状態である場合に出力されることとなる。
【0117】
次に、入力トルク基礎成分Tb*の調整に伴う操舵フィーリングの変化について説明する。
例えば車両が低μ路面を走行し、スリップ角βが大きくなりやすい状況下において、入力トルク基礎成分Tb*がグリップ状態量Grに基づいて調整前よりも小さくするように調整された場合を想定する。この場合、例えばスリップ角βが大きくなって限界領域に入る前の段階から、通常よりも操舵側モータ14からステアリングホイール11に付与される操舵反力を小さくでき、所謂抜け感が生じることで、低μ路であるといった路面情報を運転者が認識しやすくなる。
【0118】
一方、同状況下において、入力トルク基礎成分Tb*がグリップ状態量Grに基づいて調整前よりも大きくするように調整された場合を想定する。この場合、例えばスリップ角βが大きくなった状態でも、操舵側モータ14からステアリングホイール11に付与される操舵反力を維持又は大きくすることができ、運転者が違和感なく操舵を継続できる。
【0119】
次に、配分軸力Fdの調整に伴う操舵フィーリングの変化について説明する。
例えば車両が低μ路面を走行し、スリップ角βが大きくなりやすい状況下において、反力成分Firが配分軸力Fdに比べ、グリップ状態量Grに基づいて小さくするように調整された場合を想定する。この場合、例えばスリップ角βが大きくなって限界領域に入る前の段階から、通常よりも操舵側モータ14からステアリングホイール11に付与される操舵反力を小さくでき、所謂抜け感が生じることで、低μ路であるといった路面情報を運転者が認識しやすくなる。
【0120】
一方、同状況下において、反力成分Firが配分軸力Fdに比べ、グリップ状態量Grに基づいて大きくするように調整された場合を想定する。この場合、例えばスリップ角βが大きくなった状態でも、操舵側モータ14からステアリングホイール11に付与される操舵反力を大きくでき、運転者が違和感なく操舵を継続できる。
【0121】
次に、目標操舵角θh*の調整に伴う操舵フィーリングの変化について説明する。
例えば車両が低μ路面を走行し、スリップ角βが大きくなりやすい状況下において、目標操舵角θh*がグリップ状態量Grに基づいて調整前よりも大きくなるように調整された場合を想定する。この場合、例えばスリップ角βが大きくなって限界領域に入る前の段階から、通常よりも操舵側モータ14からステアリングホイール11に付与される操舵反力を小さくでき、所謂抜け感が生じることで、低μ路であるといった路面情報を運転者が認識しやすくなる。
【0122】
また、目標操舵角θh*を演算する基となる各成分、例えば慣性制御演算部144により演算される目標操舵加速度αh*がグリップ状態量Grに基づいて調整前よりも大きくなるように調整されると、操舵開始時の素早い動き出しが可能となることで、例えば限界領域に入ってから通常領域に戻るためのステアリング操作である所謂カウンターステアの動き出しを早めることができる。また、例えば粘性制御演算部145により演算される目標粘性トルクTvb*がグリップ状態量Grに基づいて調整前よりも小さくなるように調整されると、素早い操舵が可能となることで、例えばカウンターステアの速度を早めることができる。また、例えば戻り時粘性制御演算部146により演算される目標戻り時粘性トルクTvr*がグリップ状態量Grに基づいて調整前よりも小さくなるように調整されると、非操舵時に素早くステアリングホイール11が中立位置に近づき、例えば限界領域に入ってから通常領域に戻ろうとするステアリングホイール11の動作である所謂セルフカウンターの速度を早めることができる。また、例えば角速度F/B制御演算部147により演算される目標補償角速度トルクTvv*がグリップ状態量Grに基づいて調整前よりも(負の方向)に大きくなるように調整されると、非操舵時に素早くステアリングホイール11が中立位置に近づくことで、例えばセルフカウンターの速度を早めることができる。
【0123】
一方、同状況下において、目標操舵角θh*がグリップ状態量Grに基づいて調整前よりも小さくなるように調整された場合を想定する。この場合、例えばスリップ角βが大きくなった状態でも、操舵側モータ14からステアリングホイール11に付与される操舵反力を大きくでき、運転者が違和感なく操舵を継続できるため、さらに限界側へ操舵することを抑制できる。
【0124】
また、目標操舵角θh*を演算する基となる各成分、例えば慣性制御演算部144により演算される目標操舵加速度αh*がグリップ状態量Grに基づいて調整前よりも小さくなるように調整されると、例えば限界領域に入ってから更に限界側へ加速操舵されることを抑制できる。また、例えば粘性制御演算部145により演算される目標粘性トルクTvb*がグリップ状態量Grに基づいて調整前よりも大きくなるように調整されると、ダンピング機能が強くなることで、例えば限界領域に入ってからさらに限界側へ操舵されることを抑制できる。また、例えば戻り時粘性制御演算部146により演算される目標戻り時粘性トルクTvr*がグリップ状態量Grに基づいて調整前よりも大きくなるように調整されると、非操舵時にゆっくりとステアリングホイール11が中立位置に近づき、例えばセルフカウンターの速度を穏やかにできる。また、例えば角速度F/B制御演算部147により演算される目標補償角速度トルクTvv*がグリップ状態量Grに基づいて調整前よりも(ゼロの方向に)小さくなるように調整されると、非操舵時にゆっくりとステアリングホイール11が中立位置に近づくことで、例えばセルフカウンターの速度を穏やかにできる。
