(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-11
(45)【発行日】2022-10-19
(54)【発明の名称】シリンダライナ用遮熱リングおよび内燃機関
(51)【国際特許分類】
F02F 1/18 20060101AFI20221012BHJP
F02F 1/10 20060101ALI20221012BHJP
F16J 10/04 20060101ALI20221012BHJP
【FI】
F02F1/18 F
F02F1/10 A
F16J10/04
(21)【出願番号】P 2021571748
(86)(22)【出願日】2021-08-20
(86)【国際出願番号】 JP2021030523
(87)【国際公開番号】W WO2022044986
(87)【国際公開日】2022-03-03
【審査請求日】2021-12-02
【審判番号】
【審判請求日】2022-06-28
(31)【優先権主張番号】P 2020142034
(32)【優先日】2020-08-25
(33)【優先権主張国・地域又は機関】JP
【早期審理対象出願】
(73)【特許権者】
【識別番号】000215785
【氏名又は名称】TPR株式会社
(73)【特許権者】
【識別番号】591206120
【氏名又は名称】TPR工業株式会社
(74)【代理人】
【識別番号】110000121
【氏名又は名称】IAT弁理士法人
(72)【発明者】
【氏名】畠山 公一
(72)【発明者】
【氏名】奥山 浩二
(72)【発明者】
【氏名】黒政 勇気
【合議体】
【審判長】山本 信平
【審判官】水野 治彦
【審判官】木村 麻乃
(56)【参考文献】
【文献】欧州特許出願公開第3670882(EP,A1)
【文献】米国特許出願公開第2016/97340(US,A1)
【文献】実開昭62-98744(JP,U)
【文献】西独国特許出願公開第3038235(DE,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02F1/00-1/22
F16J10/04
(57)【特許請求の範囲】
【請求項1】
リング状部材を有し、
前記リング状部材の周方向と直交する断面において、前記リング状部材の外周面は、前記リング状部材の軸方向と平行を成す平坦部と、前記平坦部よりも前記リング状部材の内周側に凹む溝部と、を含み、
前記溝部の断面形状が、
(1)2つの直線と、前記2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、
(2)前記第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、
(3)円弧状の曲線のみから形成される第三の断面形状、および、
(4)U字状の第四の断面形状、
からなる群より選択されるいずれか1種以上であり、
前記第一の断面形状および前記第二の断面形状において、前記2つの直線の成す角度が45度~160度であり、
下式を満たすことを特徴とするシリンダライナ用遮熱リング。
・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
・式
(3’) 0.29≧Dr/Tr≧0.22
〔前記式中、
Srは前記リング状部材の周方向と直交する断面における前記溝部の断面積(mm
2
)を意味し、Drは前記溝部の最大溝深さ(mm)を意味し、
Wrは前記リング状部材の軸方向における前記溝部の最大開口幅(mm)を意味し、Trは前記リング状部材の径方向厚み(mm)を意味する。〕
【請求項2】
前記溝部の断面形状が、(1)前記第一の断面形状、および、(2)前記第二の断面形状からなる群より選択されるいずれか1種以上であることを特徴とする請求項
1に記載のシリンダライナ用遮熱リング。
【請求項3】
下式(2)を満たすことを特徴とする請求項1
または2に記載のシリンダライナ用遮熱リング。
・式(2) 0.41≧Dr/Wr
〔前記式(2)中、Drは前記溝部の最大溝深さ(mm)を意味し、Wrは前記リング状部材の軸方向における前記溝部の最大開口幅(mm)を意味する。〕
【請求項4】
下式(4)を満たすことを特徴とする請求項1~
3のいずれか1つに記載のシリンダライナ用遮熱リング。
・式(4) 0.55≧Fr/Hr
〔前記式(4)中、Frは前記リング状部材の軸方向における前記平坦部の長さ(mm)を意味し、Hrは前記リング状部材の軸方向高さ(mm)を意味する。〕
【請求項5】
カーボンスクレーパリングであることを特徴とする請求項1~
4のいずれか1つに記載のシリンダライナ用遮熱リング。
【請求項6】
円筒状部材を有し、前記円筒状部材の内周面が、前記円筒状部材の軸方向の一端側近傍の第一領域と、前記一端側近傍以外の第二領域とから構成され、前記第一領域における内径が、前記第二領域における内径よりも大きいシリンダライナと、
前記シリンダライナの前記第一領域に嵌合された請求項1~
5のいずれか1つに記載のシリンダライナ用遮熱リングと、を少なくとも備えることを特徴とする内燃機関。
【請求項7】
前記第二領域の内径よりも、前記リング状部材の内径の方が小さいことを特徴とする請求項
6に記載の内燃機関。
【請求項8】
ディーゼルエンジンであることを特徴とする請求項
6または
7に記載の内燃機関。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリンダライナ用遮熱リングおよび内燃機関に関するものである。
【背景技術】
【0002】
内燃機関の熱損失の低減を目的として、シリンダライナの燃焼室側の端部近傍の内周面に、遮熱リングを設ける技術が知られている(たとえば、特許文献1、2等)。特許文献1、2に例示されるように従来の遮熱リングでは、断熱用空気層を形成するために、遮熱リングの外周面に、周方向と直交する断面における断面形状が方形状の溝部が設けられている。
【先行技術文献】
【特許文献】
【0003】
【文献】実公平05-12527号公報
【文献】特開2007-32401号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、従来の断熱空気層形成用の溝部を有する遮熱リングでは、内燃機関内での使用により溝部に起因する破損が生じることがある。
【0005】
