IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングの特許一覧

特許7159197燃焼室を作動させるためのシステムおよび方法
<>
  • 特許-燃焼室を作動させるためのシステムおよび方法 図1
  • 特許-燃焼室を作動させるためのシステムおよび方法 図2
  • 特許-燃焼室を作動させるためのシステムおよび方法 図3
  • 特許-燃焼室を作動させるためのシステムおよび方法 図4
  • 特許-燃焼室を作動させるためのシステムおよび方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-14
(45)【発行日】2022-10-24
(54)【発明の名称】燃焼室を作動させるためのシステムおよび方法
(51)【国際特許分類】
   F23N 5/00 20060101AFI20221017BHJP
   F23R 3/28 20060101ALI20221017BHJP
   F02C 9/00 20060101ALI20221017BHJP
   F23R 3/40 20060101ALI20221017BHJP
   F23N 1/02 20060101ALI20221017BHJP
   F23N 5/08 20060101ALI20221017BHJP
   F23C 5/32 20060101ALI20221017BHJP
【FI】
F23N5/00 H
F23R3/28 D
F02C9/00 B
F23R3/40 C
F23N1/02 K
F23N5/08 A
F23C5/32
【請求項の数】 15
(21)【出願番号】P 2019555800
(86)(22)【出願日】2018-04-22
(65)【公表番号】
(43)【公表日】2020-06-18
(86)【国際出願番号】 EP2018060253
(87)【国際公開番号】W WO2018197366
(87)【国際公開日】2018-11-01
【審査請求日】2021-04-12
(31)【優先権主張番号】15/495,243
(32)【優先日】2017-04-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515322297
【氏名又は名称】ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】General Electric Technology GmbH
【住所又は居所原語表記】Brown Boveri Strasse 7, CH-5400 Baden, Switzerland
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100129779
【弁理士】
【氏名又は名称】黒川 俊久
(72)【発明者】
【氏名】ボツェット、カール
(72)【発明者】
【氏名】ニューシェーファー、カール
【審査官】岩▲崎▼ 則昌
(56)【参考文献】
【文献】特開平4-203708(JP,A)
【文献】特開平2-302520(JP,A)
【文献】特開昭55-110823(JP,A)
【文献】特開昭52-144829(JP,A)
【文献】特表2016-504552(JP,A)
【文献】米国特許出願公開第2004/0191914(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F23N 5/00
F23R 3/28
F02C 9/00
F23R 3/40
F23N 1/02
F23N 5/08
F23C 5/32
(57)【特許請求の範囲】
【請求項1】
燃焼室(12)を作動させるための方法(92)であって、当該方法(92)が、
複数のノズル(42,44,46)を介して前記燃焼室(12)に燃料(18)を導入するステップ(94)と、
1つ以上のセンサ(82)を介して、前記複数のノズル(42,44,46)の各ノズルの出力端での燃焼反応のストイキオメトリを測定して、ストイキオメトリデータを取得するステップ(96)であって、前記1つ以上のセンサ(82)が、前記複数のノズル(42,44,46)によって前記燃焼室(12)内に導入される前記燃料(18)の燃焼により放出される光子の周波数を分析することにより前記ストイキオメトリを測定するスペクトル分析器である、ステップ(96)と、
前記ストイキオメトリデータから導出されたスペクトル線変動の周波数及び振幅のうち少なくとも1つが閾値を超えているか否かを決定するステップ(98)と、
前記スペクトル線変動の周波数及び振幅のうち少なくとも1つが閾値を超えていると決定されたときに、前記燃焼室(12)の火炎安定性が維持されるように、前記ストイキオメトリデータに少なくとも部分的に基づいて前記複数のノズル(42,44,46)のうちの少なくとも1つのノズルのストイキオメトリを調整するステップ(100)と
を含む、方法(92)。
【請求項2】
前記複数のノズル(42,44,46)を介して前記燃焼室(12)に燃料(18)を導入するステップ(94)が、前記燃焼室(12)の最大運転負荷に比べて軽減された負荷に応じて、前記複数のノズル(42,44,46)を介して前記燃焼室(12)に燃料(18)を導入することによって行われる、請求項1に記載の方法(92)。
【請求項3】
前記軽減された負荷が、最大運転負荷の20%以下である、請求項2に記載の方法(92)。
【請求項4】
前記複数のノズル(42,44,46)を介して前記燃焼室(12)に一次空気(48)を導入することをさらに含む、請求項1乃至請求項3のいずれか一項に記載の方法(92)。
【請求項5】
前記複数のノズル(42,44,46)のすべてのストイキオメトリが互いに均一になるように、前記少なくとも1つのノズルのストイキオメトリが調整される、請求項1乃至請求項4のいずれか一項に記載の方法(92)。
【請求項6】
前記複数のノズル(42,44,46)のうち第1の点火層(62)内に配置された第1の配列のノズル(42,44)を介して前記燃焼室(12)に導入される前記燃料(18)の第1の量が、前記複数のノズル(42,44,46)のうち第2の点火層(68)内に配置された第2の配列のノズル(46)を介して前記燃焼室(12)に導入される前記燃料(18)の第2の量よりも少なくなるように、前記燃料(18)の第1の量を調整すること
をさらに含む、請求項1乃至請求項5のいずれか一項に記載の方法(92)。
【請求項7】
調節可能な伸縮式ノズル(90)を含む伸縮式選択的非触媒還元剤(88)を介して前記燃焼室(12)からのNOx排出を低減するステップ(104)
をさらに含む、請求項1乃至請求項6のいずれか一項に記載の方法(92)。
