(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-10-11
(45)【発行日】2022-10-19
(54)【発明の名称】被覆金属材の耐食性試験方法、耐食性試験装置、耐食性試験用プログラム及び記録媒体
(51)【国際特許分類】
G01N 27/00 20060101AFI20221012BHJP
G01N 17/02 20060101ALI20221012BHJP
【FI】
G01N27/00 L
G01N17/02
(21)【出願番号】P 2021163043
(22)【出願日】2021-10-01
【審査請求日】2021-12-02
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003137
【氏名又は名称】マツダ株式会社
(74)【代理人】
【識別番号】110001427
【氏名又は名称】弁理士法人前田特許事務所
(72)【発明者】
【氏名】浅田 照朗
(72)【発明者】
【氏名】佐々木 將展
(72)【発明者】
【氏名】江▲崎▼ 達哉
(72)【発明者】
【氏名】重永 勉
(72)【発明者】
【氏名】▲高▼見 明秀
【審査官】福田 裕司
(56)【参考文献】
【文献】特開2019-032173(JP,A)
【文献】特開2017-181486(JP,A)
【文献】特開2016-095146(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/00
G01N 17/02
(57)【特許請求の範囲】
【請求項1】
金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験方法であって、
前記表面処理膜の表面に腐食因子を接触させた状態で該表面処理膜の表面と前記金属製基材との間に電圧及び/又は電流を印加
して前記腐食因子の前記表面処理膜への浸透を促進させることにより両者の間に生じる電流及び/又は電圧の経時的変化を測定する通電工程と、
前記経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する評価工程と、を備えた
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項2】
請求項1において、
前記通電工程で、時間に対して漸増する、又は、時間に対して比例的に漸増する前記電圧及び/又は電流を印加する
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項3】
請求項1又は請求項2において、
前記通電工程で、前記表面処理膜の表面と前記金属製基材との間に前記電圧を印加して両者の間に生じる前記電流の前記経時的変化を測定し、
前記傾きは、前記電流の値が前記所定値を超えた直後の測定点から印加した前記電圧の値又は検出された前記電流の値が計測の上限値として設定した閾値に到達する直前の測定点までの前記電流の値の増加分を、時間の増加分で除して得られる増加率で表される
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項4】
請求項3において、
前記所定値は、0.1mA以上1mA以下である
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記金属製基材は、表面に形成された化成皮膜を備えており、
前記表面処理膜は、前記化成皮膜を介して前記金属製基材の表面に設けられている
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項6】
請求項1乃至請求項5のいずれか一において、
前記金属製基材は、自動車部材用鋼板である
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項7】
請求項1乃至請求項6のいずれか一において、
前記表面処理膜は、樹脂系塗料を用いて形成された電着塗膜である
ことを特徴とする被覆金属材の耐食性試験方法。
【請求項8】
金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験装置であって、
前記被覆金属材の前記表面処理膜側に配置された電極と、
前記表面処理膜と前記電極との間に両者に接触するように腐食因子を配置した状態で、前記電極と前記金属製基材との間に電圧及び/又は電流を印加する
ことにより、前記腐食因子の前記表面処理膜への浸透を促進させる電源部と、
前記電源部による前記電圧及び/又は電流の印加に伴い、前記電極と前記金属製基材との間に生じる電流及び/又は電圧を検出する検出部と、
前記検出部により検出された前記電流及び/又は電圧の経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する評価部と、を備えた
ことを特徴とする被覆金属材の耐食性試験装置。
【請求項9】
請求項8において、
前記電源部は、時間に対して漸増する、又は、時間に対して比例的に漸増する前記電圧及び/又は電流を印加する
ことを特徴とする被覆金属材の耐食性試験装置。
【請求項10】
請求項8又は請求項9において、
前記電源部は、前記電極と前記金属製基材との間に前記電圧を印加するものであり、
前記検出部は、前記電極と前記金属製基材との間に生じる前記電流を検出するものであり、
前記傾きは、前記電流の値が前記所定値を超えた直後の測定点から印加した前記電圧の値又は検出された前記電流の値が計測の上限値として設定した閾値に到達する直前の測定点までの前記電流の値の増加分を、時間の増加分で除して得られる増加率で表される
ことを特徴とする被覆金属材の耐食性試験装置。
【請求項11】
請求項10において、
前記所定値は、0.1mA以上1mA以下である
ことを特徴とする被覆金属材の耐食性試験装置。
【請求項12】
金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験用プログラムであって、
コンピュータに、前記表面処理膜の表面に腐食因子を接触させた状態で該表面処理膜の表面と前記金属製基材との間に電圧及び/又は電流を印加
して前記腐食因子の前記表面処理膜への浸透を促進させることにより両者の間に生じる電流及び/又は電圧の経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する手順を実行させる
ことを特徴とする被覆金属材の耐食性試験用プログラム。
【請求項13】