本発明は、上記事情に鑑みてなされたものであり、溝部に起因する破損の生じにくいシリンダライナ用遮熱リングおよびこれを用いた内燃機関を提供することを課題とする。
【課題を解決するための手段】
【0006】
上記課題は以下の本発明により達成される。すなわち、
本発明のシリンダライナ用遮熱リングは、リング状部材を有し、リング状部材の周方向と直交する断面において、リング状部材の外周面は、リング状部材の軸方向と平行を成す平坦部と、平坦部よりもリング状部材の内周側に凹む溝部と、を含み、溝部の断面形状が、(1)2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、(2)第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、(3)円弧状の曲線のみから形成される第三の断面形状、および、(4)U字状の第四の断面形状、からなる群より選択されるいずれか1種以上であることを特徴とする。
【0007】
本発明のシリンダライナ用遮熱リングの一実施形態は、第一の断面形状および第二の断面形状において、2つの直線の成す角度が45度~160度であることが好ましい。
【0008】
本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(1)を満たすことが好ましい。
・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
〔式(1)中、Srはリング状部材の周方向と直交する断面における溝部の断面積(mm2)を意味し、Drは溝部の最大溝深さ(mm)を意味し、Wrはリング状部材の軸方向における溝部の最大開口幅(mm)を意味する。〕
【0009】
本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(2)を満たすことが好ましい。
・式(2) 0.41≧Dr/Wr
〔式(2)中、Drは溝部の最大溝深さ(mm)を意味し、Wrはリング状部材の軸方向における溝部の最大開口幅(mm)を意味する。〕
【0010】
本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(3)を満たすことが好ましい。
・式(3) 0.57≧Dr/Tr
〔式(3)中、Drは溝部の最大溝深さ(mm)を意味し、Trはリング状部材の径方向厚み(mm)を意味する。〕
【0011】
本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(4)を満たすことが好ましい。
・式(4) 0.55≧Fr/Hr
〔式(4)中、Frはリング状部材の軸方向における平坦部の長さ(mm)を意味し、Hrはリング状部材の軸方向高さ(mm)を意味する。〕
【0012】
本発明のシリンダライナ用遮熱リングの他の実施形態は、リング状部材の内径が84mm~247mmであり、径方向厚みTrが1.5mm~8.0mmであり、軸方向高さHrが5.0mm~70.0mmであることが好ましい。
【0013】
本発明のシリンダライナ用遮熱リングの他の実施形態は、カーボンスクレーパリングであることが好ましい。
【0014】
本発明の内燃機関は、円筒状部材を有し、円筒状部材の内周面が、円筒状部材の軸方向の一端側近傍の第一領域と、一端側近傍以外の第二領域とから構成され、第一領域における内径が、第二領域における内径よりも大きいシリンダライナと、リング状部材を有し、かつ、シリンダライナの第一領域に嵌合された遮熱リングと、を少なくとも備え、リング状部材の周方向と直交する断面において、リング状部材の外周面は、リング状部材の軸方向と平行を成す平坦部と、平坦部よりもリング状部材の内周側に凹む溝部と、を含み、溝部の断面形状が、(1)2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、(2)第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、(3)円弧状の曲線のみから形成される第三の断面形状、および、(4)U字状の第四の断面形状、からなる群より選択されるいずれか1種以上であることを特徴とする。
【0015】
本発明の内燃機関の一実施形態は、第二領域の内径よりも、リング状部材の内径の方が小さいことが好ましい。
【0016】
本発明の内燃機関の他の実施形態は、ディーゼルエンジンであることが好ましい。
【発明の効果】
【0017】
本発明によれば、溝部に起因する破損の生じにくいシリンダライナ用遮熱リングおよびこれを用いた内燃機関を提供することができる。
【図面の簡単な説明】
【0018】
【
図1】本実施形態のシリンダライナ用遮熱リングの一例および本実施形態の内燃機関の一例を示す模式断面図である。
【
図2】本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。
【
図3】本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。
【
図4】本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。
【
図5】従来の断面方形状の溝部が設けられたシリンダライナ用遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、
図5(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、
図5(B)は、
図5(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図であり、
図5(C)は、
図5(A)に示す遮熱リングの応力分布を示す図である。
【
図6】本実施形態のシリンダライナ用遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、
図6(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、
図6(B)は、
図6(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図であり、
図6(C)は、
図6(A)に示す遮熱リングの応力分布を示す図である。
【
図7】溝部が設けられていない遮熱リングにおける温度分布をシミュレーションした解析結果の一例を示す図である。ここで、