【請求項8】
2つのミル(28)を介して前記複数のノズル(42,44,46)に前記燃料(18)を供給するステップ(106)
をさらに含む、請求項1乃至請求項7のいずれか一項に記載の方法(92)。
【請求項9】
前記複数のノズル(42,44,46)のうちの少なくとも1つのノズルのストイキオメトリを調整するステップ(100)が、
前記複数のノズル(42,44,46)のうちの少なくとも1つのノズルが前記燃焼室(12)に前記燃料(18)を導入する速度を調整すること(114)
を含む、請求項1乃至請求項6のいずれか一項に記載の方法(92)。
【請求項10】
燃焼室(12)を作動させるためのシステム(10)であって、当該システム(10)が、
前記燃焼室(12)に燃料(18)を導入するように動作する複数のノズル(42,44,46)と、
前記複数のノズル(42,44,46)の各ノズルの出力端での燃焼反応のストイキオメトリを測定することによりストイキオメトリデータを取得するように動作する1つ以上のセンサ(82)であって、該1つ以上のセンサ(82)が、前記複数のノズル(42,44,46)によって前記燃焼室(12)内に導入される前記燃料(18)の燃焼により放出される光子の周波数を分析することにより前記ストイキオメトリを測定するスペクトル分析器である、1つ以上のセンサ(82)と、
前記複数のノズル(42,44,46)及び前記1つ以上のセンサ(82)と電子通信するコントローラ(22)と
を備えており、前記コントローラ(22)が、
前記ストイキオメトリデータから導出されたスペクトル線変動の周波数及び振幅のうち少なくとも1つが閾値を超えているか否かを決定し、
前記スペクトル線変動の周波数及び振幅のうち少なくとも1つが閾値を超えていると決定されたときに、前記燃焼室(12)の火炎安定性が維持されるように、前記ストイキオメトリデータに少なくとも部分的に基づいて前記複数のノズル(42,44,46)のうちの少なくとも1つのノズルのストイキオメトリを調整する
ように動作する、システム(10)。
【請求項11】
前記複数のノズル(42,44,46)が、さらに、前記燃焼室(12)に一次空気(48)を導入するように構成されている、請求項10に記載のシステム(10)。
【請求項12】
前記コントローラ(22)が、前記複数のノズル(42,44,46)のすべてのストイキオメトリが互いに均一になるように、前記少なくとも1つのノズルのストイキオメトリを調整する、請求項10又は請求項11に記載のシステム(10)。
【請求項13】
前記コントローラ(22)が、さらに、前記複数のノズル(42,44,46)のうち第1の点火層(62)内に配置された第1の配列のノズル(42,44)を介して前記燃焼室(12)に導入される前記燃料(18)の第1の量が、前記複数のノズル(42,44,46)のうち第2の点火層(64)内に配置された第2の配列のノズル(46)を介して前記燃焼室(12)に導入される前記燃料(18)の第2の量よりも少なくなるように、前記燃料(18)の第1の量を調整するように動作する、請求項10乃至請求項12のいずれか一項に記載のシステム(10)。
【請求項14】
前記コントローラ(22)と電子通信し、前記燃焼室(12)からのNOx排出を低減するように動作する伸縮式選択的非触媒還元剤(88)であって、調節可能な伸縮式ノズル(90)を含む伸縮式選択的非触媒還元剤(88)
をさらに備える、請求項10乃至請求項13のいずれか一項に記載のシステム(10)。
【請求項15】
請求項10乃至請求項14のいずれか一項に記載のシステム(10)がコントローラ(22)によって請求項1乃至請求項9のいずれか一項に記載の方法を実行するように構成された命令を記憶する非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、概してエネルギー生産に関し、さらに具体的には、燃焼室を作動させるためのシステムおよび方法に関する。
【背景技術】
【0002】
以下、単に「電力グリッド」とも呼ばれる電気式動力グリッドは、1つ以上の発電所によって生成された電気エネルギーを最終消費者、例えば、企業、家庭などに送るためのシステムである。所定の期間、例えば1日間に消費者が電力グリッドから引き出す/要求する最小電力は、電力グリッドの「ベースライン需要」として知られている。消費者が電力グリッドから引き出す/要求する電力の最大量は、電力グリッドの「ピーク需要」として知られており、ピーク需要が発生する期間は、典型的には、電力グリッドの「ピーク時間」と呼ばれる。同様に、電力グリッドのピーク時間外の期間は、通常、電力グリッドの「オフピーク時間」と呼ばれる。化石燃料ベースの発電所内で燃焼される燃料の量および/または速度は、通常、化石燃料ベースの発電所に接続された電力グリッドによって要求される電力量に相関し、化石燃料ベースの発電所および/またはその燃焼室に対する「負荷」として知られている。
【0003】
従来、多くの電力グリッドでは、ベースライン需要を満たすために化石燃料ベースの発電所のみが使用されていた。しかし、再生可能エネルギー源の需要が伸び続ける中で、多くの電力グリッドは現在、太陽光、風力などの再生可能エネルギー源から大量の電力を受け取っている。ただし、多くの再生可能エネルギー源から供給される電力量は、1日および/または1年の間に変動することが多い。例えば、風力発電所であれば、典型的には、日中よりも夜間に電力グリッドに多くの電力を供給する。逆に、太陽光発電所であれば、典型的には、夜間よりも日中に電力グリッドに多くの電力を供給する。最近の発展により、多くの再生可能エネルギー源が、夜間などのオフピーク時間に電力グリッドのベースライン電力需要を満たすことが可能になっているが、多くの電力グリッドは、ピーク需要を満たすため、および/または再生可能エネルギー源だけでは満たすことができない他の期間の増加した需要を満たすために、依然として化石燃料ベースの発電所に依存している。
【0004】