【0125】
本実施形態の作用及び効果について説明する。
(1)操舵側制御部51は、トルク指令値Th*を演算するトルク指令値演算部72と、操舵トルクThをトルク指令値Th*に追従させるべくトルクフィードバック制御の実行により入力トルク基礎成分Tb*を演算するトルクF/B制御部73と、入力トルク基礎成分Tb*に基づいて目標操舵角θh*を演算する目標操舵角演算部64とを備える。そして、操舵側制御部51は、操舵角θhを目標操舵角θh*に追従させる角度フィードバック制御の実行に基づいて目標反力トルクTs*を演算する。このように入力トルク基礎成分Tb*は、運転者が入力すべき操舵トルクThをトルク指令値Th*に追従させるトルクフィードバック制御を実行することにより演算される。そして、入力トルク基礎成分Tb*は、目標操舵角θh*を演算するのに用いられるものであり、目標操舵角θh*を変化させ、当該変化に基づき操舵反力を変化させるように機能する。これにより、入力トルク基礎成分Tb*は、運転者が入力すべき操舵トルクThを、駆動トルクTcに応じた適切な値に維持させるように作用する操舵反力として操舵装置2に付与される。つまり、運転者が入力すべき操舵トルクThと、当該操舵トルクThに対する操舵装置2の出力である転舵輪4の転舵角との関係を示す操舵特性を最適化する場合、トルク指令値演算部72の調整を通じて入力トルク基礎成分Tb*を調整すれば済むようになる。したがって、最適な操舵特性への調整については、入力トルク基礎成分Tb*を調整すればよく、例えば他の成分との間で相互に調整を図る必要がある場合と比較して、容易に調整できる。
【0126】
(2)操舵側制御部51は、理想軸力Fib、路面軸力Fer及び車両状態量軸力Fyrに基づいてグリップ状態量Grを演算するグリップ状態量演算部67を備え、トルク指令値演算部72は、グリップ状態量Grを考慮してトルク指令値Th*を演算し、このトルク指令値に基づいて操舵反力を変更する。このようにトルク指令値Th*の演算にグリップ状態量Grを考慮することで、転舵輪4のグリップ状態に応じて操舵特性を最適化できる。
【0127】
(3)トルク指令値演算部72は、駆動トルクTcに基づいてトルク指令値Th*の基礎となる指令基礎値Thb*を演算する指令基礎値演算部111と、指令基礎値Thb*に乗算する基礎調整ゲインKhbaを演算する基礎調整ゲイン演算部112とを備える。そして、基礎調整ゲイン演算部112は、グリップ状態量Grに基づいて基礎調整ゲインKhbaを変更するため、グリップ状態の影響を指令基礎値Thb*の勾配の変化として操舵特性に対して反映させることができる。
【0128】
(4)基礎調整ゲイン演算部112は、基礎調整ゲインKhbaを車速Vに応じて変更するため、指令基礎値Thb*を車速に応じて好適に調整できる。
(5)トルク指令値演算部72は、ヒステリシス成分Thy*を演算するヒステリシス成分演算部115と、ヒステリシス成分Thy*に乗算するヒステリシス調整ゲインKhyaを演算するヒステリシス調整ゲイン演算部125とを備える。そして、ヒステリシス調整ゲイン演算部125は、グリップ状態量Grに基づいてヒステリシス調整ゲインKhyaを変更するため、グリップ状態の影響を主として操舵フィーリングにおける摩擦感の変化として操舵特性に対して反映させることができる。
【0129】
(6)ヒステリシス調整ゲイン演算部125は、ヒステリシス調整ゲインKhyaを車速Vに応じて変更するため、ヒステリシス成分Thy*を車速Vに応じて好適に最適化できる。
【0130】
(7)グリップ状態量演算部67は、横加速度LA及び車速Vが低速状態であることを示し、車両状態量軸力Fyrの精度を確保できない場合には、理想軸力Fib及び路面軸力Ferに基づく第1グリップ成分Gr1が含まれる配分比率でグリップ状態量Grを演算する。そして、横加速度LA及び車速Vが中高速状態であることを示し、車両状態量軸力Fyrの精度を確保できる場合には、車両状態量軸力Fyr及び路面軸力Ferに基づく第2グリップ成分Gr2が含まれる配分比率でグリップ状態量Grを演算する。したがって、適切なグリップ状態量Grを演算でき、グリップ状態量Grを考慮して操舵反力を適切に補償できる。
【0131】
(8)グリップ状態量演算部67は、横加速度LA及び車速Vが低速状態を示す状態から中高速状態を示す状態に近づくほど、第2グリップ成分Gr2の配分比率が大きくなるようにグリップ状態量Grを演算するため、より適切にグリップ状態量Grを演算できる。
【0132】
(9)配分比率設定部106は、横加速度LA及び車速Vに基づいて配分比率を設定したため、適切な走行状態量に基づいて車両の走行状態を判断し、グリップ状態量Grを演算できる。
【0133】