図7(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、
図7(B)は、
図7(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図である。
【
図8】第一の断面形状を有する溝部の一例を示す拡大断面図である。
【
図9】第二の断面形状を有する溝部の一例を示す拡大断面図である。
【
図10】第三の断面形状を有する溝部の一例を示す拡大断面図である。ここで、
図10(A)は、溝部の断面形状が半円状の円弧である場合について示す図であり、
図10(B)は、溝部の断面形状が半円状の円弧よりもより緩く湾曲した円弧である場合について示す図である。
【
図11】第四の断面形状を有する溝部の一例を示す拡大断面図である。
【
図12】本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。
【発明を実施するための形態】
【0019】
<シリンダライナ用遮熱リング>
図1~
図4は、本実施形態のシリンダライナ用遮熱リング(以下、「遮熱リング」と略す)の一例を示す模式断面図であり、遮熱リングの周方向と直交する断面の構造について示す図である。なお、
図1~
図4は、遮熱リングが、シリンダライナの燃焼室側の端部近傍の内周面に装着された状態について示してある。また、
図1~
図4およびその他の図面に示すY方向は、遮熱リングおよびシリンダライナの軸方向と平行な方向を意味し、Y方向と直交するX方向は、遮熱リングおよびシリンダライナの径方向と平行な方向を意味する。
【0020】
図1~
図4に示す遮熱リング10は、リング状部材20を有し、リング状部材20の周方向と直交する断面(図中の紙面)において、リング状部材20の外周面30は、リング状部材20の軸方向と平行を成す平坦部32と、平坦部32よりもリング状部材20の内周側に凹む溝部34と、を含む。
【0021】
図1~4に示す例では、遮熱リング10は、シリンダライナ102の燃焼室側の端部近傍の内周面130A(第一領域)に装着されている。このため、外周面30のうち、平坦部32は、シリンダライナ102の内周面130Aと接触している。また、
図1~
図4に示す例では、2つの溝部34と、3つの平坦部32とが設けられており、2つの平坦部32の間に1つの溝部34が位置している。さらに、
図1~
図4に示す例では、外周面30には、軸方向の両端側に切り欠き部(面取り部)38も設けられている。但し、切り欠き部(面取り部)38は省略することもできる。なお、溝部34は、遮熱リング10の周方向に対して連続的に設けられていることが好ましいが、非連続的に設けられていてもよい。また、溝部34を遮熱リング10の周方向に対して連続的に設ける場合、溝部34が周方向と平行を成すように連続的に設けてもよく、溝部34が周方向に対して交差することで一定の角度(たとえば、0度を超え30度以下の角度)を成すように連続的に設けてもよい。
【0022】
ここで、
図1に示す遮熱リング10A(10)の外周面30には、2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の断面形状(第一の断面形状)を有する溝部34A(34)が設けられており、
図2に示す遮熱リング10B(10)の外周面30には、第一の断面形状における角部近傍を丸めて曲線とした断面形状(第二の断面形状)を有する溝部34B(34)が設けられている。
【0023】
また、
図3に示す遮熱リング10C(10)の外周面30には、円弧状の曲線のみから形成される断面形状(第三の断面形状)を有する溝部34C(34)が設けられており、
図4に示す遮熱リング10D(10)の外周面30には、U字状の断面形状(第四の断面形状)を有する溝部34D(34)が設けられている。なお、
図1~
図4に示す遮熱リング10においては、溝部34は、リング状部材20の軸方向に対して一定の間隔(Fr2)を設けて配置されている。しかしながら、軸方向に隣り合う2つの溝部34の間隔(Fr2)を極力小さくして、多数の溝部34を鋸刃状に設けてもよい。
【0024】
本実施形態の遮熱リング10においては、外周面30に設けられる溝部34の断面形状が、上述した第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種以上であればよい。たとえば、外周面30に設けられる溝部34の数が1つのみであれば、溝部34の断面形状は、第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種である。また、外周面30に設けられる溝部34の数が2つ以上であれば、溝部34の断面形状は、(a)
図1~
図4に例示したように、溝部34の断面形状は、第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種のみであってもよく、(b)2種類以上を組み合わせたものであってもよい。
【0025】
第一~第四の断面形状から選択されるいずれかの断面形状を有する溝部34は、特許文献1,2に例示される従来の遮熱リングの外周面に設けられた断面方形状の溝部と比べて、遮熱リングの破損を招きにくい。以下にその理由について説明する。
【0026】
まず、内燃機関の稼働時においては遮熱リングの内周面には筒内圧が作用する。このため、遮熱リングには、遮熱リングの内周側から外周側へと向かう強い力が作用する。それゆえ、遮熱リングの外周面に断熱用空気層を形成するために溝部が設けられていると、当該溝部やその近傍で局所的な応力集中が生じやすくなることは避け難い。
【0027】
そこで、本発明者らは、従来の断面方形状の溝部が設けられた遮熱リングにおいて、溝部に起因した破損が生じやすい原因を検討すべく、遮熱リング断面の応力分布について検討した。
図5は、従来の断面方形状の溝部が設けられた遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。
【0028】
ここで、
図5(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図である。
図5(A)では、遮熱リング12がシリンダライナ102の内周面130Aに装着された状態を示している。
図5(A)に示す遮熱リング12の外周面30には、
図1~