一般に、化石燃料ベースの発電所を作動させるコストは、接続された電力グリッドの需要を満たすために必要とされる負荷の大きさと正の相関関係にあり、例えば、電力グリッドからの需要が高いほど、さらに多くの化石燃料が消費されて、その需要を満たすための負荷を発生させる。しかし、多くの電力グリッドは、再生可能エネルギー源がオフピーク時間に電力グリッドのベースライン需要を満たすことができる場合には、化石燃料発電所によって発生した負荷全体を消費しない。化石燃料ベースの発電所の停止、すなわち、全燃焼運転の停止は、ピーク時間とオフピーク時間との間の比較的短いサイクルを考慮すると、通常、問題がある。したがって、多くの化石燃料ベースの発電所は、1つ以上の再生可能エネルギー源が電力グリッドのベースライン需要を満たすことができる場合には、低下した/軽減された負荷で動作/作動するのに対して、再生可能エネルギー源がベースライン需要を満たすことができない場合には、比較的高い負荷で動作/作動する。しかし、従来の化石燃料ベースの発電所の燃焼室内の火炎安定性に関する課題のために、そのような従来の化石燃料ベースの発電所は、その最大運転負荷、すなわち、化石燃料ベースの発電所および/または包含される燃焼室が支援/発生させるように設計された最大負荷の50%までしかその負荷を軽減することができない。多くの電力グリッドは現在、オフピーク時間に再生可能エネルギー源から、多くの従来の化石燃料ベースの発電所の負荷を50%軽減しても完全には消費されないほど十分な電力を受け取っている。さらに、多くの再生可能エネルギー源は様々な政府機関から補助金を受けているため、包括的な電力グリッドによって供給される電力の価格、すなわち「グリッド価格」は、典型的には、負荷が50%軽減された運転の間、多くの従来の化石燃料ベースの発電所にとって低すぎて収益を上げることができない。このように、多くの従来の化石燃料ベースの発電所は、オフピーク時間に過剰な負荷を発生させるため、環境的および/または経済的な非効率性に悩まされている。
【0005】
したがって、必要とされているのは、燃焼室を作動させるための改良されたシステムおよび方法である。
【先行技術文献】
【特許文献】
【0006】
【文献】米国特許出願公開第2004/191914A1号明細書
【発明の概要】
【0007】
一実施形態では、燃焼室を作動させるための方法が提供される。該方法は、複数のノズルを介して燃焼室に燃料を導入することを含み、各ノズルは、ノズルの出力端について関連するストイキオメトリを有する。該方法は、1つ以上のセンサを介して各ノズルのストイキオメトリを測定してストイキオメトリデータを取得することと、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定することとをさらに含む。該方法は、ストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持することをさらに含む。
【0008】
別の実施形態では、燃焼室を作動させるためのシステムが提供される。該システムは、燃焼室に燃料を導入するように動作する複数のノズルと、ノズルのうち少なくとも1つの出力端に関連するストイキオメトリを測定することによってストイキオメトリデータを取得するように動作する1つ以上のセンサと、ノズルおよび1つ以上のセンサと電子通信するコントローラとを含む。コントローラは、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定し、ストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持するように動作する。
【0009】
さらに別の実施形態では、命令を記憶する非一時的コンピュータ可読媒体が提供される。記憶された命令は、複数のノズルを介して燃焼室に燃料を導入し、1つ以上のセンサを介してノズルのうち少なくとも1つの出力端に関連するストイキオメトリを測定してストイキオメトリデータを取得するようにコントローラを適合させるように構成される。記憶された命令は、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定し、取得されたストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持するようにコントローラを適合させるようにさらに構成される。
【0010】
本発明は、添付の図面を参照して、非限定的な実施形態の以下の説明を読むことにより、さらによく理解されるであろう。
【図面の簡単な説明】
【0011】
図1】本発明の実施形態による、燃焼室を作動させるためのシステムのブロック図である。
図2】本発明の実施形態による、図1のシステムの燃焼室の図である。
図3】本発明の実施形態による、図2の燃焼室の点火層の断面図である。
図4】本発明の実施形態による、図2の燃焼室の別の図であり、火球が燃焼室の下流側に収容されている。
図5】本発明の実施形態による、図1のシステムを利用して燃焼室を作動させるための方法のフローチャートを示す。
【発明を実施するための形態】
【0012】
以下では、本発明の例示的な実施形態を詳細に参照し、それらの例は添付の図面に例示されている。可能な限り、図面全体を通して使用される同じ符号は、説明を繰り返さずに、同じまたは同様の部分を指す。
【0013】
本明細書で使用する場合、「実質的に」、「略」および「約」という用語は、構成要素またはアセンブリの機能的目的を達成するのに適した理想的な所望の条件に対して、無理なく達成可能な製造および組立公差内の条件を示す。本明細書で使用する場合、「リアルタイム」という用語は、十分に即時性があるとユーザが感じる、またはプロセッサが外部プロセスに追いつくことが可能な、処理の応答性の水準を意味する。本明細書で使用する場合、「電気結合された」、「電気接続された」および「電気通信」は、電流または他の通信媒体が一方から他方に流れることができるように、参照される要素が直接的にまたは間接的に接続されることを意味する。接続には、直接的な導電性の接続、すなわち容量性、誘導性または能動要素が介在せず、誘導接続、容量接続および/または任意の他の好適な電気接続が含まれてもよい。介在する構成要素が存在してもよい。また本明細書で使用する場合、「流体接続された」という用語は、(液体、ガスおよび/またはプラズマを含む)流体が一方から他方に流れることができるように、参照される要素が接続されることを意味する。したがって、本明細書で使用する場合、「上流」および「下流」という用語は、参照される要素の間および/または参照される要素の近くを流れる流体および/またはガスの流路に対する参照される要素の位置を説明する。さらに、粒子に関して本明細書で使用する「ストリーム」という用語は、粒子の連続的またはほぼ連続的な流れを意味する。また本明細書で使用する場合、「加熱接触」という用語は、参照される物体が、熱/熱的エネルギーをこれらの物体の間で伝達することができるように、互いに近接していることを意味する。本明細書でさらに使用する場合、「懸濁状態燃焼」、「懸濁状態で燃焼している」および「懸濁状態で燃焼した」という用語は、空気中に懸濁された燃料を燃焼させるプロセスを指す。燃焼室に関して本明細書で使用する「火炎安定性」という用語は、燃焼室内の火球が予測可能な方法で燃焼する可能性を指す。したがって、燃焼室の火炎安定性が高い場合、火球は燃焼室の火炎安定性が低い場合よりも予測可能な方法で燃焼する。
