IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日揮プラントイノベーション株式会社の特許一覧

<>
  • 特許-設備保全管理システム 図1
  • 特許-設備保全管理システム 図2
  • 特許-設備保全管理システム 図3
  • 特許-設備保全管理システム 図4
  • 特許-設備保全管理システム 図5
  • 特許-設備保全管理システム 図6
  • 特許-設備保全管理システム 図7
  • 特許-設備保全管理システム 図8
  • 特許-設備保全管理システム 図9
  • 特許-設備保全管理システム 図10
  • 特許-設備保全管理システム 図11
  • 特許-設備保全管理システム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-11
(45)【発行日】2022-10-19
(54)【発明の名称】設備保全管理システム
(51)【国際特許分類】
   G06Q 10/00 20120101AFI20221012BHJP
   G06Q 50/04 20120101ALI20221012BHJP
   G01N 17/00 20060101ALI20221012BHJP
   G05B 19/418 20060101ALI20221012BHJP
   G05B 23/02 20060101ALI20221012BHJP
【FI】
G06Q10/00 300
G06Q50/04
G01N17/00
G05B19/418 Z
G05B23/02 R
【請求項の数】 6
(21)【出願番号】P 2019096859
(22)【出願日】2019-05-23
(65)【公開番号】P2020190994
(43)【公開日】2020-11-26
【審査請求日】2021-11-19
【新規性喪失の例外の表示】特許法第30条第2項適用 平成31年4月24日 http://www.pecj.or.jp/japanese/jpecforum/2019/jpecfourm_2019.htmlを通じて発表、及び令和元年5月8日 「2019年度JPECフォーラム」にて発表
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、国立研究開発法人新エネルギー・産業技術総合開発機構IoTを活用した新産業モデル創出基盤整備事業「研究開発項目[2]IoT技術を活用した新たな産業保安システムの開発、各種データ(設備、運転、点検、テキスト、環境、熟練従業員のノウハウ等)の活用により保安を高度化するシステムの構築、高精度損傷予測モデルの研究開発」に係る産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】502040041
【氏名又は名称】日揮株式会社
(74)【代理人】
【識別番号】110001070
【氏名又は名称】弁理士法人エスエス国際特許事務所
(72)【発明者】
【氏名】前田 純
(72)【発明者】
【氏名】岡崎 均
(72)【発明者】
【氏名】原 岳大
(72)【発明者】
【氏名】折茂 史教
(72)【発明者】
【氏名】佐々木 秀智
【審査官】牧 裕子
(56)【参考文献】
【文献】特開2014-202603(JP,A)
【文献】特開2002-073155(JP,A)
【文献】特開2004-252781(JP,A)
【文献】特開2006-201844(JP,A)
【文献】特開2007-109070(JP,A)
【文献】米国特許第04998208(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
G01N 17/00
G05B 19/418
G05B 23/02
(57)【特許請求の範囲】
【請求項1】
データの解析を行う解析サーバと、前記解析サーバとネットワークを介して接続されている端末とを備える設備保全管理システムであって、
前記端末は、
対象設備の実測履歴である肉厚測定データに基づく実測ファイル、および環境ごとに想定される理論腐食速度を含む損傷予測用データと対象設備の運転データに基づく損傷予測用ファイルを作成する機能を有し、
前記解析サーバは、
前記端末から前記ネットワークを介して前記実測ファイル、前記損傷予測用ファイルを受信する受信部と、
前記実測ファイルを用いて前記対象設備の腐食率を実測値として算出し、前記実測値および前記運転データを用いて前記対象設備の予測腐食速度である予測値を算出し、かつ前記損傷予測用ファイルを用いて前記対象設備の理論腐食速度である理論値を算出する解析部と
を備えることを特徴とする設備保全管理システム。
【請求項2】
前記解析サーバは、
前記解析部により算出された前記実測値、前記予測値、および前記理論値を用いて、前記対象設備の腐食系統ごとの腐食評価を行う評価部と、