請求項12に記載された被覆金属材の耐食性試験用プログラムを記録したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、被覆金属材の耐食性試験方法、耐食性試験装置、耐食性試験用プログラム及び記録媒体に関する。
【背景技術】
【0002】
従来、塗膜性能を評価する手法として複合サイクル試験、塩水噴霧試験等の腐食促進試験が行われている。
【0003】
しかし、かかる腐食促進試験においては、評価に数ヶ月を要するため、例えば塗装鋼板の構成材料や焼付条件の異なる塗膜の状態を簡便に評価し、塗装条件の最適化等を迅速に行うことが困難である。従って、材料開発、塗装工場の工程管理、車両防錆に係る品質管理の場において、塗装鋼板の耐食性を迅速且つ簡便に評価する定量評価法の確立が望まれている。
【0004】
これに対して、特許文献1には、被覆金属の寿命予測方法として、実用又は試験下に置かれた被覆金属と対極との間に直流電圧を印加し、この時流れる電流を測定して、電流の経時変化を予め算出後、被覆膜の任意の開孔面積に相当する電流値まで外挿し、この時の時間を寿命とすることが記載されている。
【0005】
また、特許文献2には、金属部材の表面に施された皮膜の耐食性を評価する手法として、金属部材及び対極部材を水又は電解質液に浸漬し、測定電源の負端子側を金属部材に、正端子側を対極部材に電気的に接続し、対極部材から皮膜を通して金属部材に流れる酸素拡散限界電流に基づいて当該皮膜の防食性能を評価することが記載されている。
【0006】
さらに、特許文献3には、被覆金属材の塗膜表面側に電解質材料を介して電極を配置し、被覆金属材の基材と塗膜表面との間に電圧を印加し、塗膜が絶縁破壊するときの電圧値に基づいて、被覆金属材の耐食性を評価することが記載されている。
【0007】
また、特許文献4には、火力プラント給水系における腐食速度測定法として、火力プラント給水系の構造材と同一材質からなる試料電極と貴金属からなる対照電極とで電極対を構成し、該電極対を前記火力プラント給水系統内に配置して前記電極対間で発生する電流値を測定し、前記電極対がさらされている環境下での前記構造材の平均腐食速度とそのときの前記電極間で発生する電流密度の平均値との相関関係を利用して前記測定電流値から前記構造材の腐食速度を実時間で求めることが記載されている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開昭61-54437号公報
【文献】特開2007-271501号公報
【文献】特開2016-50915号公報
【文献】特開2000-258381号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献1~4に記載された技術では、膜の寿命を予測することや、膜の全体的な耐食性を評価することは可能であるものの、膜の状態をより具体的に評価するという観点から、改善の余地がある。
【0010】
そこで、本開示では、表面処理膜における膜の状態をより具体的に精度よく簡単に評価できる被覆金属材の耐食性試験方法、耐食性試験装置、耐食性試験用プログラム及び記録媒体を提供する。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、本開示の一実施形態に係る被覆金属材の耐食性試験方法は、金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験方法であって、前記表面処理膜の表面に腐食因子を接触させた状態で該表面処理膜の表面と前記金属製基材との間に電圧及び/又は電流を印加して前記腐食因子の前記表面処理膜への浸透を促進させることにより両者の間に生じる電流及び/又は電圧の経時的変化を測定する通電工程と、前記経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する評価工程と、を備えたことを特徴とする。
【0012】
一般に、表面処理膜を備えた被覆金属材では、例えば塩水、電解質を含む泥等の腐食因子が表面処理膜に浸透し、金属製基材に到達することで腐食が開始する。すなわち、被覆金属材の腐食過程は、腐食が発生するまでの過程と腐食が進展する過程とに分けられ、それぞれ腐食が開始するまでの期間(腐食抑制期間)と腐食が進展する速度(腐食進展速度)とを求めることにより評価できる。
【0013】
例えば特許文献3では、腐食因子を表面処理膜の表面に接触させて表面処理膜の表面と金属製基材との間に電圧を印加し、塗膜が絶縁破壊するときの電圧値に基づいて、被覆金属材の耐食性のうちの上記腐食抑制期間を評価している。具体的に、表面処理膜の全体の膜質が正常である場合、時間に対して漸増する電圧を印加すると、表面処理膜の表面と金属製基材との間には当初ほとんど電流が流れないが、ある電圧値を超えたところで急激に電流値が増加する。この検出電流値の急激な上昇は、電圧の印加に伴い腐食因子の表面処理膜への浸透が促され、腐食因子が金属製基材の表面に到達したことを示している。すなわち、検出電流値が所定の閾値に達したときの印加電圧値を絶縁電圧とすると、当該絶縁電圧に到達するまでの時間は、腐食因子が鋼板に到達するまでの期間、すなわち被覆金属材の腐食抑制期間に対応している。
【0014】
しかしながら、表面処理膜の全体の膜質が正常ではない場合には、検出電流値及び/又は検出電圧値の経時的変化の波形は、上記のような波形とは異なってくることが予測される。具体的には、表面処理膜の全体の膜質が正常ではない場合、表面処理膜への腐食因子の浸透が広範囲に亘って一様に促進され、腐食因子が金属製基材に到達したところから徐々に導通していくと考えられる。そうすると、検出電流値及び/又は検出電圧値の上昇する傾きが、急峻ではなく、なだらかになると考えられる。また、なだらかに検出電流値及び/又は検出電圧値が増加していくから、所定時間範囲内に発生する電流量及び/又は電圧量が、正常膜に比べて、大きくなると考えられる。すなわち、経時的変化の波形は、表面処理膜の全体的な膜質を反映した形状となるから、波形から算出できる上述の傾きに基づいて、表面処理膜の全体としての膜質を簡単且つ高精度で評価できる。また、膜質は、膜厚と、腐食抑制期間と、に基づいて評価することが一般的であるが、本構成によれば、膜厚の測定が困難な被試験体においても、膜質を簡単且つ高精度で評価できる。そうして、耐食性試験の信頼性が向上する。また、本開示により、被覆金属材における表面処理膜の耐食性に関する情報を定量的にデジタルデータとすることができる。
【0015】
なお、本明細書において、「経時的変化(データ)」とは、時間に対して検出電流値及び/又は検出電圧値をプロットしたデータであってもよいし、漸増する電圧及び/又は電流を印加する場合は、印加電圧値及び/又は印加電流値に対して検出電流値及び/又は検出電圧値をプロットしたデータであってもよい。