【0014】
加えて、本明細書に開示される実施形態は、ボイラの一部を形成する燃焼室を有する、接線方向に点火される石炭ベースの発電所に関して主に説明されるが、本発明の実施形態は、燃料の燃焼を全体的に停止することなく燃料の燃焼速度を制限および/または低下させる必要がある任意の装置および/または方法、例えば炉に適用可能であり得ることを理解されたい。
【0015】
ここで図1を参照すると、本発明の実施形態による、燃焼室12を作動させるためのシステム10が示されている。理解されるように、実施形態では、燃焼室12は、ボイラ14の一部を形成し得、このボイラ14は、次に、燃料18(図2)、例えば石炭、石油および/またはガスなどの化石燃料を燃焼して、蒸気タービン発電機20を介して発電するための蒸気を生成する発電所16の一部を形成し得る。システム10は、少なくとも1つのプロセッサ24およびメモリデバイス26を有するコントローラ22、1つ以上のミル28、選択的触媒還元剤(「SCR」)30、および/または排気スタック32をさらに含んでもよい。
【0016】
理解されるように、1つ以上のミル28は、燃焼室12内での燃焼のために燃料18を受け取り、加工するように動作する。すなわち、ミル28は、燃焼室12内での燃焼のために燃料18を細断、粉砕および/または調整する。例えば、実施形態では、1つ以上のミル28は、本明細書で使用する場合、粉砕ローラと回転ボウルとの間で固体燃料を破砕/粉砕する種類のミルを指す粉砕機ミルであってよい。次いで、加工された燃料18は、導管34を介してミル28から燃焼室12に輸送/供給される。
【0017】
燃焼室12は、燃料18を受け取り、燃料18の燃焼を促進するように動作し、その結果、熱および煙道ガスが生成される。煙道ガスは、導管36を介して燃焼室12からSCR30に送られてもよい。燃焼室12がボイラ14に組み込まれている実施形態では、燃料18の燃焼からの熱は、捕捉され、例えば、煙道ガスと加熱接触している水壁を介して蒸気を生成するのに使用されてもよく、次いで導管38を介して蒸気タービン発電機20に送られる。
【0018】
SCR30は、導管40および排気スタック32を介して大気中に煙道ガスを放出する前に、煙道ガス内の窒素酸化物(「NOx」)を削減するように動作する。
【0019】
次に図2を参照すると、燃焼室12の内部が示されている。システム10は、軽減された負荷に従って実行され得る、一次空気流48を介して燃焼室12に燃料18を導入するように動作する複数のノズル42、44および/または46をさらに含む。言い換えれば、ノズル42、44および/または46は、燃焼室12の最大運転負荷の半分未満の負荷に対応する速度で、燃焼室12に燃料18および一次空気48を導入する。理解されるように、燃料18および一次空気流48は、ノズル42、44および46の出口端を出た後に点火/燃焼されて、火球50を形成する。システム10は、追加のノズル52および/または54を含んでもよく、それらを通して燃焼室12に二次空気56および過燃焼空気58を導入して、火球50内の燃料18の燃焼を制御/調節してもよい。
【0020】
実施形態では、ノズル42、44、46、52および/または54は、1つ以上の風箱60に配置され得、および/または1つ以上の点火層62、64、66、68および70に配置され得る。すなわち、ノズル42、44、46、52、54の一群は、燃焼室12の垂直/長手軸72に沿った同じ位置におよび/または同じ位置の近くに配置される。例えば、第1の点火層62は、燃料18および一次空気48を導入するノズル42と、二次空気56を導入するノズル52を含む第2の点火層64と、燃料18および一次空気48を導入するノズル44および46を含む第3の点火層66および/または第4の点火層68と、過燃焼空気58を導入するノズル54を含む第5の点火層70とを含み得る。点火層62、64、66、68および70は、本明細書では一様である、すなわち、各点火層62、64、66、68および70が、一次空気48および燃料18のみを導入するノズル42、44、46、二次空気56のみを導入するノズル52、または過燃焼空気58のみを導入するノズル54のいずれかを含むように示されているが、実施形態では、個々の点火層62、64、66、68および70は、ノズル42、44、46、52および/または54の任意の組合せを含んでもよいことが理解されよう。さらに、図2は5つの点火層62、64、66、68および70を示しているが、本発明の実施形態は任意の数の点火層を含んでもよいことが理解されよう。さらに、ノズル52および/または54は、二次空気56および/または過燃焼空気58が各ノズル42、44および/または46で一次空気48を直接補うように、ノズル42、44および/または46の隣に配置され得るか、および/またはノズル42、44および/または46に向けられ得る。
【0021】
次に図3を参照すると、点火層62の断面図が示されている。理解されるように、実施形態では、燃料18は接線方向に点火され得る。すなわち、燃料18は、一次空気流48の軌道と垂直軸72からノズル42まで延びる半径方向線74との間に形成される角度Φで、ノズル42を介して燃焼室に導入される。言い換えれば、ノズル42は、垂直軸72を中心とする火球を表す仮想円50に接線方向に一次空気流48を介して燃料18を噴射する。特定の態様では、角度Φは2~10度の範囲であり得る。図3は、燃焼室12のコーナー内に配置された第1の点火層62内のノズル42を示しているが、他の実施形態では、ノズル42は、火球50の外側の点火層62内の任意の点に配置されてもよい。理解されるように、他の点火層64、66、68および/または70(図2)のノズル44、46、52および/または54(図2)は、図3に示す第1の点火層62のノズル42と同じ方法で方向付けられ得る。
【0022】
図2に戻ると、燃料18の燃焼粒子は、ノズル42、44および/または46を離れると、燃焼室12の上流側78から燃焼室12の下流側80に移動する方向に流れる際に、火球50内で螺旋形状の飛行経路76、例えば、コルクスクリューをたどる。言い換えれば、燃料18を接線方向に点火すると、火球50が垂直軸72の周りで螺旋状になる。
【0023】