前記腐食評価の結果を前記端末に送信する結果送信部と
を備えることを特徴とする請求項1記載の設備保全管理システム。
【請求項3】
前記評価部は、前記対象設備の腐食系統ごとの腐食評価に所定のコメントを付することを特徴とする請求項2記載の設備保全管理システム。
【請求項4】
前記解析部は、AI技術を用いて前記予測値を算出することを特徴とする請求項1~3の何れか一項に記載の設備保全管理システム。
【請求項5】
前記対象設備の腐食率は、長期腐食率、短期腐食率、および回帰腐食率の中の少なくとも一つであることを特徴とする請求項1~4の何れか一項に記載の設備保全管理システム。
【請求項6】
前記対象設備は、石油精製プラントであることを特徴とする請求項1~5の何れか一項に記載の設備保全管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、たとえば、プラント等に配置された配管などの設備の保全管理を行う設備保全管理システムに関する。
【背景技術】
【0002】
プラント等では、腐食等の劣化現象のため設備や配管から内部流体が漏えいする事故がしばしば発生する。そのため、設備や配管の肉厚を適切に管理する必要があるが、肉厚測定には相応の工数や費用がかかるため、劣化が進行していない設備や配管に対して検査を行なうことは非効率である。
【0003】
一方、劣化の進んだ設備や配管の検査を怠ると内部流体の漏えいが発生し円滑なプラント運営ができなくなる。このため、設備や配管の劣化状況を予測して、効率的な検査計画を立案することが重要である。
【0004】
ここで、検査計画の立案には、過去の肉厚測定データのトレンドから腐食速度を推定し、設備や配管の余寿命(あとどれくらいの期間で穴が開くか)を推定することにより、次に検査すべき時期及び箇所を決定する方法がある。
【0005】
また、腐食速度の推定方法としては、長期肉厚評価(初期肉厚と最新肉厚との減肉量に基づく評価)、短期肉厚評価(直近2点間の減肉量に基づく評価)、回帰肉厚評価(全肉厚データの線形回帰直線による評価)などの方法がある。
【0006】
一方、最近は、ニューラルネットワーク等の高度数学を用いるAI技術が、腐食速度の予測に用いられる場合がある。
現在は、これらの技術及びその組み合わせにより、プラントのベテラン検査員が検査計画を立案している状況である。
なお、上述の技術に係る先行技術文献としては、下記の特許文献1、2が存在する。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2009-129380号公報
【文献】特開2004-251765号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、長期腐食率等の実測の腐食速度(実測腐食速度)は、測定を行っていない部位の肉厚はわからないため、想定外の場所で腐食が進行し漏えいしたり、あるいは、測定値の記入ミスなどにより誤った評価をしてしまうという問題がある。
【0009】
また、AIによって予測される腐食速度(予測腐食速度)は、測定を行っていない部位の腐食速度を予測できるものの、基本的には高度な数学を使った平均値の算出であるため、同じ入力変数をもつ大多数の低腐食部のデータに引っ張られ、予測腐食速度が小さくなる場合がある。
【0010】
さらに、文献を基に推測される腐食速度(理論腐食速度)は、同じ環境の最大腐食速度や最大公約数的な腐食速度を知ることができるものの、実測の肉厚データを反映したものではないため、誤差が大きくなる場合がある。
【0011】
以上のような制約があるため、これまでのベテラン検査員は、自らの経験(理論腐食速度の推定に相当する過去の経験)と現場の肉厚測定に基づく実測腐食速度から、装置の劣化状況を総合的に判断し、検査計画を立てるのが常であった。ところが、このようなベテラン検査員の引退に伴い、現在では信頼性の高い検査計画を立案することが難しくなってきている。
【0012】
本発明の目的は、想定外の漏えい事故の発生を防止するだけでなく、検査点や検査頻度を削減すると共にメンテナンスコストを削減可能な設備保全管理システムを提供することである。
【課題を解決するための手段】
【0013】
本発明の設備保全管理システムは、
データの解析を行う解析サーバと、解析サーバとネットワークを介して接続されている端末とを備える設備保全管理システムであって、
前記端末が、
対象設備の実測履歴である肉厚測定データに基づく実測ファイル、および環境ごとに想定される理論腐食速度を含む損傷予測用データと対象設備の運転データに基づく損傷予測用ファイルを作成する機能を有し、
前記解析サーバが、
前記端末から前記ネットワークを介して前記実測ファイル、前記損傷予測用ファイルを受信する受信部と、
