IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターデイジタル パテント ホールディングス インコーポレイテッドの特許一覧

特許7159263セクタ化調整をサポートするための方法および装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-14
(45)【発行日】2022-10-24
(54)【発明の名称】セクタ化調整をサポートするための方法および装置
(51)【国際特許分類】
   H04W 16/28 20090101AFI20221017BHJP
   H04W 72/08 20090101ALI20221017BHJP
   H04W 92/18 20090101ALI20221017BHJP
【FI】
H04W16/28
H04W72/08 110
H04W92/18
【請求項の数】 14
(21)【出願番号】P 2020188649
(22)【出願日】2020-11-12
(62)【分割の表示】P 2018205569の分割
【原出願日】2014-07-10
(65)【公開番号】P2021036712
(43)【公開日】2021-03-04
【審査請求日】2020-12-14
(31)【優先権主張番号】61/845,056
(32)【優先日】2013-07-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510030995
【氏名又は名称】インターデイジタル パテント ホールディングス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】シア ポンフェイ
(72)【発明者】
【氏名】オーヘンコーム オテリ
(72)【発明者】
【氏名】ロウ ハンチン
(72)【発明者】
【氏名】ニラブ ビー.シャー
(72)【発明者】
【氏名】モニシャ ゴーシュ
(72)【発明者】
【氏名】ロバート エル.オレセン
【審査官】田部井 和彦
(56)【参考文献】
【文献】特開2013-062844(JP,A)
【文献】米国特許出願公開第2012/0263126(US,A1)
【文献】Minyoung Park (Intel), et al.,Proposed TGah Draft Amendment [online],IEEE 802.11-13/0500r0, [検索日: 2022年1月30日],VOL:802.11AH,米国,2013年05月10日,インターネット <URL: https://mentor.ieee.org/802.11/dcn/13/11-13-0500-00-00ah-proposed-tgah-draft-amendment.pdf>
【文献】James Wang (MediaTek.), et al.,Sectorization Follow Up 2 [online],IEEE 802.11-11/0081r1, [検索日 2022年1月30日],インターネット<URL:https://mentor.ieee.org/802.11/dcn/13/11-13-0081-01-00ah-sectorization-follow-up-2.pptx>,2013年01月15日,第1-39頁
(58)【調査した分野】(Int.Cl.,DB名)
H04W 4/00-99/00
DB名 3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
局(STA)で用いる方法であって、
第1のアクセスポイント(AP)から第1のヌルデータパケット告知(NDPA)フレームを、および第2のAPから第2のNDPAフレームを受信することであって、前記第1のAPは、前記STAが関連付けられていないプライマリAPであり、前記第2のAPは、前記STAが関連付けられているセカンダリAPである、ことと、
前記第1のNDPAフレームの後で、前記第1のAPから、前記第1のAPからの複数のセクタ化された送信の中から第1のセクタを選択するために使用される第1のNDPフレームを受信することと、
前記第2のNDPAフレームの後で、前記第2のAPから、前記第2のAPからの複数のセクタ化された送信の中から第2のセクタを選択するために使用される第2のNDPフレームを受信することと、
前記第1のAPから、前記第1のAPよって使用される前記第1のセクタを示すセクタ化確認信号を受信することと、
前記セクタ化確認信号の後で、前記第1のセクタ基づいて決定された前記第2のセクタに対応するセクタ識別を含むフィードバックフレームを送信することと
を備える方法。
【請求項2】
別のSTAから、前記第1のセクタに基づいて決定された別のセクタ識別を含む別のフィードバックフレームを受信することをさらに備える、請求項1の方法。
【請求項3】
前記別のSTAからの前記別のフィードバックフレームが前記STAにて受信されないという条件で、前記セクタ化確認信号は前記STAにて受信される、請求項2の方法。
【請求項4】
前記第1のAPからの別のセクタ化された送信が別のSTAに向けられている間、前記第2のAPから、前記第2のセクタに基づいて、セクタ化された送信を受信することをさらに備える、請求項1の方法。
【請求項5】
前記第1のAPによって使用される前記第1のセクタを示す前記セクタ化確認信号に基づいて、前記STAおよび前記第1のAPが空間的に直交であると判定することをさらに備える、請求項4の方法。
【請求項6】
前記第1のNDPフレームは、前記第1のNDPAフレームが受信された後、ショートフレーム間隔(SIFS)期間で受信される、請求項1の方法。
【請求項7】
前記第2のNDPフレームは、前記第1のNDPフレームが受信された後、ショートフレーム間隔(SIFS)期間で受信される、請求項1の方法。
【請求項8】
(STA)であって、
第1のアクセスポイント(AP)から第1のヌルデータパケット告知(NDPA)フレームを、および第2のAPから第2のNDPAフレームを受信することであって、前記第1のAPは、前記STAが関連付けられていないプライマリAPであり、前記第2のAPは、前記STAが関連付けられているセカンダリAPである、ことと
前記第1のNDPAフレームの後で、前記第1のAPから、前記第1のAPからの複数のセクタ化された送信の中から第1のセクタを選択するために使用される第1のNDPフレームを受信することと
前記第2のNDPAフレームの後で、前記第2のAPから、前記第2のAPからの複数のセクタ化された送信の中から第2のセクタを選択するために使用される第2のNDPフレームを受信することと
前記STAが関連付けられていない前記第1のAPから、前記第1のAPよって使用される前記第1のセクタを示すセクタ化確認信号を受信することと
を行うように構成された受信機と、
前記セクタ化確認信号の後で前記第1のセクタまたは前記第2のセクタに基づいて決定されたセクタ識別を含むフィードバックフレームを送信すること
を行うように構成された送信機と
を備えたSTA
【請求項9】
前記受信機は、別のSTAから、前記第1のセクタに基づいて決定された別のセクタ識別を含む別のフィードバックフレームを受信するように構成される、請求項8のSTA
【請求項10】
前記別のSTAからの前記別のフィードバックフレームが前記STAにて受信されないという条件で、前記セクタ化確認信号は前記STAにて受信される、請求項9のSTA。
【請求項11】
前記受信機は、前記第1のAPからの別のセクタ化された送信が別のSTAに向けられている間、前記第2のAPから、前記第2のセクタに基づいて、セクタ化された送信を受信するように構成される、請求項8のSTA
【請求項12】
前記第1のAPによって使用される前記第1のセクタを示す前記セクタ化確認信号に基づいて、前記STAおよび前記第1のAPが空間的に直交であると判定するように構成されたプロセッサをさらに備えた、請求項11のSTA。
【請求項13】
前記第1のNDPフレームは、前記第1のNDPAフレームが受信された後、ショートフレーム間隔(SIFS)期間で受信される、請求項8のSTA。
【請求項14】
前記第2のNDPフレームは、前記第1のNDPフレームが受信された後、ショートフレーム間隔(SIFS)期間で受信される、請求項8のSTA
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線通信に関する。
【背景技術】
【0002】
(関連出願の相互参照)
本出願は、参照によりその内容が本明細書に組み込まれている、2013年7月11日に出願された米国特許仮出願第61/845,056号明細書の利益を主張する。
【発明の概要】
【0003】
方法および装置は、調整されかつ協調的なセクタ化された送信をサポートするために使用され得る。電力制御およびクリアチャネル評価(clear channel assessment)が、セクタ化されたビーコンおよび関連付けられた手順と共に、セクタ化された送信のために使用され得る。ネットワークにおける送信は、第1のアクセスポイント(AP)が、全方向性送信、および、ビームフォーミングまたはセクタ化された送信を、局(STA)に送信すること、重複基本サービスセット(overlapping basic service set:OBSS)が、全方向性送信に基づいて、空間的に直交した(spatially orthogonal:SO)条件を確認すること、および、第2のAPが、全方向性送信を監視し、SO条件を確認することによって保護され得る。STAは、データが送信に利用可能であることを示す送信要求(request-to-send:RTS)フレームを受信し、複数のAP受信のための能力を示す協調的なセクタ化された(cooperative sectorized:CS)送信可(clear-to-send:CTS)フレームを送信するように構成され得る。
【図面の簡単な説明】
【0004】
より詳細な理解は、添付の図面と併せて例として与えられる以下の説明から得られてよい。
図1A】1または複数の開示される実施形態が実装され得る、例示的な通信システムを示す図である。
図1B図1Aに示された通信システム内で使用され得る、例示的なワイヤレス送信/受信ユニット(WTRU)を示す図である。
図1C図1Aに示された通信システム内で使用され得る、例示的な無線アクセスネットワークおよび例示的なコアネットワークを示す図である。
図2】隠されたノード軽減(hidden node mitigation)のために使用されるIEEE802.11ahにおける例示的なタイプ0セクタ化の図である。
図3】APがオムニプリアンブル(omni-preamble)を使用して、セクタ化されたビーム送信のためのTXOP保護をセットアップし得る、例示的な空間的に直交した(SO)条件1の図である。
図4】例示的なSO条件2の図である。
図5A】例示的なSO条件3の図である。
図5B】例示的なSO条件3の図である。
図6A】例示的なSO条件4の図である。
図6B】例示的なSO条件4の図である。
図7】CTS-to-self(clear-to-send(CTS)-to-self)パケットを送信することによってSO検出を容易にする例の図である。
図8】周期的セクタトレーニング方法の例800の図である。
図9】例示的な調整されたセクタ化された送信の図である。
図10】全方向性送信で使用され得る複数のセクタを使用する例示的なNDPAフレームの図である。
図11】全方向性送信で使用され得る複数のセクタを使用する例示的なNDPフレームの図である。
図12】1次STAからの例示的なフィードバックパケットの図である。
図13】2次STAからの例示的なフィードバックパケットの図である。
図14】例示的な代替的な調整されたセクタ化された送信の図である。
図15】例示的なサウンディングフレームパケット(sounding frame packet)の図である。
図16】SO条件が確認される場合のアクセスポイント(AP)とSTAとの間の例示的なSO送信の図である。
図17】例示的な協調的なセクタ化された(cooperative sectorized:CS)送信の図である。
図18】例示的なSTAにより要求される(STA-requested)マルチAPトレーニングおよびフィードバック手順の図である。
図19】例示的なAPに向けられる(AP-directed)単一APトレーニングおよびフィードバック手順の図である。
図20】例示的なSTAにより開始される(STA initiated)CS送信の図である。
図21】APがその送信電力を設定するように構成されてSTAが干渉されないことを確実にすることができる、例示的な手順の図である。
図22】例示的なセクタ化されたクリアチャネル評価(CCA)および全方向性CCAの図である。
図23】例示的な測定要求応答フィールドの図である。
図24】例示的なSTA統計要求応答フィールドの図である。
【発明を実施するための形態】
【0005】
図1Aは、1または複数の開示される実施形態が実装され得る、例示的な通信システム100を示す。通信システム100は、音声、データ、ビデオ、メッセージング、および放送などのコンテンツを複数のワイヤレスユーザに提供する、多重アクセスシステムであり得る。通信システム100は、ワイヤレス帯域幅を含むシステムリソースの共有を通して、複数のワイヤレスユーザがそのようなコンテンツにアクセスすることを可能にすることができる。たとえば、通信システム100は、符号分割多重アクセス(CDMA)、時分割多重アクセス(TDMA)、周波数分割多重アクセス(FDMA)、直交FDMA(OFDMA)、およびシングルキャリアFDMA(SC-FDMA)など、1または複数のチャネルアクセス方法を採用することができる。
【0006】
図1Aに示されるように、通信システム100は、WTRU102a、102b、102c、102d、無線アクセスネットワーク(RAN)104、コアネットワーク106、公衆交換電話網(PSTN)108、インターネット110、および他のネットワーク112を含むことができるが、開示される実施形態が任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を企図することは理解されよう。WTRU102a、102b、102c、102dのそれぞれは、ワイヤレス環境内で動作および/または通信するように構成された任意のタイプのデバイスであってよい。例として、WTRU102a、102b、102c、102dは、ワイヤレス信号を送信および/または受信するように構成されてよく、ユーザ機器(UE)、局(STA)、移動局、固定またはモバイル加入者ユニット、ページャ、携帯電話、携帯情報端末(PDA)、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、ワイヤレスセンサ、および家庭用電化製品などを含み得る。
【0007】