理解されるように、実施形態では、燃焼室12は、発電所16と同じ電力グリッドに接続された再生可能エネルギー源がベースライン需要を満たすことができない期間に、通常負荷、すなわちその最大負荷の60~100%で作動する。電力グリッドに接続された再生可能エネルギー源がベースライン需要を満たすことができる場合、コントローラ22は、燃焼室12に導入される燃料18、一次空気48、二次空気56および/または過燃焼空気58の量を減少させることによって、燃焼室12を軽減された負荷、例えば、その最大負荷の50%未満で作動させてもよい。しかし、理解されるように、燃焼室12を通る燃料18の移動を促進するために、一次空気48、二次空気56および/または過燃焼空気58によって供給される最小量の空気が維持されなければならない。したがって、実施形態では、前述の最小量の空気は、燃焼室12の負荷を軽減するためのコントローラ22の能力に対する比較的低い制約であり得る。例えば、実施形態では、一次空気48は、約1~1.5ポンド/燃料1ポンドで各ノズル42、44および/または46に供給され得、コントローラ22は、燃料18の燃焼のために各ノズル42、44および/または46で利用可能な空気の総量が約10.0ポンド/燃料1ポンドであるように、二次空気56および/または過燃焼空気58を調整し得る。
【0024】
上述したように、燃焼室12を軽減された負荷で作動させると、燃焼室12の火炎安定性が低下するリスクがある。すなわち、火球50が予測不可能度が高い方法で燃焼し始め得るリスクが増大する。特に、燃焼室12の火炎安定性は、ノズル42、44および/または46のうち1つ以上のストイキオメトリに少なくとも部分的に基づく。本明細書で使用する場合、ノズル42、44および/または46のストイキオメトリとは、一次空気48および燃料18の化学反応比を指し、いくつかの実施形態では、ノズル42、44および/または46での燃料18の燃焼によって消費される二次空気56および/または過燃焼空気58の比を指す。理解されるように、燃焼室12に対する負荷を軽減するためのコントローラ22による燃料18、一次空気48、二次空気56および/または過燃焼空気58の低減は、次に、ノズル42、44および/または46のうち1つ以上のストイキオメトリを変化させる。
【0025】
したがって、図2にも示すように、システム10は、コントローラ22と電子通信し、リアルタイムで実行され得る一次空気48および燃料18を導入するノズル42、44、46のうち少なくとも1つのストイキオメトリを測定/監視することによって、ストイキオメトリデータ、すなわちノズル42、44および/または46での燃焼反応の生成物および反応物のストイキオメトリに関連するデータを取得するように動作する1つ以上のセンサ82をさらに含む。
【0026】
例えば、実施形態では、ストイキオメトリデータからスペクトル線が生成/導出されてもよい。理解されるように、スペクトル線の強度は、ノズル42、44、46の燃焼反応の生成物および/または反応物のストイキオメトリ量に対応し得る。言い換えれば、スペクトル線は、ノズル42、44、46のそれぞれのストイキオメトリの指標を提供する。さらに理解されるように、毎秒約20~約200サイクルであり、それによって、振幅および周波数を有する波形を生じ得る炉のランブルの結果として、スペクトル線の強度は経時的に変動し得る。
【0027】
理解されるように、スペクトル線変動の周波数および/または振幅の変化は、燃焼室12の火炎安定性が不安定であり、および/または不安定になる傾向があるという指標を提供し得る。したがって、実施形態では、スペクトル線変動の周波数および/または振幅が閾値を超える場合、ノズル42、44、46のうち1つ以上のストイキオメトリを調整してもよい。例えば、ベースライン周波数および/または振幅、すなわち、通常負荷運転下でのスペクトル線変動の周波数および/または振幅から約20%~約25%のスペクトル線変動の周波数および/または振幅の変化は、燃焼室12の火炎安定性が不安定であり、および/または不安定になる傾向があることを示し得る。
【0028】
したがって、ノズル42、44、46のうち1つ以上でストイキオメトリを測定することにより、コントローラ22は、燃焼室の火炎安定性が不安定であり、および/または不安定になる傾向があることを検出し、次いで、ノズル42、44および/または46のうち1つ以上の個々のストイキオメトリを調整することによって、燃焼室12の火炎安定性を修正/維持することができる。理解されるように、コントローラ22は、ノズル42、44および/または46に供給/送達される一次空気48および/または燃料18の量を調整することによって、ノズル42、44および/または46のストイキオメトリを調整し得る。したがって、実施形態では、センサ82により、コントローラ22は、リアルタイムでノズル42、44および/または46のうち1つ以上の一次空気48および/または燃料18を監視および調整することによって、燃焼室12の火炎安定性を維持および/または増大することが可能になる。また、コントローラ22は、二次空気56および/または過燃焼空気58を調整して、ノズル42、44および/または46のうち1つ以上でストイキオメトリを調整してもよい。
【0029】
理解されるように、実施形態では、センサ82は、ノズル42、44および/または46によって燃焼室12内に導入される一次空気48および燃料18の燃焼により放出される光子の周波数を分析することにより特定のノズル42、44および/または46でストイキオメトリを測定するスペクトル分析器であり得る。そのような実施形態では、センサ82は、火炎検出器、すなわち、特定のノズル42、44および/または46で燃料18および一次空気48が実際に燃焼することを保証する装置としても機能し得る。他の実施形態では、センサ82は、発生した煙道ガス内のCOの量を分析することによってノズル42、44および/または46のうち1つ以上のストイキオメトリを決定することができる、燃焼室12の下流に配置された一酸化炭素(「CO」)センサ/検出器84(図1)であってよい。
【0030】
理解されるように、コントローラ22は、通常負荷運転および/または負荷軽減運転中にセンサ82を介してノズル42、44および/または46のストイキオメトリを監視/測定および/または調整して、燃焼室12の火炎安定性を維持してもよい。すなわち、コントローラ22は、燃焼室の火炎安定性が望ましくないレベルに低下するリスクを軽減するように、ノズル42、44および/または46のストイキオメトリを調整する。したがって、実施形態では、コントローラ22は、ノズル42、44および/または46のうち1つ以上でストイキオメトリの変動を感知することによって、燃焼室12の火炎安定性が低下していることを検出/決定してもよい。例えば、センサ82がスペクトル分析器である実施形態では、ノズル42、44および/または46でのストイキオメトリの変動は、ノズル42、44および/または46でストイキオメトリを監視するセンサ82により測定されるスペクトル線内の変動に対応し得る。
【0031】