図4に示す2つの溝部34の代わりに断面方形状の2つの溝部36が設けられており、溝部36以外の遮熱リング12の各部の寸法形状については後述する
図6(A)に示す遮熱リング10Bと同様である。また、
図5(C)は、
図5(A)に示す遮熱リング12の応力分布を示す図であり、
図5(B)は、
図5(A)に示す遮熱リング12およびシリンダライナ102の温度分布を示す図である。
【0029】
なお、
図5(A)に示す遮熱リング12およびシリンダライナ102では、主要部の寸法を以下のように設定した。なお、寸法形状に関しては、
図5(A)と後述する
図6(A)とでは、溝部36と溝部34Bとの寸法形状のみが異なり、
図5(A)および後述する
図6(A)と、後述する
図7(A)とでは、溝部36,34Bの有無のみが異なる。
・遮熱リング12を構成するリング状部材の径方向厚み:2.3mm
・遮熱リング12を構成するリング状部材の軸方向高さ:9.9mm
・リング状部材の軸方向における溝部36の最大開口幅:3.15mm
・溝部36の最大溝深さ:0.5mm
・シリンダライナ102を構成する円筒状部材(但し、第一領域130Aに対応する部分)の径方向厚み2.7mm
・シリンダライナ102を構成する円筒状部材(但し、第一領域130Aに対応する部分)の軸方向長さ9.9mm
【0030】
図5に示すシミュレーション解析は、市販の強度及び熱解析ソフトを用いて実施した。シミュレーション解析に際しては、遮熱リング12およびシリンダライナ102の材質を鋳鉄(FC250)と想定し、また、内燃機関における一般的な筒内圧および燃焼熱が遮熱リング12の内周側から作用し、かつ、周囲温度は室温を想定した条件下にて実施した。ここで、
図5(C)中、白~黒で示される階調表示は応力の大きさを意味し、白いほど応力が大きく、黒いほど応力が小さいことを意味する。なお、
図5(B)の解説については後述する。また、
図5(A)および
図5(B)において、遮熱リング12の断面よりも奥側については描写を省略してある。
【0031】
図5(C)から明らかなように、断面方形状の溝部36の2つの角部36Cおよび溝部底面36Bの中央部において、極めて強い応力が作用する層(図中の最も白い部分)と微弱な応力が作用する層(図中の最も黒い部分)とが直接接触して形成される界面(応力集中部)が存在することを確認した。このような応力集中部は、界面の一方側と他方側とにそれぞれ作用する応力の強さが極端に異なる。このため、応力集中部が遮熱リング12の破壊を生じさせる原因になると推定される。
【0032】
上述した知見を踏まえれば、溝部の断面形状において、(a)応力集中部の発生原因となる角部36Cの数を減らすあるいは無くすこと、および、(b)応力集中部の発生原因となる溝部底面36Bの中央部を、内周方向に凸を成すアーチ状あるいはV字状に形成することで溝部底面36Bの中央部に局所的に作用する強い応力を周囲に分散させること、が重要であると考えられる。そこで、本発明者らは、
図1~
図4に例示する溝部34を有する本実施形態の遮熱リング10を見出した。ここで、第一の断面形状を有する溝部34Aは、角部の数が1つであり、溝部34Aの底面の中央部はV字状となっている。また、第二~第四の断面形状を有する溝部34B、34C、34Dは、角部36Cが存在せず、溝部34B、34C、34Dの溝部底面の中央部は内周方向に凸を成すように湾曲した曲線から構成されるアーチ状となっている。
【0033】
図6は、本実施形態の遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、
図6(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、各部の寸法を所定の値に設定した以外は
図2に示す遮熱リング10Bと実質同一の断面図である。また、
図6(C)は、
図6(A)に示す遮熱リング10Bの応力分布を示す図であり、
図6(B)は、
図6(A)に示す遮熱リング10Bおよびシリンダライナ102の温度分布を示す図である。
図6に示すシミュレーション解析は、遮熱リング10Bの溝部34Bと遮熱リング12の溝部36とにおける断面形状が異なる以外は、
図5に示すシミュレーション解析と同条件にて実施した。すなわち、筒内圧がシリンダライナ102側へと伝達されるシリンダライナ102と遮熱リング10B、12との接触部(平坦部32)の位置・数・面積は、遮熱リング10Bと遮熱リング12とでは同一となっている。また、溝部34Bおよび溝部36の最大開口幅と最大溝深さも同一である。それゆえ、
図5(C)と
図6(C)とにおける応力分布の違いは、実質的に遮熱リング10Bの溝部34Bと遮熱リング12の溝部36とにおける断面形状の違いに起因すると考えられる。なお、
図6(B)の解説については後述する。また、
図6(A)および
図6(B)において、遮熱リング10Bの断面よりも奥側については描写を省略してある。
【0034】
なお、
図6(A)に示す遮熱リング10Bでは、遮熱リング10Bの主要部の寸法を以下のように設定した。また、シリンダライナ102の主要部の寸法は、
図5(A)と同一に設定した。なお、溝部34Bの断面形状は、溝部34Bの底面中央部を通りかつリング状部材20の径方向と平行を成す直線に対して線対称を成している。
・遮熱リング10Bを構成するリング状部材20の径方向厚み:2.3mm
・遮熱リング10Bを構成するリング状部材20の軸方向高さ:9.9mm
・リング状部材20の軸方向における溝部34Bの最大開口幅:3.15mm
・溝部34Bの最大溝深さ:0.5mm
・溝部34Bの底面中央近傍の曲線の曲率半径:1.0mm
【0035】
図6(C)から明らかなように、本実施形態の遮熱リング10Bにおいても応力分布は存在するものの、
図5(C)に示されるような顕著な応力集中部は確認されなかった。この結果は、
図5に示す溝部36よりも、
図1~
図4に示す溝部34A、34B、34C、34Dの方が、溝部に起因する破損が生じにくいことを裏付けるものである。
【0036】
なお、溝部とシリンダライナとで囲まれた空間(断熱空気層)は、熱伝導性の極めて低い気体(空気、燃焼ガスあるいはその混合ガス)で満たされるため、断熱空気層が、遮熱リングによる断熱性の発揮に大きく寄与する。この点を踏まえれば、断熱空気層の容積が大きい方が断熱性の向上にはより有利であると考えられる。しかしながら、本発明者らが、断熱空気層の容積と、遮熱リングの断熱性との関係について検討したところ、断熱空気層の容積を単純に増大させても、断熱性が大きく向上しない場合があることが判った。以下にその理由について説明する。