通信システム100はまた、基地局114aおよび基地局114bを含むことができる。基地局114a、114bのそれぞれは、WTRU102a、102b、102c、102dのうちの少なくとも1つとワイヤレスでインターフェースして、コアネットワーク106、インターネット110、および/または他のネットワーク112のような1または複数の通信ネットワークへのアクセスを容易にするように構成された、任意のタイプのデバイスとすることができる。例として、基地局114a、114bは、トランシーバ基地局(BTS)、NodeB、進化型NodeB(eNB)、ホームNodeB(HNB)、ホームeNodeB(HeNB)、サイトコントローラ、アクセスポイント(AP)、およびワイヤレスルータなどであってよい。基地局114a、114bはそれぞれ単一の要素として示されているが、基地局114a、114bが任意の数の相互接続された基地局および/またはネットワーク要素を含んでもよいことは理解されよう。
【0008】
基地局114aは、RAN104の部分であってもよく、RAN104は、基地局コントローラ(BSC)、ワイヤレスネットワークコントローラ(RNC)、およびリレーノードなど、他の基地局および/またはネットワーク要素(図示せず)を含んでもよい。基地局114aおよび/または基地局114bは、セル(図示せず)と呼ばれることがある特定の地理的領域内で、ワイヤレス信号を送信および/または受信するように構成され得る。セルは、セルセクタにさらに分割され得る。たとえば、基地局114aに関連付けられたセルが3つのセクタに分割されてもよい。したがって、一実施形態では、基地局114aが、3つのトランシーバ、すなわち、セルのセクタごとに1つを含むことができる。別の実施形態では、基地局114aが多入力多出力(MIMO)技術を採用することができ、したがって、セルのセクタごとに複数のトランシーバを利用することができる。
【0009】
基地局114a、114bは、エアインターフェース116を介してWTRU102a、102b、102c、102dのうちの1または複数と通信することができ、エアインターフェース116は、任意の適切なワイヤレス通信リンク(たとえば、無線周波数(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、および可視光線など)であってよい。エアインターフェース116は、任意の適切な無線アクセス技術(RAT)を使用して確立され得る。
【0010】
より詳細には、上述されたように、通信システム100は、多重アクセスシステムであってよく、CDMA、TDMA、FDMA、OFDMA、およびSC-FDMAなど、1または複数のチャネルアクセス方式を採用することができる。たとえば、RAN104における基地局114a、およびWTRU102a、102b、102cは、ユニバーサル移動通信システム(UMTS)地上無線アクセス(UTRA)などの無線技術を実装することができ、それは、広帯域CDMA(WCDMA(登録商標))を使用してエアインターフェース116を確立することができる。WCDMAは、高速パケットアクセス(HSPA)および/または進化型HSPA(HSPA+)などの通信プロトコルを含み得る。HSPAは、高速ダウンリンクパケットアクセス(HSDPA)および/または高速アップリンクパケットアクセス(HSUPA)を含み得る。
【0011】
別の実施形態では、基地局114aおよびWTRU102a、102b、102cは、進化型UTRA(E-UTRA)などの無線技術を実装することができ、それは、ロングタームエボリューション(LTE)および/またはLTEアドバンスト(LTE-A)を使用してエアインターフェース116を確立することができる。
【0012】
他の実施形態では、基地局114aおよびWTRU102a、102b、102cは、IEEE802.16(すなわち、マイクロ波アクセス用世界的相互運用(Worldwide Interoperability for Microwave Access:WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000進化データ最適化(evolution-data optimized:EV-DO)、暫定標準(Interim Standard)2000(IS-2000)、暫定標準95(IS-95)、暫定標準856(IS-856)、移動通信用グローバルシステム(global system for mobile communications:GSM(登録商標))、GSM進化用拡張されたデータレート(Enhanced Data rates for GSM Evolution:EDGE)、およびGSM/EDGE RAN(GERAN)などの無線技術を実装してもよい。
【0013】
図1Aにおける基地局114bは、たとえば、ワイヤレスルータ、HNB、HeNB、またはAPであってよく、職場、家庭、車両、およびキャンパスなどの局所化されたエリア内のワイヤレス接続性を容易にするための任意の適切なRATを利用することができる。一実施形態では、基地局114b、およびWTRU102c、102dは、IEEE802.11などの無線技術を実装して、ワイヤレスローカルエリアネットワーク(WLAN)を確立することができる。別の実施形態では、基地局114b、およびWTRU102c、102dは、IEEE802.15などの無線技術を実装して、ワイヤレスパーソナルエリアネットワーク(WPAN)を確立することができる。さらに別の実施形態では、基地局114b、およびWTRU102c、102dは、セルラベースのRAT(たとえば、WCDMA、CDMA2000、GSM、LTE、およびLTE-Aなど)を利用して、ピコセルまたはフェムトセルを確立することができる。図1Aに示されるように、基地局114bは、インターネット110への直接接続を有することができる。したがって、基地局114bは、コアネットワーク106を介してインターネット110にアクセスすることを必要とされなくてよい。
【0014】
RAN104は、コアネットワーク106と通信することができ、コアネットワーク106は、音声、データ、アプリケーション、および/またはボイスオーバーインターネットプロトコル(VoIP)サービスをWTRU102a、102b、102c、102dのうちの1または複数に提供するように構成された、任意のタイプのネットワークであってよい。たとえば、コアネットワーク106は、呼制御、課金サービス、モバイル位置ベースのサービス、プリペイド通話、インターネット接続性、およびビデオ配信などを提供し、ならびに/またはユーザ認証などの高レベルセキュリティ機能を実行してもよい。図1Aに示されていないが、RAN104および/またはコアネットワーク106は、RAN104と同じまたは異なるRATを採用する他のRANと、直接的または間接的に通信してもよいことは理解されよう。たとえば、E-UTRA無線技術を利用中であり得るRAN104に接続されることに加えて、コアネットワーク106は、GSM無線技術を採用する別のRAN(図示せず)と通信してもよい。
【0015】
コアネットワーク106はまた、WTRU102a、102b、102c、102dがPSTN108、インターネット110、および/または他のネットワーク112にアクセスするためのゲートウェイとして機能することもできる。PSTN108は、基本電話サービス(POTS)を提供する回線交換電話網を含むことができる。インターネット110は、TCP/IPスイートにおける伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)、およびインターネットプロトコル(IP)など共通の通信プロトコルを使用する、相互接続されたコンピュータネットワークおよびデバイスのグローバルなシステムを含むことができる。ネットワーク112は、他のサービスプロバイダによって所有および/または運用される有線またはワイヤレス通信ネットワークを含むことができる。たとえば、ネットワーク112は、1または複数のRANに接続された別のコアネットワークを含むことができ、1または複数のRANは、RAN104と同じまたは異なるRATを採用することができる。
【0016】
通信システム100におけるWTRU102a、102b、102c、102dの一部または全部は、マルチモード機能を含むことができ、すなわち、WTRU102a、102b、102c、102dは、異なるワイヤレスリンクを介して異なるワイヤレスネットワークと通信するための複数のトランシーバを含むことができる。たとえば、図1Aに示されるWTRU102cは、セルラベースの無線技術を採用できる基地局114a、およびIEEE802無線技術を採用できる基地局114bと通信するように構成され得る。
【0017】
図1Bは、図1Aに示された通信システム100内で使用され得る例示的なWTRU102を示す。図1Bに示されるように、WTRU102は、プロセッサ118、トランシーバ120、送信/受信要素(たとえばアンテナ)122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、着脱不能メモリ130、着脱可能メモリ132、電源134、全地球測位システム(GPS)チップセット136、および周辺機器138を含むことができる。WTRU102は、実施形態との整合性を維持しながら、上述の要素の任意の部分組合せを含むことができることは理解されよう。
【0018】
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、デジタルシグナルプロセッサ(DSP)、マイクロプロセッサ、DSPコアと関連する1または複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、集積回路(IC)、および状態機械などであり得る。プロセッサ118は、信号符号化、データ処理、電力制御、入力/出力処理、および/またはWTRU102がワイヤレス環境で動作することを可能にする任意の他の機能性を実行することができる。プロセッサ118はトランシーバ120に結合されてよく、トランシーバ120は送信/受信要素122に結合されてよい。図1Bは、プロセッサ118およびトランシーバ120を別個の構成要素として示しているが、プロセッサ118およびトランシーバ120は、電子パッケージまたはチップに一緒に統合されてもよいことは理解されよう。
【0019】
送信/受信要素122は、エアインターフェース116を介して、基地局(たとえば基地局114a)へ信号を送信し、または基地局から信号を受信するように構成され得る。たとえば、一実施形態では、送信/受信要素122は、RF信号を送信および/または受信するように構成されたアンテナであり得る。別の実施形態では、送信/受信要素122は、たとえば、IR、UV、または可視光信号を送信および/または受信するように構成されたエミッタ/ディテクタであり得る。さらに別の実施形態では、送信/受信要素122は、RF信号と光信号の両方を送信および受信するように構成され得る。送信/受信要素122は、任意の組合せのワイヤレス信号を送信および/または受信するように構成され得る。
【0020】
また、送信/受信要素122は図1Bでは単一の要素として示されているが、WTRU102は任意の数の送信/受信要素122を含んでよい。より詳細には、WTRU102はMIMO技術を採用してもよい。したがって、一実施形態では、WTRU102は、エアインターフェース116を介してワイヤレス信号を送信および受信するための2つ以上の送信/受信要素122(たとえば、複数のアンテナ)を含んでもよい。
【0021】
トランシーバ120は、送信/受信要素122によって送信されることになる信号を変調し、また送信/受信要素122によって受信される信号を復調するように構成されてもよい。上述されたように、WTRU102はマルチモード機能を有することができる。したがって、トランシーバ120は、たとえばUTRAおよびIEEE802.11などの複数のRATを介してWTRU102が通信することを可能にするための、複数のトランシーバを含み得る。
【0022】
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(たとえば、液晶ディスプレイ(LCD)ディスプレイユニット、もしくは有機発光ダイオード(OLED)ディスプレイユニット)に結合されてよく、それらからユーザ入力データを受信することができる。プロセッサ118はまた、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128に、ユーザデータを出力することができる。加えて、プロセッサ118は、着脱不能メモリ130および/または着脱可能メモリ132など任意のタイプの適切なメモリの情報にアクセスし、またそれらのメモリにデータを記憶することができる。着脱不能メモリ130は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク、または任意の他のタイプのメモリ記憶デバイスを含み得る。着脱可能メモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、およびセキュアデジタル(SD)メモリカードなどを含み得る。他の実施形態では、プロセッサ118は、サーバまたはホームコンピュータ(図示せず)上のようなWTRU102上に物理的に配置されていないメモリの情報にアクセスし、またそのメモリにデータを記憶することができる。
【0023】
プロセッサ118は、電源134から電力を受信することができ、WTRU102における他の構成要素への電力を分配および/または制御するように構成され得る。電源134は、WTRU102に電力供給するための任意の適切なデバイスとすることができる。たとえば、電源134は、1または複数の乾電池(たとえば、ニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、およびリチウムイオン(Li-ion)など)、太陽電池、ならび燃料電池などを含み得る。
【0024】
プロセッサ118はまた、GPSチップセット136に結合されてよく、GPSチップセット136は、WTRU102の現在の位置に関する位置情報(たとえば、経度および緯度)を提供するように構成されてよい。GPSチップセット136からの情報に加えて、またはその代わりに、WTRU102は、エアインターフェース116を介して基地局(たとえば、基地局114a、114b)から位置情報を受信する、および/または、2つ以上の近くの基地局から信号が受信されるタイミングに基づいて、その位置を決定することができる。WTRU102は、実施形態との整合性を維持しながら、任意の適切な位置決定方法によって位置情報を取得することができる。
【0025】