前記実測ファイルを用いて前記対象設備の腐食率を実測値として算出し、前記実測値および前記運転データを用いて前記対象設備の予測腐食速度である予測値を算出し、かつ前記損傷予測用ファイルを用いて前記対象設備の理論腐食速度である理論値を算出する解析部と
を備えることを特徴とする。
【0014】
また、本発明の設備保全管理システムは、
前記解析サーバが、
さらに、前記解析部により算出された前記実測値、前記予測値、および前記理論値を用いて、前記対象設備の腐食系統ごとの腐食評価を行う評価部と、
前記腐食評価の結果を前記端末に送信する結果送信部と
を備えることを特徴とする。
【0015】
また、本発明の設備保全管理システムは、
前記評価部が、前記対象設備の腐食系統ごとの腐食評価に所定のコメントを付することを特徴とする。
【0016】
また、本発明の設備保全管理システムは、
前記解析部が、AI技術を用いて前記予測値を算出することを特徴とする。
【0017】
また、本発明の設備保全管理システムは、
前記対象設備の腐食率が、長期腐食率、短期腐食率、および回帰腐食率の中の少なくとも一つであることを特徴とする。
【0018】
また、本発明の設備保全管理システムは、
前記対象設備が、石油精製プラントであることを特徴とする。
【発明の効果】
【0019】
本発明によれば、想定外の漏えい事故の発生を防止するだけでなく、検査に要する労力を削減すると共にメンテナンスコストを削減可能な設備保全管理システムを提供することができる。
【図面の簡単な説明】
【0020】
図1】実施の形態に係る設備保全管理システムの管理対象となる石油精製プラント設備の配管の一部を示す図である。
図2】実施の形態に係る設備保全管理システムの構成を示すブロック図である。
図3】実施の形態に係る端末の構成を示すブロック図である。
図4】実施の形態に係るデータベースサーバの構成を示すブロック図である。
図5】実施の形態に係る石油精製プラント設備の配管の肉厚測定データの内容を示す図である。
図6】実施の形態に係る解析サーバの構成を示すブロック図である。
図7】実施の形態に係る設備保全管理方法のフローチャートを示す図である。
図8】実施の形態に係る設備保全管理方法のフローチャートを示す図である。
図9】実施の形態に係る実測ファイルの内容を示す図である。
図10】実施の形態に係る損傷予測用ファイルの内容を示す図である。
図11】実施の形態に係る定量評価入力表を示す図である。
図12】実施の形態に係る肉厚測定結果評価表を示す図である。
【発明を実施するための形態】
【0021】
以下、図面を参照して、本発明の実施の形態に係る設備保全管理システムについて、石油精製プラント設備の配管の内面腐食管理を行う場合を例に説明する。図1は、実施の形態に係る設備保全管理システムの管理対象となる石油精製プラント設備の配管系統図の一部を示す図である。図1において、たとえば、反応系には、反応塔と加熱炉が含まれ、これらが配管で接続されている。かかる配管において複数の定点が設定されており、定点について定期的に肉厚の実測がなされる。また、図1において、番号が付された四角枠は腐食系統を示す。たとえば、反応系は、2Ea、2Eb、2Fa、2Fb、2Fcの5つの腐食系統に区分されている。この腐食系統内に単数または複数の定点が含まれる。このように腐食系統を定義することにより、問題がある定点がどこにあるのかを概括的に把握することが可能となり、腐食傾向の把握、問題個所への速やかな対応が可能となる。
【0022】
図2は、実施の形態に係る設備保全管理システムを示すブロック図である。図2に示すように、設備保全管理システム2は、利用者の端末4、データベースを備えたデータベースサーバ5、および石油精製プラント設備の腐食評価を行う解析サーバ6を備え、これらがネットワーク8を介して接続されている。
【0023】
ここで、図3に示すように、端末4は、端末4の各部を制御する制御部10を備えている。制御部10には、ネットワーク8を介してデータベースサーバ5や解析サーバ6との通信を行う通信部12、端末4上で作成されたファイルを記憶するファイル記憶部19、および腐食解析の事前準備に必要な情報を入力する表示画面20、印刷部22が接続されている。なお、制御部10においては、たとえば、商品名「A-MIS」などの配管肉厚管理用の公知のプログラムを利用することができる。
【0024】
また、図4に示すように、データベースサーバ5は、各データベースを統括する制御部13、ネットワーク8を介して端末4や解析サーバ6との通信を行う通信部17、実測値記録データベース14、損傷予測用データベース16、運転データベース18を備えている。これら三つのデータベースは、実際には一つのオラクルデータベース上に存在する仮想的なデータベース(複数のデータベースの集合体)であるが、ここでは便宜上、図4に示すようにそれぞれのデータベースを区別して説明する。
