(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-12
(45)【発行日】2022-10-20
(54)【発明の名称】超音波撮像装置およびその制御方法
(51)【国際特許分類】
A61B 8/06 20060101AFI20221013BHJP
【FI】
A61B8/06
(21)【出願番号】P 2018237370
(22)【出願日】2018-12-19
【審査請求日】2021-06-15
(73)【特許権者】
【識別番号】320011683
【氏名又は名称】富士フイルムヘルスケア株式会社
(74)【代理人】
【識別番号】110000888
【氏名又は名称】特許業務法人 山王坂特許事務所
(72)【発明者】
【氏名】浅見 玲衣
(72)【発明者】
【氏名】藤井 信彦
(72)【発明者】
【氏名】田中 宏樹
【審査官】冨永 昌彦
(56)【参考文献】
【文献】特開2012-115290(JP,A)
【文献】特開2018-186923(JP,A)
【文献】特開2010-088943(JP,A)
【文献】特開2014-161554(JP,A)
【文献】米国特許出願公開第2015/0359506(US,A1)
【文献】特開平02-017046(JP,A)
【文献】国際公開第2012/073863(WO,A1)
【文献】特開平06-000186(JP,A)
【文献】特開平06-125902(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 - 8/15
(57)【特許請求の範囲】
【請求項1】
超音波プローブを介して、超音波信号の送受信を行う送受信回路と、
前記送受信回路が受信した超音波信号を用いてドプラ演算を行う演算部と、
前記送受信回路の動作を制御し、血流情報の二次元分布を取得する第一の血流計測と、血流速度のスペクトルを取得する第二の血流計測と
、折り返しを生じていない血流速度の算出のための折り返し回避用送受シーケンスとを実行する制御部と、を備え、
前記制御部は、前記第二の血流計測の計測位置の1ないし複数の計測位置候補について、前記折り返し回避用送受シーケンスを前記第一の血流計測の実行中に実行し、
前記演算部は、
前記折り返し回避用送受シーケンスの実行により取得した超音波信号を用いて折り返しを生じていない血流速度を推定する血流速度推定部と、
前記計測位置候補のいずれかの計測位置候補について推定した前記折り返しを生じていない血流速度を用いて、前記第二の血流計測における計測条件を算出する計測条件演算部と、を備えたことを特徴とする超音波撮像装置。
【請求項2】
請求項1に記載の超音波撮像装置であって、
前記制御部は、前記計測条件演算部が算出した計測条件で前記第二の血流計測の開始することを特徴とする超音波撮像装置。
【請求項3】
請求項1に記載の超音波撮像装置であって、
前記制御部は、
前記折り返し回避用送受シーケンスにおいて、複数のパルス繰り返し周波数の超音波信号を用いた計測を行い、
前記血流速度推定部は、前記複数のパルス繰り返し周波数と、それを用いた計測で取得した超音波信号を用いて、折り返しを生じていない血流速度を推定することを特徴とすることを特徴とする超音波撮像装置。
【請求項4】
請求項3に記載の超音波撮像装置であって、
前記制御部は、前記複数のパルス繰り返し周波数の超音波信号を用いた計測を予め定めた所定期間実行することを特徴とする超音波撮像装置。
【請求項5】
請求項1に記載の超音波撮像装置であって、
前記血流速度推定部は、
前記折り返し回避用送受シーケンスにおいて超音波信号から推定した血流速度についてヒストグラムを作成し、当該ヒストグラムから最大血流速度及び最小血流速度を推定することを特徴とする超音波撮像装置。
【請求項6】
請求項1に記載の超音波撮像装置であって、
前記計測条件演算部は、前記血流速度推定部が推定した最大血流速度及び最小血流速度を用いて、速度レンジ及びベースラインの少なくとも一つを含む計測条件を算出することを特徴とする超音波撮像装置。
【請求項7】
請求項1に記載の超音波撮像装置であって、
ユーザーによる第二の血流計測における計測位置を受付ける受付け部をさらに備え、
前記血流速度推定部は、前記受付け部が前記計測位置を受付けたときに、当該計測位置から受信した超音波信号を用いて、折り返しを生じていない血流速度を推定することを特徴とする超音波撮像装置。
【請求項8】
請求項7に記載の超音波撮像装置であって、
前記血流速度推定部は、前記折り返しを生じていない血流速度から最大速度及び最小速度を算出し、前記制御部は、
前記1ないし複数の計測位置候補のうち前記受付け部が受付けた計測位置と同じか近傍の計測位置について、前記最大速度及び最小速度を表示装置に表示させることを特徴とする超音波撮像装置。
【請求項9】
請求項1に記載の超音波撮像装置であって、
前記第二の血流計測で取得したスペクトルを表示する表示部をさらに備え、
前記制御部は、前記第二の血流計測の開始時に、前記血流速度推定部が推定した血流速度に関する情報及び/または前記計測条件演算部が算出した計測条件を前記表示部に表示させることを特徴とする超音波撮像装置。
【請求項10】
超音波プローブを介して、超音波信号の送受信を行う送受信回路と、前記送受信回路が受信した超音波信号を用いてドプラ演算を行う演算部と、を備えた超音波撮像装置の制御方法であって、
前記送受信回路に、血流情報の二次元分布を取得する第一の血流計測と、血流速度のスペクトルを取得する第二の血流計測と
、折り返しを生じていない血流速度の算出のための折り返し回避用送受シーケンスとを実行させるステップと、
前記演算部により、
前記折り返し回避用送受シーケンスの実行により取得した超音波信号を用いて折り返しを生じていない血流速度を推定する演算と、前記折り返しを生じていない血流速度を用いて、前記第二の血流計測における計測条件を算出する演算と、を実行させるステップと、を含み、