【0016】
前記通電工程で、時間に対して漸増する、又は、時間に対して比例的に漸増する前記電圧及び/又は電流を印加することが好ましい。
【0017】
時間に対して漸増する、好ましくは比例的に漸増する電圧及び/又は電流を印加することにより、表面処理膜の膜質をより短時間で精度よく評価できる。
【0018】
前記通電工程で、前記表面処理膜の表面と前記金属製基材との間に前記電圧を印加して両者の間に生じる前記電流の前記経時的変化を測定し、前記傾きは、前記電流の値が前記所定値を超えた直後の測定点から印加した前記電圧の値又は検出された前記電流の値が計測の上限値として設定した閾値に到達する直前の測定点までの前記電流の値の増加分を、時間の増加分で除して得られる増加率で表されることが好ましい。
【0020】
なお、前記所定値は、0.1mA以上1mA以下であることが好ましい。
【0022】
前記金属製基材は、表面に形成された化成皮膜を備えており、前記表面処理膜は、前記化成皮膜を介して前記金属製基材の表面に設けられていることが好ましい。
【0023】
前記金属製基材は、自動車部材用鋼板であることが好ましい。
【0024】
前記表面処理膜は、樹脂系塗料を用いて形成された電着塗膜であることが好ましい。
【0025】
本開示の一実施形態に係る被覆金属材の耐食性試験装置は、金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験装置であって、前記被覆金属材の前記表面処理膜側に配置された電極と、前記表面処理膜と前記電極との間に両者に接触するように腐食因子を配置した状態で、前記電極と前記金属製基材との間に電圧及び/又は電流を印加することにより、前記腐食因子の前記表面処理膜への浸透を促進させる電源部と、前記電源部による前記電圧及び/又は電流の印加に伴い、前記電極と前記金属製基材との間に生じる電流及び/又は電圧を検出する検出部と、前記検出部により検出された前記電流及び/又は電圧の経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する評価部と、を備えたことを特徴とする。
【0026】
本構成によれば、経時的変化の波形は、表面処理膜の全体的な膜質を反映した形状となるから、波形から算出できる上述の傾きに基づいて、表面処理膜の全体としての膜質を簡単且つ高精度で評価できる。また、膜質は、膜厚と、腐食抑制期間と、に基づいて評価することが一般的であるが、本構成によれば、膜厚の測定が困難な被試験体においても、膜質を簡単且つ高精度で評価できる。そうして、耐食性試験の信頼性が向上する。また、本開示により、被覆金属材における表面処理膜の耐食性に関する情報を定量的にデジタルデータとすることができる。
【0027】
前記電源部は、前記電極と前記金属製基材との間に前記電圧を印加するものであり、前記検出部は、前記電極と前記金属製基材との間に生じる前記電流を検出するものであり、前記傾きは、前記電流の値が前記所定値を超えた直後の測定点から印加した前記電圧の値又は検出された前記電流の値が計測の上限値として設定した閾値に到達する直前の測定点までの前記電流の値の増加分を、時間の増加分で除して得られる増加率で表されることが好ましい。
【0029】
なお、前記所定値は、0.1mA以上1mA以下であることが好ましい。
【0031】
前記電源部は、時間に対して漸増する、又は、時間に対して比例的に漸増する前記電圧及び/又は電流を印加することが好ましい。
【0032】
時間に対して漸増する、好ましくは比例的に漸増する電圧及び/又は電流を印加することにより、表面処理膜の膜質をより短時間で精度よく評価できる。
【0033】
上述の少なくとも評価工程は、耐食性試験用プログラムとしてプログラム化されている。すなわち、本開示の一実施形態に係る被覆金属材の耐食性試験用プログラムは、金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験用プログラムであって、コンピュータに、前記表面処理膜の表面に腐食因子を接触させた状態で該表面処理膜の表面と前記金属製基材との間に電圧及び/又は電流を印加して前記腐食因子の前記表面処理膜への浸透を促進させることにより両者の間に生じる電流及び/又は電圧の経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾きに基づいて、前記表面処理膜の膜質を評価する手順を実行させることを特徴とする。
【0034】
また、本開示の一実施形態に係る記録媒体は、上述の被覆金属材の耐食性試験用プログラムを記録したコンピュータ読み取り可能な記録媒体である。
【発明の効果】
【0035】
以上述べたように、本開示によると、表面処理膜の全体としての膜質を簡単且つ高精度で評価できる。また、膜厚の測定が困難な被試験体においても、膜質を簡単且つ高精度で評価できる。そうして、耐食性試験の信頼性が向上する。また、本開示により、被覆金属材における表面処理膜の耐食性に関する情報を定量的にデジタルデータとすることができる。
【図面の簡単な説明】
【0036】
【
図1】実施形態1に係る被覆金属材の耐食性試験装置の一例を示す図である。
【
図2】実施形態1に係る耐食性試験方法の工程を示すフローチャートである。
【
図3】正常な電着塗膜を備えた被覆金属材の耐食性試験において、印加電圧の変化(一点鎖線)及び該電圧の印加に伴い電極と鋼板との間に流れる電流の変化(実線)の例を示す図である。
【
図4】正常な電着塗膜を備えた被覆金属材における導通メカニズムの例を説明するための図である。
【
図5】実施形態1に係る耐食性試験方法の考え方を説明するための図である。
【
図6】立ち上がりの傾きの算出方法の例を説明するための図である。
【
図7】積算電気量及びその時間平均値の算出方法の例を説明するための図である。
【
図8】実験例の耐食性試験の結果を示す図表である。
【
図9】実験例の耐食性試験の結果を示す図表である。
【
図10】実験例の耐食性試験の結果を示す図表である。
【
図11】実施形態2に係る被覆金属材の耐食性試験装置の一例を示す図である。
【発明を実施するための形態】
【0037】
以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
【0038】
(実施形態1)
<被覆金属材>
本実施形態の耐食性試験において試験対象となる被覆金属材1は、金属製基材に表面処理膜が設けられてなる。
【0039】