(10)操舵側制御部51は、配分軸力Fdをグリップ状態量Grに基づいて調整し、この調整された調整後配分軸力としての反力成分Firを考慮して操舵反力を変更する。ここで、操舵フィーリングは、基本的に、操舵装置2に入力される入力トルクTin*と転舵角との関係を示す運動方程式における慣性項、粘性項、バネ項によって表される慣性感、粘性感、剛性感で実現される。上記運動方程のバネ項に相当する配分軸力Fdについて、本実施形態のようにグリップ状態量Grに基づいて調整することで、グリップ状態に応じたステアリング操作の剛性感を手応えとして運転者に付与し、優れた操舵フィーリングを実現できる。
【0134】
(11)配分軸力調整部98は、配分軸力Fdに乗算する配分調整ゲインKaaを演算する配分調整ゲイン演算部131を備え、配分調整ゲインKaaを乗算することにより配分軸力Fdを調整する。そして、配分調整ゲイン演算部131は、グリップ状態量Grに基づいて配分調整ゲインKaaを変更するため、反力成分Fir(調整後配分軸力)の勾配、すなわちバネ項のバネ定数の変化に基づいてステアリング操作の剛性感を調整できる。
【0135】
(12)配分調整ゲイン演算部131は、配分調整ゲインKaaを車速Vに応じて変更するため、車速Vに応じて変化するグリップ状態を配分調整ゲインKaaに基づいて実現されるステアリング操作の剛性感を通じて手応えとして運転者に付与できる。
【0136】
(13)配分軸力調整部98は、配分軸力Fdに加算するオフセット値Ofを演算するオフセット値演算部134を備え、オフセット値Ofを加算することにより配分軸力Fdを調整する。そして、オフセット値演算部134は、グリップ状態量Grに基づいてオフセット値Ofを変更するため、バネ項のバネ定数に関係なく、グリップ状態量Grに応じたステアリング操作の剛性感については一定の手応えとして運転者に付与できるので、優れた操舵フィーリングを実現できる。
【0137】
(14)配分軸力調整部98は、オフセット値Ofに乗算する非操舵ゲインKns1を演算する非操舵ゲイン演算部135を備え、非操舵ゲイン演算部135は、非操舵時にのみオフセット値Ofがゼロよりも大きな値となるように演算する。そのため、運転者がステアリングホイール11を略操舵していない状態において、オフセット値Ofが加算されて配分軸力Fdが調整されるため、戻り時のステアリングホイール11の操舵速度ωhをグリップ状態に応じて調整できる。
【0138】
(15)オフセット値演算部134は、オフセット値Ofを車速Vに応じて変更するため、車速Vに応じて変化するグリップ状態をオフセット値Ofに基づいて実現されるステアリング操作の剛性感を通じて手応えとして運転者に付与できる。
【0139】
(16)操舵側制御部51は、グリップ状態量Grを考慮して目標操舵角θh*を演算し、この目標操舵角θh*に操舵角θhが追従するようにフィードバック制御を実行することで目標反力トルクTs*を演算する。このように目標反力トルクTs*を演算する基になる目標操舵角θh*にグリップ状態量Grが加味されるため、優れた操舵フィーリングを実現できる。
【0140】
(17)慣性制御演算部144は、目標操舵加速度αh*に基づいて慣性逆数ゲインKiiを演算する慣性逆数ゲイン演算部151と、慣性逆数ゲインKiiに乗算する慣性調整ゲインKiiaを演算する慣性調整ゲイン演算部152とを備え、入力トルクTin*に慣性逆数ゲインKiiを乗算することにより目標操舵加速度αh*を演算する。そして、慣性制御演算部144は、グリップ状態量Grに基づいて慣性調整ゲインKiiaを変更し、該慣性調整ゲインKiiaを乗算することによる慣性逆数ゲインKiiの調整を通じて、目標操舵加速度αh*を変更するため、操舵フィーリングの慣性感をグリップ状態に応じて好適に調整できる。
【0141】
(18)慣性調整ゲイン演算部152は、慣性調整ゲインKiiaを車速Vに応じて変更するため、慣性逆数ゲインKiiを車速Vに応じて好適に調整できる。
(19)粘性制御演算部145は、目標操舵速度ωh*に応じた粘性ゲインKvbを演算する粘性ゲイン演算部161と、粘性ゲインKvbに乗算する粘性調整ゲインKvbaを演算する粘性調整ゲイン演算部162とを備え、目標操舵速度ωh*及び粘性ゲインKvbに基づいて目標粘性トルクTvb*を演算する。そして、粘性調整ゲイン演算部162は、グリップ状態量Grに基づいて粘性調整ゲインKvbaを変更し、該粘性調整ゲインKvbaを乗算することにより粘性ゲインKvbの調整を通じて、目標粘性トルクTvb*を変更するため、操舵フィーリングの粘性感をグリップ状態に応じて好適に調整できる。
【0142】
(20)粘性調整ゲイン演算部162は、粘性調整ゲインKvbaを車速Vに応じて変更するため、粘性ゲインKvbを車速に応じて好適に調整できる。
(21)戻り時粘性制御演算部146は、目標操舵速度ωh*に基づいて戻り時粘性ゲインKvrを演算する戻り時粘性ゲイン演算部172と、戻り時粘性ゲインKvrに乗算する戻り時粘性調整ゲインKvraを演算する戻り時粘性調整ゲイン演算部173とを備える。そして、戻り時粘性制御演算部146は、目標操舵速度ωh*及び戻り時粘性ゲインKvrに基づいて目標戻り時粘性トルクTvr*を演算する。戻り時粘性調整ゲイン演算部173は、グリップ状態量Grに基づいて戻り時粘性調整ゲインKvraを変更し、該戻り時粘性調整ゲインKvraを乗算することによる戻り時粘性ゲインKvrの調整を通じて、目標戻り時粘性トルクTvr*を変更するため、非操舵状態での粘性感をグリップ状態に応じて好適に調整できる。