前記折り返し回避用送受シーケンスを実行するステップは、前記第二の血流計測の計測位置の1ないし複数の計測位置候補について、前記第一の血流計測の実行中に実行し、
前記第二の血流計測における計測条件を算出する演算は、前記計測位置候補のいずれかの計測位置候補について推定した血流速度を用いて行い、
前記演算部が算出した計測条件で前記第二の血流計測の超音波信号の送受信を開始することを特徴とする超音波撮像装置の制御方法。
【請求項11】
請求項10に記載の超音波撮像装置の制御方法であって、
前記第一の血流計測の間に、ユーザーによる第二の血流計測における計測位置を受付けるステップをさらに含み、
前記血流速度を推定する演算は、受付けた前記計測位置から受信した超音波信号を用いて行うことを特徴とする超音波撮像装置の制御方法。
【請求項12】
請求項10に記載の超音波撮像装置の制御方法であって、
前記血流速度を推定する演算は、
前記折り返し回避用送受シーケンスにより取得した超音波信号から、最大血流速度及び最小血流速度を推定する演算を含み、
前記第二の血流計測の開始時に、前記最大血流速度及び最小血流速度を、前記第二の血流計測の結果を表示する表示画面に表示させることを特徴とする超音波撮像装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波撮像装置に関し、特に超音波撮像装置を用いた血流計測における速度レンジ等の自動調整技術に関する。
【背景技術】
【0002】
超音波撮像装置を用いた血流計測には、大きく分けて、カラードプラ法やパワードプラ法などのドプライメージングと、パルスドプラ法や連続ドプラ法などのスペクトルドプラ法がある。前者は、超音波プローブが受信したドプラ信号を2次元的に表示し血流を可視化する手法であり、後者はドプラ信号を周波数分析した求められた速度をスペクトル表示する。
【0003】
スペクトルドプラ法では、体内にある一点での血流変化を計測するのに用いられる。そのため、一般的には、まずドプライメージングにより計測対象を含む領域を撮像し、ユーザーはドプライメージングで得た情報をもとに計測対象を決める。その上でスペクトルドプラを開始する。その際、表示されるスペクトルを血流に合わせて最適化するために、速度レンジ、ベースライン、血流方向などの計測条件の調整を行う。特に速度レンジの調整は必須の作業であり、対象とする血流に対し速度レンジが広すぎると、スペクトルが上下に圧縮された形状となり速度分解能が低下する。また速度レンジが狭すぎると、スペクトルに折り返しが生じ、速度の判別が困難になる。
【0004】
ドプライメージングのスペクトルドプラの計測位置の決定について、特許文献1には、ドプライメージングで得た情報から高速な血流部位を求めて、スペクトルドプラの計測点を自動設定する方法が開示されている。しかしこの技術ではスペクトルドプラで必須な速度レンジ等の設定は行われていない。
一方、速度レンジ等の調整を自動化する方法も提案されている。例えば、特許文献2には、スペクトル画像から速度成分のヒストグラムを作成し、ヒストグラムにおける最大頻度の速度成分が存在するスペクトル画像をもとに最適化を行う手法が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2009-22463号公報
【文献】特許5443082号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献2に記載された手法では、速度レンジ等の調整を自動化することで、従来手動で行っていた煩雑な処理を回避できるという効果がある。しかし、この手法では自動調整するために、スペクトル画像を取得することが必須であるため、スペクトルドプラの計測を開始してから、調整が完了するまで時間を要する。一般に血流速度は拍動の影響を受けるため、速度のヒストグラムを取得するためには一心拍以上の計測を行う必要があり、少なくとも一秒以上待たなければならない。
【0007】
また特許文献2に記載された手法は、初期設定の速度レンジが狭すぎた場合には、折り返しを生じているため適切なヒストグラムを得ることができないという問題もある。
【0008】
本発明は、スペクトルドプラの開始時に、初期設定として、対象となる血流に最適な速度レンジ、ベースラインを設定する機能を備えた超音波撮像装置を提供することを課題とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明では、スペクトルドプラに先行して実行されるドプライメージングにおいて、スペクトルドプラの対象計測位置において血流速度の折り返しを生じない計測条件(速度レンジ等)の設定に必要な情報を収集し、スペクトルドプラ開始までに、最適な計測条件を算出し、初期設定として自動設定する。
【0010】
即ち本発明の超音波撮像装置は、超音波プローブを介して、超音波信号の送受信を行う送受信回路と、前記送受信回路が受信した超音波信号を用いてドプラ演算を行う演算部と、前記送受信回路の動作を制御し、血流情報の二次元分布を取得する第一の血流計測と、血流速度のスペクトルを取得する第二の血流計測とを実行する制御部と、を備え、前記演算部は、前記第二の血流計測の超音波送受信開始前に取得した超音波信号を用いて折り返しを生じていない血流速度を推定する血流速度推定部と、前記折り返しを生じていない血流速度を用いて、前記第二の血流計測における計測条件を算出する計測条件演算部と、を備える。
【0011】
また本発明の超音波撮像装置の制御方法は、超音波プローブを介して、超音波信号の送受信を行う送受信回路と、前記送受信回路が受信した超音波信号を用いてドプラ演算を行う演算部と、を備えた超音波撮像装置の制御方法であって、前記送受信回路に、血流情報の二次元分布を取得する第一の血流計測と、血流速度のスペクトルを取得する第二の血流計測とを実行させるステップと、前記演算部により、前記第一の血流計測中に取得した超音波信号を用いて折り返しを生じていない血流速度を推定する演算と、前記折り返しを生じていない血流速度を用いて、前記第二の血流計測における計測条件を算出する演算と、を実行させるステップと、を含み、前記演算部が算出した計測条件で前記第二の血流計測の超音波信号の送受信を開始する。