プロセッサ118は、他の周辺機器138にさらに結合されてよく、それらは、追加の特徴、機能性、および/または有線もしくはワイヤレス接続性を提供する1または複数のソフトウェアおよび/またはハードウェアモジュールを含み得る。たとえば、周辺機器138は、加速度計、電子コンパス、衛星トランシーバ、(写真またはビデオ用)デジタルカメラ、ユニバーサルシリアルバス(USB)ポート、振動デバイス、テレビトランシーバ、ハンズフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、およびインターネットブラウザなどを含み得る。
【0026】
図1Cは、図1Aに示された通信システム100内で使用され得る、例示的なRAN104および例示的なコアネットワーク106を示す。上述されたように、RAN104は、E-UTRA無線技術を採用してエアインターフェース116を介してWTRU102a、102b、102cと通信することができる。
【0027】
RAN104はeNodeB140a、140b、140cを含むことができるが、RAN104は、実施形態との整合性を維持しながら、任意の数のeNodeBを含んでもよいことは理解されよう。eNodeB140a、140b、140cは、エアインターフェース116を介してWTRU102a、102b、102cと通信するための1または複数のトランシーバをそれぞれ含むことができる。一実施形態では、eNodeB140a、140b、140cはMIMO技術を実装することができる。したがって、eNodeB140aは、たとえば、複数のアンテナを使用して、WTRU102aへワイヤレス信号を送信し、またWTRU102aからワイヤレス信号を受信することができる。
【0028】
eNodeB140a、140b、140cのそれぞれは、特定のセル(図示せず)に関連付けられてよく、ワイヤレスリソース管理決定、ハンドオーバ決定、ならびにアップリンクおよび/またはダウンリンクにおけるユーザのスケジューリングなどを処理するように構成され得る。図1Cに示されるように、eNodeB140a、140b、140cは、X2インターフェースを介して互いに通信することができる。
【0029】
図1Cに示されるコアネットワーク106は、モビリティ管理ゲートウェイ(MME)142、サービングゲートウェイ144、およびパケットデータネットワーク(PDN)ゲートウェイ146を含むことができる。上述の要素のそれぞれはコアネットワーク106の部分として示されているが、これらの要素のいずれもコアネットワークオペレータ以外のエンティティによって所有および/または運用されてもよいことは理解されよう。
【0030】
MME142は、S1インターフェースを介して、RAN104におけるeNodeB140a、140b、140cのそれぞれに接続されてよく、制御ノードとして機能することができる。たとえば、MME142は、WTRU102a、102b、102cのユーザを認証すること、ベアラアクティブ化/非アクティブ化、およびWTRU102a、102b、102cの初期アタッチ中に特定のサービングゲートウェイを選択することなどを担当することができる。MME142はまた、RAN104と、GSMまたはWCDMAなど他の無線技術を採用する他のRAN(図示せず)との間の切り替えのための制御プレーン機能を提供することができる。
【0031】
サービングゲートウェイ144は、S1インターフェースを介して、RAN104におけるeNodeB140a、140b、140cのそれぞれに接続され得る。サービングゲートウェイ144は、一般に、ユーザデータパケットをWTRU102a、102b、102cへ/からルーティングおよび転送することができる。サービングゲートウェイ144はまた、eNodeB間ハンドオーバ中にユーザプレーンをアンカリングすること、ダウンリンクデータがWTRU102a、102b、102cに利用可能であるときにページングをトリガすること、ならびにWTRU102a、102b、102cのコンテキストを管理および記憶することなど、他の機能を実行してもよい。
【0032】
サービングゲートウェイ144はまた、PDNゲートウェイ146に接続されてもよく、PDNゲートウェイ146は、WTRU102a、102b、102cに、インターネット110などのパケット交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にすることができる。ワイヤレスローカルエリアネットワーク(WLAN)155のアクセスルータ(AR)150は、インターネット110と通信することができる。AR150は、AP160a、160b、および160cの間の通信を容易にすることができる。AP160a、160b、および160cは、STA170a、170b、および170cと通信することができる。
【0033】
コアネットワーク106は、他のネットワークとの通信を容易にすることができる。たとえば、コアネットワーク106は、WTRU102a、102b、102cに、PSTN108などの回線交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cと従来の固定電話回線通信デバイスとの間の通信を容易にすることができる。たとえば、コアネットワーク106は、コアネットワーク106とPSTN108との間のインターフェースとして機能するIPゲートウェイ(たとえば、IPマルチメディアサブシステム(IMS)サーバ)を含むことができ、またはIPゲートウェイと通信することができる。加えて、コアネットワーク106は、WTRU102a、102b、102cにネットワーク112へのアクセスを提供することができ、ネットワーク112は、他のサービスプロバイダによって所有および/または運用される他の有線またはワイヤレスネットワークを含み得る。
【0034】
インフラストラクチャBSSモードにおけるWLANは、BSSのためのAP、およびAPに関連付けられた1または複数のSTAを有することができる。APは、BSS内およびBSS外へトラフィックを搬送する、DSまたは別のタイプの有線/ワイヤレスネットワークへのアクセスまたはインターフェースを有することができる。BSS外部から生じるSTAへのトラフィックは、APを通して到着してよく、STAへ送達されてよい。STAからBSS外部の宛先へ生じるトラフィックは、APへ送られて、それぞれの宛先へ送達されてよい。BSS内のSTA間のトラフィックもAPを通して送られてよく、送信元STAがトラフィックをAPへ送り、APがトラフィックを宛先STAへ送達する。BSS内のSTA間のトラフィックは、ピアツーピアトラフィックと呼ばれることがあり、それは、IEEE802.11e直接リンク設定(direct link setup:DLS)またはIEEE802.11zトンネル化されたDLS(tunneled DLS:TSLS)を使用してDLSを用いて、送信元STAと宛先STAとの間で直接送られ得る。独立BSS(Independent BSS:IBSS)モードを使用するWLANは、APを有さず、および/または、STAは互いに直接通信する。この通信のモードは、通信の「アドホック」モードと呼ばれることがある。
【0035】
動作のIEEE802.11インフラストラクチャモードを使用して、APは、固定されたチャネル、通常は1次チャネル上でビーコンを送信することができる。このチャネルは、20MHz幅であってよく、BSSの動作チャネルとすることができる。このチャネルはまた、STAによって使用されてAPとの接続を確立することができる。IEEE802.11システムにおける基本チャネルアクセス機構は、キャリア検知多重アクセス/衝突回避(CSMA/CA)である。この動作のモードでは、APを含むすべてのSTAが1次チャネルを検知することができる。チャネルがビジーであると検出された場合、STAはバックオフ(back off)することができる。したがって、1つのSTAのみが、与えられたBSSにおいて任意の与えられた時間に送信することができる。
【0036】
IEEE802.11nでは、高スループット(HT)STAが、通信用に40MHz幅チャネルを使用することもできる。これは、1次20MHzチャネルを、隣接した20MHzチャネルと組み合わせて、40MHz幅の隣接チャネルを形成することによって達成され得る。IEEE802.11nは、2.4GHzおよび5GHz産業科学医療(ISM)バンド上で動作することができる。
【0037】
IEEE802.11acでは、超高スループット(VHT)STAが、20MHz、40MHz、80MHz、および160MHz幅チャネルをサポートすることができる。40MHzおよび80MHzチャネルは、上述された802.11nと同様に隣接20MHzチャネルを組み合わせることによって形成され得る。160MHzチャネルは、8個の隣接20MHzチャネルを組み合わせることによって、または2個の非隣接80MHzチャネルを組み合わせることによって形成され得る。これは、80+80構成と呼ばれることがある。80+80構成では、チャネル符号化後のデータが、それを2個のストリームに分割するセグメントパーサ(segment parser)を通され得る。逆高速フーリエ変換(IFFT)および時間領域処理が各ストリーム上で別個に行われ得る。次いで、ストリームが2つのチャネル上にマッピングされてよく、データが送信されてよい。受信機において、この機構は逆にされてよく、組み合わせられたデータが媒体アクセス制御(MAC)レイヤに送られてよい。IEEE802.11acは、5GHz ISMバンド上で動作することができる。
【0038】
動作のサブ1GHzモードは、IEEE802.11afおよびIEEE802.11ahによってサポートされてよく、それにより、チャネル動作帯域幅が、IEEE802.11nおよびIEEE802.11acで使用されるものと比較して低減される。IEEE802.11afは、テレビ(TV)ホワイトスペース(TVWS)スペクトル内で5MHz、10MHz、および20MHz帯域幅をサポートすることができ、IEEE802.11ahは、非TVWSスペクトルを使用して1MHz、2MHz、4MHz、8MHz、および16MHz帯域幅をサポートすることができる。IEEE802.11ahの可能な使用事例は、マクロカバーエリアにおいてマシンタイプ通信(machine type communication:MTC)デバイスをサポートすることであり得る。MTCデバイスは、制限された帯域幅のサポートのみを含む制限された機能を有することがあるが、非常に長いバッテリー寿命の要件を含むことができる。
【0039】
IEEE802.11adでは、60GHzにおける広帯域幅スペクトルが利用可能であり得るので、VHT動作を可能にする。IEEE802.11adは、2GHzまでの動作帯域幅をサポートすることができ、それにより、データレートが6Gbpsにまで達することができる。60GHzにおける伝搬損失は、2.4GHzおよび5GHz帯域におけるよりも大きくなり得る。したがって、802.11adにおいてビームフォーミングがカバレッジ範囲を拡張し得る。この帯域の受信機要件をサポートするために、IEEE802.11ad MACレイヤがいくつかのエリアで修正され得る。MACに対する1つの重大な修正は、IEEE802.11acには存在しない動作のオムニ(omni)モードおよびビームフォーミングされたモードを含むチャネル推定トレーニングを可能にする手順を含み得る。
【0040】
IEEE802.11n、IEEE802.11ac、IEEE802.11af、およびIEEE802.11ahなどの複数のチャネルおよびチャネル幅をサポートするWLANシステムは、1次チャネルとして指定されるチャネルを含むことができる。1次チャネルは、BSS内のすべてのSTAによってサポートされる最大の共通動作帯域幅に等しい帯域幅を有してよい。1次チャネルの帯域幅は、BSSにおいて動作するすべてのSTAのうちの、最小帯域幅動作モードをサポートすることができるSTAによって制限され得る。IEEE802.11ahの例では、BSSにおけるAPおよび他のSTAが2MHz、4MHz、8MHz、16MHz、または他のチャネル帯域幅動作モードをサポートできる場合であっても、1MHzモードのみをサポートするSTA(たとえば、MTCタイプデバイス)が存在する場合、1次チャネルは、1MHz幅であり得る。すべてのキャリアセンスおよびネットワーク割り当てベクトル(network allocation vector:NAV)設定は、1次チャネルの状態に依存し得る。たとえば、1MHz動作モードのみをサポートするSTAがAPへ送信しているために1次チャネルがビジーである場合、帯域の大部分がアイドル状態で利用可能のままであるにもかかわらず、利用可能な周波数帯域全体がビジーであると見なされ得る。
【0041】
米国では、IEEE802.11ahによって使用され得る利用可能な周波数帯域は、902MHzから928MHz周波数帯域を含むことができる。韓国では、IEEE802.11ahによって使用され得る利用可能な周波数帯域は、917.5MHzから923.5MHz周波数帯域を含むことができる。日本では、IEEE802.11ahによって使用され得る利用可能な周波数帯域は、916.5MHzから927.5MHz周波数帯域を含むことができる。IEEE802.11ahに利用可能な全帯域幅は、国コードに応じて6MHzから26MHzであり得る。したがって、利用可能な周波数帯域は国によって異なることがある。しかしながら、特定の周波数帯域の説明は、本明細書に説明される手順および装置を限定することを意図されない。
【0042】
インフラストラクチャ基本サービスセット(BSS)モードのワイヤレスローカルエリアネットワーク(WLAN)は、BSSのためのアクセスポイント(AP)、およびAPに関連付けられた1または複数の局(STA)を有することができる。APは、BSS内およびBSS外へトラフィックを搬送する、配信システム(distribution system:DS)または別のタイプの有線/ワイヤレスネットワークへのアクセスまたはインターフェースを有することができる。BSS外部から生じるSTAへのトラフィックは、APを通して到着してよく、STAへ送達されてよい。STAからBSS外部の宛先へ生じるトラフィックは、APへ送られて、それぞれの宛先へ送達されてよい。BSS内のSTA間のトラフィックもAPを通して送られてよく、送信元STAがトラフィックをAPへ送り、APがトラフィックを宛先STAへ送達する。
【0043】
改善されたセルカバレッジおよび改善されたスペクトル効率を可能にするために、STAへの共同および調整された送信のためのAP間の調整を考慮することが望ましいことがある。特に、各APが、異なるセクタをカバーするために複数のセクタ化されたアンテナを備えられている場合、複数のAPが、それ自体のグループのSTAのそれぞれへ同時に送信することを可能にすることが有益なことがある。複数のAPからの同時の送信は、基礎となるワイヤレスネットワークのエリアスペクトル効率を改善することができる。
【0044】
複数の同時送信が受信機側で互いに干渉しないことを保証するために、注意深いシステム設計が必要とされ得る。セクタ化されたアンテナを使用して複数のAPが互いに調整することを可能にするための方法が実装され得る。
