IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大日本印刷株式会社の特許一覧

特許7160217蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
<>
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図1
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図2
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図3
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図4
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図5
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図6
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図7
  • 特許-蓄電デバイス用外装材、その製造方法、及び蓄電デバイス 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-17
(45)【発行日】2022-10-25
(54)【発明の名称】蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
(51)【国際特許分類】
   H01M 50/119 20210101AFI20221018BHJP
   H01M 50/105 20210101ALI20221018BHJP
   H01M 50/121 20210101ALI20221018BHJP
   H01M 50/129 20210101ALI20221018BHJP
   H01M 50/131 20210101ALI20221018BHJP
   H01G 11/78 20130101ALI20221018BHJP
   H01G 11/84 20130101ALI20221018BHJP
   C22C 21/00 20060101ALI20221018BHJP
   C22C 21/06 20060101ALI20221018BHJP
【FI】
H01M50/119
H01M50/105
H01M50/121
H01M50/129
H01M50/131
H01G11/78
H01G11/84
C22C21/00 M
C22C21/06
【請求項の数】 5
(21)【出願番号】P 2021567670
(86)(22)【出願日】2020-12-25
(86)【国際出願番号】 JP2020048733
(87)【国際公開番号】W WO2021132562
(87)【国際公開日】2021-07-01
【審査請求日】2022-06-10
(31)【優先権主張番号】P 2019234058
(32)【優先日】2019-12-25
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002897
【氏名又は名称】大日本印刷株式会社
(74)【代理人】
【識別番号】100124431
【弁理士】
【氏名又は名称】田中 順也
(74)【代理人】
【識別番号】100174160
【弁理士】
【氏名又は名称】水谷 馨也
(72)【発明者】
【氏名】林 慎二
(72)【発明者】
【氏名】平木 健太
(72)【発明者】
【氏名】安田 大佑
(72)【発明者】
【氏名】山崎 昌保
【審査官】山本 雄一
(56)【参考文献】
【文献】特開2015-165476(JP,A)
【文献】特開平11-195404(JP,A)
【文献】特開2005-343105(JP,A)
【文献】特開昭61-110744(JP,A)
【文献】特開2018-168449(JP,A)
【文献】特開2007-073402(JP,A)
【文献】国際公開第2017/188396(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 50/00-50/198
H01G 11/78
H01G 11/84
C22C 21/00-21/18
(57)【特許請求の範囲】
【請求項1】
少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たし、残部がアルミニウム及び不可避不純物からなるアルミニウム合金箔であって
前記アルミニウム合金箔中の、Si,Fe,Mg,及びAl以外の成分である不可避不純物の含有率が、個々に0.10質量%以下かつ合計で0.40質量%以下である、蓄電デバイス用外装材。
【請求項2】
前記アルミニウム合金箔の組成は、Mn:0.1質量%以下を満たす、請求項1に記載の蓄電デバイス用外装材。
【請求項3】
前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上であり、伸びが10%以上である、請求項1又は2に記載の蓄電デバイス用外装材。
【請求項4】
少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
【請求項5】
少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たし、残部がアルミニウム及び不可避不純物からなるアルミニウム合金箔であって
前記アルミニウム合金箔中の、Si,Fe,Mg,及びAl以外の成分である不可避不純物の含有率が、個々に0.10質量%以下かつ合計で0.40質量%以下である、蓄電デバイス用外装材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。
【背景技術】
【0002】
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質等の蓄電デバイス素子を封止するために包装材料(外装材)が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。
【0003】
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
【0004】
そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材/アルミニウム合金箔層/熱融着性樹脂層が順次積層されたフィルム状の外装材が提案されている(例えば、特許文献1を参照)。
【0005】