【発明の効果】
【0012】
本発明によれば、スペクトルドプラ開始時に遅滞なく対象血流に最適な速度レンジ、ベースラインに設定することができる。
【図面の簡単な説明】
【0013】
【
図1】超音波撮像装置の全体構成を示すブロック図。
【
図2】第一実施形態の計測条件演算部の機能ブロック図。
【
図3】第一実施形態の超音波撮像装置の動作の流れを示すフロー図。
【
図4】(a)、(b)は、それぞれ、カラードプラ計測中に表示部に表示されるUIの一例を示す図。
【
図5】第一実施形態の計測条件演算部の処理を示すフロー図。
【
図6】(a)~(c)は、折り返し回避用送受シーケンス例を示す図。
【
図8】ヒストグラムからの最小血流速度及び最大血流速度の算出を説明する図で、(a)は折り返し補正前の血流速度分布、(b)は折り返し補正後の血流速度分布を示す。
【
図9】(a)~(c)は、それぞれ、血流速度推定部が算出した血流情報の表示例を示す図。
【
図10】変形例1の計測条件演算部の処理を示すフロー図。
【
図11】第二実施形態の計測条件演算部の機能ブロック図。
【
図14】変形例3における計測位置候補を説明する図。
【発明を実施するための形態】
【0014】
本発明の超音波撮像装置及び撮像方法の実施形態を、図面を参照して説明する。
まず各実施形態に共通する超音波撮像装置の全体構成を、
図1を用いて説明する。超音波撮像装置100は、
図1に示すように、本体10と、被検体50に接触して、超音波を送受信する超音波プローブ20と、ユーザーが計測や制御に必要な条件などを入力するための入力部30、及び計測結果である画像やスペクトル及びUIを表示する表示部40を備えている。
【0015】
本体10は、超音波プローブ20が接続される送受信回路60と、送受信のタイミング等の制御を行う送受制御部70と、受信した信号を用いてドプラ演算や断層画像演算を行う信号処理部(演算部)80と、表示装置に表示する画像を生成する表示画像生成部90と、を備えている。なお送受の制御以外に装置の各要素を制御する制御部を備えていてもよいが、ここでは送受制御部70が総括的な制御部としても機能するものとする。
【0016】
本実施形態の超音波撮像装置は、血流情報を二次元分布として可視化する計測(カラードプラ)及び所定の領域の血流速度をスペクトル表示する血流計測(スペクトルドプラ)の二つの計測を実行する。このため、入力部30は、一般的に撮像条件やスキャン条件を設定する機能に加えて、計測モードを選択するための機能(計測モード選択部)31や、スペクトルドプラにおいて計測対象とする位置を選択する機能(計測対象選択部)32などを備えている。なお撮像方法としては、2次元的な断面を撮像する平面的撮像方法や3次元的な領域を撮像する立体的撮像方法があり、そのいずれでもよい。またスペクトルドプラのスキャン方式は、連続波を用いる方式とパルス波を用いる方式のいずれでもよい。
【0017】
超音波プローブ20は、複数のトランスデューサ(振動子)を一次元方向或いは二次元方向に配列した装置で、送受信回路60からの電気信号を超音波信号として被検体10に照射するとともに、被検体10からの反射波であるエコー信号を検出する。
【0018】
送受信回路60は、所定の周波数の信号を発生する発振器を備え、所定の走査方式で超音波探触子に駆動信号を送る送信回路(超音波送信部)と、超音波探触子によって受信されたエコー信号に対し整相加算、検波、増幅などの信号処理を行う受信回路(超音波受信部)と、を備える。送信回路は、超音波プローブの各振動子に別個の遅延時間を与え、超音波ビームに指向性を与える送信ビームフォーマ61を備え、また受信回路は各振動子に受波された信号に遅延時間を与えて加算する受信ビームフォーマ(整相加算部)62を備えた構成とすることができる。ビームフォーミング後に受信回路から出力される受信信号は、血流速度に依存する周波数成分を持つRF(Radio Frequency)信号であり、フレーム毎のデータ(フレームデータ)として信号処理部50に入力される。なお受信回路内あるいは受信回路の後段にはA/D変換器が備えられており、RF信号は、A/D変換されたデジタル信号として信号処理部50に入力される。
【0019】
送受制御部70は、カラードプラ制御部71とスペクトルドプラ制御部72とを含み、入力部30が受け付けた計測モードに応じて、それぞれ、撮像条件やスキャン条件で計測を行うように、送受信回路60の動作を制御する。本実施形態では、カラードプラ及びスペクトルドプラの二つの計測を連続して実行するように送受信回路60を制御する。また送受制御部70は、通常のカラードプラのスキャン(超音波ビームの走査)と平行して、或いは、カラードプラからスペクトルドプラに移行する期間(中間期間)において、スペクトルドプラにおいて折り返しを生じない速度を推定するためのパルス波の送受信を行う。
【0020】
信号処理部80は、受信回路で受信した信号(デジタルRF信号)を処理し、超音波断層画像の作成と、血流速度の演算とを行う。このため、信号処理部80は、計測モードに応じて受信した信号(フレームデータ)を断層画像作成用の信号と血流速度演算用の信号とに振り分けるデータ振り分け部81と、Bモード像などの断層像を生成する断層画像演算部82、ドプラ速度等の二次元的な血流情報を算出し、カラーマッピングするカラードプラ演算部83、所定の領域の血流速度を算出しスペクトルを取得するスペクトルドプラ演算部84、及びスペクトルドプラ計測の計測条件を算出する計測条件演算部85などの演算部を備える。
【0021】
断層画像演算部82、カラードプラ演算部83及びスペクトルドプラ演算部84が行う演算は、従来の超音波撮像装置と同様であり特に必要ない限り詳細な説明は省略する。
【0022】