金属製基材は、例えば、家電製品、建材、自動車部品等を構成する鋼材、例えば、冷間圧延鋼板(SPC)、合金化溶融亜鉛めっき鋼板(GA)、高張力鋼板又はホットスタンプ材等であり、或いは軽合金材であってもよい。金属製基材は、好ましくは自動車部材用鋼板である。金属製基材は、表面に化成皮膜(リン酸塩皮膜(例えば、リン酸亜鉛皮膜)、クロメート皮膜等)が形成されたものであってもよい。
【0040】
樹脂塗膜は、樹脂系塗料を用いて形成された塗膜、好ましくは電着塗膜である。樹脂塗膜としては、具体的には例えば、エポキシ樹脂系、アクリル樹脂系等のカチオン電着塗膜(下塗り塗膜)がある。
【0041】
被覆金属材は、表面処理膜として二層以上の多層膜を備えていてもよい。具体的には例えば、表面処理膜が樹脂塗膜の場合は、電着塗膜に上塗り塗膜が重ねられた積層塗膜、電着塗膜に中塗り塗膜及び上塗り塗膜が重ねられた積層塗膜等であってもよい。
【0042】
中塗り塗膜は、被覆金属材の仕上り性と耐チッピング性を確保するとともに、電着塗膜と上塗り塗膜との密着性を向上させる役割を有する。また、上塗り塗膜は、被覆金属材の色、仕上り性及び耐候性を確保するものである。これらの塗膜は、具体的には例えば、ポリエステル樹脂、アクリル樹脂、アルキド等の基体樹脂と、メラミン樹脂、尿素樹脂、ポリイソシアネート化合物(ブロック体も含む)等の架橋剤とからなる塗料等により形成することができる。
【0043】
以下の説明では、鋼板2の表面に化成皮膜3が形成されてなる金属製基材に、表面処理膜としての電着塗膜4(樹脂塗膜)が設けられてなる被覆金属材1を例に挙げて説明する。
【0044】
<腐食因子>
腐食因子6は、少なくとも水及び支持電解質を含有する電解質材料であり、導電材としての機能を有する。市場では塩水、電解質成分を含む泥等が腐食の要因となり得る。そのような腐食の要因となる物質を模擬した腐食因子6を電着塗膜4の表面に接触させることにより、後述する通電工程S2で電圧及び/又は電流を印加したときに、腐食因子6の電着塗膜4への浸透が促進され、耐食性試験の所要時間を短縮化できる。腐食因子6は、さらに粘土鉱物を含有してなる泥状物でもよい。腐食因子6が粘土鉱物を含有することにより、後述する通電工程S2において、腐食因子6中のイオン及び水が電着塗膜4に浸透し易くなる。
【0045】
支持電解質は、塩であり、腐食因子6に十分な導電性を付与するためのものである。支持電解質としては、具体的には例えば、塩化ナトリウム、硫酸ナトリウム、塩化カルシウム、リン酸カルシウム、塩化カリウム、硝酸カリウム、酒石酸水素カリウム及び硫酸マグネシウムから選択される少なくとも一つの塩を採用することができる。支持電解質としては、特に好ましくは塩化ナトリウム、硫酸ナトリウム及び塩化カルシウムから選択される少なくとも一つの塩を採用することができる。腐食因子6における支持電解質の含有量は、好ましくは1質量%以上20質量%以下、より好ましくは3質量%以上15質量%以下であること、特に好ましくは5質量%以上10質量%以下である。
【0046】
粘土鉱物は、腐食因子6を泥状にするとともに、電着塗膜4へのイオンの移動及び水の浸透を促進させるためのものである。粘土鉱物としては、例えば、層状ケイ酸塩鉱物又はゼオライトを採用することができる。層状ケイ酸塩鉱物としては、例えば、カオリナイト、モンモリロナイト、セリサイト、イライト、グローコナイト、クロライト及びタルクから選択される少なくとも一つを採用することができ、特に好ましくはカオリナイトを採用することができる。腐食因子における粘土鉱物の含有量は、好ましくは1質量%以上70質量%以下、より好ましくは10質量%以上50質量%以下、特に好ましくは20質量%以上30質量%以下である。なお、腐食因子6が泥状物であることにより、電着塗膜4が水平になっていない場合でも、該電着塗膜4の表面に腐食因子6を設けることができる。
【0047】
腐食因子6は、水、支持電解質及び粘土鉱物以外の添加物をさらに含有してもよい。このような添加物としては、具体的には例えばアセトン、エタノール、トルエン、メタノール等の有機溶剤、塗膜の濡れ性を向上させるような物質等が挙げられる。これらの有機溶剤、物質等も電着塗膜4への水の浸透を促す機能を有し得る。これらの有機溶剤、物質等を、粘土鉱物に代えて腐食因子6に添加してもよい。腐食因子6が有機溶剤を含有する場合は、有機溶剤の含有量は、水に対して体積比で5%以上60%以下であることが好ましい。その体積比は、10%以上40%以下であること、20%以上30%以下であることがさらに好ましい。
【0048】
<被覆金属材の耐食性試験装置>
図1は、本実施形態に係る被覆金属材の耐食性試験装置100の一例を示している。
【0049】
図1に示すように、本実施形態に係る耐食性試験装置100は、容器30と、電極12と、外部回路7と、通電手段8(電源部、検出部)と、制御装置9(評価部)と、を備える。
【0050】
-容器-
容器30は、液漏れ防止用のシール材32を介して被覆金属材1の電着塗膜4上に載置されている。腐食因子6は、容器30内に収容された状態で、電着塗膜4の表面に接触している。
【0051】
容器30の形状は特に限定されるものではなく、例えば円筒状、多角筒状等の筒状である。容器30は、例えばアクリル樹脂、エポキシ樹脂、芳香族ポリエーテルエーテルケトン(PEEK)等の樹脂材料製やセラミック製等、特に好ましくはアクリル樹脂、エポキシ樹脂、芳香族ポリエーテルエーテルケトン(PEEK)等の樹脂材料製とすることができる。これにより、容器30と外部との絶縁性を確保しつつ、耐食性試験装置100を軽量化及び低コスト化することができる。
【0052】
シール材32は、例えばシリコーン樹脂製のシート状のシール材であり、容器30を被覆金属材1上に載置したときに、容器30と電着塗膜4との密着性を向上させるとともに、両者の隙間を埋めることができる。そうして、容器30と電着塗膜4との間からの腐食因子6の漏れを効果的に抑制することができる。シール材32を設けない構成も可能であるが、腐食因子6の漏れを十分に抑制する観点から設けることが好ましい。
【0053】
-電極-
電極12は、鋼板2と電着塗膜4の表面との間に電圧及び/又は電流を印加するためのものであり、被覆金属材1の電着塗膜4側に配置されている。そして、電着塗膜4と電極12との間には両者に接触するように腐食因子6が配置されている。具体的には、電極12は、少なくともその先端が腐食因子6に埋没状態に設けられており、腐食因子6に接触している。
【0054】
電極12としては、電気化学測定において一般的に用いられる電極を使用することができ、具体的には例えば炭素電極、白金電極等を使用することができる。