【0045】
WLANシステムにおけるセクタ化は、IEEE802.11ahおよびIEEE802.11adに従って実装され得る。IEEE802.11ah APは、セクタ化された送信を行うことができ、IEEE802.11非AP(non-AP)は、全方向性(omni-directional)送信を行うことができる。
【0046】
図2は、隠されたノード軽減のために使用されるIEEE802.11ahにおける例示的なタイプ0セクタ化200の図である。APは、複数のセクタ、たとえば、セクタ間隔1 210、セクタ間隔2 220、およびセクタ間隔3 230に、空間を分割することができ、時分割多重化(TDM)手法を使用して一度に1つのセクタでのSTA送信を可能にする。STAは、それらのセクタに対応する時間間隔のみでデータを送信および受信できるようにされ得る。たとえば、セクタ間隔1 210は、ビーコン送信セクタ1 240およびアクセスSTAセクタ1 250を含むことができ、セクタ間隔2 220は、ビーコン送信セクタ2 260およびアクセス送信セクタSTA2 270を含むことができ、セクタ間隔3は、ビーコン送信セクタ3 280およびアクセス送信セクタSTA3 290を含むことができる。時間間隔のうちのいくつかは、たとえば、BSS間隔295で、同時にすべてのセクタへチャネルアクセスをするために残されていてよい。この例では、BSS間隔295は、オムニ送信ビーコン297と、BSSにおけるすべてのSTAにアクセスするのに割り当てられた部分299とを含むことができる。
【0047】
タイプ1セクタ化されたビーム動作では、APは、オムニ送信ビーム(オムニビーム)およびセクタ化された送信ビーム(セクタ化されたビーム)を使用して送信および受信することができる。APは、セクタ化されたビームとオムニビームとを交互に変えることができる。セクタ化されたビームは、APがSTAとの通信のための最良のセクタを認識しているとき、または、制約されたアクセスウィンドウ(restricted access window:RAW)の際もしくはSTAの送信機会(transmission opportunity:TXOP)の際などのスケジュールされた送信において使用され得る。他の場合、またはこの手順の後、APは、オムニビーム動作および手順に戻るように切り替わることができる。
【0048】
セクタ化された送信ビームは、セクタ化された受信ビームと共に使用され得る。APは、グループIDを使用してSTAを特定のグループに関連付けることができ、たとえば、関連付けは、STAとの通信のための最良のセクタに基づいて、同じセクタ/グループアイデンティティ(ID)に関係付けられてよい。
【0049】
4つの空間的に直交した(SO)条件が、タイプ1セクタ化された動作のために使用され得る。図3は、AP310がオムニプリアンブル315を使用して、セクタ化されたビーム送信320のためのTXOP保護をセットアップし得る、SO条件1の例300の図である。オムニプリアンブルは、BSSにおけるすべてのSTAがそれを受信するように全方向性アンテナを用いて送信されるプリアンブルであり得る。適切なTXOP保護がロングプリアンブル325を用いてセットアップされると、セクタ化されたビーム送信320がTXOPの残りについて使用され得る。ロングプリアンブル325は、2MHz以上とすることができ、単一ユーザ(SU)送信と複数ユーザ(MU)送信との両方について使用され得る。ロングプリアンブル325は、ロングパケットフレームフォーマット340のために使用され得る。ロングパケットフレームフォーマット340は、2MHz、4MHz、8MHz、および16MHz PPDUを使用して、SUおよびMUビームフォーミングされた送信のために使用され得る。ロングプリアンブル325の構造は、混合されたフォーマット構造であり得る。セクタ化されたビーム送信320は、グリーンフィールド(Greenfield)ビームフォーミング(BF)を使用して行われてよい。グリーンフィールドBFは、たとえば、802.11ahで使用され得る非下位互換性ビームフォーミングであってよい。SO条件1は、STA330から送信を受信しない重複BSS(OBSS)STA/AP(図示せず)によって確認され得る。図3を参照すると、OBSS STAは、それが、APオムニ送信パケットにおける肯定応答(ACK)インジケータ(Ind)=00、10、Ack Ind=11/Ackポリシ=00、およびロングパケット325内のAP310のセクタ化された送信部分を検出したとき、後続するSTA送信を期待することができる。
【0050】
図4は、SO条件2の例400の図である。AP410は、全方向性送信によるショートプリアンブル415を使用して、セクタ化されたビーム送信420に対するTXOP保護をセットアップすることができる。ショートプリアンブル415は、2MHz以上とすることができ、SU送信に使用され得る。ショートプリアンブル415は、ショートパケットフレームフォーマット430のために使用され得る。ショートパケットフレームフォーマット430は、2MHz、4MHz、および16MHz PPDUを使用して、SU送信のために使用され得る。図4に示されるように、TXOP保護は、APによる第2の送信においてセットアップされ得る。適切なTXOP保護がセットアップされると、セクタ化された送信420がTXOPの残りについて使用され得る。セクタ化された送信420は、グリーンフィールドBFを使用して行われてよい。SO条件2は、STA425から送信を受信しないOBSS STA/AP(図示せず)によって確認され得る。図4を参照すると、OBSS STAは、それが、AP1オムニパケットにおけるAck Ind=00、10、またはAck Ind=11/Ackポリシ=00、およびACKポリシ=ブロックAck(Block Ack)を有するオムニパケットに続くAP410のセクタ化された送信を検出したとき、後続するSTA425送信を期待することができる。
【0051】
図5Aおよび図5Bは、SO条件3の例500の図である。AP510は、オムニ送信要求(RTS)パケット515を送信して、STA525からの応答として送信可(CTS)パケット520を求めることによって、フレーム交換を開始することができ、次いで、全方向性送信を用いて、セクタ化されたビーム送信の期間の保護をセットアップし、保護された期間の残りについてセクタ化されたビーム送信530への切り替えをセットアップすることができる。SO条件は、OBSS STAまたはAPによって確認されることができ、OBSS STAまたはAPは、APの全方向性送信を観測するが、APのビームフォーミングされた送信、および局の送信を観測しない。OBSS STAまたはOBSS APは、後続のセクタ化されたビーム送信を観測せずに、オムニ送信されたRTS515、およびロングパケット540のオムニ送信されたプリアンブル535を観測することによって、AP510とのその空間直交性を推測することができる。この例では、ロングパケット540のオムニ送信されたプリアンブル535は、ロングプリアンブルとすることができる。OBSS STAまたはOBSS APは、オムニ送信されたRTS515とロングパケット540のオムニ送信されたプリアンブルとの間の無送信のギャップを観測することによって、STAとのその空間直交性を推測することができる。あるいは、図5Bに示されるように、OBSS STAまたはOBSS APは、後続のセクタ化されたビーム送信550を観測せずに、オムニ送信されたRTS515、およびオムニ送信されたショートパケット送信545を観測することによって、AP510とのその空間直交性を推測することができる。オムニ送信されたショートパケット送信545は、ショートプリアンブルを含むことができる。OBSS STAまたはOBSS APは、オムニ送信されたRTS515とAP510によるオムニビームショートパケット545との間の無送信のギャップを観測することによって、STA525とのその空間直交性を推測することができる。
【0052】
図6Aおよび図6Bは、SO条件4の例600の図である。図6Aおよび図6Bにおいて、STA610は、フレーム620を送信してTXOP保護をセットアップすることができる。フレーム620は、たとえば、PSポール(PS-Poll)フレーム、トリガーフレーム、または任意の他のフレームとすることができる。TXOP内の期間の全方向性送信によってTXOP保護がセットアップされたとき、SO条件がOBSS STA/APによって確認された場合、OBSS STA/APは、そのNAVをキャンセルして、非BF RTS/CTSで開始する新しいSO交換を始めることができる。AP630が交換中にセクタ化されたビーム送信640に切り替わると、それは、保護された期間の残りについてグリーンフィールドセクタ化されたビーム送信を続けることができる。
【0053】
SO条件は、(TXOP保持者または応答者のいずれかであり得る)APからのセクタ化された送信、および(TXOP応答者または保持者のいずれかであり得る)STAからの送信を受信せずに、オムニ送信を受信するOBSS STA/APとして定義され得る。
【0054】
図7は、送信可(CTS)-to-selfパケットを送信することによって、SO検出を容易にする例700の図である。この例では、タイプ0およびタイプ1セクタ化に関する情報要素(IE)は、CTS-to-selfパケット710内の1ビットセクタIDインジケータを含むことができ、SO条件1または2に先行してSO条件の検出を容易にすることができる。この例では、AP720は、CTS-to-selfパケット710を送信してTXOP保護をセットアップすることができる。CTS-to-selfパケット710は、オムニ送信であってよく、SO条件の発見を容易にするように空間直交性インジケータを含むことができる。STA730は、CTS-to-selfパケット710を受信することができる。STA730はまた、オムニ送信740を受信することもできる。この例では、セクタ化されたビーム送信750が空間的に直交し得るので、STA730は、セクタ化されたビーム送信750を受信しなくてよい。
【0055】
図8は、周期的セクタトレーニング方法の例800の図である。周期的な制約されたアクセスウィンドウ(periodic restricted access window:PRAW)ごとに、AP820は、いくつかのトレーニングパケットに後続されるビーコンフレーム830を送信することができる。トレーニングパケットは、ヌルデータパケット告知(null-data-packet-announcement)フレーム(NDPA)840、および1または複数のヌルデータパケット(null data packet:NDP)フレーム850、860、870を含むことができる。異なるNDPフレームが異なるセクタ化を使用して送信されてよく、NDPAフレーム840は全方向性様式で送信されてよい。NDPAフレーム840の目的は、後続のNDPフレームを告知して、STAが受信の準備をできるようにすることである。NDPフレーム850、860、870は、各STAが後の時点で最良のセクタ化を報告できるように、異なるセクタ化についてチャネル強度を測定するために、STAによって使用され得る。
【0056】
IEEE802.11adでは、STAおよびAPが、セクタ化されたビーム送信を行うことができる。ビームフォーミングされたTXOPは、1または複数のビームフォーミングされたRTS指向性マルチギガビット(DMG)CTSフレームを送信することによって、送信元STAまたはAPにより予約され得る。RTS/DMG CTSを受信するSTAは、それらのNAVに従うことができる。サービス期間(Service Period:SP)中に送信元STAまたはAPから有効なRTSを受信する受信DMG STAはまた、受信STAにおけるNAVタイマの1つがゼロでない場合に、送信を延期するように送信元STAまたはAPに命じるために、DMG送信不可(denial-to-send:DTS)を送信することができる。
【0057】
パーソナルBSS(PBSS)制御ポイント(PCP)は、互いに指向性送信を行うように意図しているSTAのペアに対して、別のペアのSTAが指向性をもって能動的に送信している間に、測定を行うように要求することができる。続いて、PCPは、第1のペアのSTAが互いに指向性をもって送信している間に、第2のペアのSTAが指向性測定を行うように要求することができる。STAの両方のペアが、互いの送信との干渉を全くまたはほとんど報告しない場合、STAの2つのペアは、同時の指向性送信を行うように同じサービス期間(SP)にスケジュールされ得る。
【0058】
セクタ内で動作するのが見込まれるSTAのための保護が、APによって、セクタ内のSTAへのTXOP内の期間の全方向性ビーム送信を使用してセットアップされ得る。1または複数のSTAに対するSO条件がOBSS STAまたはAPによって確認された場合、OBSS STAまたはAPは、そのNAVをリセットして、非ビームフォーミングRTS/CTSで開始する新しいSO交換を始めることができる。
【0059】
改善されたセルカバレッジを可能にしスペクトル効率を改善するために、STAへの共同および調整された送信のためのAP間の調整を考慮することが望ましい。特に、各APが、異なるセクタをカバーするために複数のセクタ化されたアンテナを備えられている場合、複数のAPが、それぞれのBSS内のそれ自体のSTAのそれぞれへ同時に送信することを可能にすることが有益である。複数のAPからの同時の送信は、基礎となるワイヤレスネットワークのエリアスペクトル効率を改善することができる。複数の同時送信が受信機側で互いに干渉しないことを保証するようにシステムが設計され得る。この目的に向けて、方法およびデバイスは、セクタ化されたアンテナを使用して複数のAPが互いに調整することを可能にすることを必要とされ得る。
【0060】
改善されたセルカバレッジを可能にしスペクトル効率を改善するために、STAへの共同および調整された送信のためのAP間の調整をすることが望ましいことがある。たとえば、各APが、異なるセクタをカバーするために複数のセクタ化されたアンテナを備えられている場合、複数のAPが単一STAへ同時に送信することを可能にすることが有益である。複数のAPから単一のAPへの同時送信は、STAに対するスループットまたは信頼性を改善し、したがって基礎となるワイヤレスネットワークのスペクトル効率を改善することができる。システムは、トレーニング、フィードバック、およびセクタ化されたアンテナを有する複数のAPから単一のSTAへのデータ送信を行うように設計され得る。
【0061】
AP1-STA1通信は、1次通信リンクと呼ばれることがあり、AP2-STA2通信は、2次通信リンクと呼ばれることがある。この例では、AP1は1次APであってよく、STA1は1次STAであってよく、AP2は2次APであってよく、STA2は2次STAであってよい。セクタ化手順を開始するAPは、1次APと呼ばれることがあり、1次APは、この例ではAP1である。