計測条件演算部85は、カラードプラ制御部71の制御のもとで計測を行っている間に、自動的に或いは入力部30を介して入力された指示に基づいて、折り返しなし速度(折り返しを補正した血流速度)を推定するとともに、推定した折り返しなし速度を用いて、速度レンジ、ベースライン位置の計算を行う。このため計測条件演算部85は、
図2に示すように、血流速度推定部86を含み、さらに所定期間における最小及び最大血流速度を算出するためのヒストグラム生成部87を備えていてもよい。なお血流速度推定部86の機能はカラードプラ演算部83が行うものとしてもよい。
【0023】
表示画像生成部90は、上述した各演算部82~85が生成したデータを例えばスキャンコンバータによって走査変換するなど、表示部40に表示するための画像データに変換するとともに、画像データに付帯して表示すべき撮像条件や被検体情報などのデータと組み合わせて表示画像を生成する。
【0024】
上述した信号処理部80(演算部)及び送受制御部70(制御部)の機能の一部又は全部は、メモリ及びCPU(Central Processing Unit)或いはGPU(Graphics Processing Unit)を備えた計算機において、CPU等が機能部毎の演算アルゴリズムを含むプログラムを読み込んで実行することで実現することができる。また演算部の一部の機能は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアで実現してもよい。
【0025】
表示部40は、表示画像生成部90が生成した画像の表示のほか、入力部として機能するGUI等を表示することも可能である。表示部40には、設定された撮像条件やデフォルトで設定されている撮像条件や撮像のガイドとなる情報や画像等も表示される。
【0026】
次に上述した超音波撮像装置を用いた血流計測の実施形態を説明する。
【0027】
<第一実施形態>
本実施形態では、ドプラモードではカラードプラ計測(第一の血流計測)に続いてスペクトルドプラ計測(第二の血流計測)を実行し、カラードプラ計測からスペクトルドプラ計測に移行する中間期間において、スペクトルドプラ計測の初期計測条件を算出し、設定する。本実施形態の撮像の流れを
図3に示す。
【0028】
入力部30(計測モード選択部31)を介し、ドプラモードの計測モードが選択されると、送信制御部70は、まず計測対象を特定するための計測として、Bモードの計測を開始する(S31)。Bモードの計測は、被検体の断層画像を取得するための計測で、送受信回路60において、2次元的或いは3次元的な領域に対しBモード用の超音波パルスを走査し、その領域から反射した超音波信号を受信し、断層画像演算部82において、各位置からの信号の強度を表す画像データを作成する。表示画像生成部90は信号強度を輝度値に変換した断層画像を作成し表示部40に表示させる。Bモード計測は、少なくとも1フレーム行う。
【0029】
表示部40に表示された断層画像をもとに、ユーザーが入力部30(計測領域選択部32)を介して、計測対象である血管や心臓などの部位を選択すると、送信制御部(カラードプラ制御部71)は、カラードプラの計測を開始する(S32)。即ち、選択された領域を、所定のフレームレートで走査し、この領域の血流速度を計測する。カラードプラ計測では、走査ラインごとに所定の繰り返し周波数で複数回超音波パルスを送受信する。カラードプラ演算83は、複数回の送受信で得られた受信信号に対し、自己相関演算等の公知の演算手法によりドプラシフト量を算出し、血流速度を算出する。ここで得られる血流速度の情報は、超音波パルスの1つのビームの線上にある領域の血流速度の平均値或いはサンプル毎の血流速度である。カラードプラ演算部83は、さらに複数回の送受信で得られた受信信号を用いて、血流のパワーや分散の情報を算出してもよい。
【0030】
カラードプラ計測で得られた血流情報は、先のBモード計測で得られた断層画像の上に重畳して表示部40に表示される。この状態で、入力部30を介して、ユーザーがスペクトルドプラモードへの移行するための指示を入力(例えばスペクトルドプラモード「ON」のボタンを操作)すると、
図4(a)に示すように、カラードプラの計測領域405の断層画像とその測定レンジを表示する画面400上に、スペクトルドプラの計測位置選択用のカーソル401が表示される(S33)。この時点で、計測制御部70は計測モードの移行の指示を受け取るが、カラードプラ用超音波パルスの送受信は継続しており、スペクトルドプラ用超音波パルスの送受信は開始しない。
【0031】
スペクトルドプラの計測位置選択用のカーソル401は、ユーザーが操作可能なUIであり、ユーザーはマウス等のポインティングデバイスを用いてカーソル401を画面上で操作することで超音波ビーム方向と、計測位置を決めるサンプルウィンドウ402を指定する。図示する例では、カラードプラの走査範囲1~mのうち走査線xの上に設定された、サンプルe-サンプルfのサンプルウィンドウが設定されている。このようなカーソル401の操作によりスペクトルドプラの計測位置が決まる。ついで、ユーザーによりスペクトルドプラ計測開始の指示が入力されると、この計測位置でスペクトルドプラ用パルスの送受信を開始する(S35)。
【0032】
この計測位置選択(S33)からスペクトルドプラ計測開始(S35)までの期間、すなわち、カラードプラの送受信は継続しているがスペクトルドプラ用超音波の送受信が始まっていないから移行期(中間期間)において、計測条件演算部85はスペクトルドプラの計測条件を算出するための演算を行う(S34)。このためまず血流速度推定部86が、カラードプラ計測が継続している間に取得した信号を用いて折り返しのない血流速度を推定する演算を行う。計測条件演算部85は、この推定した折り返しなし血流速度を用いて計測条件を算出する。計測条件は、速度レンジ及びベースラインを含む。
【0033】
以下、中間期間における処理(S34)の詳細を、
図5を参照して説明する。