【0055】
電極12の形状は、例えば棒状、板状等、電気化学測定において一般的に用いられる形状であればよい。また、例えば電極12として、先端に少なくとも1つの孔を有する有孔電極を採用してもよい。例えば、先端がリング状の有孔電極を採用する場合は、当該リングが電着塗膜4と略平行になるように、有効電極を配置すればよい。或いは、有孔電極としてメッシュ状の電極を採用し、該メッシュ電極を腐食因子6に埋没した状態で電着塗膜4と略平行になるように配置してもよい。
【0056】
-外部回路-
外部回路7は、配線71と、配線71上に配置された通電手段8と、を備える。配線71は、電極12と、鋼板2と、を電気的に接続している。配線71としては、公知のものを適宜使用できる。
【0057】
-通電手段-
通電手段8は、配線71により、電極12と鋼板2とに接続されており、電極12と鋼板2との間に電圧及び/又は電流を印加する電源部としての役割を担う。また、同時に、通電手段8は、電圧及び/又は電流の印加に伴い、両者間に流れる電流及び/又は電圧を検出する電流検出手段/電圧検出手段(検出部)としての役割も担う。通電手段8としては、具体的には例えば、電圧/電流の印加法として制御可能なポテンショ/ガルバノスタット等を使用することができる。
【0058】
通電手段8は、後述する制御装置9と電気的に接続又はワイヤレス接続されており、制御装置9により制御される。通電手段8により実際に印加された電圧及び/又は電流の値(「印加電圧値及び/又は印加電流値」ともいう。)、通電手段8により検出された電流及び/又は電圧の値(「検出電流値及び/又は検出電圧値」ともいう。)、及び、通電時間等の通電情報は、制御装置9に送られる。
【0059】
なお、通電手段8は、電極12と鋼板2との間に、時間に対して漸増する、好ましくは時間に対して比例的に漸増する電圧及び/又は電流を印加することが望ましい。これにより、電着塗膜4の膜質をより短時間で精度よく評価できる。
【0060】
-制御装置-
制御装置9は、例えば周知のマイクロコンピュータをベースとする装置であり、制御部91と、記憶部92と、演算部93と、を備える。また、制御装置9は、例えばキーボード等からなる入力部94と、例えばディスプレイ等からなる出力部95と、を備える。記憶部92には、各種データ及び演算処理プログラム等の情報が格納されている。演算部93は、記憶部92に格納された上記情報、入力部94を介して入力された情報等に基づいて、各種演算処理を行う。制御部91は、記憶部92に格納されたデータ、演算部93の演算結果等に基づいて、通電手段8に制御信号を出力し、通電手段8により外部回路7に印加される電圧及び/又は電流を制御する。
【0061】
なお、詳細は後述するが、制御装置9は、検出電流値及び/又は検出電圧値の経時的変化データにおいて、検出電流値及び/又は検出電圧値が所定値を超えたときの該経時的変化の傾き、所定時間範囲内における検出電流値及び/又は検出電圧値の積算値、及び、該積算値の時間平均値の少なくともいずれかに基づいて、電着塗膜4の膜質を評価する評価部として機能する。特に、制御装置9は、上記時間平均値に基づいて、前記表面処理膜の膜質を評価することが好ましい。本構成によれば、表面処理膜の膜質をより精度よく評価でき、耐食性試験の信頼性が向上する。また、制御装置9は、時間平均値が所定の閾値を超えたときに、膜質が正常ではないと判定することが好ましい。上述のごとく、膜質が正常ではない場合、検出電流値及び/又は検出電圧値は徐々に上昇するから、経時的変化における前記時間平均値は、膜質が正常な場合と比較して、大きくなると考えられる。従って、時間平均値が所定の閾値を超えた場合には、膜質が正常ではないと判断することができる。本構成によれば、膜質の異常を簡単且つ精度よく検知できる。
【0062】
<被覆金属材の耐食性試験方法>
図2は、本実施形態に係る耐食性試験方法の工程を示すフローチャートである。
図3は、正常な電着塗膜を備えた被覆金属材の耐食性試験において、印加電圧の変化(一点鎖線)及び該電圧の印加に伴い電極と鋼板との間に流れる電流の変化(実線)の例を示す図である。
図4は、正常な電着塗膜を備えた被覆金属材における導通メカニズムの例を説明するための図である。
図5は、本実施形態に係る耐食性試験方法の考え方を説明するための図である。
図6は、立ち上がりの傾きの算出方法の例を説明するための図である。
図7は、積算電気量及びその時間平均値の算出方法の例を説明するための図である。以下、
図2~
図7を参照して、本実施形態に係る耐食性試験方法について説明する。
【0063】
図2に示すように、本実施形態に係る耐食性試験方法は、準備工程S1と、通電工程S2と、評価工程S3と、を備える。
【0064】
-準備工程-
準備工程S1は、被覆金属材1の電着塗膜4側に、該電着塗膜4の表面に接触する腐食因子6と、該腐食因子6に接触する電極12と、を配置する工程である。
【0065】
具体的には例えば、まず、被覆金属材1の試験片における電着塗膜4表面上に、シール材32を介して容器30を設置し、該容器30内に腐食因子6を充填する。そうして、電着塗膜4の表面に腐食因子を接触させる。また、この腐食因子6内に、外部回路7に接続された電極12を浸漬させる。
【0066】
-通電工程-
通電工程S2は、電極12と鋼板2との間に電圧及び/又は電流を印加するとともに、両者の間に生じる電流及び/又は電圧の経時的変化を測定する工程である。
【0067】
具体的には例えば、制御装置9の制御のもとで、通電手段8により電極12と鋼板2との間に電圧及び/又は電流が印加される。このとき、印加される電圧及び/又は電流は、時間に対して漸増する、好ましくは時間に対して比例的に漸増する電圧及び/又は電流であることが望ましい。これにより、電着塗膜4の欠陥発生状況をより短時間で精度よく評価できる。電圧を印加する場合、印加電圧の掃引速度は、具体的には例えば、0.1~10V/sの範囲であり、より好ましくは0.5~2V/sである。電流を印加する場合、印加電圧の掃引速度は、具体的には例えば、0.1~2mA/sの範囲であり、より好ましくは0.5~1mA/sである。なお、印加される電圧及び/又は電流は、直流(DC)であってもよいし、交流(AC)であってもよい。
【0068】
そして、通電手段8は、電圧及び/又は電流の印加に伴い、鋼板2と電着塗膜4の表面との間に生じる電流及び/又は電圧を検出する。検出電流値及び/又は検出電圧値は、経時的変化データとして、記憶部92に格納される。
【0069】