このようなフィルム状の外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層同士を熱融着させることにより、外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2008-287971号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
蓄電デバイスのエネルギー密度を高める観点などから、フィルム状の外装材には、成形によって深い凹部を形成することが求められる。従って、蓄電デバイス用外装材に用いられるアルミニウム合金箔には、高い成形性が要求される。
【0008】
成形性に優れたアルミニウム合金箔としては、Al-Fe合金系の軟質アルミニウム合金箔が知られている。このような軟質アルミニウム合金箔の具体例としては、例えば、JIS H4160:1994 A8021H-Oで規定される組成、JIS H4160:1994 A8079H-Oで規定される組成、JIS H4000:2014 A8021P-Oで規定される組成、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が知られている。
【0009】
一方、蓄電デバイス用外装材の成形工程や、蓄電デバイス用外装材に蓄電デバイス素子を収容してヒートシールする工程、さらには、ヒートシールした部分を折り曲げる工程などにおいて、外部端子と蓄電デバイス用外装材のアルミニウム合金箔とが異物を介して短絡、あるいはヒートシール時の圧力ムラで外部端子と蓄電デバイス用外装材のアルミニウム合金箔とが近接もしくは接触して短絡し、且つ最内層に位置する熱融着性樹脂層に微細なクラックやピンホールが発生すると、熱融着性樹脂層に浸透した電解液を介して蓄電デバイス用外装材のアルミニウム合金箔と外部端子との間で通電し、アルミニウム合金箔が電解液中のリチウムイオンと合金化腐食する可能性がある(特に、アルミニウム合金箔と負極端子とが電解液を介して短絡すると、アルミニウム合金箔が腐食しやすい)。アルミニウム合金箔が腐食すると、アルミニウム合金箔が膨張するなどの不具合が生じて、蓄電デバイスの性能が劣化に繋がる。
【0010】
このような状況下、本開示は、少なくとも、基材層、アルミニウム合金箔層を含むバリア層、及び熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材であって、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制された、蓄電デバイス用外装材を提供することを目的とする。
【課題を解決するための手段】
【0011】
本開示の発明者らは、前記課題を解決すべく、鋭意検討を行った。具体的には、蓄電デバイス用外装材のバリア層に用いられるアルミニウム合金箔の組成について検討を重ね、SiとMgとFeの含有量を所定の範囲に設定することにより、蓄電デバイス用外装材の高い成形性を担保した上で、電解液が付着した状態で通電が生じた場合の腐食が効果的に抑制されることを見出した。
【0012】
本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む、蓄電デバイス用外装材。
【発明の効果】
【0013】
本開示によれば、少なくとも、基材層、アルミニウム合金箔層を含むバリア層、及び熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材であって、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制された、蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。
【図面の簡単な説明】
【0014】
図1】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図2】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図3】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図4】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図5】実施例における耐腐食性の評価方法を説明するための模式図である。
図6】アルミニウム合金箔の厚み方向の断面における、結晶粒と第二相粒子を示す模式図である。
図7】実施例1のアルミニウム合金箔の表面について、耐腐食性評価後に観察したマイクロスコープ画象である。
図8】比較例1のアルミニウム合金箔の表面について、耐腐食性評価後に観察したマイクロスコープ画象である。
【発明を実施するための形態】
【0015】
本開示の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含むことを特徴とする。本開示の蓄電デバイス用外装材によれば、当該構成を備えていることにより、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合のアルミニウム合金箔の腐食が効果的に抑制される。
【0016】
以下、本開示の蓄電デバイス用外装材、その製造方法、及び蓄電デバイスについて詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
【0017】
1.蓄電デバイス用外装材
本開示の蓄電デバイス用外装材10は、例えば図1から図4に示すように、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。
【0018】
本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔を含んでいる。すなわち、本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔により構成することができる。後述する所定の組成を満たすアルミニウム合金箔を用いた本開示の蓄電デバイス用外装材は、成形性に優れ、かつ、アルミニウム合金箔の腐食が効果的に抑制される。
【0019】
蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
【0020】
蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、例えば300μm以下、好ましくは約180μm以下、約155μm以下が挙げられ、下限については、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~155μm程度、35~120μm程度、45~180μm程度、45~155μm程度、60~180μm程度、60~155μm程度が挙げられる。
【0021】
なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層3がアルミニウム合金箔により構成されている場合、アルミニウム合金箔の圧延方向(RD:Rolling Direction)には、アルミニウム合金箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、アルミニウム合金箔の表面を観察することによって、アルミニウム合金箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、アルミニウム合金箔のRDとが一致するため、積層体のアルミニウム合金箔の表面を観察し、アルミニウム合金箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。
【0022】
蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
【0023】
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。
【0024】
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。
【0025】
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
【0026】
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
【0027】
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0028】
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4‐アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0029】
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
【0030】
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
【0031】
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。
【0032】
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
【0033】
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0034】
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0035】
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
【0036】
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
【0037】
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。
【0038】
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
【0039】
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
【0040】
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
【0041】
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
【0042】
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0043】
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
【0044】
着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
【0045】
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0046】
接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
【0047】
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、下限については、例えば、約1μm以上、約2μm以上が挙げられ、上限については、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
【0048】
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
【0049】
着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0050】
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
【0051】
[バリア層3]
蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
【0052】
本開示の蓄電デバイス用外装材のバリア層3は、アルミニウム合金箔を含んでいる。
【0053】
アルミニウム合金箔は、Si(ケイ素):0.50質量%以下、Fe(鉄):0.2質量%以上2.0質量%以下、Mg(マグネシウム):0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む。アルミニウム合金箔の主成分はAl(アルミニウム)であり、例えば92.10質量%以上はアルミニウムにより構成されている。
【0054】
また、アルミニウム合金箔において、Si、Fe、Mg、及びAl以外の他の成分が含まれていてもよい。他の成分としては、例えば、Mn(マンガン)、Cu(銅)、Cr(クロム)、Zn(亜鉛)等の不可避不純物が挙げられる。アルミニウム合金箔中の不可避不純物は、例えば、個々に0.10質量%以下かつ合計で0.40質量%以下である。他の成分は、1種類であってもよいし、2種類以上であってもよい。
【0055】
アルミニウム合金箔において、Feは、鋳造時にAl-Fe系金属間化合物として晶出し、前記化合物のサイズが大きい場合は焼鈍時に再結晶のサイトとなるため、再結晶粒を微細化する効果がある。Feの含有量が下限(0.2質量%)を下回ると、粗大な金属間化合物の分布密度が低くなり、結晶粒微細化の効果が低く、最終的な結晶粒径分布も不均一となる。Feの含有量が上限(2.0質量%)を超えると、結晶粒微細化の効果が飽和もしくは却って低下し、さらに鋳造時に生成されるAl-Fe系金属間化合物のサイズが非常に大きくなり、アルミニウム合金箔の伸びと圧延性が低下する。このため、Feの含有量を上記範囲0.2質量%以上2.0質量%以下に定める。同様の理由でFeの含有量は下限0.5質量%とするのが好ましく、さらに同様の理由でFeの含有量は下限1.0質量%、上限1.8質量%とすることが一層好ましい。