計測制御部70は、送受信回路60に指令を送り、ステップS33で決定した計測位置またはそれを含む狭い領域(走査線xとその近傍の走査線)を対象として折り返しなし血流速度を推定するのに必要な超音波信号の送受信を行う(S341)。折り返しなし血流速度を推定する手法は、折り返し回避用パルスを送受信して折り返しなし速度を算出する方法、折り返しのある速度を補正して折り返しなし速度を算出する方法など、いくつか公知の手法があるが、本実施形態では折り返し回避用パルスを用いる方法を採用する場合を説明する。
【0034】
折り返し回避用パルスシーケンスとしては、公知の不均等間隔送信カラードプラ法の送受シーケンスを用いてもよいし、本出願人が提案した方法(特願2018-40908号:先願という)を用いてもよい。公知の方法は、2以上の異なるPRTで送受信を行い、これらPRTの比を用いて折り返しなし速度を推定するというものであり、例えば
図6(a)に示すように、PRTを交互に異ならせて送信し(不均等間隔送信)、PRTがprt1となる信号の組と、prt2となる信号の組を受信する。また先願に記載された手法は、
図6(b)に示すように、prt1とprt2とを交互に繰り返した後、一方(図ではprt1)を繰り返す送受シーケンスや、
図6(c)に示すように所定の規則でprt1とprt2を繰り返す送受シーケンスを採用する。これにより、血流速度推定においてprt1の信号の組及びprt2の信号の組だけでなく、第三のPRTであるprt3(=prt1+prt2)の信号の組も利用し、複数種のPRTを用いることに伴うフレームレートの低下を抑制する。
【0035】
いずれの手法においても、prt1とprti(i=2以上の整数)は次の関係を満たすように決定する。
[数1]
prfi=(pi/qi)×prf1 (1)
式中、piとqiは割り切れない関係の整数であり、「i」により異なる。
【0036】
このシーケンスに従った超音波パルスの送受信は、カーソル401で決まるビーム線上或いはその近傍も含む複数のビーム線上で行い、カーソル401で指定されるサンプル位置からの反射波を受信信号としてサンプリングする。このような送受信を繰り返し、複数のフレームデータを取得する。
【0037】
データ振り分け部81は、フレームデータ毎に、複数のPRTを用いたシーケンスで得られた受信信号をPRT毎の信号の組(例えば、prt1となる信号の組とprt2となる信号の組)に分けて、計測条件演算部85(血流速度推定部86)に渡す(S342)。なおデータ振り分け部81の主たる機能は、計測モードに応じた信号の振り分け、即ち、例えばBモード計測で受信した信号を断層画像演算部82に振り分け、カラードプラ計測で受信した信号をカラードプラ演算部83に振り分けるというものであるが、この実施形態では、さらに上述したようにドプラ計測において、折り返しなし速度推定のための送受信を行った場合に、PRT毎の信号の組の振り分けを行うものとしている。但し、この機能は、データ振り分け部81とは別に、例えば計測条件演算部85の前段に設けてもよい。
【0038】
血流速度推定部86は、異なるPRTの信号の組のデータを用いて血流速度の推定を行う(S343)。血流速度の推定は、不均等間隔送信カラードプラ法として知られている公知の手法に従い、行うことができる。即ち、各PRT(prt1、prti)から求めた折り返しを含む血流速度をVDiとし、ナイキスト速度をVNi、折り返し回数をnNiとすると、推定すべき折り返しなし速度VDは、式(2)で表すことができる。
【0039】
[数2]
VD=VDi+2nNiVNi (2)
ここでナイキスト速度は、VN=(PRF・C)/4f0(PRFはパルス繰り返し周波数でありPRTの逆数、Cは超音波速度、f0は超音波の送信周波数)である。
【0040】
また折り返し回数は、式(1)より、式(3)の関係性が成り立つ。
[数3]
VN1=(pi/qi)×VNi (3)
【0041】
よって式(2)及び(3)から導出される次式(4)を、拘束条件(式(5)、式(6))を使って解くことにより、折り返し数nN1及びnNiを推定することができる。
[数4]
nint[qi×{(VDi-VD1)/2VN1}]=nN1qi-nNipi (4)
式(4)中、「nint」は整数型への変換である。
[数5]
|nN1qi―nNipi|≦(1/2)×(pi+qi) (5)
[数6]
|nNi|≦ceiling{(qi-1)/2} (6)
【0042】
折り返しなし速度は、PRT毎に算出されるので、血流速度推定部86は、その平均を取り、折り返しなし速度とする。以上の演算を各フレームデータについて行うことにより、フレームデータ毎に折り返しなし速度が得られる。フレームデータごとの折り返しなし速度の情報は所定の期間、メモリ内に蓄積される(S344)。一般に血流速度は、心周期に応じて変化する。従って血流速度データの蓄積は少なくとも一心周期(約1秒)に亘って行うことが好ましい。
【0043】
所定の期間のデータ蓄積が終了したならば、ヒストグラム生成部87が所定の期間(例えば1秒)に亘って取得した血流速度の血流分布(ヒストグラム)を生成する。血流分布のヒストグラムは、一例を
図7に示すように、対象となるカーソルとその近傍の速度を、頻度に応じてプロットしたものである。この際、閾値処理(例えば最小血流速度の下限値を閾値として除去する処理)を行い(S345)、明らかに血流速度に含まれない値を血流速度データから除去する。一方、所定の期間内に、
図4(b)に示すように、一つのフレーム内でカーソル401の位置の変更があった場合には、次のフレームでは変更後の位置を対象として、上記ステップS341~S344を繰り返す。
図4(b)に示す例では、カーソルは走査線xからyに、サンプルウィンドウは、サンプルe-fからサンプルg-hに変更されているので、この位置を対象として、折り返しなし速度推定のための送受信を行い、折り返しなし速度を推定する。また所定の期間内に、カーソル401位置の変更がなければ(S346)、最終的に所定の期間、例えば一心周期に相当する時間の血流速度の情報が得られる。
【0044】