特定の態様では、コントローラ22は、各ノズル42、44および/または46のストイキオメトリが互いに実質的に均一になるように、各ノズル42、44および/または46のストイキオメトリを調整してもよい。言い換えれば、コントローラ22は、各ノズル42、44および/または46に送達される一次空気48および燃料18の量が実質的に同じであることを保証し得る。例えば、コントローラ22がセンサ82を介して第1のノズル42のストイキオメトリが第2のノズル44のストイキオメトリよりも高いことを検出した場合、コントローラ22は、第1のノズル42および第2のノズル44のストイキオメトリが同じ/均一になるように、第2のノズル44に向かう一次空気48および/または燃料18の量を増加させるか、第1のノズル42に向かう一次空気48および/または燃料18の量を減少させてもよい。実施形態では、コントローラ22は、特定の点火層(例えば68)のあらゆるノズル(例えば46)のストイキオメトリを調整し、点火層上のあらゆるノズルが互いに同じ/均一になるようにしてもよい。
【0032】
ここで図4を参照すると、実施形態では、コントローラ22は、第1/下部点火層(例えば62および/または66)内に配置されたノズル(例えば42および/または44)を介して燃焼室12に導入される燃料18の第1の量を調整して、燃料18の第1の量が、第2/上部点火層(例えば68)内に配置されたノズル(例えば46)を介して燃焼室12に導入される燃料18の第2の量よりも少なくなるようにさらに動作し得る。言い換えれば、コントローラ22は、一次空気48および/または燃料18の下部ノズルへの流れを減少させ、および/または一次空気48および/または燃料18の上部ノズルへの流れを増加させて、火球50が燃焼室12の下流端/上部領域80に収容されるようにしてもよい。理解されるように、実施形態では、下部ノズル(例えば、42、52および/または44)は完全に遮断されてもよい。
【0033】
加えて、実施形態では、システム10は、火球50の安定性を検出/監視する火炎安定性センサ86をさらに含んでもよい。例えば、実施形態では、火炎安定性検出器86は、火球50の垂直軸72を見下ろす燃焼室12に取り付けられたカメラであってよい。そのような実施形態では、火炎安定性検出器86によって確認される火球50内の暗い縞は、燃焼室12の火炎安定性が低下していることを示し得る。火炎安定性センサ86は、火球50の垂直軸72を見下ろし、火球50によって放出される光子の周波数の分析に少なくとも部分的に基づいて火炎安定性を決定する、燃焼室12に取り付けられたスペクトル分析器であってもよい。したがって、実施形態では、火炎安定性検出器86は、極低負荷状態、すなわち、燃焼室12の継続運転にとって火球50の信頼性が低すぎる状態を検出してもよい。言い換えれば、火炎安定性検出器86は、燃焼室12の可能な限り低い負荷を決定する際にコントローラ22を支援してもよい。
【0034】
図1に戻ると、実施形態では、システム10は、コントローラ22と電子通信し、燃焼室12からのNOx排出を削減するように動作する傘型/伸縮式選択的非触媒還元剤(「SNCR」)88をさらに含んでもよい。理解されるように、傘型SNCR88は、NOx還元に最適な温度、例えば1600F°を有する変化する位置で、アンモニアおよび/またはアンモニア形成試薬を燃焼室12に注入することを可能にする調節可能な伸縮式ノズル90を含む。通常、負荷軽減運転では、煙道ガスの温度が低下し、例えば700F°未満になり、その結果、NOx排出を削減するためのSCR30の効率が低下し得るが、通常、負荷軽減運転では、通常負荷運転よりもNOx生成が少なくなる。したがって、理解されるように、実施形態では、傘型SNCR88によってもたらされるNOx削減の増加は、負荷軽減運転によって低下した煙道ガス温度に起因するSCR30によるNOx削減の減少を補償することができる。
【0035】
ここで図5に移ると、本発明の実施形態による、燃焼室10を作動させるための方法92が示されている。方法92は、ノズル42、44および/または46を介して燃焼室10に燃料18を導入すること(94)と、各ノズル42、44および/または46のストイキオメトリを上述の方法で測定してストイキオメトリデータを取得/生成すること(96)とを含む。理解されるように、実施形態では、各ノズル42、44および/または46のストイキオメトリを測定してストイキオメトリデータを取得/生成すること(96)は、各ノズル42、44および/または46のストイキオメトリを測定することと、各ノズル42、44および/または46のストイキオメトリの測定からストイキオメトリデータを取得/生成することとを含む。
【0036】
方法92は、ストイキオメトリデータから導出されたスペクトル線変動の周波数および/または振幅が閾値を超えていることを決定すること(98)と、ストイキオメトリデータに少なくとも部分的に基づいてノズル42、44および/または46のうち少なくとも1つのストイキオメトリを調整して(100)、燃焼室10の火炎安定性を維持および/または改善することとをさらに含む。実施形態では、方法92は、第1の点火層62のノズル42によって燃焼室10に導入される燃料18の量が、第2の点火層68のノズル46によって燃焼室10に導入される燃料18の量よりも少なくなるように調整すること(102)、すなわち、異なる点火層62、64、66、68および/または70の間で、燃焼室10に導入される燃料18の量を調整すること(102)をさらに含んでもよい。実施形態では、方法92は、傘型SNCR88を介して燃焼室10からのNOx排出を削減すること(104)、および/または2つのミル28を介してノズル42、44および/または46に燃料18を供給すること(106)をさらに含んでもよい。
【0037】
図5にさらに示されるように、スペクトル線変動の周波数および/または振幅が閾値を超えていることを決定すること(98)は、ストイキオメトリデータからスペクトル線変動を導出すること(108)を含んでもよく、これは、次に、ストイキオメトリデータからスペクトル線を生成すること(110)と、経時的なスペクトル線を分析すること(112)とを含んでもよい。本発明の特定の態様では、ストイキオメトリデータに少なくとも部分的に基づいてノズル42、44および/または46のうち少なくとも1つのストイキオメトリを調整して(100)、燃焼室10の火炎安定性を維持および/または改善することは、ノズル42、44および/または46が燃焼室10に燃料18を導入する量/速度を調整すること(114)を含んでもよい。
【0038】