【0062】
IEEE802.11ahでは、たとえば、タイプ1セクタ化は、SOチェックに通るという条件で、OBSS AP/STAが1次APと同時に送信することを可能にするように定義され得る。それにもかかわらず、新しいOBSS AP/STA送信が1次STAにおける受信と干渉しないことを保証するためには、SOチェックは十分でないことがある。したがって、OBSS AP/STAが、1次APとして同時に送信しながら、意図されない干渉を引き起こさないことを確かにするために、SO条件チェックに加えて、電力制御手順が必要とされ得る。
【0063】
セクタ化されないIEEE802.11送信では、APは、送信前にクリアチャネル評価(CCA)を行うことができる。プリアンブルが存在する場合、CCAアルゴリズムは、信号が-82dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。また、プリアンブルが存在しない場合、CCAアルゴリズムは、信号が-62dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。両方の場合において、送信は全方向性であり得る。セクタ化された送信では、CCAは、場合によって異なる送信セクタ化利得と受信セクタ化利得とを取り扱うために使用され得る。
【0064】
別のIEEE802.11ah例では、APに対するタイプ1セクタ化は、タイプ1セクタ化をサポートするSTAとタイプ1セクタ化をサポートしないSTAとの両方に到達することができるオムニビーム送信を使用して、TXOPを開始することができる。オムニビーム送信の使用は、後続のセクタ化されたビーム送信動作の期間のNAV保護のセットアップを可能にすることができる。タイプ1セクタ化の間、セクタ化されたビーコンが、たとえば、セクタ化されたビーコンタイプを使用して、アクティブセクタ内のSTAのための動作を構成するために使用され得る。セクタ化された手順または動作をサポートしないSTAは、セクタ化されたビーコンを解釈または使用することができない。
【0065】
非セクタ対応STAは、セクタ化された送信の受信範囲にある間に動作することができる。たとえば、非セクタ対応STA、または1または複数のアクティブセクタの外部に配置されたが受信範囲内のセクタ不対応にされたSTAは、これらのセクタからの法外な干渉を受信することがある。この干渉を軽減するための手順が実装され得る。
【0066】
図9は、例示的な調整されたセクタ化された送信900の図である。この例では、2つの隣接するAP910、920がそれぞれ、それら自身のSTA915、925に同時にサービスすることができ、それぞれがセクタ化された送信を伴う。たとえば、AP910とSTA915との間の通信は1次通信リンクとすることができ、AP920とSTA925との間の通信は2次通信リンクとすることができる。AP910は1次APと呼ばれることもあり、STA915は1次STAと呼ばれることもある。AP920は2次APと呼ばれることもあり、STA925は2次STAと呼ばれることもある。手順を開始したAPは、1次APとすることができ、この例ではAP910である。加えて、1次APに関連付けられたSTAは、1次STAとすることができ、この例ではSTA915である。
【0067】
図9を参照すると、AP910およびAP920はそれぞれ、ヌルデータパケット告知(NDPA)フレーム911、921を送信して、AP910およびAP920からのヌルデータパケット(NDP)が後続し得ることを告知することができる。この送信は、意図されたSTA(STA910およびSTA920)が後のチャネル推定およびフィードバックの準備を開始するのを支援することができる。この送信はまた、AP/STAのためのTXOPを予約するのを支援することができる。各APについて、複数のセクタを使用してNDPAフレームが送信されてもよく、またはオムニモードを使用してNDPAフレームが送信されてもよい。
【0068】
図9に示されるように、AP910は、NDPAフレーム911の後のショートフレーム間隔(short interframe space:SIFS)期間930に、NDPフレーム912を送信することができる。NDP912は、STA915によって、AP910からの適切な送信セクタ化を推定および選択するために使用され得る。NDPフレーム912はまた、STA925によって、AP910とSTA925との間の空間直交性を推定および試験するために使用され得る。
【0069】
図9に示されるように、NDPフレーム912は、AP910の複数の送信セクタ化を使用して送信され得る。NDPフレーム912は、図9に示される時間期間よりも先に送信されてもよい。そのような場合、先行のNDPトレーニングが行われてからチャネルが大きく変更されていないことが想定され得る。AP920は、NDPフレーム912の後のSIFS期間940にNPDフレーム922を送信することができる。NDPフレーム922は、STA925によって、AP920からの適切な送信セクタ化を推定および選択するために使用され得る。NDPフレーム922はまた、STA915によって、AP920とSTA915との間のSOを推定および試験するために使用され得る。
【0070】
図9に示されるように、NDPフレーム922は、AP920の複数の送信セクタ化を使用して送信され得る。AP920は、AP910がNDPフレーム912を送信する前に、NDP922を送信してもよい。そのような場合、先行のNDPトレーニングが行われてからチャネルが大きく変更されていないことが想定され得る。
【0071】
STA915は、応答してフィードバックパケット913を送信することができる。STA915からのフィードバックパケットは、AP910からの望ましいセクタを含むことができる。AP910は、選択されたセクタを使用してSTA915に送信することができる。STA915からのフィードバックパケット913はまた、AP920からの1または複数の望ましいセクタを含むこともできる。AP920およびSTA915は、望ましいセクタのいずれかがAP920によって使用される場合、SOであり得る。STA915からのフィードバックパケット913はまた、AP920からの望ましくないセクタを含むこともできる。AP920およびSTA915は、望ましくないセクタのいずれかがAP920によって使用される場合、SOでなくてよい。STA915からのフィードバックパケット913はまた、STA925によって聴取され得る。STA925は、フィードバックパケット913内の情報を使用して、AP915からの期待される送信セクタ化を推測することができる。
【0072】
STA915がSTA925によって聴取されない例では、AP910は、どのセクタが使用されるかを確認するため、またSTA925がSOをチェックするのを助けるために、セクタ化確認信号をSTA915およびSTA925に送信することができる。STA915からのフィードバックパケット913はまた、AP910のための推奨される変調および符号方式(modulation and code scheme:MCS)を含むこともできる。STA915からの推奨されるMCSは、AP910における適切なリンク適応を支援することができる。STA915からのフィードバックパケット913はまた、AP910のための推奨される送信電力を含むこともできる。STA915からの推奨される送信電力は、AP910における適切な電力制御を支援することができる。1次STA、この例ではSTA915は、2次STA、この例ではSTA925よりも先にフィードバックパケット913を送信することができる。先に示されたように、いつAPが1次APであり得るか、およびいつSTAが1次STAであり得るかの規則が作成され得る。NDPフレーム911が図9に示される時間期間よりも先に送信される場合、フィードバックパケット913は、先に送信されたNDPフレームに基づくセクタID情報を含むことができる。NDPフレーム922が図9に示される時間期間よりも先に送信される場合、フィードバックパケット913は、先に送信されたNDPフレームに基づくセクタID情報を含むことができる。
【0073】
図9をさらに参照すると、STA925は、フィードバックパケット923を送信することができる。STA925は、AP910からのNDP送信、AP920からのNDP送信、およびSTA915からのフィードバックパケット913を監視することができる。STA925は、STA915選択に基づいて、AP910からの期待される送信セクタ化を推測することができる。STA925は、STA915によって選ばれたセクタがAP910によって使用される場合、空間直交性がAP910とSTA925との間に当てはまるかどうかを試験することができる。空間直交性がAP910とSTA925との間に当てはまる場合、STA925は、選択された送信セクタがSTA915と互換性があるという条件で、許可(good-to-go)信号をAP920に送信し、それと共に、AP920からの最良の送信セクタを送信することができる。たとえば、AP920からの選択された送信セクタが、AP920とSTA915との間の空間直交性を保証することができる。STA920は、選択された送信セクタがAP920とSTA915との間の空間直交性を保証するという条件で、AP920からの選択されたMCSを送信することができる。この手順は、2次APにおける適切なリンク適応を助けることができる。STA925は、AP920に推奨される適切な送信電力を送信することができる。この手順は、2次APにおける適切な電力制御を支援することができる。NDPフレーム912が先に送信される場合、フィードバックパケットは、先に送信されたNDPフレームに基づくセクタID情報を含むことができる。NDPフレーム922が先に送信される場合、フィードバックパケットは、先に送信されたNDPフレームに基づくセクタID情報を含むことができる。空間直交性がAP910とSTA925との間で当てはまらない場合、STA925は、禁止(no-go)信号をAP920に送信して、AP920送信はAP910からの干渉のため禁じられることを示唆することができる。AP910は、続いて、STA915からのフィードバックパケット913内で示された選択された送信セクタ化を使用して、STA915へ送信950をすることができる。AP920がSTA925から許可信号を受信した場合、AP920は、AP910がSTA915へ送信しているのと同じ時間期間において、選択された送信セクタ化を使用して、STA925へ送信960をすることができる。AP920がSTA925から禁止信号を受信した場合、AP920は、STA925へ送信しないと決定することができる。送信950が完了された後、STA915は、ACKパケット955を送信して、AP910からの信号の正しい復号に肯定応答することができる。一方でAP920がSTA925に送信した場合、STA925が、ACKパケット965を送信して、AP920からの信号の正しい復号に肯定応答することもできる。
【0074】
図10は、全方向性送信で使用され得る複数のセクタを使用する例示的なNDPAフレーム1000の図である。NDPAフレーム1000は、複数のセクタフィールドを含むことができる。たとえば、NDPAフレーム1000は、セクタ1 1010に対する第1のフィールド、セクタ2 1020に対する第2のフィールドなど、セクタN 1030に対する第Nのフィールドまでを含むことができる。各セクタフィールドは、それぞれガードインターバル(GI)1040、1050、および1060によって離隔されてよい。
【0075】
図11は、全方向性送信で使用され得る複数のセクタを使用する例示的なNDPフレーム1100の図である。NDPフレーム1100は、複数のセクタフィールドを含むことができる。たとえば、NDPフレーム1100は、セクタ1 1110に対する第1のフィールド、セクタ2 1120に対する第2のフィールドなど、セクタN 1130に対する第Nのフィールドまでを含むことができる。各セクタフィールドは、それぞれGI1140、1150、および1160によって離隔されてよい。
【0076】
図12は、1次STAからの例示的なフィードバックパケット1200の図である。フィードバックパケット1200は、ヘッダ1210、サービングセクタIDフィールド1220、MCSフィールド1230、電力制御フィールド1240、空間直交セクタIDフィールド1250、および非空間直交セクタIDフィールド1260を含むことができる。サービングセクタIDフィールド1220、MCSフィールド1230、および電力制御フィールド1240は、第1のAPに関連付けられ得る。空間直交セクタIDフィールド1250および非空間直交セクタIDフィールド1260は、第2のAPに関連付けられ得る。空間直交セクタIDフィールド1250は、望ましいセクタを識別することができ、非空間直交セクタIDフィールド1260は、望ましくないセクタを識別することができる。
【0077】
図13は、2次STAからの例示的なフィードバックパケット1300の図である。フィードバックパケット1300は、ヘッダ1310、許可または禁止フィールド1320、セクタIDフィードバックフィールド1330、MCSフィールド1340、および電力制御フィールド1350を含むことができる。セクタIDフィードバックフィールド1330、MCSフィールド1340、および電力制御フィールド1350は、第2のAPに関連付けられ得る。
【0078】
図9に示された例は、最初にセクタ化トレーニング、続いて明示的なセクタIDフィードバックを行うことによって、1次/2次セクタ化調整を容易にすることができる。代替的手順が、黙示的なフィードバックおよびチャネル相互関係に依拠して同様の目的を達成するために使用されてもよく、以下に説明される。この例では、同じセクタ化されたアンテナが送信および受信のためにそれぞれ使用されるとき、AP-STAチャネルがSTA-APチャネルと同じであると想定され得る。
【0079】
図14は、代替的な調整されたセクタ化された送信手順例1400の図である。図14を参照すると、AP1410およびAP1420はそれぞれ、サウンディング要請(sounding solicitation:SS)フレーム1415、1425を送信することができる。SSフレーム1415、1425はそれぞれ、STA1430およびSTA1440からのサウンディングフレームを要請することができる。APごとに、SSフレームが複数のセクタを使用して送信され得る。SSフレームは、同時に送信されてもよく、または時間的に順次に送信されてもよい。この例では、STA1430は、SSフレーム1415および/またはSSフレーム1425に応答して、サウンディング(SND)フレーム1435を送信することができる。SNDフレーム1435は、AP1410においてアップリンクチャネル推定およびセクタトレーニングを容易にするために使用され得る。SNDフレーム1435はまた、AP1420においてSO検出を容易にするために使用され得る。