【0143】
(22)戻り時粘性調整ゲイン演算部173は、戻り時粘性調整ゲインKvraを車速Vに応じて変更するため、戻り時粘性調整ゲインKvraを車速Vに応じて好適に調整できる。
【0144】
(23)角速度F/B制御演算部147は、目標操舵角θh*に基づいて目標補償角速度ωr*を演算する目標補償角速度演算部181と、目標補償角速度ωr*に乗算する補償角速度調整ゲインKraを演算する補償角速度調整ゲイン演算部182とを備える。そして、角速度F/B制御演算部147は、目標補償角速度ωr*と目標操舵速度ωh*との角速度偏差Δωに基づいて目標補償角速度トルクTvv*を演算する。補償角速度調整ゲイン演算部182は、グリップ状態量Grに基づいて補償角速度調整ゲインKraを変更し、該補償角速度調整ゲインKraを乗算することによる目標補償角速度ωr*の調整を通じて、目標補償角速度トルクTvv*を変更するため、目標補償角速度ωr*をグリップ状態に応じて好適に調整できる。
【0145】
(24)補償角速度調整ゲイン演算部182は、補償角速度調整ゲインKraを車速Vに応じて変更するため、目標補償角速度ωr*を車速Vに応じて好適に調整できる。
(25)角速度F/B制御演算部147は、比例ゲインKprを演算する比例ゲイン演算部191と、比例ゲインKprに乗算する比例調整ゲインKpraを演算する比例調整ゲイン演算部192とを備える。そして、角速度F/B制御演算部147は、角速度偏差Δωに比例ゲインKprを乗算することで目標補償角速度トルクTvv*を変更するため、車速Vに応じた好適な目標補償角速度トルクTvv*を演算できる。比例調整ゲイン演算部192は、比例ゲインKprをグリップ状態量Grに基づいて変更するため、目標補償角速度トルクTvv*の基になる比例ゲインKprにグリップ状態を反映させることができる。
【0146】
(26)比例調整ゲイン演算部192は、比例調整ゲインKpraを車速Vに応じて変更するため、比例ゲインKprを車速Vに応じて好適に調整できる。
(27)角速度F/B制御演算部147は、目標操舵角θh*に基づいて位置ゲインKpoを演算する位置ゲイン演算部201と、位置ゲインKpoに乗算する位置調整ゲインKpoaを演算する位置調整ゲイン演算部202とを備える。そして、角速度F/B制御演算部147は、角速度偏差Δωに基づく比例成分Tpr*に位置ゲインKpo’を乗算することで目標補償角速度トルクTvv*を変更する。そのため、目標操舵角θh*に応じた好適な目標補償角速度トルクTvv*を演算できる。位置調整ゲイン演算部202は、位置調整ゲインKpoaをグリップ状態量Grに基づいて変更するため、目標補償角速度トルクTvv*を演算する基になる位置ゲインKpoにグリップ状態を反映させることができる。
【0147】
(28)位置調整ゲイン演算部202は、位置調整ゲインKpoaを車速Vに応じて変更するため、位置調整ゲインKpoaを車速Vに応じて好適に調整できる。
(29)角速度F/B制御演算部147は、操舵トルクThに基づいて操舵トルク補償ゲインKtsを演算する操舵トルク補償ゲイン演算部212と、操舵トルク補償ゲインKtsに乗算する操舵トルク補償調整ゲインKtsaを演算する操舵トルク補償調整ゲイン演算部213とを備える。そして、角速度F/B制御演算部147は、角速度偏差Δωに基づく値である基礎補償角速度トルクTvvb*に該操舵トルク補償ゲインKtsを乗算することで目標補償角速度トルクTvv*を変更する。操舵トルク補償ゲイン演算部212は、操舵トルクThの絶対値が非操舵閾値Tthを超える場合に操舵トルク補償調整ゲインKtsaがゼロとなるように演算するため、運転者が操舵部3に操舵を入力しない非操舵状態で、目標操舵角θh*に目標補償角速度トルクTvv*が反映される。これにより、戻り時のステアリングホイール11の操舵速度をグリップ状態に応じて調整できる。
【0148】
(30)操舵トルク補償調整ゲイン演算部213は、操舵トルク補償調整ゲインKtsaを車速Vに応じて変更するため、操舵トルク補償ゲインKtsを車速Vに応じて好適に調整できる。
【0149】
(第2実施形態)
次に、操舵制御装置の第2実施形態を図面に従って説明する。なお、説明の便宜上、同一の構成については上記第1実施形態と同一の符号を付してその説明を省略する。
【0150】
図20に示すように、本実施形態の配分比率設定部106は、同図に示すマップを参照することにより、車速V及び横加速度LAの少なくとも一方が車両の低速状態であることを示す場合には、第1グリップ成分Gr1のみが含まれる配分比率Ggrでグリップ状態量Grを演算する。また、配分比率設定部106は、車速V及び横加速度LAの双方が車両の中高速状態であることを示す場合には、第2グリップ成分Gr2のみが含まれる配分比率Ggrでグリップ状態量Grが演算する。具体的には、同図に示すマップは、横加速度LAが横加速度閾値LAth以下である場合、又は車速Vが車速閾値Vth以下である場合に配分比率Ggrが「0」となり、横加速度LAが横加速度閾値LAthよりも大きく、かつ車速Vが車速閾値Vthよりも大きい場合に配分比率Ggrが「1」に設定されている。