【0037】
図7は、溝部が設けられていない遮熱リングにおける温度分布をシミュレーションした解析結果の一例を示す図である。
図7(A)では、遮熱リング14がシリンダライナ102の内周面130Aに装着された状態を示している。
図7(A)に示す遮熱リング14は、外周面30に溝部が設けられていない点を除けば、材質や寸法形状において
図5(A)に示す遮熱リング12および
図6(A)に示す遮熱リング10Bと同一の部材である。また、
図7(B)は、
図7(A)に示す遮熱リング14およびシリンダライナ102の温度分布を示す図である。
図7に示すシミュレーション解析は、遮熱リング14が溝部を有さない点を除けば、
図5および
図6に示すシミュレーション解析と同条件にて実施した。ここで、
図5(B)、
図6(B)および
図7(B)中、白~黒で示される階調表示は温度の違いを意味し、白いほど温度が高く、黒いほど温度が低いことを意味する。
【0038】
なお、
図7(A)に示す遮熱リング14では、遮熱リング14の主要部の寸法を以下のように設定した。また、シリンダライナ102の主要部の寸法は、
図5(A)と同一に設定した。
・遮熱リング14を構成するリング状部材20の径方向厚み:2.3mm
・遮熱リング14を構成するリング状部材20の軸方向高さ:9.9mm
【0039】
図7(B)から明らかなように、溝部を有さない遮熱リング14では、燃焼室側から遮熱リング14を経てシリンダライナ102へと、熱がスムーズに伝達されている。すなわち、溝部を有さない遮熱リング14では、断熱効果は殆ど無い。
【0040】
また、
図5(B)および
図6(B)をさらに参照すると、遮熱リング10B、12では、溝部34B、36(断熱空気層)の存在により、遮熱リング10B、12自体は、遮熱リング14と比べて高温になっている。しかしながら、これにより、シリンダライナ102側の温度はより低温となっている。ここで、遮熱リング10Bと遮熱リング12とを比べると、遮熱リング12よりも遮熱リング10Bの方が若干断熱性に劣るものの、遮熱リング14を基準とした場合、遮熱リング10Bと遮熱リング12との断熱性には顕著な差が無いことが判る。
【0041】
一方、遮熱リング10Bに設けられた溝部34Bと遮熱リング12に設けられた溝部36とでは、最大開口幅、最大溝深さおよび溝部の数において同一であり、両者の差は、溝部の断面形状およびこれに起因する断面積(断熱空気層の容積)のみである。そして溝部34Bの断面積(断熱空気層の容積)は、溝部36の断面積(断熱空気層の容積)の約1/2である。すなわち、
図5(B)、
図6(B)および
図7(B)に示すシミュレーション解析結果からは、必ずしも断熱空気層の容積に単純に比例して断熱性が向上するとは言えない場合もあることが判る。また、これらの結果からは、断熱性は、断熱空気層の容積よりも溝部34B、36の最大開口幅、言い換えれば、遮熱リング10B、12からシリンダライナ102側への熱伝導の経路となる平坦部32の断面長さに実質的に大きく依存していると考えられる。
【0042】
ここで、断面方形状の溝部36と、第一~第四の断面形状を有する溝部34A,34B、34C、34Dとが同一の最大開口幅および最大溝深さを有する場合、溝部36よりも溝部34A,34B、34C、34Dの方が断面積(断熱空気層の容積)はより小さく、また、断面積が小さくなった分だけ遮熱リング10を構成する材質部分(実肉部)が増えることになる。
【0043】
これらのことからは、第一~第四の断面形状を有する溝部34A,34B、34C、34Dは、同一の最大開口幅および最大溝深さを有する断面方形状の溝部36を基準とした場合、(a)溝部36と概ね同程度の断熱効果を発揮しつつも、(b)溝部36に対して溝部の断面形状の違いに由来する遮熱リング10の強度向上効果に加えて、(c)溝部36に対して実肉部の増大による遮熱リング10の強度向上効果も有すると考えられる。
【0044】
次に、本実施形態の遮熱リング10のより好適な形態について説明する。
【0045】
図8は、第一の断面形状を有する溝部34Aの一例を示す拡大断面図であり、
図9は、第二の断面形状を有する溝部34Bの一例を示す拡大断面図である。溝部34Aの断面形状は、2つの直線40A,40Bと、これら2つの直線40A、40Bの交点となる1つの角部42とのみから形成されるV字状の断面形状であり、溝部34Bは、溝部34Aの断面形状における角部42近傍を丸めて曲線44とした断面形状である。
【0046】
ここで、2つの直線40A、40Bの成す角度θ1は、2つの直線40A、40Bの成す形状がV字状である限りは特に制限されないが、45度~160度であることが好ましく、90度~160度であることがより好ましく、120度~150度であることがさらに好ましく、135度~145度が特に好ましい。角度θ1が45度未満において遮熱リング10A、10Bの断熱性を十分に確保するためには、(a)リング状部材20の単位軸方向高さ当たりの外周面30に設ける溝部34A、34Bの数を増やすか、あるいは、(b)溝部34A、34Bの最大溝深さDrおよび最大開口幅Wrをより大きくする必要がある。しかし、(a)前者の場合、遮熱リング10A、10Bの製造に際して、溝部34A、34Bの加工がより煩雑になる。また、(b)後者の場合、実肉部が大幅に減少するため、遮熱リング10A、10Bの強度が低下し易くなる場合がある。また、角度θ1が160度を超える場合は、最大開口幅Wrに対して相対的に断熱空気層の厚みが極端に薄くなるため、遮熱リング10A、10Bの断熱性が低下し易くなる場合がある。
【0047】
一方、直線40Aと平坦部32とが成す角度θ2A、および、直線40Bと平坦部32とが成す角度θ2Bは、所望の角度θ1が得られる限り特に制限されないが、通常、角度θ2Aと角度θ2Bとは同一であることが好ましい。なお、
図8および
図9に示す例では、角度θ2Aと角度θ2Bとは同一に設定されている。また、(i)角度θ2Aおよび角度θ2Bは、各々、90度~170度であることが好ましく、100度~170度であることがより好ましく、120度~170度であることがさらに好ましく、(ii)角度θ2Aおよび角度θ2Bの和(θ2A+θ2B)は、225度~340度であることが好ましく、240度~320度であることがより好ましい。さらに、(iii)角度θ2Aと角度θ2Bとの絶対差|θ2A-θ2B|は、0度~45度が好ましく、0度~30度がより好ましく、0度~15度がさらに好ましく、0度が最も好ましい。