【0056】
アルミニウム合金箔において、Mgは、アルミニウムに固溶し、固溶強化によってアルミニウム合金箔の強度を高めることができる。また、Mgはアルミニウムに固溶し易い為、Feと共に含有しても金属間化合物が粗大化し成形性や圧延性が低下する危険性は低い。Mgの含有量が下限(0.1質量%)を下回ると強度の向上が不十分となり、上限(5.0質量%)を超えるとアルミニウム合金箔が硬くなり圧延性の低下や成形性の低下を招く。特に好ましい下限は0.5質量%である。Mgの含有量が5.0質量%を超えるとアルミニウム合金箔は硬くなり成形性や圧延性は低下するが、非常に高い強度を有するアルミニウム合金箔を得ることができる。Mgの含有量を0.5質量%超4.5質量%以下の範囲とすることが望ましい。また、Mgを添加することで蓄電デバイス用外装材の電解液に対する耐食性が向上する。メカニズムの詳細は明らかではないが、Mg添加量が多いほどアルミニウム合金箔と電解液中のリチウムなどが反応しにくくなり、アルミニウム合金箔の微粉化や貫通孔の発生を抑制することができる。
【0057】
アルミニウム合金箔において、Siは、微量であればアルミニウム合金箔の強度を高める目的で添加されることもあるが、本開示においては0.5質量%を超えると、鋳造時に生成されるAl-Fe-Si系金属間化合物のサイズが大きくなり、アルミニウム合金箔の伸びや成形性が低下する。よって、アルミニウム合金箔の厚みが薄い場合、金属間化合物を起点とした破断が生じ圧延性も低下する。またMg含有量の多い合金にSiを多量に添加するとMg-Si系析出物の生成量が多くなり、圧延性の低下やMgの固溶量が低下することによる強度低下を招く恐れがある。同様の理由でSiの含有量を0.2質量%以下に抑えることが望ましい。Si含有量の下限値は、望ましくは0.001質量%であり、より望ましくは0.005質量%である。なお、Siの含有量が低い程、成形性、圧延性、結晶粒の微細化度合い、そして延性が良好という傾向を有する。
【0058】
アルミニウム合金箔は、CuやMnなどの不可避不純物を含むことができる。これらの不純物は、例えば、それぞれ0.1質量%以下の含有量とするのが望ましい。なお、本開示としては、前記不可避不純物の含有量の上限が上記数値に限定されるものではない。ただし、Mnはアルミニウムに固溶し難いため、Mgと異なり固溶強化によってアルミニウム合金箔の強度を大きく高めることは期待できない。またFe含有量の多い合金にMnを多量に添加すると、金属間化合物の粗大化やAl-Fe-Mn系の巨大金属間化合物生成の危険性が高くなり、圧延性や成形性の低下を招く恐れがある。このため、Mn含有量は0.1質量%以下とするのが望ましい。Mn含有量は、より望ましくは0.08質量%以下である。また、Mn含有量の下限値は、望ましくは0.001質量%であり、より望ましくは0.005質量%である。
【0059】
本開示において、成形性に優れ、かつ、電解液が付着した状態で通電が生じた場合の腐食が効果的に抑制された蓄電デバイス用外装材とする観点から、アルミニウム合金箔において、Mn(マンガン):0.1質量%以下の組成を満たすことが好ましく、Mn(マンガン):0.01質量%以上0.1質量%以下の組成を満たすことがより好ましく、Mn(マンガン):0.01質量%以上0.08質量%以下の組成を満たすことがより好ましい。
【0060】
アルミニウム合金箔の好ましい組成としては、例えば以下の具体例1,2の組成を満たすものが挙げられる。
【0061】
・具体例1
Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.05質量%以上0.1質量%以下、Cu:0.0質量%以上0.1質量%以下、Cr:0.0質量%以上0.1質量%以下、Zr:0.0質量%以上0.1質量%以下であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlである。
【0062】
・具体例2
Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.1質量%、Cu:0.0質量%、Cr:0.0質量%、Zr:0.0質量%であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlであることがより好ましい。また、アルミニウム合金箔は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下、Mn:0.1質量%、Cu:0.0質量%、Cr:0.0質量%、Zr:0.0質量%であり、その他の不可避不純物が、個々に0.05質量%以下かつ合計で0.15質量%以下であり、残部がAlである。
【0063】
既存のJIS A8079や8021等のアルミニウム合金箔に対し、劇的に耐衝撃性や突刺し強度を向上させるためには、アルミニウム合金箔の引張強さは100MPa以上であることが望ましく、200MPa以上であることがより望ましい。引張強さの上限値は350MPaであることが望ましい。また、引張強さは、200MPa以上350MPa以下であることが望ましく、200MPa以上310MPa以下であることがより望ましい。ただし、成形性は、引張強さが高い程低下する為、成形性を重視する場合は引張強さを抑さえた方が良い。蓄電デバイス用外装材の成形性を高める観点からは、前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上180MPa以下であることが好ましい。当該引張強さは、具体的には、実施例に記載の方法により測定される。アルミニウム合金箔の引張強さは、組成の選定と結晶粒サイズの最適化により達成することができる。
【0064】
アルミニウム合金箔の成形性に対する伸びの影響は、その成形方法によって大きく異なり、また伸びだけで成形性が決定されるわけではない。アルミニウム合金箔を用いた外装材に対する張出し加工においては、アルミニウム合金箔の伸びが高い程、成形には有利である。前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される伸びが、好ましくは10%以上、より好ましくは15%以上である。伸びの上限値は40%であることが望ましく、30%であることがより望ましい。また、伸びは0%以上40%であることが望ましく、15%以上40%であることがより望ましく、15%以上30%であることがさらに望ましい。当該引張伸びは、具体的には、実施例に記載の方法により測定される。アルミニウム合金箔の伸びの特性は、組成の選定と結晶粒サイズの微細化により達成することができる。