【0151】
このように演算されたグリップ状態量Grは、上記第1実施形態と同様に、入力トルク基礎成分演算部62(トルク指令値演算部72)、反力成分演算部63(配分軸力調整部98)及び目標操舵角演算部64に入力される。
【0152】
次に、本実施形態の作用及び効果について記載する。なお、本実施形態では、上記第1実施形態の(1)~(7),(9)~(30)の作用及び効果に加えて以下の効果を有する。
【0153】
(31)グリップ状態量演算部67は、横加速度LA及び車速Vの少なくとも一方が車両の低速状態であることを示す場合には、理想軸力Fibに基づく第1グリップ成分Gr1のみが含まれる、すなわち車両状態量軸力Fyrに基づく第2グリップ成分Gr2を用いずにグリップ状態量Grを演算する。上記のように第1グリップ成分Gr1は、車両の低速状態で精度の良い理想軸力Fibに基づく値であり、車両の中高速状態で精度が低下する車両状態量軸力Fyrに基づかないため、本実施形態のグリップ状態量演算部67では、より適切にグリップ状態量を演算できる。
【0154】
(32)グリップ状態量演算部67は、横加速度LA及び車速Vの双方が車両の中高速状態であることを示す場合には、車両状態量軸力Fyrに基づく第2グリップ成分Gr2のみが含まれる、すなわち理想軸力Fib及び路面軸力Ferに基づく第1グリップ成分Gr1を用いずにグリップ状態量Grを演算する。上記のように第2グリップ成分Gr2は、車両の中高速状態で精度の良い車両状態量軸力Fyrに基づく値であり、車両の中高速状態で精度が低下する理想軸力Fibに基づかないため、本実施形態のグリップ状態量演算部67では、より適切にグリップ状態量Grを演算できる。
【0155】
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記各実施形態において、基礎調整ゲインKhbaを車速Vに応じて変更せず、一定としてもよい。同様に、ヒステリシス調整ゲインKhya、配分調整ゲインKaa、慣性調整ゲインKiia、粘性調整ゲインKvba、戻り時粘性調整ゲインKvra、補償角速度調整ゲインKra、操舵トルク補償調整ゲインKtsa、比例調整ゲインKpra及び位置調整ゲインKpoaを車速Vに応じて変更せず、一定としてもよい。また、オフセット値Ofを車速Vに応じて変更せず、一定としてもよい。
【0156】
・上記各実施形態において、指令基礎値演算部111、ベース値ゲイン演算部123、慣性逆数ゲイン演算部151、粘性ゲイン演算部161、戻り時粘性ゲイン演算部172、目標補償角速度演算部181、比例ゲイン演算部191及び位置ゲイン演算部201のマップ形状は、適宜変更可能である。
【0157】
・上記各実施形態では、グリップ状態量Grに基づく基礎調整ゲインKhbaの調整を通じて指令基礎値Thb*を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えばトルク指令値演算部72が指令基礎値Thb*と基礎調整ゲインKhbaとをまとめた1つの値として指令基礎値Thb*’を演算し、該指令基礎値Thb*’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0158】
・上記各実施形態では、グリップ状態量Grに基づくヒステリシス調整ゲインKhyaの調整を通じてヒステリシス成分Thy*を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えばヒステリシス成分演算部115がベース値Thyb*とヒステリシス調整ゲインKhyaとをまとめた1つの値としてベース値Thyb*を演算し、ヒステリシス成分Thy*をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0159】
・上記各実施形態において、ヒステリシス成分演算部115がベース値ゲイン演算部123を備えない構成としてもよい。
・上記各実施形態において、トルク指令値演算部72がヒステリシス成分演算部115を備えない構成としてもよい。
【0160】
・上記各実施形態において、操舵側制御部51がグリップ状態量Grを考慮せずに目標反力トルクTs*を演算してもよい。
・上記第2実施形態において、車速V及び横加速度LAが車両の中高速状態であることを示す場合には、第2グリップ成分Gr2のみに基づいてグリップ状態量Grを演算し、車速V及び横加速度LAが車両の低速状態であることを示す場合に、第1及び第2グリップ成分Gr1,Gr2に基づいてグリップ状態量Grを演算してもよい。また、車速V及び横加速度LAが車両の低速状態であることを示す場合には、第1グリップ成分Gr1のみに基づいてグリップ状態量Grを演算し、車速V及び横加速度LAが車両の中高速状態であることを示す場合に、第1及び第2グリップ成分Gr1,Gr2に基づいてグリップ状態量Grを演算してもよい。
【0161】
・上記各実施形態において、ゼロ割防止機能の実現態様は適宜変更可能である。例えば、車両状態量軸力Fyrの絶対値がゼロ閾値F0以下である場合には、車両状態量軸力Fyrを予め設定された下限値とすることができる。なお、第1グリップ成分演算部102及び第2グリップ成分演算部103がゼロ割防止機能を有していなくともよい。