なお、印加電圧値及び/又は印加電流値、並びに、検出電流値及び/又は検出電圧値の少なくとも一方に閾値を設け、当該閾値に到達したところで、印加電圧値及び/又は印加電流値を一定にしてもよいし、通電を終了してもよい。これにより、過剰な電圧及び/又は電流の印加を抑制できるとともに、測定の精度を確保できる。
【0070】
-評価工程-
評価工程S3は、通電工程S2で得られた検出電流値及び/又は検出電圧値の経時的変化データに基づいて、電着塗膜4の膜質を評価する工程である。
【0071】
具体的には、経時的変化データにおける、検出電流値及び/又は検出電圧値が所定値を超えたときの該経時的変化の傾きである「立ち上がりの傾き」、所定時間範囲内における検出電流値及び/又は検出電圧値の積算値である「積算電気量」、及び、該積算電気量の時間平均値である「単位時間当たりの平均電流値及び/又は平均電圧値」の少なくともいずれかに基づいて、電着塗膜4の膜質を評価する。以下、電圧を印加し、電流を検出する場合を例に挙げて、経時的変化データの上記各パラメータと電着塗膜4の膜質との対応について説明する。
【0072】
図3に示すように、電着塗膜4が正常塗膜、すなわち電着塗膜4の全体の膜質が正常である場合には、例えば電極12と鋼板2との間に比例的に漸増する直流電圧(
図3中の一点鎖線)を印加すると、両者間に流れる電流値の経時的変化データは、
図3中実線で示すような波形になる。すなわち、印加電圧値を上昇させても、電流は、時刻t
1に電圧値V
1となるまではほとんど流れないが、電圧値V
1を超えると電流量が急激に増加し、電圧値V
2(時刻t
2)において電流量は閾値A
1に到達する。この電流値の経時的変化は、まず、電圧値V
1に至るまでは腐食因子6に対する電着塗膜4の遮断性能が維持されていることを示している。そして、電圧値V
2に至ると、
図4に示すように、電圧の印加に伴い腐食因子6の電着塗膜4への浸透が促され、電着塗膜4の最も脆弱な箇所、すなわち例えば樹脂の架橋構造が相対的に少ない箇所等において腐食因子6が鋼板2の表面に到達したことを示している。言い換えると、
図3の検出電流値の急激な上昇は、腐食因子6の鋼板2の表面への到達により、電着塗膜4の絶縁性、すなわち遮断性能が失われたことを示している。そして、検出電流値が閾値A
1に達したときの印加電圧値V
2を絶縁電圧とすると、絶縁電圧V
2となる時間t
2は、腐食因子6が鋼板2に到達するまでの期間、すなわち被覆金属材1の腐食抑制期間に対応している。
【0073】
一方、例えば焼き付け不十分(焼き甘)による架橋密度低下、塗料及び塗膜の劣化、塗膜成分の析出不良等の理由により電着塗膜4の全体の膜質が正常ではない場合には、検出電流値の経時的変化の波形は、
図3に示すような波形とは異なってくることが予測される。
【0074】
具体的には、電着塗膜4の全体の膜質が正常ではない場合、通電工程S2で得られる経時的変化データの波形は、例えば
図5のようになると考えられる。すなわち、
図5の左端のセルに示すように、電圧の印加により、電着塗膜4への腐食因子6の浸透が広範囲に亘って一様に促進され、腐食因子6が鋼板2に到達したところから徐々に導通していくと考えられる。そうすると、検出電流値及び/又は検出電圧値の上昇する傾きが、
図3のような急峻な傾きから、なだらかな傾きになると考えられる。
【0075】
なお、
図5の(1)、(2)に示すように、漸増する電圧(DC)又は定電圧(DC)を印加したときは、ある電圧値(時間)を超えると検出電流値が増加し始め、その後なだらかに増加すると考えられる。なお、(2)の場合は(1)に比べて検出電流値の増加率が小さくなると考えられる。さらに、
図5の(3)、(4)に示すように、漸増する電圧(AC)又は定電圧(AC)を印加したときは、ある電圧値(時間)を超えると検出電流値の振幅が増加し始め、その後なだらかに増加すると考えられる。なお、(4)の場合は(3)に比べて検出電流値の振幅の増加率が小さくなると考えられる。
【0076】
このような経時的変化データについて、例えば
図6及び
図7に示すような評価パラメータを用いて評価することが考えられる。
【0077】
すなわち、
図6に示す経時的変化データの検出電流値が増加し始めたときの立ち上がりの傾きαは、正常塗膜では大きくなり、電着塗膜4の膜質が低下するほど小さくなると考えられるため、当該立ち上がりの傾きαを評価パラメータとして使用できる。なお、立ち上がりの傾きαとしては、例えば、検出電流値が所定値Bを超えた直後の測定点から印加電圧値又は検出電流値が計測の上限値として設定した閾値に到達する直前の測定点までの検出電流値の増加分Yを印加電圧値又は時間の増加分Xで除して得られる増加率(α=Y/X)で表してもよい。また、傾きαとしては、検出電流値が所定値Bを超えた直後の測定点から一定時間経過後の測定点までの検出電流値の増加分Yを印加電圧値又は時間の増加分Xで除して得られる増加率(α=Y/X)で表してもよい。所定値Bは、試験条件、電着塗膜4の膜質等により適宜設定されるが、具体的には例えば0.1mA以上1mA以下とすることができる。また、X及びYを規定する一定時間も試験条件、電着塗膜4の膜質等により適宜設定されるが、具体的には例えば、1秒以上5秒以下とすることができる。
【0078】
また、
図7に示す経時的変化データの検出電流値の所定時間範囲内における積算値である積算電気量Fは、正常塗膜では小さくなり、電着塗膜4の膜質が低下するほど大きくなると考えられるから、当該積算電気量Fを評価パラメータとして使用できる。所定時間範囲は、限定する意図ではないが、例えば、電圧の印加開始から、印加電圧値又は検出電流値が所定の閾値に到達した時点までの時間とすることができる。なお、経時的変化データの横軸が印加電圧値である場合は、昇圧速度を考慮して、積算電気量Fを算出する。
【0079】
さらに、積算電気量Fは、試験対象の試験片毎に、所定時間範囲が変わり得ることを考慮すると、積算電気量Fの時間平均値である平均電流値Gを評価パラメータとすることがより好ましい。具体的には、平均電流値Gは、積算電気量Fを算出した所定時間範囲がTであるとすると、積算電気量Fを所定時間範囲Tで除すことにより得られる(G=F/T)。当該平均電流値Gは、積算電気量Fを単位時間当たりに換算した数値であるから、膜質評価の精度がさらに向上する。
【0080】
また、例えば平均電流値Gに閾値G1を設定し、平均電流値Gが閾値G1を超えたときに、膜質が正常ではないと判定するようにしてもよい。膜質が正常ではない場合、検出電流値は徐々に上昇するから、平均電流値Gは、膜質が正常な場合と比較して、大きくなると考えられる。従って、平均電流値Gが閾値G1を超えた場合には、直ちに膜質が正常ではないと判断することができ、膜質の異常を簡単且つ精度よく検知できる。