【0065】
以上のような組成及び特性を満たすアルミニウム合金箔は、例えば、JIS H4000:2014の合金番号A5000番台の組成を有するアルミニウム合金をベースとして組成を調整し、公知のアルミニウム合金箔の製法と同様、例えば、溶融、均質化処理、熱間圧延、冷間圧延、中間焼鈍、冷間圧延、最終焼鈍の各工程を経て製造することができる。アルミニウム合金箔の製造条件については、例えば特開2005-163077号公報の記載などを参考にすることができる。また、アルミニウム合金箔に含まれる各化学成分の分析は、JIS H4160-1994に規定された分析試験によって行う。
【0066】
例えば、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金の鋳塊を、半連続鋳造法等の常法によって鋳造する。得られた鋳塊に対しては、480~540℃で6~12時間の均質化処理を行う。
【0067】
一般にアルミニウム材料の均質化処理は400~600℃で長時間(例えば12時間程度)行われるが、本開示のようにFe添加による結晶粒微細化を考慮すると480~540℃で6時間以上の熱処理をすることが望ましい。480℃未満では、結晶粒微細化が不十分であり、540℃を超えると、結晶粒の粗大化を招く。処理時間が6時間未満であると、均質処理が不十分となる。
【0068】
均質化処理後、熱間圧延を行い、所望の厚さのアルミニウム合金板を得る。熱間圧延は常法によって行うことができるが、熱間圧延の巻取り温度は、再結晶温度以上、具体的には300℃以上とすることが望ましい。300℃未満では0.3μm以下の微細なAl-Fe系金属間化合物が析出する他、熱間圧延後に再結晶粒とファイバー粒が混在し、中間焼鈍や最終焼鈍後の結晶粒サイズが不均一化し伸び特性が低下する懸念があり、望ましくない。
【0069】
熱間圧延の後には、冷間圧延、中間焼鈍、最終冷間圧延を行い、厚さを5~100μmとすることで、本開示のアルミニウム合金箔を得る。最終冷間圧延率は90%以上とすることが望ましい。
【0070】
なお、冷間圧延途中での中間焼鈍は行わなくてもよいが、場合によっては実施しても良い。中間焼鈍にはコイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍を付加する場合、いずれの方法でも良いが、結晶粒の微細化を図り高強度化をする場合はCAL焼鈍が望ましく、成形性を優先するならばバッチ焼鈍が好ましい。
【0071】
例えば、バッチ焼鈍では、300~400℃で3時間以上、CAL焼鈍では、昇温速度:10~250℃/秒、加熱温度:400℃~550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20~200℃/秒の条件を採用することができる。ただし、本開示としては、中間焼鈍の有無、中間焼鈍を行う場合の条件等は特定のものに限定されるものではない。
【0072】
箔圧延後には、最終焼鈍を行って軟質箔とする。箔圧延後の最終焼鈍は一般に250℃~400℃で実施すればよい。しかしMgによる耐食性の効果をより高める場合には350℃以上の高温で5時間以上保持することが望ましい。
【0073】
最終焼鈍の温度が低いと軟質化が不十分であり、またMgの箔表面への濃化も不十分となり耐食性も低下する懸念がある。400℃を超えると、箔表面へMgが過度に濃化し箔の変色や、酸化皮膜の性質が変化し微小なクラックを生じることで耐食性が低下する懸念がある。最終焼鈍の時間は、5時間未満では、最終焼鈍の効果が不十分である。
【0074】
本開示においては、図6の模式図に示すように、アルミニウム合金箔(バリア層3)の厚み方向の断面において、光学顕微鏡の視野内の任意の100個の第二相粒子3bについて、個々の第二相粒子3bの厚み方向とは垂直方向の最左端と、厚み方向とは垂直方向の最右端とを結ぶ直線距離を径yとした場合に、当該径yが大きい順に上位20個の第二相粒子3bの径yの平均が、10.0μm以下であることが好ましい。これによって、厚みが例えば約85μm以下、さらには約50μm以下、さらには約40μm以下という非常に薄いアルミニウム合金箔であるにも拘わらず、当該アルミニウム合金箔を蓄電デバイス用外装材に積層し、成形した時にピンホールやクラックが生じ難く、蓄電デバイス用外装材に優れた成形性を備えさせることができる。さらに、本開示においては、アルミニウム合金箔(バリア層3)における第二相粒子3bの径yの平均が10.0μm以下であることによって、アルミニウム合金箔の厚みが例えば約85μm以下、さらには約50μm以下、さらには約40μm以下であり、かつ、蓄電デバイス用外装材の総厚みについても、例えば前述の厚みにまで薄い場合にも、成形時にピンホールやクラックが生じ難く、優れた成形性を備えている。
【0075】
また、より成形性を高める観点からは、当該径yの平均としては、1.0~8.0μm程度であることがより好ましく、1.0~6.0μm程度であることがさらに好ましい。なお、図6は模式図であるため、描画を省略し、第二相粒子3bを100個描いてない。
【0076】
本開示において、アルミニウム合金箔に含まれる第二相粒子は、アルミニウム合金中に存在する金属間化合物粒子を指し、圧延によって分断された晶出相や均質化処理や焼鈍を行う際に析出する析出相粒子である。
【0077】
アルミニウム合金箔の厚み方向の断面を走査型電子顕微鏡(SEM)で観察した際、結晶粒は、通常、複数の結晶と接する境界線を描く。これに対して、第二相粒子は、通常、境界線が単一の結晶となる。また、結晶粒と第二相粒子とは、位相が異なる為、SEM画像上で色が異なるという特徴を有している。さらに、アルミニウム合金箔層の厚み方向の断面を光学顕微鏡で観察した場合には、結晶粒と第二相粒子との位相の相違に起因して、第二相粒子のみが黒く見えるので、観察が容易になる。
【0078】
アルミニウム合金箔における平均結晶粒径としては、より成形性を高める観点からは、好ましくは25.0μm以下、より好ましくは20.0μm以下、さらに好ましくは10.0μm以下であり、また、好ましくは3.0μm以上、より好ましくは9.0μm以上である。当該平均結晶粒径の好ましい範囲としては、1.0~25.0μm程度、1.0~20.0μm程度、1.0~10.0μm程度、3.0~25.0μm程度、3.0~20.0μm程度、3.0~10.0μm程度、9.0~25.0μm程度、9.0~20.0μm程度、9.0~10.0μm程度が挙げられる。アルミニウム合金箔における平均結晶粒径が、25.0μm以下であり、かつ、第二相粒子3bの前記径yが上記の値であることにより、後述の蓄電デバイス用外装材の成形性をより一層高めることができる。
【0079】