【0162】
・上記各実施形態では、配分比率設定部106は、走行状態量として横加速度LA及び車速Vを用いて配分比率Ggrを設定したが、これに限らず、例えば横加速度LA及び車速Vのいずれか一方のみを用いて配分比率Ggrを設定してもよい。また、例えばヨーレートγ等、他のパラメータを用いて配分比率Ggrを設定してもよい。
【0163】
・上記各実施形態において、路面軸力Ferを理想軸力Fibにより除算したグリップ度を第1グリップ成分Gr1としたが、これに限らず、路面軸力Ferから理想軸力Fibを減算したグリップロス度(転舵輪4のグリップがどの程度失われたかを示す値)を第1グリップ成分Gr1としてもよい。同様に、路面軸力Ferから車両状態量軸力Fyrを減算したグリップロス度を第2グリップ成分Gr2としてもよい。
【0164】
・上記各実施形態では、路面軸力Fer及び理想軸力Fibに基づく第1グリップ成分Gr1と、路面軸力Fer及び車両状態量軸力Fyrに基づく第2グリップ成分Gr2とを所定配分比率で合算させることによりグリップ状態量Grを演算した。しかし、これに限らず、例えば理想軸力Fib及び車両状態量軸力Fyrに基づく第3グリップ成分を演算し、これらの各グリップ成分を所定配分比率で合算させることによりグリップ状態量Grを演算してもよい。また、第1グリップ成分Gr1と第2グリップ成分Gr2とを所定配分比率で合算させず、例えば第2グリップ成分Gr2をそのままグリップ状態量Grとして演算してもよい。
【0165】
・上記各実施形態において、配分軸力調整部98が非操舵ゲインKns1を備えない構成としてもよい。
・上記各実施形態において、配分軸力調整部98が配分軸力Fdを調整する態様としては、配分調整ゲインKaaを乗算するのみ、又はオフセット値Ofを加算するのみとしてもよく、適宜変更可能である。
【0166】
・上記各実施形態では、グリップ状態量Grに基づく慣性調整ゲインKiiaの調整を通じて慣性逆数ゲインKii’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば慣性制御演算部144が慣性逆数ゲインKiiと慣性調整ゲインKiiaとをまとめた1つのゲインとして慣性逆数ゲインKii’を演算し、該慣性逆数ゲインKii’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0167】
・上記各実施形態では、グリップ状態量Grに基づく粘性調整ゲインKvbaの調整を通じて粘性ゲインKvb’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば粘性制御演算部145が粘性ゲインKvbと粘性調整ゲインKvbaとをまとめた1つのゲインとして粘性ゲインKvb’を演算し、該粘性ゲインKvb’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0168】
・上記各実施形態では、グリップ状態量Grに基づく戻り時粘性調整ゲインKvraの調整を通じて戻り時粘性ゲインKvr’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば戻り時粘性制御演算部146が戻り時粘性ゲインKvrと戻り時粘性調整ゲインKvraとをまとめた1つのゲインとして戻り時粘性ゲインKvr’を演算し、該戻り時粘性ゲインKvr’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0169】
・上記各実施形態では、グリップ状態量Grに基づく補償角速度調整ゲインKraの調整を通じて目標補償角速度ωr*’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば角速度F/B制御演算部147が目標補償角速度ωr*と補償角速度調整ゲインKraとをまとめた1つの値として目標補償角速度ωr*’を演算し、該目標補償角速度ωr*’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0170】
・上記各実施形態では、グリップ状態量Grに基づく比例調整ゲインKpraの調整を通じて比例ゲインKpr’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば比例補償制御部185が比例ゲインKprと比例調整ゲインKpraとをまとめた1つのゲインとして比例ゲインKpra’を演算し、該比例ゲインKpra’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0171】
・上記各実施形態では、グリップ状態量Grに基づく位置調整ゲインKpoaの調整を通じて位置ゲインKpo’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば位置補償制御部186が位置ゲインKpoと位置調整ゲインKpoaとをまとめた1つのゲインとして位置ゲインKpo’を演算し、該位置ゲインKpo’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0172】