【0025】
ここで、実測値記録データベース14は、石油精製プラント設備の配管の肉厚の実測履歴である肉厚測定データを記録するデータベースである。この肉厚測定データには、たとえば、図5に示すように、配管の各定点の肉厚と実測年月日などが記録されている。この肉厚測定データ15は、各定点において肉厚の定点観測が行われるたびに追加更新される。
【0026】
損傷予測用データベース16は、配管の理論腐食速度などの損傷予測用データを記録するデータベースである。記録される理論腐食速度は、たとえば、日本高圧力技術協会発行のHPIS Z107、アメリカ石油学会発行のAPI RP 581のような学会規格の文献等に記載されている環境ごとに想定される最大腐食速度や最大公約数的な腐食速度である。なお、損傷予測用データベース16には、後述する損傷予測用ファイル42(定性評価入力表)のブランクシートも記憶されている。
【0027】
運転データベース18は、たとえば、運転温度、配管材質、配管サイズ、配管形状、使用年数、腐食系統、流れ状態、配管内を通過する流体の流速、および運転圧力等の石油精製プラント設備の運転データを記録するデータベースである。なお、運転データの多くは配管の定点ごとに設定されるが、運転温度や流速については、定点ごとではなく腐食系統ごとの代表値である場合がある。
【0028】
また、上述の実測値記録データベース14、損傷予測用データベース16、運転データベース18は、各社の石油精製プラント設備ごとに存在する。
【0029】
解析サーバ6は、図6に示すように、解析サーバ6の各部を制御する制御部30(解析部、評価部)を備えている。制御部30には、ネットワーク8を介して端末4との通信を行う通信部32(受信部、結果送信部)、データ記憶部33、およびコメント記憶部34が接続されている。
【0030】
次に、実施の形態に係る設備保全管理システム2における一連の処理について図7、8に示すフローチャートを用いて説明する。まず、表示画面20にメニュー画面(図示せず)が表示され、利用者が「解析開始」ボタン(図示せず)をクリックすると、端末4の制御部10は、ネットワーク8を介してデータベースサーバ5の実測値記録データベース14から肉厚測定データ15をダウンロードする(ステップS1)。ここで、利用者は、読み出された肉厚測定データ15の内容を印刷部22で印刷するなどして確認し、不足しているデータがある場合には、不足しているデータを肉厚測定データ15に追加する。
【0031】
次に、制御部10は、この肉厚測定データ15を解析可能なように標準化し、標準化された肉厚測定データ15を用いて、図9に示すような、実測ファイル40を作成する(ステップS2)。作成された実測ファイル40は、ファイル記憶部19に記憶される。
【0032】
実測ファイル40が作成されると表示画面20にメニュー画面が表示され、利用者が「損傷予測シート出力」ボタン(図示せず)をクリックすると、図10に示すような、損傷予測用ファイル42のブランクシートが、ネットワーク8を介してデータベースサーバ5の損傷予測用データベース16から端末4にダウンロードされ、表示画面20に表示される(ステップS3)。利用者は、損傷予測用ファイル42のブランクシートの左側に表示されているB範囲の個々の質問に対し、「○」(yes)または「×」(no)の回答を配管のラインNOごとに入力する。ここで、ラインNOは各配管の管理単位である。
【0033】
利用者がすべての質問に回答すると、再び表示画面20にメニュー画面が表示される。ここで、利用者が「ファイル作成」ボタン(図示せず)をクリックすると、制御部10は、損傷予測用データベース16に記録されている損傷予測用データをデータベースサーバ5からダウンロードし(ステップS4)、図10に示すように、損傷予測用ファイル42の中央に示される「損傷分類結果出力列」に管理単位であるラインNOごとの損傷分類結果を出力する。なお、損傷分類は、B範囲に入力された回答に基づいて出力される。次に、損傷予測用ファイル42の右側に表示されているC範囲の空欄に損傷分類結果ごとの運転データの数値が入力されると、損傷予測用ファイル42が完成する(ステップS5)。完成した損傷予測用ファイル42は、ファイル記憶部19に記憶される。
【0034】
次に、制御部10は、ファイル記憶部19から実測ファイル40および損傷予測用ファイル42を読み出し、これらを統合して、腐食評価ファイル(図示せず)を作成する(ステップS6)。なお、腐食評価ファイルには実測ファイル40および損傷予測用ファイル42が含まれており、腐食評価ファイルから実測ファイル40、損傷予測用ファイル42を独立して読み出すことが可能である。
【0035】