【0080】
AP1410受信機は、この手順の間に異なるセクタを横切っていくことができる。たとえば、AP1410受信機は、SNDフレーム1435の第1の反復期間中に受信するためにセクタ1を使用し、SNDフレーム1435の第2の反復期間中に受信するためにセクタ2を使用し、SNDフレーム1435の第3の反復期間中に受信するためにセクタ3を使用し、SNDフレーム1435の第4の反復期間中に受信するためにセクタ4を使用することができる。異なる自動利得制御(AGC)が、SNDフレーム1435の異なる反復に対して使用され得る。
【0081】
STA1440は、SSフレーム1415および/またはSSフレーム1425に応答して、SNDフレーム1445を送信することができる。SNDフレーム1445は、AP1420においてアップリンクチャネル推定およびセクタトレーニングを容易にするために使用され得る。SNDフレーム1445はまた、AP1410においてSO検出を容易にするために使用され得る。SNDフレーム1445は、複数回反復され得る。
【0082】
AP1420受信機は、この手順の間に異なるセクタを横切っていくことができる。たとえば、AP1420受信機は、SNDフレーム1445の第1の反復期間中に受信するためにセクタ1を使用し、SNDフレーム1445の第2の反復期間中に受信するためにセクタ2を使用し、SNDフレーム1445の第3の反復期間中に受信するためにセクタ3を使用し、SNDフレーム1445の第4の反復期間中に受信するためにセクタ4を使用することができる。異なるAGCがSNDフレーム1445の異なる反復に対して使用され得ることに留意されたい。SNDフレーム1435は、SNDフレーム1445より先または後に送信され得る。
【0083】
AP1410は、サウンディング確認(sounding confirmation:SC)フレーム1450を送信することができる。SCフレーム1450は、STA1430からAP1410のチャネル推定に基づいて、AP1410によってSTA1430にサービスするために使用されることになるセクタID S(1,1)を示すことができる。SCフレーム1450はまた、上記のセクタID S(1,1)がAP1410によって使用されるとき、STA1440がAP1410に対して空間的に直交するかどうかを示すことができる。STA1440が、選択されたセクタS(1,1)を用いるAP1410に対してSOである場合、AP1420は、STA1440への送信を進めることができる。STA1440が、選択されたセクタS(1,1)を用いるAP1410に対してSOでない場合、AP1420は、STA1440への送信を進めなくてよい。
【0084】
STA1440が、選択されたセクタS(1,1)を用いるAP1410に対してSOである場合、AP1420は、SCフレーム1455を送信することができる。SCフレーム1455は、選択されたセクタS(2,2)がAP1420とSTA1430との間の空間直交性を保証するという条件で、AP1420によって使用されることになる選択されたセクタS(2,2)を含むことができる。これは、STA1430に対するサウンディングフレームを監視することにより、AP1420によって得られることができる。STA1420が、選択されたセクタS(1,1)を用いるAP1410に対してSOでない場合、AP1420は、SCフレーム1455を送信して、それがSTA1440へ送信しようとしていないことを確認することができる。
【0085】
セクタ化された送信1460は、AP1410からの選択されたセクタとしてセクタS(1,1)から開始することができる。セクタ化された送信1465はまた、S(1,1)がAP1410とSTA1440との間の空間直交性を保証し、S(2,2)がAP1420とSTA1430との間の空間直交性を保証するという条件で、AP1420からの選択されたセクタとしてセクタS(2,2)から開始することができる。送信が完了された後、STA1430は、ACKパケット1470を送信して、AP1410からの信号の正しい復号に肯定応答することができる。一方でAP1420がSTA1440に送信した場合、STA1440が、ACKパケット1475を送信して、AP1420からの信号の正しい復号に肯定応答することもできる。
【0086】
図15は、図14に示された例示的なSNDフレーム1500の図である。図15に示されるように、SNDフレーム1500は複数回反復され得る。SNDフレーム1500は複数回反復され得る。SNDフレーム1500の各コピー1510、1520、1530は、ヌルデータパケットであってよく、MACレベルデータを含まなくてよい。SNDフレーム1500の各コピー1510、1520、1530は、自動利得制御(AGC)調整、周波数および時間同期、ならびにチャネル推定などのチャネル測定を行うために、ショートトレーニングフィールド(STF)1540およびロングトレーニングフィールド(LTF)1550を含むことができる。SNDフレーム1500の各コピー1510、1520、1530は、信号(SIG)フィールド1560を含むことができる。SNDフレーム1500の各コピー1510、1520、1530は、GI1570、1580、1590によって離隔されてよい。
【0087】
SO条件は、802.11ahにおいてセクタ化された送信のために考慮され得る。OBSS STAまたはAPが、全方向性送信を受信するが、APからの後続のセクタ化されたビーム送信を受信せず、および/またはフレーム交換に関わるSTAからの送信を受信しない場合に、SO条件が満たされ得る。様々なタイプのフレーム交換シーケンスが、SO条件に至ることができる。図3図7は、802.11ahで使用され得る例示的なSO条件を示す。フレーム交換シーケンスは、既存のペアの送信に焦点を当てることができ、第3のSTA/APによって確認され得るSO条件を使用することができる。第3のSTA/APは、OBSS STA/APであってよく、別の空間的に直交した送信を始めることができる。
【0088】
第3のOBSS STA/APによって開始されるSO送信の例示的な規則および手順が実装され得る。たとえば、図3図7に示されたAPおよびSTAの当初の対が、AP1およびSTA1として示されてよい。送信前にSO条件を確認することができるOBSS APおよびSTAが、AP2およびSTA2として示されてよい。この例のAP2とSTA2との間の送信は、条件付きSO送信と呼ばれることがある。
【0089】
図16は、AP1 1610とSTA1 1620との間の交換シーケンス1を使用することによってSO条件が確認され得る場合の、APとSTAとの間のSO送信例1600の図である。たとえば802.11ahでの、フレーム交換シーケンス1は、SO条件確認のための例の役目をすることができる。この例は、他の可能なフレーム交換が利用されるときに拡張されてもよい。SO条件は、OBSS STA/APによって確認されることができ、このOBSS STA/APは、APの全方向性送信を受信するが、APのビームフォーミングまたはセクタ化された送信を受信せず、および/またはSTAの送信を受信しない。AP1 1610とSTA1 1620との間のオムニ送信期間において、AP2 1630がリッスンし、SO条件を確認することができる。一方で、AP2 1630が、AP1 1610からオムニ送信を受信し、AP1 1610とSTA1 1620との間のセクタ化された送信の残りについてNAV設定をチェックすることができる。
【0090】
AP1 1610とSTA1 1620との間のセクタ化された送信中にAP2 1630が送信する計画である場合、AP2 1630は、発信パケット期間を計算し、それがNAV期間よりも長い場合にパケットを切り詰めることができる。SO条件を確認した後、AP2 1630は、そのBSSにおける関連付けられたSTAのうちの1つ、たとえば、STA2 1640への送信を始めることができる。AP2 1630は、SO条件を検出し、条件付きSO送信を行うために同じアンテナパターンを使用してもよい。AP2 1630は、セクタ化されたアンテナパターンを使用して、AP1 1610とSTA1 1620との間の全方向性送信を監視/受信してもよい。AP2 1630は、後続する条件付きSO送信のために同じセクタ化されたアンテナパターンを使用してもよい。AP2 1630は、全方向性アンテナパターンを使用して、AP1 1610とSTA1 1620との間の全方向性送信を監視/受信してもよい。AP2 1630は、後続する条件付きSO送信のために全方向性アンテナパターンを使用してもよい。
【0091】
AP2 1630は、STA2 1640がSO条件を確認するかを決定することができる。これは、AP2 1630とSTA2 1640との間で、RTS/CTSシーケンス、たとえば、RTSフレーム1650およびCTSフレーム1660を交換することによって行われ得る。RTS/CTSフレームは、後続する送信が条件付きSO送信であることを信号伝達するように修正され得る。条件付きSO送信を示す1または複数のビットが、RTS/CTSフレームのSIGフィールド、MACヘッダ、またはMAC本体で送信され得る。AP1 1610およびSTA1 1620のMACアドレス、またはAP1 1610およびSTA1 1620の送信を示す他の情報は、RTSフレーム1650に含められてよい。このようにして、STA2 1640は、どのSO条件を確認するか、およびどのNAV設定をそれが無視するかの見解を有することができる。
【0092】
RTSフレーム1650の送信は、AP2 1630がSO条件を確認したときと同じアンテナパターンを利用してもよい。あるいは、RTSフレーム1650の送信は、AP2 1630がSO条件を確認したときと異なるアンテナパターンを利用してもよい。RTSフレーム1650を送信する前に、AP2 1630は、AP1 1610からのセクタ化された送信の開始に先立つ分散された調整機能(distributed coordination function:DFS)フレーム間隔(DIFS)期間に、バックオフを行うことができる。AP2 1630および他のOBSS STAがAP1 1610からのセクタ化された送信を受信することができないことをそれらが確認することを可能にするように、付加時間(extra time)期間が定義され得る。したがって、AP2 1630は、セクタ化された送信の開始に先立ってDIFS+付加時間期間+バックオフで送信することができる。
【0093】
STA2 1640は、CTSフレーム1660で応答することができるが、それは、条件付きSO送信ビットがRTSフレーム1650において検出された場合に、AP1 1610によって送信されたオムニパケットに応じてそのNAVを設定し得る。STA2 1640は、CTSフレーム1660を送信するのに先立ってSO条件を確認することができる。次いで、AP2 1630は、AP2 1630がSO条件を確認したときと同じアンテナパターンを使用して、STA2 1640へのセクタ化またはオムニデータ送信を始めることができる。AP2 1630から送信されたパケット、さらに、もしあれば、STA2 1640からの期待されるACKフレーム1670の期間は、SO条件に関するAP1 1610によって告知されたNAV設定よりも短くてよい。一例では、AP2 1630は、AP1 1610およびSTA1 1620により設定されるNAVの終了より前に送信が終了されることを保証することができる。
【0094】
上記の例では、AP2 1630がOBSS APであってよく、条件付きSO送信を開始することができる。より一般的な例では、OBSS APまたはSTAの両方が、条件付きSO送信を開始することができる。上記の例示的な手順では、条件付きSOインジケータが、AP2 1630とSTA2 1640との間で交換されるRTSフレーム1650およびCTSフレーム1660に追加されることができ、それにより、応答者、この例ではSTA2 1640が、AP1 1610からの全方向性送信によって以前に設定されたNAVをリセットすることができる。代替的方法は、すべてのOBSS APおよびSTAが、それらがSO条件を確認した場合にNAVをゼロにリセットすることを可能にすることであり得る。したがって、すべてのOBSS APおよびSTAが、条件付きSO送信を開始する、またはそれに応答することができる。
【0095】
図17は、協調的なセクタ化された(CS)送信例1800の図である。トレーニング、フィードバック、およびデータ送信のための手順が使用されることができ、ここでは、セクタ化されたアンテナを有する複数のWiFi APが、空間および周波数領域において協調し単一のSTAにデータを送信して、エリアスループットを改善する。
【0096】
ネットワークは、CS送信に適した異なるAPにわたるセクタペアを識別することができる。STAが、協調的なセクタ化の能力を有するネットワークに参加したとき、それは、その1次BSSとのセクタ機能交換の間の複数AP関連付けおよび協調的なセクタ化をそれがサポートすることを示すことができる。STAは、プローブ要求をネットワークに送信することができる。この例では、AP1 1710およびAP2 1720が、真に設定された(set to true)複数AP関連付けおよび協調的なセクタ化機能を伴うプローブ応答を送信することができる。STA1730は、真に設定された複数AP関連付けおよび協調的なセクタ化機能を伴う機能フレームと共に一緒に集約された関連付け要求を送信することができ、AP1 1710は1次APとして設定され、AP2 1720は2次APとして設定される。この関連付け要求は、利用可能な場合に配信システム(DS)上でまたはAP1 1710とAP2 1720との間の直接リンクによって、STA 1730のためのデータがAP1 1710とAP2 1720との両方に送られ得ることを、ネットワークに示すことができる。
【0097】
STA1730は、APごとに最良のセクタIDをフィードバックすることができる。STAにより要求されるマルチAPトレーニングおよびフィードバックは、APに向けられる単一APトレーニングおよびフィードバックによって実装され得る。
【0098】
図18は、STAにより要求されるマルチAPトレーニングおよびフィードバック手順例1800の図である。STA1810は、両方のAPに対するセクタトレーニング要求を開始することができる。たとえば、STA1810は、AP1 1820とAP2 1830との両方によって聴取されるセクタトレーニング要求1840を送信することができる。AP1 1820は、BSS1とBSS2の両方に関してBBS内の各セクタからのNDP送信のために十分に長いBSS1におけるTXOP1840をセットアップすることができる。この例は、AP1 1820が、AP2 1830内のセクタの数、およびそのセクタトレーニングを完了するためのAP2 1830に必要とされる時間を知ることが可能であることを示唆することができる。AP2 1830は、BSS1とBSS2の両方に関してBBS内の各セクタからのNDP送信1860のために十分に長いBSS2におけるTXOPをセットアップすることができる。これは、AP2 1830が、AP1 1820内のセクタの数、およびそのセクタトレーニングを完了するためのAP1 1820に必要とされる時間を知ることが可能であることを示唆することができる。