・上記各実施形態では、グリップ状態量Grに基づく操舵トルク補償調整ゲインKtsaの調整を通じて操舵トルク補償ゲインKts’を該グリップ状態量Grに応じて変更した。しかし、これに限らず、例えば角速度F/B制御演算部147が操舵トルク補償ゲインKtsと操舵トルク補償調整ゲインKtsaとをまとめた1つのゲインとして操舵トルク補償ゲインKts’を演算し、該操舵トルク補償ゲインKts’をグリップ状態量Grに応じて直接変更してもよく、その態様は適宜変更可能である。
【0173】
・上記各実施形態では、非操舵ゲイン演算部135は、トルクセンサ42により検出される操舵トルクTh(トーションバートルク)に基づいて非操舵ゲインKns1を演算した。しかし、これに限らず、運転者がステアリングホイール11に加えているトルク(推定操舵トルク)に基づいて非操舵ゲインKns1を演算してもよい。なお、推定操舵トルクは、例えばステアリングホイール11に設けられるセンサにより検出したり、操舵トルクThから演算により求めたりすることが可能である。また、同様に、非操舵ゲイン演算部177が推定操舵トルクに基づいて非操舵ゲインKns2を演算してもよく、操舵トルク補償ゲイン演算部212が推定操舵トルクに基づいて操舵トルク補償ゲインKtsを演算してもよい。
【0174】
・上記各実施形態において、戻り時粘性制御演算部146に、非操舵ゲインKns2を調整する非操舵調整ゲインを演算する非操舵調整ゲイン演算部を設けてもよい。なお、非操舵調整ゲイン演算部は、例えば操舵トルク補償調整ゲイン演算部213と同様に構成することができる。また、非操舵調整ゲイン演算部は、非操舵調整ゲインを車速Vに応じて変更してもよい。
【0175】
・上記各実施形態において、操舵トルク補償調整ゲインKtsaを操舵トルクThの絶対値が非操舵閾値Tthを超える場合にゼロとならないように演算してもよい。この場合、操舵トルクに基づく操舵トルク補償ゲインKtsを基礎補償角速度トルクTvvb*に乗算することにより、操舵トルクThに応じた好適な目標補償角速度トルクTvv*を演算できる。
【0176】
・上記各実施形態では、位置補償制御部186は目標操舵角θh*に基づいて位置ゲインKpoを演算したが、これに限らず、例えば操舵角θhに*に基づいて位置ゲインKpoを演算してもよい。
【0177】
・上記各実施形態では、目標補償角速度演算部181は目標操舵角θh*に基づいて目標補償角速度ωr*を演算したが、これに限らず、例えば操舵角θhに*に基づいて目標補償角速度ωr*を演算してもよい。
【0178】
・上記各実施形態では、角速度F/B制御演算部147は目標補償角速度ωr*から目標操舵速度ωh*を差し引くことにより角速度偏差Δωを演算したが、これに限らず、例えば目標補償角速度ωr*から操舵角θhの微分に基づく操舵速度ωsを差し引くことにより角速度偏差Δωを演算してもよい。
【0179】
・上記各実施形態において、角速度F/B制御演算部147が比例補償制御部185、位置補償制御部186及び操舵トルク補償ゲイン演算部212のいずれか、又はこれら全てを備えない構成としてもよい。
【0180】
・上記各実施形態では、粘性制御演算部145は目標操舵速度ωh*に粘性ゲインKvb’を乗算することにより目標粘性トルクTvb*を演算したが、これに限らず、例えば目標操舵速度ωh*から抽出した符号信号に粘性ゲインKvb’を乗算することにより目標粘性トルクTvb*を演算してもよい。また、戻り時粘性制御演算部146において、目標操舵速度ωh*に戻り時粘性ゲインKvr’を乗算することにより目標戻り時粘性トルクTvr*を演算してもよい。
【0181】
・上記各実施形態において、目標操舵角演算部64が戻り時粘性制御演算部146及び角速度F/B制御演算部147のいずれか、又は双方を備えない構成としてもよい。
・上記各実施形態において、慣性制御演算部144、粘性制御演算部145、戻り時粘性制御演算部146及び角速度F/B制御演算部147の少なくとも1つがグリップ状態量Grを考慮して演算を行い、他の演算部がグリップ状態量Grを考慮して演算を行わなくともよい。
【0182】
・上記各実施形態では、路面軸力Ferをq軸電流値Iqtに基づいて演算したが、これに限らず、例えばラック軸22に軸力を検出できる圧力センサ等を設け、その検出結果を路面軸力Ferとして用いてもよい。
【0183】
・上記各実施形態では、理想軸力Fibを目標操舵角θh*(目標転舵対応角)及び車速Vに基づいて演算したが、これに限らず、目標操舵角θh*(目標転舵対応角)のみに基づいて演算してもよく、また、転舵対応角θpに基づいて演算してもよい。さらに、例えば操舵トルクThや車速V等、他のパラメータを加味する等、他の方法で演算してもよい。
【0184】
・上記各実施形態では、理想軸力Fibと路面軸力Ferとを所定割合で配分して配分軸力Fdを演算したが、これに限らず、例えば理想軸力Fibと車両状態両軸力Fyrとを所定割合で配分して配分軸力Fdを演算してもよく、配分軸力Fdの演算態様は適宜変更可能である。
【0185】
・上記各実施形態では、ヨーレートγ及び横加速度LAに基づいて車両状態両軸力Fyrを演算したが、これに限らず、例えばヨーレートγ及び横加速度LAのいずれか一方のみに基づいて車両状態両軸力Fyrを演算してもよい。