ここで、利用者が表示画面20の表示をメニュー画面に切り換え、解析実行ボタン(図示せず)をクリックすると、制御部10は、通信部12を介して腐食評価ファイルを解析サーバ6に送信する(ステップS7)。
【0036】
また、解析サーバ6は、通信部32を介して腐食評価ファイルを受信すると、制御部30により、腐食評価モデルを用いて、実測値、予測値、および理論値を算出するための解析を行う。
【0037】
実測値評価において、制御部30は、腐食評価ファイルに含まれる実測ファイル40を用いて、実測値を算出する。具体的には、下記の数式(数式(1))に基づいて配管の各定点の単位時間当たりの腐食率である長期腐食率を実測値として算出する(ステップS8)。
長期腐食率=(d2-d1)/h … (数式1)
【0038】
ここで、d1、d2は、それぞれ今回実測された肉厚、元肉厚を示し、hは運転開始から今回実測(d1)までの時間に対応する設備の運転時間を示している。
【0039】
制御部30は、実測値を算出すると、腐食評価ファイルを元に検査点数、検査回数を算出する(ステップS9)。また、腐食評価ファイルを用いて、図11に示す定量評価入力表46を作成し(ステップS10)、データ記憶部33に記憶する。
【0040】
この実測値評価により、実測の腐食速度、データのばらつき、測定回数などの情報からデータの信頼度が評価される。
【0041】
また、予測値評価において、制御部30は、実測値評価において算出された長期腐食率、および運転データ(ステップS5にて損傷予測用ファイル42に含まれている。)を用いて、運転データに示される項目(運転温度、配管材質、配管サイズ、配管形状、使用年数、腐食系統、流れ状態、および配管内を通過する流体の流速)ごとの予測値を算出する(ステップS11)。なお、予測値の算出は、たとえば、ニューラルネットワークなどのAI技術を用いて行われる。この予測値により、グループ化された環境ごとの腐食速度が予測される。算出された予測値は、定量評価入力表46に入力される(ステップS10)。
【0042】
また、理論値評価において、制御部30は、腐食評価ファイルに含まれる損傷予測用ファイル42を用いて、損傷分類ごとに発生し得る理論腐食速度を理論値として算出する(ステップS12)。算出された理論値は、定量評価入力表46に入力される(ステップS10)。
【0043】
次に、制御部30は、実測値、予測値、理論値、検査個所数、および検査回数を所定の条件式にて数値化し、腐食系統ごとに、この数値をたとえば5段階にランキングする。次に、各ランクに紐づけられている複数のコメントの中から最も適切なコメントをコメント記憶部34から読み出し、図12に示す、肉厚測定結果評価表48を作成する(ステップS13)。次に、制御部30は、この肉厚測定結果評価表48のデータを通信部32を介して端末4に送信する。端末4は、肉厚測定結果評価表48のデータを受信すると、印刷部22により肉厚測定結果評価表48を印刷する。
【0044】
この実施の形態に係る設備保全管理システム2によれば、実測値、予測値、および理論値の3種類の解析を行い、これらを比較することにより、ベテラン検査員と同程度の評価を行うことができるため、想定外の漏えい事故の発生を防止するだけでなく、検査に要する労力を削減すると共にメンテナンスコストを削減することができる。
【0045】
なお、上述の実施の形態においては、実測値評価において、腐食率として長期腐食率を算出しているが、短期腐食率や回帰腐食率を算出するようにしてもよい。ここで、短期腐食率とは、直近2回の測定値から算出される腐食速度である。長期腐食率が運転期間中の平均腐食傾向を示すのに対して、短期腐食率は、直近の腐食傾向を示すものである。また、回帰腐食率とは、全肉厚データの最小二乗法による回帰直線に基づく腐食率である。長期腐食率が元肉厚と最新値の2点から単純計算される腐食率であるのに対して、回帰腐食率は、全データに基づくより信頼性の高い腐食率である。これら3種の腐食率は、お互いに補完する特徴を有しているため、複数利用することにより、より高度な設備管理が期待できる。
【符号の説明】
【0046】
2 設備保全管理システム
4 端末
5 データベースサーバ
6 解析サーバ
8 ネットワーク
10 制御部
12 通信部
13 制御部
14 実測値記録データベース
15 肉厚測定データ
16 損傷予測用データベース
17 通信部
18 運転データベース
19 ファイル記憶部
20 表示画面
22 印刷部
30 制御部
32 通信部
33 データ記憶部
34 コメント記憶部
40 実測ファイル
42 損傷予測用ファイル
46 定性評価入力表
48 肉厚測定結果評価表
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12