【0048】
なお、(a)角度θ2A(あるいは角度θ2B)が90度以上100度未満であり、かつ、(b)|θ2A-θ2B|が30度を超える場合、溝部34A、34Bの断面形状の非対称性が大きくなる上に、直線40A(あるいは直線40B)は、径方向と平行または略平行を成すことになる。このような断面形状を有する溝部34A、34Bでは、溝部34A、34Bを切削加工などにより形成する際の加工が困難になる場合がある。それゆえ、溝部34A、34Bの加工をより容易とする観点からは、上記条件(i)~(iii)を満たす範囲内であっても、上記条件(a)および(b)を満たす範囲以外で、角度θ2Aおよび角度θ2Bを適宜選択することがより好適である。しかしながら、加工性に優れた加工手段が利用できる場合やその他のメリットが存在する場合など、必要であれば、勿論、条件(a)および(b)を満たす溝部34A、34Bを設けてもよい。
【0049】
また、曲線44の曲率半径は特に限定されないが、0.2mm~4.0mmが好ましく、0.5mm~1.5mmがより好ましく、0.8mm~1.5mmが特に好ましい。
【0050】
図10は、第三の断面形状を有する溝部34Cの例を示す拡大断面図である。ここで、
図10(A)は、溝部34Cの断面形状が半円状の円弧50A(50)である場合(2×最大溝深さDr=最大開口幅Wrである場合)について示した例であり、
図10(B)は、溝部34Cの断面形状が半円状の円弧50Aよりもより緩く湾曲した円弧50B(50)である場合(2×最大溝深さDr<最大開口幅Wrである場合)について示した例である。
【0051】
図11は、第四の断面形状(断面U字状)を有する溝部34Dの例を示す拡大断面図である。断面U字状の溝部34Dは、
図10に例示したような円弧50と、円弧50の両端から遮熱リング10Dの外周側方向に延びる2つの直線52とを組み合わせた断面形状を有することになる。
【0052】
図1~
図4および
図8~
図11に例示した溝部34および溝部34を有する遮熱リング10においては、下式(1)~(4)の少なくとも1つを満たすことが好ましく、いずれか2つを同時に満たすことがより好ましく、いずれか3つを同時に満たすことがさらに好ましく、4つ全てを同時に満たすことが特に好ましい。
【0053】
・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
・式(2) 0.41≧Dr/Wr
・式(3) 0.57≧Dr/Tr
・式(4) 0.55≧Fr/Hr
【0054】
ここで、式(1)~式(4)における各数値パラメーターの意味は以下のとうりである。
Dr:溝部34の最大溝深さ(mm)
Wr:リング状部材20の軸方向における溝部34の最大開口幅(mm)
Sr:リング状部材20の周方向と直交する断面における溝部34の断面積(mm2)
Tr:リング状部材20の径方向厚み(mm)
Fr:リング状部材20の軸方向における平坦部32の長さ(mm)
Hr:リング状部材20の軸方向高さ(mm)
【0055】
なお、平坦部32の長さFrは、個々の平坦部32の長さFr1~Frnの合計長さを意味する。たとえば、
図1~
図4に示す遮熱リング10では、リング状部材20の軸方向の燃焼室側に位置する平坦部32と、中央部に位置する平坦部32と、クランク室側に位置する平坦部32の合計3つの平坦部32が存在する。したがって、これら3つの平坦部32の長さFr1、Fr2、Fr3の合計値を、平坦部32の長さFrとする。
【0056】
ここで、式(1)に示すSr/(Dr×Wr)について、値が1である場合は、断面形状が方形状の溝部36であることを意味し、値が0.5である場合は、断面形状がV字状の溝部34Aであることを意味し、値が0.5から1へと増加するに従い、溝部の断面形状は、V字状(第一の断面形状)から、V字状の角部を丸めて曲線とした第二の断面形状、円弧状(第三の断面形状)、U字状(第四の断面形状)、方形状、に順次変化する。式(1)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が向上した遮熱リング10を得ることがより容易となる。なお、強度をより改善する観点からは、Sr/(Dr×Wr)は、0.50~0.84がより好ましく、0.53~0.70がさらに好ましく、0.54~0.68が特に好ましい。
【0057】
また、式(2)に示すDr/Wrは、溝部34のアスペクト比を意味するパラメーターであり、式(3)に示すDr/Trは、遮熱リング10に対する溝部34の深さ比率を意味するパラメーターである。式(2)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が向上した遮熱リング10を得ることがより容易となる。そして、式(3)を満たす場合も同様である。
Dr/Wrの下限値は特に限定されないが実用上は、0.10以上であることが好ましく、Dr/Trの下限値も特に限定されないが実用上は、0.15以上であることが好ましい。なお、Dr/Wrは、断熱性と強度とをバランスよく両立させる観点から、0.16~0.41がより好ましく、0.16~0.21がさらに好ましい。また、Dr/Trについても、断熱性と強度とをバランスよく両立させる観点から、0.22~0.57がより好ましく、0.22~0.29がさらに好ましい。
【0058】
さらに、式(4)に示すFr/Hrは、遮熱リング10の軸方向高さHrに対する平坦部32の長さFrの比率を意味する。なお、軸方向高さHrに対する切り欠き部(面取り部)38の割合は、相対的に非常に小さいことを考慮すると、Fr/Hrは、ΣWr/Hr(軸方向高さHrに対する最大開口幅Wrの総和の比率)の逆関数とも言える。式(4)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が大きく向上した遮熱リング10を得ることがより容易となる。Fr/Hrの下限値は特に限定されないが実用上は、0.10以上であることが好ましい。また、Fr/Hrは、強度よりも断熱性をより改善したい場合、0.18以上0.37未満であることがより好ましく、断熱性よりも強度をより改善したい場合、0.37~0.55であることがより好ましい。