最後に、システム10は、本明細書に記載の機能を実行するために、および/または本明細書に記載の結果を達成するために、リアルタイムで実行することのできる必要な電子機器、ソフトウェア、メモリ、記憶装置、データベース、ファームウェア、論理/状態マシン、マイクロプロセッサ、通信リンク、表示装置または他の視覚的もしくは聴覚的ユーザインターフェース、印刷装置、および任意の他の入力/出力インターフェースを含んでもよいことを理解されたい。例えば、上述のように、システム10は、システム10の構成要素のうち1つ以上と電気的に通信するコントローラ22の形態で、少なくとも1つのプロセッサ24とシステムメモリ/データ記憶構造26とを含んでもよい。メモリは、ランダムアクセスメモリ(「RAM」)と、読み出し専用メモリ(「ROM」)とを含んでもよい。少なくとも1つのプロセッサは、1つ以上の従来のマイクロプロセッサと、数値演算コプロセッサなどの1つ以上の補助的なコプロセッサとを含んでもよい。本明細書で説明するデータ記憶構造は、磁気、光学および/または半導体メモリの適切な組合せを含んでもよく、例えば、RAM、ROM、フラッシュドライブ、コンパクトディスクなどの光学ディスク、および/またはハードディスクもしくはハードドライブを含んでもよい。
【0039】
加えて、システム10の様々な構成要素のうち1つ以上を制御するソフトウェアアプリケーションは、コンピュータ可読媒体から少なくとも1つのプロセッサのメインメモリに読み込まれてもよい。「コンピュータ可読媒体」という用語は、本明細書で使用する場合、少なくとも1つのプロセッサ24(または本明細書で説明する装置の任意の他のプロセッサ)に実施するための命令を提供する、または命令を提供することに関与する任意の媒体を指す。そのような媒体は、多くの形態をとってもよく、限定はしないが、不揮発性媒体および揮発性媒体を含む。不揮発性媒体は、例えば、メモリなどの光学、磁気または光磁気ディスクを含む。揮発性媒体は、動的ランダムアクセスメモリ(「DRAM」)を含み、これは典型的には、メインメモリを構成する。コンピュータ可読媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、任意の他の磁気媒体、CD-ROM、DVD、任意の他の光学媒体、RAM、PROM、EPROMまたはEEPROM(電子的に消去可能なプログラム可能読み出し専用メモリ)、フラッシュEEPROM、任意の他のメモリチップもしくはカートリッジ、またはコンピュータが読み出すことができる任意の他の媒体を含む。
【0040】
実施形態では、ソフトウェアアプリケーションにおける命令のシーケンスの実施は、少なくとも1つのプロセッサに本明細書に記載の方法/プロセスを実行させるが、本発明の方法/プロセスの実装のためのソフトウェア命令の代わりに、またはそれと組み合わせて、ハードワイヤード回路を使用することができる。したがって、本発明の実施形態は、ハードウェアおよび/またはソフトウェアの任意の特定の組合せに限定されない。
【0041】
上記の説明は、制限ではなく例示を意図していることをさらに理解されたい。例えば、上述の実施形態(および/またはその態様)は、互いに組み合わせて使用されてもよい。加えて、本発明の範囲から逸脱せずに、それらの教示に特定の状況または材料を適合させる多くの修正を施してもよい。
【0042】
例えば、一実施形態では、燃焼室を作動させるための方法が提供される。該方法は、複数のノズルを介して燃焼室に燃料を導入することを含み、各ノズルは、ノズルの出力端について関連するストイキオメトリを有する。該方法は、1つ以上のセンサを介して各ノズルのストイキオメトリを測定してストイキオメトリデータを取得することと、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定することとをさらに含む。該方法は、ストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持することをさらに含む。特定の実施形態では、複数のノズルを介して燃焼室に燃料を導入することは、燃焼室の軽減された負荷に応じる。特定の実施形態では、軽減された負荷は、最大運転負荷の20%以下である。特定の実施形態では、スペクトル線変動の周波数および振幅は、燃焼室の火炎安定性に関連付けられる。特定の実施形態では、少なくとも1つのノズルのストイキオメトリは、あらゆるノズルのストイキオメトリが互いに実質的に均一になるように調整される。特定の実施形態では、1つ以上のセンサのうち少なくとも1つはスペクトル分析器である。特定の実施形態では、1つ以上のセンサうち少なくとも1つは一酸化炭素センサである。特定の実施形態では、該方法は、第1の点火層内に配置された複数のノズルを介して燃焼室に導入される燃料の第1の量を調整して、燃料の第1の量が第2の点火層内に配置された複数のノズルを介して燃焼室に導入される燃料の第2の量よりも少なくなるようにすることをさらに含む。特定の実施形態では、該方法は、傘型選択的非触媒還元剤を介して燃焼室からのNOx排出を削減することをさらに含む。特定の実施形態では、該方法は、2つのミルを介してノズルに燃料を供給することをさらに含む。特定の実施形態では、ノズルのうち少なくとも1つのストイキオメトリを調整することは、少なくとも1つのノズルが燃焼室に燃料を導入する速度を調整することを含む。
【0043】
他の実施形態は、燃焼室を作動させるためのシステムを提供する。該システムは、燃焼室に燃料を導入するように動作する複数のノズルと、ノズルのうち少なくとも1つの出力端に関連するストイキオメトリを測定することによってストイキオメトリデータを取得するように動作する1つ以上のセンサと、ノズルおよび1つ以上のセンサと電子通信するコントローラとを含む。コントローラは、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定し、ストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持するように動作する。特定の実施形態では、燃料は、燃焼室の軽減された負荷に応じて、複数のノズルを介して燃焼室に導入される。特定の実施形態では、軽減された負荷は、最大運転負荷の20%以下である。特定の実施形態では、スペクトル線変動の周波数および振幅は、燃焼室の火炎安定性に関連付けられる。特定の実施形態では、コントローラは、あらゆるノズルのストイキオメトリが互いに実質的に均一になるように、少なくとも1つのノズルのストイキオメトリを調整する。特定の実施形態では、1つ以上のセンサのうち少なくとも1つはスペクトル分析器である。特定の実施形態では、コントローラは、第1の点火層内に配置された複数のノズルを介して燃焼室に導入される燃料の第1の量を調整して、燃料の第1の量が第2の点火層内に配置された複数のノズルを介して燃焼室に導入される燃料の第2の量よりも少なくなるようにさらに動作する。特定の実施形態では、該システムは、コントローラと電子通信し、燃焼室からのNOx排出を削減するように動作する傘型選択的非触媒還元剤をさらに含む。