【0099】
AP1 1820は、NDP告知1855、次いで、発見されるセクタごとに1つの一連のNDP1857を送信することによって、そのセクタトレーニング/発見手順を開始することができる。AP1 1820に関するセクタトレーニングの完了の際、STA1810は、ACK1870またはセクタIDフィードバックフレームを送信することができる。
【0100】
AP2 1830は、STA1810からACK1870を聴取し、そのセクタトレーニング手順を開始することができる。AP2 1830は、NDP告知1865、次いで、発見されるセクタごとに1つの一連のNDP1867を送信することができる。AP2 1830に関するセクタトレーニングの完了の際、STA1810は、ACKまたはセクタIDフィードバックフレーム1880を送信することができる。セクタIDフィードバックフレーム1880は、AP1:セクタlID、AP2:セクタ2IDを有する集約されたフレームであってよい。あるいは、STA1810は、2次STAについてのセクタIDを記憶し、CS送信手順の間にそれをフィードバックすることができる。
【0101】
図19は、APに向けられる単一APトレーニングおよびフィードバック手順例1900の図である。この例では、STA1910は、各APからの独立したセクタフィードバック手順をリッスンし、セクタトレーニングモードにおけるAPへのセクタIDフィードバックフレームを使用して望ましいセクタIDをフィードバックすることができる。AP1 1920は、時間t1でBBS1内の各セクタからのNDP送信1940のために十分に長いBSS1におけるTXOP1930をセットアップすることができる。AP1 1920は、NDP告知1945、次いで、発見されるセクタごとに1つの一連のNDP1947を送信する。AP1 1920に関するセクタトレーニングの完了の際、STA1910は、セクタIDフィードバックフレーム1950を送信することができる。AP2 1960は、時間t2でBBS1内の各セクタからのNDP送信1980のために十分に長いBSS2におけるTXOP1970をセットアップすることができる。AP2 1960は、NDP告知1985、次いで、発見されるセクタごとに1つの一連のNDP1987を送信する。AP2 1960に関するセクタトレーニングの完了の際、STA1910は、セクタIDフィードバックフレーム1990を送ることができる。
【0102】
すべての有効なAPxおよびセクタID yをフィードバックする修正されたセクタフィードバックフレームが使用され得る。時間t1およびt2は、ネットワーク内の干渉の量を低減し、セクタ発見手順を改善するように調整され得る。STAは、各APに関連付けられ、各AP内のリソースを競って求めて、望ましいセクタIDをフィードバックすることが可能であり得る。あるいは、STAは、2次STAについてのセクタIDを記憶し、CS送信手順の間にそれをフィードバックすることができる。
【0103】
図20は、STAにより開始されるCS送信例2000の図である。複数のAPが、セクタ化されたマルチAPネットワーク内の単一のSTAに情報を送信することができる。送信はSTAにより開始されてよく、その場合はSTAがCS送信を要求し、または、送信はAPにより開始されてよく、その場合はAPがCG送信を要求する。この手順に含まれるAP、セクタ、およびSTAは予め選択されていると想定され得る。
【0104】
STAにより開始されるCS送信において、AP1 2010は、通常のRTSフレーム2020をSTA2030に送信して、データが送信のために利用可能であることを示すことができる。STA2030は、CS-CTSフレーム2040で応答して、マルチAP受信の能力を示すことができる。CS-CTSフレーム2040は、CS送信に使用されることになるAPおよびセクタが知られているという想定と共に動作し得るCS送信フラグを含むことができる。あるいは、CS-CTSフレーム2040は、セクタ発見プロセス中にSTA2030によって発見されたAP/セクタに関する情報を含むことができる。この情報は、使用されることになる実際のAP、この例では2つのAP/セクタペアを含んでもよく、または使用され得るすべての候補AP/セクタを含んでもよい。
【0105】
APに向けられるCS送信において、AP1 2010は、CS-RTSフレーム(図示せず)で、STAにCS送信が望ましいフラグを送信することができる。STAは、CS-CTSフレーム(図示せず)で応答して、CS送信が望まれることをAP2 2050に通知することができる。AP2 2050は、CS-ACKフレーム2060を送信して、それがマルチAP協調的なセクタ化された送信に利用可能であることをSTA2030に示すことができる。
【0106】
STA2030は、CS送信準備完了(CS-RDY)フレーム2070をAP1 2010およびAP2 2050に送信して、データを受け入れる準備ができていることを示すことができる。AP1 2010およびAP2 2050はそれぞれ、データ2080、2085を、望ましいセクタ上のSTA2030に送信することができる。データ2080、2085は、独立したストリームとして送信されて、送信のスループットを増大することができる。データ2080、2085は、追加の周波数回転、たとえば、巡回ストリームダイバーシティによって同一のストリームとして送信されて、送信の信頼性を改善することができる。STA2030は、ACKフレーム2090をAP1 2010および/またはAP2 2050に送信することができる。
【0107】
図21は、AP2110がその送信電力を設定するように構成されてSTAが干渉されないことを確実にすることができる、例示的な手順2100の図である。たとえば、STA送信電力は、IEEE802.11ahにおけるSOについて知られていないことがある。したがって、OBSS APは、それが実際にそうでないときにそれが1次AP/STAに対して空間的に直交していると、間違って結論付けることがある。電力制御方法は、空間直交性条件チェックが十分であることを保証することができる。AP1 2110およびSTA1 2120が1次APおよびSTAであるとき、AP2 2130およびSTA2 2140は、OBSS APおよびOBSS STAであり得る。AP1 2110が、STA1 2120へのセクタ化された送信を開始できるとともに、同時に、AP2 2130が、それがAP1 2110およびSTA1 2120に対して空間的に直交しているかどうかを監視2150することができる。AP2 2130がAP1 2110に対して空間的に直交し、AP2 2130がSTA1 2120に対して空間的に直交している場合、AP1-STA1送信が進行している間でも、AP2 2130は、少なくともSTA2 2140(またはその他)との新しい送信を開始することができる。
【0108】
AP1、AP2空間直交性の空間直交性条件は、AP2 2130がAP1 2110からオムニパケット送信を受信することができ、AP2 2130がAP1から指向性送信を受信することができないように定義され得る。SO条件を満足するために両方の条件が満たされ得る。他方で、STA1 2120に対するSO条件は、AP2 2130がSTA1 2120からの送信を受信することができないように定義され得る。
【0109】
P(AP1,オムニ)は、オムニ送信段階の間のAP1送信電力であってよく、P(AP1,指向性)は、セクタ化された送信段階の間のAP1送信電力であってよく、P(STA1)は、STA1によって使用される送信電力であってよく、P(AP2)は、SO条件が満たされAP2が同時送信を開始する計画である場合に、AP2によって使用されることになるAP2送信電力であってよい。P(STA1)は、AP2によって、AP2における適切な送信電力設定を可能にするために使用され得る。そうでなければ、P(AP2)がP(STA1)より大きい場合、空間直交性が満足されていてもSTA1はAP2によって干渉され得る。
【0110】
SO送信のための適切な電力制御を保証するために、以下の手順が使用され得る。図21を参照すると、AP1 2110は、送信電力P(AP1,オムニ)を使用して、オムニ送信されたパケット2160で始まる送信を開始することができる。このオムニ送信されたパケット2160内で、AP1は、STA1によって使用されることになる送信電力、たとえばP(STA1)を、明示的または黙示的にAP2へ信号伝達することができる。明示的に信号伝達される場合、P(STA1)は、いくつかのビットによって表されてよく、STA1 2120とAP2 2130との両方によって復号され得る。黙示的に信号伝達される場合、P(STA1)は、(ネットワーク内のすべてのSTAによって合意された)公称(nominal)送信電力であってよく、STA1 2120とAP2 2130との両方によって理解され得る。いずれにしても、P(STA1)は、将来の使用のためにAP2 2130によって取得され得る。STA1 2120は、P(STA1)で示される送信電力を使用していくつかの応答パケットを送信することができる。AP1 2110は、同じ送信電力P(AP1,オムニ)を使用して、オムニ送信されたショートパケットを継続することができる。AP1 2110は、セクタ化された送信P(AP1,指向性)を継続することができる。AP2 2130は、AP1 2110およびSTA1 2120からの送信を監視することができる。AP1-AP2 SO条件とSTA1-AP2 SO条件との両方が当てはまる場合、AP2 2130は、新しい送信を開始することができる。AP2 2130は、AP2 2130で取得され得る、P(STA1)より大きくない送信電力P(AP2)を使用することができる。送信電力P(AP2)は、空間直交性を保証するようにP(STA1)以下に設定され得る。この設定なしでは、SOチェックが誤りとなることがある。
【0111】
空間直交したセクタ化された送信を使用しない通常の802.11送信では、AP2 2130が送信すべきパケットを有する場合、それは、送信前にCCAを行うことができ、それにより、プリアンブルが存在する場合、CCAアルゴリズムは、信号が-82dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示すことができる。プリアンブルが存在しない場合、CCAアルゴリズムは、信号が-62dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示すことができる。
【0112】
図22は、セクタ化されたクリアチャネル評価(CCA)および全方向性CCA手順の例2200の図である。CCA要件は、セクタ化された送信の干渉または衝突を回避するように定義され得る。セクタ化された送信では、送信の方向に基づいて電力が変化し得る。したがって、実効的な等方放射された電力に基づく適応的に調整されたCCAレベルが望ましいことがある。実効等方放射電力(Effective isotropically radiated power:EIRP)は、すべての方向に電力を均一に分散する理論上の等方性アンテナが、最大アンテナ利得の方向で観測されるピーク電力密度をもたらすために放射し得る電力の量とすることができ、すなわち、
EIRP=Pt+Ga 式(1)
であり、式中、Ptは、送信された電力とすることができ、Gaは、特定の方向でのアンテナ利得とすることができる。
【0113】
たとえば、AP2210は、全方向性送信2220およびセクタ化された送信2230の機能を有することができる。オムニ送信2220の間、0dBアンテナ利得を仮定し、EIRPはPtと等しくなり得る。セクタ化された送信2230の間、EIRPはPt+Gaと等しくなり得る。EIRPが増大されるに従って、AP2210の送信範囲も増大し得る。全方向性送信2220においてAP2210を聴取しなくてよいSTA2 2240は、それがSTA1 2250に送信している間にAP2210を聴取することができる。STA2 2240が別のAP/STAとの進行中の送信を有した場合、衝突があり得る。
【0114】
この状況を回避するために、セクタ化されたCCAは、増大された感度を用いて行われてよい。たとえば、全方向性送信のためのCCA感度は、プリアンブル検出について-82dBm、プリアンブルなしのエネルギー検出について-62dBmであり得る。セクタ化された送信がアンテナ利得Gaと共に使用されるとき、CCA感度は、プリアンブル検出について(-82-Ga)dBmであり得る(すなわち、CCAアルゴリズムは、信号が(-82-Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る)。オムニ受信アンテナが使用される場合、より高い感度のCCA検出アルゴリズムが使用され得る。あるいは、セクタ化された受信アンテナがセクタ化利得Ga dBと共に使用される場合、同じCCA検出アルゴリズムが使用され得る。
【0115】
セクタ化された送信がアンテナ利得Ga dBと共に使用されるとき、CCA感度は、エネルギー検出について(-62-Ga)dBmであり得る(すなわち、CCAアルゴリズムは、信号がエネルギー検出について(-62-Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る)。オムニ受信アンテナが使用される場合、より高い感度のCCA検出アルゴリズムが使用され得る。あるいは、セクタ化された受信アンテナがセクタ化利得Ga dBと共に使用される場合、同じCCA検出アルゴリズムが使用され得る。
【0116】
受信機CCAアルゴリズムは、全方向性受信アンテナを想定して通常のCCAを行って、4μs内の-62dBmにおけるエネルギー検出を完了し、また4μs内の-82dBmにおけるプリアンブル検出を完了することができる。通常のCCAを使用することで、AP/STAからのいかなる全方向性送信も他の潜在的ユーザへの干渉を引き起こすことがない。たとえば、この通常のCCAの使用は、AP2210のオムニ範囲内に配置されるがAPの指向性範囲内に配置されないSTA3 2260への干渉を防止することができる。
【0117】
次いで、受信機CCAアルゴリズムは指向性CCAを行うことができる。全方向性受信アンテナが使用され得る。したがって、検出アルゴリズムはGa dBによって改善され得る。
【0118】