【0059】
また、本実施形態の遮熱リング10においては、遮熱リング10の強度が低下するのを抑制する観点から下式(5)を満たすことも好適である。
・式(5) Tr-Dr≧1.0mm
【0060】
本実施形態の遮熱リング10を構成するリング状部材20の材質としては特に限定されないが、たとえば、鉄、鉄合金(SUH等の耐熱鋼、SUS等のステンレス鋼、鋳鉄(特にシリンダライナ102と同一材質の鋳鉄)など)、ニッケル合金(インコネルなど)が挙げられる。
【0061】
また、本実施形態の遮熱リング10を構成するリング状部材20の外観寸法は特に限定されないが、一般的には、内径が84mm~247mmであることが好ましく、107mm~234mmであることがより好ましく、111mm~147mmであることがさらに好ましく、径方向厚みTrが1.5mm~8mmであることが好ましく、1.5mm~3.0mmであることがより好ましく、軸方向高さHrが5.0mm~70.0mmであることが好ましく、6.5mm~18.0mmであることがより好ましい。また、第一~第四の断面形状に共通する寸法である最大開口幅Wrおよび最大溝深さDrについては、特に限定されるものではないが、たとえば最大開口幅Wrは1.0mm~40mm程度とすることが好ましく、最大溝深さDrは0.2mm~4.0mm程度とすることが好ましい。
【0062】
リング状部材20の周方向と直交する断面において外周面30に設けられる溝部34の数は特に制限されずリング状部材20の軸方向高さ全域当たり1個以上であれば任意の個数を選択できる。しかしながら、溝部34の数は、リング状部材20の軸方向高さ10mm当たり2個~5個がより好ましく、2個~3個がさらに好ましく、2個が特に好ましい。溝部34の数がリング状部材20の軸方向高さ全域当たり1個の場合においてさらに式(4)を満たそうとしたときは、リング状部材20の軸方向において、1個の溝部34の両側に位置する2つの狭い平坦部32に応力が集中し易くなる。すなわち、遮熱リング10の強度確保の観点で、リング状部材20の軸方向に適度に応力を分散させることが困難になり易い。また、溝部34の数がリング状部材20の軸方向高さ10mm当たり6個以上の場合、リング状部材20の軸方向において隣り合う2つの溝部34の間に位置する平坦部32の幅(軸方向長さ)は狭くなる。このため、溝部34を切削加工で形成する際に、平坦部32の破損が生じ易くなる。
【0063】
なお、本実施形態の遮熱リング10は、内燃機関の熱損失の低減を目的として利用される部材であるが、この目的に加えて、ピストンのトップランドに付着したカーボンの掻き落としを目的とした部材(カーボンスクレーパリング)としても用いてもよい。遮熱リング10をカーボンスクレーパリングとしても用いる場合、遮熱リング10を構成するリング状部材20の内径は、遮熱リング10を装着するシリンダライナ102の内径(遮熱リング10が装着される部位よりもクランク室側の部位における内径)よりも若干小さめに設定される。一方、本実施形態の遮熱リング10を、カーボンスクレーパリングとして用いない場合は、遮熱リング10を構成するリング状部材20の内径は、遮熱リング10を装着するシリンダライナ102の内径(遮熱リング10が装着される部位よりもクランク室側の部位における内径)と略同等、あるいは、これよりも大きくてもよい。
【0064】
また、本実施形態の遮熱リング10を構成するリング状部材20の表面に対しては、必要に応じて各種の表面処理を施したり、各種の皮膜を成膜してもよい。たとえば、リング状部材20の表面に溶射処理により形成された溶射膜や、パルホス処理により形成されたリン酸マンガン皮膜などを形成することができる。これらの皮膜は、皮膜の形成方法にも依存するが、リング状部材20の表面の一部分(外周面30、内周面60など)に選択的に形成したり、リング状部材20の表面全体を覆うように形成することができる。なお、溶射膜やリン酸マンガン皮膜は、一般的に断熱性にも優れることから、遮熱リング10の断熱性を向上させる観点ではリング状部材20の少なくとも外周面30に形成されていることが好ましい。
【0065】
本実施形態の遮熱リング10は、遮熱リング10を装着可能なシリンダライナを備えた内燃機関であれば、如何様なタイプの内燃機関においても利用できる。このような内燃機関としては、代表的にはガソリンエンジン、ディーゼルエンジンが挙げられる。なお、燃焼室においてカーボンが発生し易いディーゼルエンジンにおいて本実施形態の遮熱リング10を用いる場合、本実施形態の遮熱リング10は、カーボンスクレーパリングとしても用いられることが好ましい。
【0066】
<内燃機関>
本実施形態の内燃機関は、シリンダライナと本実施形態の遮熱リング10とを少なくとも備える。
図1~
図4は、本実施形態の内燃機関200A(200)の一例を示す模式断面図である。
図1~
図4に示す内燃機関200Aは、シリンダライナ102と、本実施形態の遮熱リング10とを少なくとも備えている。シリンダライナ102は、円筒状部材120を有し、円筒状部材120の内周面130が、円筒状部材120の軸方向の一端側(燃焼室側)近傍の第一領域130Aと、一端側近傍以外の第二領域130Bとから構成される。また、第一領域130Aにおける内径は、第二領域130Bにおける内径よりも大きくなるように設定されている。そして、遮熱リング10は、シリンダライナ102の内周面130が外周側へと部分的に凹んだ部分、すなわち、シリンダライナ102の第一領域130Aに嵌合されている。
【0067】
図12は、本実施形態の内燃機関の他の例を示す模式断面図であり、カーボンスクレーパリングとしても機能する本実施形態の遮熱リング10を備えた内燃機関200の一例について示す図である。
図12に示す内燃機関200D(200)は、
図1~
図4に例示したものと同様のシリンダライナ102と、このシリンダライナ102の第一領域130Aに嵌合された本実施形態の遮熱リング10E(10)とを少なくとも備えている。ここで、
図12に示す遮熱リング10Eは、その内径が
図2に示す遮熱リング10Bの内径よりも小さい点を除けば
図2に示す遮熱リング10Bと同一の寸法形状を有する部材である。