【0044】
なおさらに他の実施形態は、命令を記憶する非一時的コンピュータ可読媒体。記憶された命令は、複数のノズルを介して燃焼室に燃料を導入し、1つ以上のセンサを介してノズルのうち少なくとも1つの出力端に関連するストイキオメトリを測定してストイキオメトリデータを取得するようにコントローラを適合させるように構成される。記憶された命令は、ストイキオメトリデータから導出されたスペクトル線変動の周波数および振幅のうち少なくとも1つが閾値を超えていることを決定し、取得されたストイキオメトリデータに少なくとも部分的に基づいてノズルのうち少なくとも1つのストイキオメトリを調整して、燃焼室の火炎安定性を維持するようにコントローラを適合させるようにさらに構成される。
【0045】
したがって、負荷軽減運転中に1つ以上のノズルのストイキオメトリを調整することによって、本発明のいくつかの実施形態は、低い火炎安定性に関連するリスクを軽減しながら、最大運転負荷の20パーセント(20%)以下の軽減された負荷で作動する燃焼室を提供し得る。したがって、いくつかの実施形態は、再生可能エネルギー源を有する電力グリッドに接続された化石燃料ベースの発電所によって消費される燃料の量を大幅に削減する。
【0046】
加えて、いくつかの実施形態におけるコントローラは、ノズルに燃料を供給するのに2つのミルで十分になるように、負荷軽減運転中にノズルに向かう一次空気および/または燃料を減少させてもいい。そのような実施形態では、ミルは、ミルの通常のフィーダ速度の半分未満で作動し得、ミルの安全な作動、すなわち、各ノズルで燃料が燃焼していること、および/またはミル内の振動が通常の作動範囲内にあることを保証するために、追加の機器、例えば、ミルに配置された振動モニタ、および燃焼室内の火炎安定性モニタ。理解されるように、このような実施形態が2つのミルを用いて作動する能力は、従来の化石燃料ベースの発電所を上回る効率の大幅な改善、例えば運転コストの低下を提供し得る。
【0047】
さらに、単に排出基準が満たされていることを確認するためにストイキオメトリを監視するのに比べて、ノズルでのストイキオメトリ内の変動を検出することによって、本発明のいくつかの実施形態は、通常負荷運転および/または負荷軽減運転での燃焼室の火炎安定性を維持および/または改善する能力を提供する。
【0048】
本明細書で説明した材料の寸法および種類は、本発明のパラメータを定義することを意図しており、決して限定ではなく、単なる例示的な実施形態である。上記の説明を検討することにより、多くの他の実施形態が当業者に明らかになるであろう。したがって、本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与える十分な均等物の範囲とともに決定されるべきである。添付の特許請求の範囲において、「含む(including)」および「それには(in which)」という用語は、「備える(comprising)」および「そこでは(wherein)」という用語のそれぞれの平易な英語の同義語として用いている。また、以下の特許請求の範囲では、「第1の」、「第2の」、「第3の」、「上部の」、「下部の」、「底部の」、「頂部の」などの用語は、単なる目印として用いられており、それらの対象に数値的または位置的な要件を課すことを意図してはいない。さらに、以下の特許請求の範囲の制限は、このような特許請求の範囲の制限が、さらなる構造を欠いた機能の記述が後に続く「~する手段(means for)」という語句を明示的に用いていない限り、ミーンズプラスファンクションの形式では書かれておらず、そのように解釈されることを意図していない。
【0049】
本明細書では、本発明のいくつかの実施形態を最良の形態を含めて開示するために、また、任意の装置またはシステムの製作および使用、ならびに組み込まれた任意の方法の実行を含めて当業者が本発明の実施形態を実践することを可能にするために実施例を用いている。本発明の特許可能な範囲は、特許請求の範囲によって定義され、当業者が思い付く他の実施例を含み得る。このような他の実施例は、特許請求の範囲の文言との差がない構造要素を有する場合、または特許請求の範囲の文言との実質的な差がない等価の構造要素を含む場合、特許請求の範囲内にある。
【0050】
本明細書で使用する場合、単数形で記載され、単語「a」または「an」の後に続く要素またはステップは、複数の前記要素またはステップを除外しないものとして理解されるべきであるが、そのような除外が明示的に述べられている場合は除く。さらに、本発明の「一実施形態」への言及は、記載した特徴も組み込んだ追加の実施形態の存在を除外するものと解釈されることを意図してはいない。さらに、明示的な反対の記載がない限り、特定の特性を有する要素または複数の要素を「備える(comprising)」、「含む(including)」または「有する(having)」実施形態は、その特性を有しない追加の要素を含んでもよい。
【0051】
本明細書に込められた本発明の主旨および範囲から逸脱せずに、上で説明した発明にいくらかの変更を施し得るため、上記の説明の主題または添付の図面に示す主題のすべては、本明細書における本発明の概念を例示する単なる例として解釈されるべきであり、本発明を限定するものとみなされるべきではないことを意図している。
【符号の説明】
【0052】
10 システム、燃焼室
12 燃焼室
14 ボイラ
16 発電所
18 燃料
20 蒸気タービン発電機
22 コントローラ
24 プロセッサ
26 メモリデバイス、システムメモリ/データ記憶構造
28 ミル
30 選択的触媒還元剤(SCR)
32 排気スタック
34 導管
36 導管
38 導管
40 導管
42 第1のノズル
44 第2のノズル
46 ノズル
48 一次空気流、一次空気
50 火球
52 ノズル
54 ノズル
56 二次空気
58 過燃焼空気
60 風箱
62 第1の点火層
64 第2の点火層
66 第3の点火層
68 第4の点火層
70 第5の点火層
72 垂直軸
74 半径方向線
76 飛行経路
78 上流側
80 下流側、下流端/上部領域
82 センサ
84 一酸化炭素センサ/検出器
86 火炎安定性検出器、火炎安定性センサ
88 傘型/伸縮式選択的非触媒還元剤(SNCR)
90 調節可能な伸縮式ノズル
92 方法
図1
図2
図3
図4
図5