プリアンブルが存在する場合、改善されたCCAアルゴリズムは、信号が-(82d+Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。プリアンブルが存在しない場合、改善されたCCAアルゴリズムは、信号が-(62d+Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。
【0119】
指向性受信アンテナが使用され得る。したがって、独自のCCA検出アルゴリズムが使用され得る。プリアンブルが存在する場合、(付加的Ga dB受信アンテナ利得を有する)CCAアルゴリズムは、信号が-(82d+Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。プリアンブルが存在しない場合、(付加的Ga dB受信アンテナ利得を有する)CCAアルゴリズムは、信号が-(62d+Ga)dBmで受信されるとき、4μs観測ウィンドウ内の>90%確率を有するビジーチャネルを示し得る。
【0120】
指向性CCAの使用は、あらゆる指向性送信が送信の方向の遠く離れたユーザに対する意図されない干渉を引き起こすのを防止することができる。たとえば、そのような指向性CCAの使用は、AP2210の指向性範囲内に配置されるがAP2210のオムニ範囲内に配置されないSTA2 2240への干渉を防止することができる。同様に、付加的送信側アンテナ利得を提供するためにアンテナアレイがAP側で使用される場合、同様のCCAが使用され得る。
【0121】
いくつかの場合、指向性送信範囲がオムニ送信範囲と同程度であるように、セクタ化された送信中に送信電力制御を行うことが有益なことがある。たとえば、Pt1が、オムニ送信中の送信電力であり、Pt2が、セクタ化された送信中の送信電力であるとともに、Gtが、セクタ化された送信中のアンテナ利得である場合、全方向性送信とセクタ化された送信との両方に同じCCAが使用されるようにPt1=Pt2+Gtを有することが有益なことがある。
【0122】
セクタ化された動作をサポートせずかつアクティブセクタ内にあるSTAのための方法が実装され得る。全方向性ビーム送信は、アクティブセクタ内の後続の動作が見込まれ得るセクタ内のSTAの保護を容易にするために使用され得る。セクタ化された手順をサポートしないSTAは、セクタ化された動作をサポートするSTAを保護することが意図されるAPからのオムニビーム送信を受信することが可能であり得る。この送信を受信し、セクタ化された動作をサポートしないSTAは、それらの性能を低下させ得るセクタ内のそれらの動作を軽減するために以下の手順のうちの1または複数に従うことができる。
【0123】
後続のセクタ化された動作の可能性を示すAPからのオムニビーム送信を受信するBBSにおいて動作するSTAは、APに応答して、セクタ化された動作の機能の欠如を示すことができる。セクタ化のサポートの欠如を示すことは、セクタ化タイプを3に設定することによって示されてよい。STAは、さらにまたは代わりに、その機能を示す表示をAPに提供することができる。STAは、この送信に続けて、APがこのSTAの受信の品質を決定することを可能にし得るショートCTS NDPパケットを用いてもよい。STAは、さらにまたは加えて、その受信品質を示す表示をAPに提供することができる。
【0124】
後続のセクタ化された動作の可能性を示すAPからのオムニビーム送信を受信するBBSにおいて動作するSTAは、セクタ化に対する適性を示す表示によって応答し、加えて、グループID表示を提供することができる。1または複数のSTAによるセクタ化の使用に対する適性を示す表示は、測定要求要素を要求する能力をAPに提供する隣接報告機能を示す表示を含むことができる。
【0125】
図23は、例示的な測定要求応答フィールド2300の図である。測定要求応答フィールド2300は、動作クラス要素2310、チャネル番号要素2320、ランダム化間隔要素2330、測定期間要素2340、セクタID要素2350、および1または複数の任意の下位要素2360を含むことができる。STAは、特定のセクタIDについての測定(チャネル負荷)報告要素によって応答することにより、特定のセクタIDについてのチャネル負荷要求を含む測定要求に対して応答することができる。
【0126】
STAは、図23の測定要求応答フィールドを提供することによって、特定のセクタIDについてのノイズヒストグラム要求を含む測定要求に応答することができる。
【0127】
図24は、例示的なSTA統計要求応答フィールド2400の図である。STA統計要求応答フィールド2400は、ピアMACアドレス要素2410、ランダム化間隔要素2420、測定期間要素2430、グループアイデンティティ要素2440、セクタID要素2450、および1または複数の任意の下位要素2460を含むことができる。STAは、図24のSTA統計要求応答フィールドを提供することによって、特定のセクタIDについての統計要求に応答することができる。
【0128】
(実施形態)
1. ワイヤレス通信において調整されたセクタ化された送信を行うための方法であって、
第1の局(STA)で、第1のアクセスポイント(AP)から、第1のヌルデータパケット告知(NDPA)フレームを受信するステップを含む方法。
【0129】
2. 第1のNDPAフレームは、複数のセクタを使用して受信される、実施形態1に記載の方法。
【0130】
3. 第1のSTAで、第2のAPから第2のNDPAフレームを受信するステップをさらに含む、実施形態1または2に記載の方法。
【0131】
4. 第2のNDPAフレームは、複数のセクタを使用して受信される、実施形態3に記載の方法。
【0132】
5. 第1のAPから、第1のヌルデータパケット(null data packet:NDP)フレームを受信するステップをさらに含む、実施形態1乃至4のいずれか一項に記載の方法。
【0133】
6. 第2のAPから、第2のNDPフレームを受信するステップをさらに含む、実施形態5に記載の方法。
【0134】
7. 第2のSTAから、第1のフィードバックパケットを受信するステップをさらに含む、実施形態1乃至6のいずれか一項に記載の方法。
【0135】
8. フィードバックパケットは、第2のSTAと通信するためのセクタを示す、実施形態7に記載の方法。
【0136】
9. 第2のフィードバックパケットを第1のAPに送信するステップをさらに含む、実施形態7または8に記載の方法。
【0137】
10. 第2のフィードバックパケットは、第1のSTAと通信するためのセクタを示す、実施形態9に記載の方法。
【0138】
11. 第1のSTAと通信するためのセクタは、第2のSTAと通信するためのセクタと互換性がある、実施形態10に記載の方法。
【0139】
12. 第1のSTAと通信するための示されたセクタを介して、第1のAPからデータを受信するステップをさらに含む、実施形態10または11に記載の方法。
【0140】
13. 第1のNDPフレームおよび第2のNDPフレームは、第1のNDPAフレームおよび第2のNDPAフレームからショートフレーム間隔(SIFS)期間の後に受信される、実施形態6乃至12のいずれか一項に記載の方法。
【0141】
14. 第1のNDPフレームおよび第2のNDPフレームは、送信セクタ化を推定するために使用される、実施形態6乃至13のいずれか一項に記載の方法。
【0142】
15. 第1のNDPフレームおよび第2のNDPフレームは、第2のSTAによって第1のAPと第2のSTAとの間の空間直交性を推定するために使用できる、実施形態6乃至14のいずれか一項に記載の方法。
【0143】
16. 第1のフィードバックパケットは、第2のAPからのセクタを示す、実施形態7乃至15のいずれか一項に記載の方法。
【0144】
17. 第2のフィードバックパケットは、望ましくないセクタを示す、実施形態9乃至16のいずれか一項に記載の方法。
【0145】
18. 第2のフィードバックパケットは、第1のAPのための変調および符号化方式(MCS)を示す、実施形態9乃至17のいずれか一項に記載の方法。
【0146】
19. 第2のフィードバックパケットは、第1のAPに対する送信電力を示す、実施形態9乃至18のいずれか一項に記載の方法。
【0147】
20. 第1のAPから、セクタ化確認信号を受信するステップをさらに含む、実施形態1乃至19のいずれか一項に記載の方法。
【0148】
21. ワイヤレス通信において調整されたセクタ化された送信を行うための局(STA)であって、
第1のアクセスポイント(AP)から、第1のヌルデータパケット告知(NDPA)フレームを受信するように構成された受信機を備えるSTA。
【0149】
22. 受信機は、複数のセクタを使用して第1のNDPAフレームを受信するように構成される、実施形態21に記載のSTA。
【0150】
23. 受信機は、第2のAPから、第2のNDPAフレームを受信するようにさらに構成される、実施形態21または22に記載のSTA。
【0151】
24. 受信機は、複数のセクタを使用して第2のNDPAフレームを受信するように構成される、実施形態23に記載のSTA。
【0152】
25. 受信機は、第1のAPから、第1のヌルデータパケット(NDP)フレームを受信するようにさらに構成される、実施形態21乃至24のいずれか一項に記載のSTA。
【0153】
26. 受信機は、第2のAPから、第2のNDPフレームを受信するようにさらに構成される、実施形態25に記載のSTA。
【0154】
27. 受信機は、第2のSTAから、第1のフィードバックパケットを受信するようにさらに構成される、実施形態21乃至26のいずれか一項に記載のSTA。
【0155】
28. フィードバックパケットは、第2のSTAと通信するためのセクタを示す、実施形態27に記載のSTA。
【0156】
29. 第2のフィードバックパケットを第1のAPに送信するように構成された送信機をさらに備える、実施形態21乃至28のいずれか一項に記載のSTA。
【0157】
30. 第2のフィードバックパケットは、STAと通信するためのセクタを示す、実施形態29に記載のSTA。
【0158】
31. STAと通信するためのセクタは、第2のSTAと通信するためのセクタと互換性がある、実施形態30に記載のSTA。
【0159】
32. 受信機は、STAと通信するための示されたセクタを介して、第1のAPからデータを受信するようにさらに構成される、実施形態21乃至31のいずれか一項に記載のSTA。
【0160】
33. 受信機は、第1のNDPフレームおよび第2のNDPフレームを、第1のNDPAフレームおよび第2のNDPAフレームからショートフレーム間隔(SIFS)期間の後に受信するように構成される、実施形態26乃至32のいずれか一項に記載のSTA。
【0161】
34. 第1のNDPフレームおよび第2のNDPフレームに基づいて送信セクタ化を推定するように構成されたプロセッサをさらに備える、実施形態26乃至33のいずれか一項に記載のSTA。
【0162】
35. 第1のフィードバックパケットは、第2のAPからのセクタを示す、実施形態27乃至34のいずれか一項に記載のSTA。
【0163】
36. 第2のフィードバックパケットは、望ましくないセクタを示す、実施形態29乃至35のいずれか一項に記載のSTA。
【0164】
37. 第2のフィードバックパケットは、第1のAPのための変調および符号化方式(MCS)を示す、実施形態29乃至36のいずれか一項に記載のSTA。
【0165】
38. 第2のフィードバックパケットは、第1のAPに対する送信電力を示す、実施形態29乃至37のいずれか一項に記載のSTA。
【0166】
39. 受信機は、第1のAPから、セクタ化確認信号を受信するようにさらに構成される、実施形態21乃至38のいずれか一項に記載のSTA。
【0167】
40. 協調的なセクタ化された送信のためのトレーニングおよびフィードバックを提供する方法であって、
プローブ要求を送信するステップを含む方法。
【0168】
41. 第1のアクセスポイント(AP)および第2のAPのそれぞれからプローブ応答を受信するステップをさらに含む、実施形態40に記載の方法
42. 受信されたプローブ応答のそれぞれは、複数AP関連付け機能および協調的セクタ化機能を示す、実施形態41に記載の方法。
【0169】
43. 関連付け要求を送信するステップをさらに含む、実施形態40乃至42のいずれか一項に記載の方法。
【0170】
44. 関連付け要求は、複数AP関連付け機能および協調的セクタ化機能を示す機能フレームと共に集約される、実施形態43に記載の方法。
【0171】
45. 第1のAPは1次APとして設定され、第2のAPは2次APとして設定される、実施形態41乃至44のいずれか一項に記載の方法。
【0172】
46. STA用のデータは、配信システム(DS)を介して、または第1のAPと第2のAPとの間の直接リンクを介して受信される、実施形態40乃至45のいずれか一項に記載の方法。
【0173】
本明細書に説明された解決策ではIEEE802.11固有のプロトコルを考慮しているが、本明細書に説明された解決策は、このシナリオに制約されず、他のワイヤレスシステムにも適用可能である。
【0174】
この文献の解決策はアップリンク動作に関して説明されているが、方法および手順はダウンリンク動作に適用されてもよい。
【0175】
設計および手順の例で様々なフレーム間隔を示すためにSIFSが使用されているが、RIFSまたは他の合意された時間間隔などのすべての他のフレーム間隔が同じ解決策に適用されてもよい。
【0176】
特徴および要素が特定の組合せで上述されているが、当業者は、各特徴または要素が、単独で、または任意の他の特徴および要素との組合せで使用され得ることを理解するであろう。加えて、本明細書に説明された実施形態は、コンピュータまたはプロセッサによる実行のためにコンピュータ可読媒体に組み込まれたコンピュータプログラム、ソフトウェア、またはファームウェアで実装され得る。コンピュータ可読媒体の例は、(有線またはワイヤレス接続を介して送信される)電子信号、およびコンピュータ可読記憶媒体を含む。コンピュータ可読記憶媒体の例は、以下に限定されないが、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリデバイス、磁気媒体(たとえば、内蔵ハードディスクまたは着脱可能ディスク)、光磁気媒体、および、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD)などの光媒体を含む。ソフトウェアに関連するプロセッサが、WTRU、UE、端末、基地局、NodeB、eNB、HNB、HeNB、AP、RNC、ワイヤレスルータ、または任意のホストコンピュータで使用するための無線周波数トランシーバを実装するために使用され得る。
図1A
図1B
図1C
図2
図3
図4
図5A
図5B
図6A
図6B
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24