図12に示す内燃機関200Dでは、シリンダライナ102を構成する円筒状部材120の第二領域130Bにおける内径よりも、遮熱リング10Eを構成するリング状部材20の内径の方が小さくなっている。このため、シリンダライナ102の第二領域130Bに対して、リング状部材20の内周面60は、シリンダライナ102の中心軸側により突出するように位置する。それゆえ、ピストン300のトップランド310の外周面にカーボン400が付着した場合、カーボン400は、シリンダライナ102内においてピストン300が上死点に向かって移動する際に、遮熱リング10Eにより掻き落される。なお、遮熱リング10Eを構成するリング状部材20の内径は、ピストン300のトップランド310の外径よりも大きくなるように設定される。
【0068】
なお、
図1~
図4に例示した内燃機関200Aでは、遮熱リング10A、10B、10C、10Dを構成するリング状部材20の内周面60と、シリンダライナ102の第二領域130Bとは面一を成している。すなわち、第二領域130Bの内径とリング状部材20の内径とは同一である。このため、内燃機関200Aでは、遮熱リング10A、10B、10C、10Dは、カーボンスクレーパリングとしての機能は有さない。
【0069】
本実施形態の内燃機関200は、如何様なタイプの内燃機関でもよいが、代表的にはガソリンエンジンあるいはディーゼルエンジンであることが好ましい。
【0070】
なお、シリンダライナ102を構成する円筒状部材120の内周面130に対しては、必要に応じて各種の表面処理を施したり、各種の皮膜を成膜してもよい。たとえば、円筒状部材120の内周面130に溶射処理により形成された溶射膜や、パルホス処理により形成されたリン酸マンガン皮膜などを形成することができる。これらの皮膜は、皮膜の形成方法にも依存するが、円筒状部材120の内周面130の一部分(第一領域130A、第二領域130Bなど)に選択的に形成したり、内周面130全体を覆うように形成することができる。なお、溶射膜やリン酸マンガン皮膜は、一般的に断熱性にも優れることから、遮熱リング10が装着された部位近傍の断熱性を向上させる観点では少なくとも第一領域130Aに形成されていることが好ましい。
【実施例】
【0071】
以下に本発明を実施例により具体的に説明する。但し、本発明は以下に示す実施例にのみ限定されるものでは無い。
【0072】
実施例1~9および比較例1の遮熱リングについて、式(1)~式(4)に示すパラメーター:Sr/(Dr×Wr)、Dr/Wr、Dr/Tr、Fr/Hrに対する、遮熱リングの内周面温度および溝部径方向最大変位量の変動傾向についてシミュレーション解析を実施した。結果を表1~表3に示す。なお、いずれの実施例および比較例においても、遮熱リングの外観寸法、溝部の数および材質は全て同一としてある。また、表中に示す遮熱リングの各部の寸法の単位は全てmmである。さらに、2つの溝部は、遮熱リングの軸方向に対して
図1等に例示されるように等間隔に設けた。なお、内周面温度は、値が大きい程、遮熱リングの断熱性が優れていることを意味する評価項目であり、溝部径方向最大変位量は、値が小さい程、遮熱リング内で生じている応力が小さく、遮熱リングの疲労破壊が生じにくいことを意味する評価項目である。
【0073】
なお、表1~表3に示すシミュレーション解析は、市販の強度及び熱解析ソフトを用いて実施した。シミュレーション解析に際しては、遮熱リングおよびこれと組み合わせて用いたシリンダライナの材質を鋳鉄(FC250)と想定し、また、内燃機関における一般的な筒内圧および燃焼熱が遮熱リングの内周側から作用し、かつ、周囲温度は室温を想定した条件下にて実施した。
【0074】
ここで、表1は、溝部の最大開口幅Wrおよび最大溝深さDrが同一である場合において、Sr/(Dr×Wr)に対する内周面温度および溝部径方向最大変位量を評価した結果について示している。なお、溝部の最大開口幅Wrおよび最大溝深さDrが同一である場合において、Sr/(Dr×Wr)の値を変えることは溝部の形状を変えることと同義でもあり、断面形状を定量的パラメーターとして定義したものとも言える。よって、表1は、溝部の断面形状に対する内周面温度および溝部径方向最大変位量を評価した結果と言うこともできる。
【0075】
表2は、溝部の断面形状および最大開口幅Wrが同一である場合において、最大溝深さDrに対する内周面温度および溝部径方向最大変位量を評価した結果について示している。但し、最大溝深さDrの断熱性および機械的強度への影響は、最大溝深さDrの絶対値では無く、遮熱リング全体に占める最大溝深さDrの相対的割合により強く影響されると考えられる。このため、表2では、遮熱リングの主要な軸方向寸法である最大開口幅Wr、および、遮熱リングの主要な径方向寸法である径方向厚みTrを基準値とした際の最大溝深さDrの比率、すなわち、Dr/Wr(溝部のアスペクト比)、Dr/Tr(遮熱リングに対する溝部の深さ比率)に対する内周面温度および溝部径方向最大変位量を評価した結果について示した。
【0076】
表3は、平坦部長さFr(あるいは、平坦部長さFrの実質的に逆関数と言える最大開口幅Wr)に対する内周面温度および溝部径方向最大変位量を評価した結果について示している。但し、平坦部長さFrの断熱性および機械的強度への影響は、平坦部長さFrの絶対値では無く、遮熱リング全体に占める平坦部長さFrの相対的割合により強く影響されると考えられる。このため、表3では、遮熱リングの主要な軸方向寸法である軸方向高さHrを基準値とした際の平坦部長さFrの比率、すなわち、Fr/Hrに対する内周面温度および溝部径方向最大変位量を評価した結果について示した。Fr/Hrは、軸方向における平坦部の占有比率と言える。
【0077】
【0078】
【0079】
【符号の説明】
【0080】
10、10A、10B、10C、10D、10E :遮熱リング
12 :遮熱リング
14 :遮熱リング
20 :リング状部材
30 :外周面
32 :平坦部
34、34A、34B、34C、34D :溝部
36 :溝部
36B :溝部底面
36C :角部
38 :切り欠き部(面取り部)
40A、40B :直線
42 :角部
44 :曲線
50、50A、50B :円弧
52 :直線
60 :内周面
102 :シリンダライナ
120 :円筒状部材
130 :内周面
130A :第一領域(燃焼室側の端部近傍の内周面)
130B :第二領域
200、200A、200D :内燃機関
300 :ピストン
310 :トップランド
400 :カーボン