【0081】
以上述べたように、本実施形態に係る耐食性試験方法では、経時的変化データにおける上述の立ち上がりの傾きα、積算電気量F、並びに、平均電流値Gの少なくともいずれかの評価パラメータに基づいて、電着塗膜4の全体としての膜質を簡単且つ高精度で評価できる。なお、上記説明は電圧を印加し、電流を検出する場合を例に挙げて説明したが、電流を印加し、電圧を印加する場合も同様の考え方ができる。この場合、平均電流値Gに相当する評価パラメータを平均電圧値と称することができる。
【0082】
なお、一般的に、電着塗膜4の腐食抑制期間は、膜厚と膜質との積で表される((腐食抑制期間)=(膜厚)×(膜質))。従って、従来、電着塗膜4の膜質を評価するためには、膜厚及び腐食抑制期間の情報が必要となる。
【0083】
この点、本実施形態に係る耐食性試験方法では、膜厚及び/又は腐食抑制期間の情報が得られていない場合であっても、膜質を簡単且つ高精度で評価できる。従って、例えば膜厚の測定が困難な被試験体、具体的には例えば部品のエッジ、溶接ビード部、その他部品の膜厚測定が困難な曲面、複雑形状物等においても、膜質を簡単且つ高精度で評価できる。そうして、耐食性試験の信頼性が向上する。また、本開示により、被覆金属材1における電着塗膜4の耐食性に関する情報を定量的にデジタルデータとすることができる。なお、膜質が正常ではない電着塗膜4を備えた被覆金属材1では、例えば上述の所定値Bやその他の所定値を超えるまでの時間を腐食抑制期間として考えてもよい。
【0084】
また、上記立ち上がりの傾きα、積算電気量F、並びに、平均電流値G及び/又は平均電圧値は、電着塗膜4の硬化度とも相関関係があると考えられる。具体的には例えば、立ち上がりの傾きαは、膜質が低下する、すなわち硬化度が低いと小さくなる。また、積算電気量F並びに平均電流値G及び/又は平均電圧値は、膜質が低下する、すなわち硬化度が低いと大きくなる。従って、これらの評価パラメータと硬化度との間には例えば比例的な相関関係が存在すると考えられる。当該相関関係に基づいて、電着塗膜4の膜質として硬化度を算出することもできる。
【0085】
なお、経時的変化データの波形の解析には、機械学習等の画像処理技術を用いてもよいし、微分法等の数学的手法を用いてもよい。また、これらを併用してもよい。
【0086】
経時的変化データの波形の解析結果に基づいて、被覆金属材1の電着塗膜4の不具合の予兆を発見・原因推定・プロセス管理することができる。
【0087】
具体的には、例えば製造ラインから部品を定期的に抜き出して経時的変化データの波形の解析を行うことや、市場の製品における経時的変化データの波形の解析を定期的に行うことにより、被覆金属材1における電着塗膜4の膜質をモニタリングすることができる。そうして、電着塗膜4の品質の確認や品質低下の予兆の発見、電着塗膜4に対する市場環境の影響等の確認等に寄与することができる。
【0088】
また、例えば被覆金属材1の製造工程は、主に、鋼板2の成形・加工プロセス、脱脂プロセス、化成処理プロセス、及び電着塗装プロセスの4つのプロセスに分割される。鋼板2の成形・加工プロセスにおいて、例えば溶接熱により鋼板2の表面状態が変化したことが原因で塗膜成分の析出異常等が起こり、電着塗膜4の耐食性の低下に繋がり得る。また、脱脂プロセスにおいても、油の残存程度に応じてハジキが発生すると、塗膜成分の析出異常等が起こり得る。化成処理プロセスにおける化成不良部も、塗膜成分の析出以上等の原因となり得る。また、電着塗装プロセスにおいて、樹脂成分と顔料成分との混合比や塗料の電導性等の塗料バランスのずれ等の塗装条件等も、塗膜成分の析出異常の原因となり得る。従って、例えば経時的変化データの波形の解析と、好ましくは表面観察等の結果とを組み合わせることにより、膜質の低下に寄与するプロセスの洗い出し等が可能になる。
【0089】
さらに、被覆金属材1の製造の場において、同一製造ラインにおける経時的変化データ、同一工場における経時的変化データ、他工場における経時的変化データ、他メーカの工場における経時的変化データ等をデータベース化しておくことにより、これらのデータとの比較に基づいて、電着塗膜4の膜質をより精度よく評価できる。
【0090】
そして、影響するプロセスの洗い出しや工場間の性能差を解析すること等により、電着塗膜4の品質確保や品質低下の原因推定を行うことができる。さらに、生産管理条件との紐付けから、防錆領域において品質のプロセス管理を実現できる。また、本評価技術と他の解析技術とを組み合わせることにより、塗料組成管理から防錆機能とその発現プロセスに至るまで一元的に管理することができる。
【0091】
<実験例>
次に、経時的変化データの具体例を示すために実施した実験例について説明する。
【0092】
-耐食性試験-
まず、実験例1~7の耐食性試験において使用する試験片(「TP」ともいう。)を作製した。
【0093】
被覆金属材1の仕様は以下の通りである。すなわち、金属製基材としては、鋼板2としてのGAの表面に化成皮膜3としてのリン酸亜鉛皮膜が形成されてなるものを用いた。なお、リン酸亜鉛皮膜の形成に係る化成処理時間は120秒であった。表面処理膜としては、エポキシ系樹脂からなる電着塗膜4を形成した。なお、実験例1~4のTPにおける電着焼付条件及び電着塗膜4の厚さは
図8及び
図9に示すとおりである。また、実験例5~6のTPにおける電着焼付条件は
図10に示すとおりであり、電着塗膜4の厚さは10μmであった。
【0094】
腐食因子6として、5質量%の塩化ナトリウム水溶液を用い、温度25℃で、検出電流値が閾値電流10mAに到達するまで、1V/sで昇圧させながら電圧を印加した。そして、電極12と鋼板2との間に発生する電流値を1秒毎に検出した。
【0095】
-実験例1~4について-
図8及び
図9は、実験例1~4のTPにおける印加電圧値に対して検出電流値をプロットした経時的変化データ、TPの複合サイクル試験(CCT試験)後又は5質量%塩水浸漬実験後の表面のデジタル顕微鏡写真を示している。
【0096】
なお、CCT試験の試験条件は、TPに対し、塩水噴霧(6時間)、乾燥(3時間)、湿潤(14時間)、送風(1時間)の各工程を24時間1サイクルとして所定期間施すものであった。
【0097】
また、実験例1~4のTPについては、経時的変化データに基づき、印加電圧の昇圧速度が0.1V/sであることを考慮して、検出電圧値が所定値Bとしての0.5mAを超えたときの立ち上がりの傾きα(mA/s)を算出した。詳細には、傾きαは、検出電流値が0.5mAを超えた直後の測定点から検出電流値が計測の上限値として設定した閾値電流10mAに到達する直前の測定点までの検出電流値の増加分Yを時間の増加分Xで除すことにより算出した。また、所定時間範囲を電圧の印加開始から検出電流値が閾値電流10mAに到達するまでとして、積算電気量F(mC)及び積算電気量Fの単位時間あたりの平均電流値G(mA)を算出した。