【0186】
・上記各実施形態において、配分軸力演算部93が車速V以外のパラメータを加味して配分ゲインGib,Gerを演算してもよい。例えば車載のエンジン等の制御パターンの設定状態を示すドライブモードを複数の中から選択可能な車両において、該ドライブモードを配分ゲインGib,Gerを設定するためのパラメータとしてもよい。この場合、配分軸力演算部93がドライブモード毎に車速Vに対する傾向が異なる複数のマップを備え、同マップを参照することにより、配分ゲインGib,Gerを演算する構成を採用できる。
【0187】
・上記各実施形態では、反力成分演算部63は、調整後配分軸力を反力成分Firとして演算したが、これに限らず、例えば調整後配分軸力に他の反力を加味した値を反力成分Firとして演算してもよい。こうした反力として、例えばステアリングホイール11の操舵角θhの絶対値が舵角閾値に近づく場合に、更なる切り込み操舵が行われるのに抗する反力であるエンド反力を採用することができる。なお、舵角閾値としては、例えばラックエンド25がラックハウジング23に当接することでラック軸22の軸方向移動が規制される機械的なラックエンド位置よりも中立位置側に設定された仮想ラックエンド位置に対し、さらに所定角度だけ中立位置側に位置する仮想ラックエンド近傍位置での転舵対応角θpを用いることができる。また、舵角閾値としてステアリングホイール11の回転エンド位置での操舵角θhを用いることもできる。
【0188】
・上記各実施形態では、目標操舵角演算部64が操舵トルクTh及び車速Vに基づいて目標操舵角θh*を設定したが、これに限らず、少なくとも操舵トルクThに基づいて設定されれば、例えば車速Vを用いずともよい。
【0189】
・上記各実施形態では、操舵角θhと転舵対応角θpとの舵角比を一定としたが、これに限らず、これらが車速等に応じて可変としてもよい。なお、この場合には、目標操舵角θh*と目標転舵対応角とが異なる値になる。
【0190】
・上記各実施形態において、目標操舵角演算部64がサスペンションやホイールアライメント等の仕様によって決定されるバネ係数Kを用いた、所謂バネ項を追加してモデル化したモデル式を利用して目標操舵角θh*を演算してもよい。
【0191】
・上記各実施形態では、目標反力トルク演算部65が基礎反力トルクに入力トルク基礎成分Tb*を加算して目標反力トルクTs*を演算したが、これに限らず、例えば入力トルク基礎成分Tb*を加算せず、基礎反力トルクをそのまま目標反力トルクTs*として演算してもよい。
【0192】
・上記各実施形態において、第1ラックアンドピニオン機構24に代えて、例えばブッシュ等によりラック軸22を支持してもよい。
・上記各実施形態において、転舵側アクチュエータ31として、例えばラック軸22の同軸上に転舵側モータ33を配置するものや、ラック軸22と平行に転舵側モータ33を配置するもの等を用いてもよい。
【0193】
・上記各実施形態では、操舵制御装置1の制御対象となる操舵装置2を、操舵部3と転舵部5とを機械的に分離したリンクレスのステアバイワイヤ式操舵装置としたが、これに限らず、クラッチにより操舵部3と転舵部5とを機械的に断接可能なステアバイワイヤ式操舵装置としてもよい。
【0194】
例えば
図21に示す例では、操舵部3と転舵部5との間には、クラッチ301が設けられている。クラッチ301は、その入力側要素に固定された入力側中間軸302を介してステアリングシャフト12に連結されるとともに、その出力側要素に固定された出力側中間軸303を介して第1ピニオン軸21に連結されている。そして、操舵制御装置1からの制御信号によりクラッチ301が解放状態となることで、操舵装置2はステアバイワイヤモードとなり、クラッチ301が締結状態となることで、操舵装置2は電動パワーステアリングモードとなる。
【符号の説明】
【0195】
1…操舵制御装置、2…操舵装置、3…操舵部、4…転舵輪、5…転舵部、11…ステアリングホイール、12…ステアリングシャフト、13…操舵側アクチュエータ、14…操舵側モータ、51…操舵側制御部(制御部)、62…入力トルク基礎成分演算部、63…反力成分演算部、64…目標操舵角演算部、65…目標反力トルク演算部、67…グリップ状態量演算部、72…トルク指令値演算部、73…トルクF/B制御部、91…路面軸力演算部(軸力演算部)、92…理想軸力演算部(軸力演算部)、93…配分軸力演算部、101…車両状態量軸力演算部(軸力演算部)、111…指令基礎値演算部、112…基礎調整ゲイン演算部、115…ヒステリシス成分演算部、121…ベース値演算部、123…ベース値ゲイン演算部、125…ヒステリシス調整ゲイン演算部、Fd…配分軸力、Fer…路面軸力、Fib…理想軸力、Fir…反力成分、Fyr…車両状態量軸力、Gr…グリップ状態量、Khba…基礎調整ゲイン、Khya…ヒステリシス調整ゲイン、Khyb…ベース値ゲイン、LA…横加速度、Tb*…入力トルク基礎成分、Tc…駆動トルク、Th…操舵トルク、Th*…トルク指令値、Thb*…指令基礎値、Thy*…ヒステリシス成分、Tin*…入力トルク、Ts*…目標反力トルク、Tt*…目標転舵トルク、V…車速、γ…ヨーレート、θh…操舵角、θh*…目標操舵角。