計測条件演算部85は、こうして得られた血流速度情報を用いてスペクトルドプラにおける計測条件(速度レンジ及びベースライン)を算出する(S347)。即ち、計測条件演算部85はヒストグラム生成部87が生成したヒストグラムから、最小速度と最大速度を決定し、その幅(最小速度と最大速度との差)に対し、その幅を含む適切な範囲(例えば120%)を速度レンジとする。またヒストグラムをもとに最大速度が折り返さない位置にベースラインを設定する。
【0045】
ヒストグラムを用いて最小速度及び最大速度を決定する様子を
図8に示す。
図8(a)は算出した血流速度が折り返しを含む場合(折り返し補正前)の血流分布を示し、横軸±Vはカラードプラの測定レンジである。折り返しを含む場合には、高速度成分がナイマス方向に一部折り返しているため、正確な最小血流速度と最大血流速度を求めることができない。これに対し速度レンジを拡大し、折り返し補正をした場合は、
図8(b)に示すように、折り返しのない速度分布が得られ最小血流速度と最大血流速度が正しく検出されるので、適切な速度レンジとベースラインを設定することができる。
図8(b)の横軸±aVの「a」は折り返し補正後の速度レンジ拡大幅である。
【0046】
計測条件演算部85は、算出した速度レンジとベースラインを続くスペクトルドプラ計測の初期計測条件として設定する。以上の処理S341~S347は、カラードプラからスペクトルドプラに移行する中間期間、すなわち、ユーザーが位置指定用のカーソル401でスペクトルドプラの計測位置を設定してからスペクトルドプラ用パルスの送受信開始操作が行われるまでに行われる。
【0047】
入力部30を介して、スペクトルドプラ開始の指令が出されると、スペクトルドプラ制御部72は設定された計測条件(速度レンジ及びベースライン)で超音波パルスの送受信を行い、計測を開始する(
図3:S35)。
【0048】
スペクトルドプラ計測では、ステップS33でカーソル401によって指定された計測位置(超音波ビーム方向)に対し超音波を送信し、カーソル401で指定されたサンプル位置の反射波を受信する。受信信号のフレームデータはデータ振り分け部81を介してスペクトルドプラ演算部84に渡され、ここで、逐次、周波数解析を行い、速度スペクトルを生成する。速度スペクトルは、表示画像生成部90により表示画像に変換されて、表示部40に表示される。
【0049】
ここでスペクトルドプラ計測が、所定のPRFで超音波を送信するパルスドプラの場合には、最大検出周波数はPRFに依存し、最大検出周波数で決まる最大検出速度もPRFの制限を受けるが、初期設定された計測条件では、最大検出速度で決まる速度レンジ(-V~+V)が、血流速度推定部86が推定した最大血流速度と最小血流速度の幅を含むようになるようにPRF等が調整され、且つ最大血流速度が折り返さない位置にベースラインが設定されている。従って、例えば、
図9(a)に示すように、速度表示画面の適切な範囲に血流スペクトル801が表示される。
【0050】
図示する例では、さらに、血流速度推定部86が推定した最大血流速度802及び最小血流速度803をスペクトル上に線で示すとともに、これらの値を表示する表示ブロック805が表示される。スペクトルドプラ計測の開始時に適切な速度レンジ及びベースラインが設定されているので、血流スペクトルの表示開始と同時に、ユーザーによる調整を経ることなく適切な表示が実現できる。
【0051】
なおスペクトルドプラ計測結果であるスペクトルを表示する前に、
図9(b)に示すように、スペクトル表示画面に、最大血流速度802及び最小血流速度803や血流速度表示ブロック805を表示するようにしてもよい。或いは、
図9(c)に示すように、スペクトルドプラ計測の前の表示画面、例えばカラードプラ中(中間期間)の表示画面に、血流速度表示ブロック805を表示してもよい。このような表示を行うことで、ユーザーがスペクトルドプラ計測の対象とする計測位置の適否を確認したり、場合によっては、スペクトルドプラ計測自体の要否を決定したりすることができる。つまりスペクトルドプラ計測の目的が最大血流速度(ピーク速度)の情報を得ることだけであれば、この状態で計測をやめることができる。
【0052】
本実施形態によれば、スペクトルドプラに先立って実行されるカラードプラ計測の間に、折り返しなし血流速度を推定し、それに基づいてスペクトルドプラの計測条件(速度レンジ及びベースライン)を算出し、初期条件として設定しておくことにより、ユーザーによる調整を不要とし、スペクトルドプラ開始と同時に、最適な速度レンジの計測とスペクトル表示を行うことができる。
【0053】
また本実施形態によれば、計測条件を算出する血流速度が折り返しなし速度であることが担保されているので、計測条件を算定する際に正確なヒストグラムに基づく最小及び最大血流速度を決定することができる。
【0054】
<変形例1>
第一実施形態では、カラースペクトル計測からスペクトルドプラ計測に移行する中間期間において、折り返しなし速度推定のための送受信シーケンス及び計測条件演算を実行することを説明したが、カラードプラ計測中にスペクトルドプラの計測位置を選択するカーソル操作を行ってから、スペクトルドプラ開始ボタンを操作するまでが極めて短時間に行われ、折り返し回避用送受信の実施時間より短い(約1秒未満)場合もありえる。その場合、例えばデフォルトで設定されている速度レンジ等でスペクトルドプラ用超音波パルスの送受信が始まってしまうと、計測条件演算部85の結果が反映されないことになる。
【0055】
本変形例では、計測制御部70がカーソル操作による計測位置選択から、所定時間例えば1秒経過はするまでは、開始ボタンの操作を制限するか、開始ボタンの操作後、スペクトルドプラ用パルス送信までに遅延時間を設ける。これにより、計測条件演算部85で算出した計測条件がスペクトルドプラの初期条件となることを確保する。このような制限を行う計測制御部70の手順を
図10に示す。
図10において、
図3及び
図5と同じ処理については同じ符号で示し、重複する内容の説明は省略する。また