【0098】
図8に示すように、実験例1の正常な電着塗膜4を備えたTPでは、経時的変化データの波形は、印加電圧値が250Vを超えた時点で急激な電流値の増加を示すパターンとなった。そして、実験例1のTPをCCT試験に供すると、30日経過後においても電着塗膜4の腐食は観察されなかった。
【0099】
実験例2のTPは、焼付が不十分であるために十分な架橋形成が行われていない、いわゆる焼き甘の電着塗膜4を備えたTPである。経時的変化データの波形は、実験例1の経時的変化データの波形と比べて、検出電流値の立ち上がりの傾きがなだらかとなった。すなわち、実験例1に比べて、実験例2では、立ち上がりの傾きは小さくなり、積算電気量及び単位時間あたりの平均電流値はそれぞれ約1.4倍及び約4.3倍に増加した。実験例2のTPをCCT試験(60日)に供すると、TPの全面に亘って腐食の進展が観察された。一方、正常塗膜を有するTPでは、CCT試験(60日)後においても腐食は観察されなかった。
【0100】
図9に示す実験例3のTPは、塗料成分の樹脂を光劣化させた塗料を使用して電着塗膜4を形成したTPである。経時的変化データにおける立ち上がりの傾きは、実験例1に比べて小さくなり、積算電気量及び単位時間あたりの平均電流値は実験例1と比べてそれぞれ約3.7倍及び約に増加、単位時間あたりの平均電流値は約32倍に増加した。実験例3のTPをCCT試験(10日)に供すると、TPの全面に亘って腐食の進展が観察された。一方、正常塗膜を有するTPでは、CCT試験(10日)後においても腐食は観察されなかった。
【0101】
実験例4のTPは、塗料に含まれる顔料が析出異常を起こしたTPである。経時的変化データにおける立ち上がりの傾きは、実験例1に比べて小さくなり、積算電気量及び単位時間あたりの平均電流値は実験例1と比べてそれぞれ約2.9倍及び約6.1倍に増加した。実験例4のTPを5質量%塩水に20日間浸漬させると、TPの全面に亘って腐食の進展が観察された。一方、正常塗膜を有するTPでは、同様の環境にさらしても腐食は観察されなかった。
【0102】
-実験例5~7について-
図10は、実験例5~7のTPにおける印加電圧値に対して検出電流値をプロットした経時的変化データ、及び、これらの経時的変化データから算出した立ち上がりの傾きαと電着硬化度との関係を示している。実験例5~7のTPの立ち上がりの傾きαについては、実験例1~4と同様の方法で算出した。また、TPをアセトンで洗浄して、電着塗膜4中の未硬化樹脂分を溶出させ、その前後の電着塗膜4の重量変化から電着硬化度(%)を算出した。
【0103】
図10に示すように、電着硬化度が低いほど、経時的変化データの立ち上がりの傾きも小さくなり、電着硬化度と立ち上がりの傾きとの間には比例的な相関関係があることが判った。
【0104】
<耐食性試験用プログラム及びその記録媒体>
以上の耐食性試験方法の各工程の少なくとも一部は、耐食性試験用プログラムとしてプログラム化されている。具体的に、本実施形態に係る耐食性試験用プログラムは、コンピュータに、上記各工程のうち、少なくとも評価工程S3の手順、好ましくは通電工程S2の手順及び評価工程S3の手順を実行させるプログラムである。この耐食性試験用プログラムは、記憶部92に格納された状態で、制御部91及び演算部93により実行され得る。また、当該耐食性試験用プログラムは、記憶部92に格納された状態に限らず、例えば光ディスク媒体や磁気テープ媒体など、コンピュータ読み取り可能な種々の周知の記録媒体に記録させておくことができる。そして、このような記録媒体を制御装置9の読み出し装置(不図示)に装着して耐食性試験用プログラムを読み出すことにより、当該プログラムを実行可能である。
【0105】
(実施形態2)
以下、本開示に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
【0106】
実施形態1の耐食性試験装置100では、腐食因子6を容器30に収容する構成であったが、当該構成に限られるものではなく、例えば
図12に示すように、プローブ型の電極12等を使用してもよい。
【0107】
本実施形態において、準備工程S1では、腐食因子6を電着塗膜4の表面に配置する。腐食因子6は、泥状や粘性の高い材料であれば、そのまま電着塗膜4の表面に配置してもよく、また、粘性の低い水溶液等の材料であれば、例えばスポンジ等の多孔質材料に含浸させて電着塗膜4の表面に配置してもよい。そして、電極12の先端を、電着塗膜4の表面に配置された腐食因子6に接触させる。このとき、電極12の先端に、腐食因子6を付着させた状態で、当該先端を腐食因子6に接触させることが好ましい。電極12の先端に腐食因子6を付着させておくことにより、電極12、腐食因子6及び電着塗膜4の表面の各界面における接触抵抗を低減できる。
【0108】
上記構成によれば、試験片の形状が制約されることなく、例えば平坦面を有さない試験片、試験片のエッジ部、試験片の曲面部等における測定が容易になる。
【産業上の利用可能性】
【0109】
本開示は、表面処理膜における膜の状態をより具体的に精度よく簡単に評価できる被覆金属材の耐食性試験方法、耐食性試験装置、耐食性試験用プログラム及び記録媒体を提供できるので、極めて有用である。
【符号の説明】
【0110】
1 被覆金属材
2 鋼板(金属製基材)
3 化成皮膜(金属製基材)
4 電着塗膜(表面処理膜)
6 腐食因子
7 外部回路
8 通電手段(電源部、検出部)
9 制御装置(評価部)
12 電極
100 耐食性試験装置
S1 準備工程
S2 通電工程
S3 評価工程
【要約】
【課題】表面処理膜における膜の状態をより具体的に精度よく簡単に評価できる被覆金属材の耐食性試験方法を提供する。
【解決手段】鋼板2に電着塗膜4が設けられてなる被覆金属材1の耐食性試験方法である。電着塗膜4の表面に腐食因子を接触させた状態で電着塗膜4の表面と鋼板2との間に電圧及び/又は電流を印加することにより両者の間に生じる電流及び/又は電圧の経時的変化を測定する通電工程S2と、前記経時的変化において、前記電流及び/又は電圧の値が所定値を超えたときの該経時的変化の傾き、所定時間範囲内における前記電流及び/又は電圧の値の積算値、及び、該積算値の時間平均値の少なくともいずれかに基づいて、電着塗膜4の膜質を評価する評価工程S3と、を備える。
【選択図】
図2