図10ではカラードプラの前提であるBモード計測ステップ(
図3:S31)は図示を省略している。
【0056】
カラードプラの計測中(S32)に計測位置の選択を受付けると(S33)、計測位置或いはそれを含む狭い領域を対象として折り返しなし速度の推定及びそれをもとにした速度レンジ等の算出が開始する(S34)。速度レンジ等の算出処理は、
図5に示すフローと同様である。この処理は、前述のように、例えば一心周期に亘って行われるが、処理の途中で、ユーザーによってスペクトルドプラにおける送受信を開始する開始ボタンが操作されると(S348)、一心周期分のデータ蓄積とそれを用いた計測条件設定が完了しているか否かを判定し(S349)、完了していない場合には、完了を待って送受信を開始する(S35)。計測条件設定が完了しているか否かの判定は、図に示すように、計測位置の選択を受付けたときからの経過時間で行ってもよいし、スペクトルドプラ制御部72が計測条件演算部85から計測条件を受け取り、デフォルトの計測条件が更新された時点を完了としてもよい。
【0057】
本変形例1によれば、中間期間が1秒未満の極めて短い場合にも、確実に一心周期に亘って取得した受信信号から算出した折り返しなし速度を用いることができ、正確な速度レンジの設定を担保できる。
【0058】
なお
図10のフローでは、制御信号により送受信の開始を遅延させたが、遅延時間に相当する時間、開始ボタンを電気的或いは機構的にロックすることで制御してもよい。
【0059】
<変形例2>
第一実施形態では、折り返しなし血流速度を取得するために、折り返し回避用送受シーケンスを用い、PRTが異なる受信信号の対の演算によって折り返しなし血流速度を算出したが、折り返しなし血流速度を取得する方法は、この方法に限らず、公知の折り返し補正する方法を採用することができる。この変形例では
図2の血流速度推定部86は、折り返し補正部として機能する。
【0060】
折り返し補正法として、具体的には、次のような方法を採用することができる。
相互相関法:受信したRF 信号について、一波長以上の動きを相互相関手法で検出し、その後、自己相関法で得られる位相情報と足すことで折り返しのない速度求める方法(例えば、非特許文献2:Lai X. et al, [An Extended Autocorrelation Method for Estimation of Blood Velocity], IEEE TRANSACTION On ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL)VOL.44,No.6,1997、に記載の方法など)
【0061】
ブロックマッチング法(テンプレートマッチング)法:前後のフレームデータについて、対応する点のペアを求め、その対応点の周囲の点を含む小領域を一つの単位としてフレーム間の対応関係を求める。対応点の前後フレーム間における移動量から速度を求める。対応関係を求める基準としては差の絶対値の和(SAD)や差の二乗和(SDD)と正規化相互相関などを用いる。
【0062】
これら変形例では、
図5に示すような折り返し回避用送信シーケンスの実行は不要であり、スペクトルドプラの計測位置が選択された後、カラードプラと同じ条件で送受信を行い、受信したRF信号或いはフレームデータを用いて折り返しなし血流速度を算出することができる。また本変形例による折り返しなし血流速度の算出(折り返し補正)は、血流速度推定部86が実行するアルゴリズムを変更することによって実現することができ、それ以外の装置構成及び計測手順は第一実施形態と同様である。
【0063】
<第二実施形態>
第一実施形態では、ユーザーがカーソルを操作することにより、スペクトルドプラ計測の計測位置を選択したが、本実施形態では、カラードプラ計測で得られる情報を用いてスペクトルドプラ計測の計測位置を自動的に算出する。
【0064】
本実施形態の計測条件演算部85は、
図11に示すように、血流速度推定部86のほかに、計測位置算出部88を備えている。またカラードプラ演算部83は、カラードプラの計測領域のサンプル毎の血流速度を用いて、血流のパワー及び分散を算出する。血流計測位置算出部88は、カラードプラ演算83が算出した血流速度、パワー及び分散の少なくとも一つを用いて計測位置を決定する。
【0065】
本実施形態の処理の流れを
図12に示す。
図12において、第一実施形態の処理を示す
図3及び
図5のステップと同じ処理を行うステップは同じ符合で示し、重複する説明は省略する。また
図12ではカラードプラの前提であるBモード計測ステップ(
図3:S31)は図示を省略する。
【0066】
本実施形態でも、ドプラモードではカラードプラ計測(S32)に続いてスペクトルドプラ計測(S35)を実行し、カラードプラ計測からスペクトルドプラ計測に移行する中間期間において、スペクトルドプラ計測の初期計測条件を算出し、設定することは第一実施形態と同様である。
【0067】
カラードプラ演算部82は、カラードプラ計測で得られたRF信号を用いて血流の速度、パワー及び分散を算出する(S331)。ある点における速度Vel、信号のパワーPow及び分散Varは、次の式(7)~(9)で求めることができ、サンプルボリューム(計測点)毎に算出される。
【0068】
【数7】
【数8】
【数9】
式中、Eは直交検波後のIQ信号、Nはデータ組数である(以下、同じ)。
【0069】
一般にスペクトルドプラは、血流速度或いはパワーが最大の位置や分散が高い位置を計測対象とする。そこで計測位置算出部87は、予め決められたパラメータ(血流速度、パワー、分散)について、各計測点のうちパラメータ値が最大値を取る計測点を計測位置として自動設定する(S332)。設定する計測位置は、1つでも複数でもよい。
【0070】
計測条件演算部85は、設定した計測位置について、第一実施形態と同様に折り返しなし速度を推定するための処理を行う(S34)。即ち、例えば不均等間隔送信を行って得た受信信号を用いて折り返しなし速度を推定し(速度推定部86)、所定時間(約1秒)の間に得た折り返しなし速度のヒストグラムから最小血流速度及び最大血流速度を求め、スペクトルドプラにおける速度レンジとベースラインを算出する。次いで算出した速度レンジとベースラインをスペクトルドプラの初期計測条件として設定する。
【0071】
計測位置算出部87は、自動設定した計測位置の位置情報を表示画像生成部90に送り、カラードプラの表示画面上に表示させてもよい(S333)。これによりユーザーは、自動設定された計測位置を確認することができる。このとき、ユーザーによる計測位置の変更を受付ける構成としてもよく、ユーザーが計測位置を変更した場合には、第一実施形態と同様に、計測位置の変更を受付ける(S334)。
【0072】
計測位置算出部87が計測位置を決定すると、その時点で計測制御部70は、第一実施形態のステップS34(
図4のS341~S347)を実行し、スペクトルドプラ開始までにその初期計測条件を設定する。計測位置を表示画面上に表示し、それに対しユーザー変更があった場合には、第一実施形態においてユーザーのカーソル操作により計測位置が選択された場合と同様に、上記ステップS34を実行する。
【0073】
本実施形態においても、推定した折り返しなし速度を用いることで正確な速度レンジとベースラインの設定が可能であり、且つ、これら計測条件をユーザーの介在なしにスペクトルドプラ開始時に設定することができる。また本実施形態では、計測位置の設定も自動化することで、ユーザーの待ち時間をさらに縮小し、利便性を高めることができる。
【0074】
<変形例3>
第一実施形態では、カラードプラとスペクトルドプラとの間、即ち中間期間で、折り返しなし血流速度を推定するのに必要な信号を取得する送受信シーケンス(折り返し回避用送受シーケンス)を実行したが、このようなシーケンスをカラードプラの送受信中に行ってもよい。
なお第一実施形態においても、折り返し回避用送受シーケンスの実行後にも、スペクトルドプラ送受信開始まではカラードプラの送受シーケンスを継続してよいので、折り返し回避用送受シーケンスの実行とその後の計測条件演算とは、カラードプラ計測中に行われる処理ということができるが、本変形例3は、ユーザーによる計測位置選択を待たずに折り返し回避用送受シーケンスを実行することが特徴である。
【0075】
本変形例の送受シーケンス例を
図13に示す。図中、カラードプラの送受シーケンス131において、一つの四角は1ないし複数のフレームデータの送受信を示している。本変形例では、図示するように、カラードプラで例えば1フレームデータを取得する毎に、折り返し回避用送受シーケンス132(
図6のいずれか)を所定期間(約1秒)実行し、折り返しなし速度(最小血流速度、最大血流速度)を取得する。カラードプラの送受信131の間に行われる送受シーケンス132は、スペクトルドプラの計測位置が決定される前であり、超音波ビームの方向とサンプル位置は定まっていないので別の手段で設定する。例えば、
図14に示すように、カラードプラの走査範囲内に、予め自動又は手動で1ないし複数の計測位置候補となる走査線x1、x2と深度を設定しておき、その走査線或いはその走査線を含む複数の走査線を送受シーケンス132の計測対象とする。候補が複数ある場合には、候補毎に折り返しなし速度を算出する。また第二実施形態の手法により、計測位置算出部87が自動で計測位置を算出する場合には、計測位置算出部87がカラードプラのフレーム毎に算出した計測位置で送受シーケンス132を実行してもよい。
【0076】
計測条件演算部85は、送受シーケンス132によって取得した血流情報(折り返しなし速度を基に求めた最小血流速度、最大血流速度)を、計測位置が複数ある場合には計測位置毎にメモリ内に蓄積する。
【0077】
カラードプラからスペクトルドプラに移行する際、すなわちカラードプラの計測中に計測モードをスペクトルドプラに切り替える指示が入力されると、制御部70はスペクトルドプラの計測位置を選択するためのカーソル401(
図4)を表示部40に表示する。このカーソル401の初期位置として、送受シーケンス132の計測対象である計測位置を表示する。複数の計測位置候補があった場合には、複数の計測位置候補を表示してもよい。
【0078】
ユーザーがカーソル操作によって選択した計測位置が、初期位置として表示された計測位置候補の位置或いは複数の計測位置候補のいずれかと同じか近傍である場合には、最小及び最大血流速度はほぼ同様であるとみなせるので、ユーザー選択の計測位置について改めて計測条件設定処理(
図5、S34)を行うことなく、蓄積された計測位置候補の血流情報をもとに決定した速度レンジ及びベースラインにて、ユーザー選択の計測位置でスペクトルドプラ計測(送受シーケンス133)を開始することができる。
【0079】
本変形例によれば、スペクトルドプラの計測位置が確定する前であってもカラードプラ計測の送受シーケンスの途中で、スペクトルドプラの計測条件を予備的に決定することができる。これによりスペクトルドプラにおいて正確な速度レンジ等の設定を確保しながら、さらにユーザーの利便性を高めることができる。
【0080】
以上、本発明の超音波撮像装置及びその制御方法の実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、公知の要素を追加したり、要素の一部を省略したりすることも可能である。また各実施形態と変形例は、技術的に矛盾しない限り、適宜組み合わせることができ、そのような組み合わせも本発明の実施形態に包含される。
【符号の説明】
【0081】
10:本体、20:超音波プローブ、30:入力部、40:表示部、60:送受信回路、70:送受制御部(制御部)、71:カラードプラ制御部、72:スペクトルドプラ制御部、80:信号処理部(演算部)、81:データ振り分け部、82:断層画像演算部、83:カラードプラ演算部、84:スペクトルドプラ演算部、85:計測条件演算部、86:血流速度推定部、87:ヒストグラム生成部、88:計測位置算出部、90:表示画像生成部