本開示において、アルミニウム合金箔における平均結晶粒径は、アルミニウム合金箔の厚み方向の断面を走査型電子顕微鏡(SEM)で観察し、視野内に位置する100個のアルミニウム合金の結晶粒3aについて、図6の模式図に示されるように、個々の結晶粒の厚み方向とは垂直方向の最左端と、厚み方向とは垂直方向の最右端とを結ぶ直線距離を最大径xとした際、100個の結晶粒の当該最大径xの平均値を意味する。なお、図6は模式図であるため、描画を省略し、結晶粒3aを100個描いてない。
【0080】
アルミニウム合金箔の厚みは、蓄電デバイス用外装材において、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、下限については約9μm以上、上限については約200μm以下が挙げられる。蓄電デバイス用外装材の厚みを薄くする観点から、アルミニウム合金箔の厚みは、例えば、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約45μm以下、特に好ましくは約40μm以下が挙げられ、下限については、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられ、当該厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~45μm程度、10~40μm程度、20~85μm程度、20~50μm程度、20~45μm程度、20~40μm程度、25~85μm程度、25~50μm程度、25~45μm程度、25~40μm程度が挙げられる。
【0081】
また、アルミニウム合金箔の溶解や腐食の抑制などのために、アルミニウム合金箔の少なくとも片面に耐腐食性皮膜を備えていることが好ましい。アルミニウム合金箔は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をアルミニウム合金箔の表面に行い、アルミニウム合金箔に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、アルミニウム合金箔が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてアルミニウム合金箔とする。
【0082】
耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、アルミニウム合金箔と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム合金箔表面の溶解、腐食、アルミニウム合金箔表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム合金箔表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウム合金箔とのデラミネーション防止、成形時の基材層とアルミニウム合金箔とのデラミネーション防止の効果を示す。
【0083】
化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0084】
【化1】
【0085】
【化2】
【0086】
【化3】
【0087】
【化4】
【0088】
一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
【0089】
耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
【0090】
耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
【0091】
耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
【0092】
なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
【0093】
化成処理においてアルミニウム合金箔の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、アルミニウム合金箔の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
【0094】
耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。
【0095】
化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、アルミニウム合金箔の表面に塗布した後に、アルミニウム合金箔の温度が70~200℃程度になるように加熱することにより行われる。また、アルミニウム合金箔に化成処理を施す前に、予めアルミニウム合金箔を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、アルミニウム合金箔の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
【0096】
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
【0097】
熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
【0098】
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
【0099】
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
【0100】
酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記の
ポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
【0101】
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
【0102】
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
【0103】
熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。
【0104】
また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0105】
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0106】
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。
【0107】
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
【0108】
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
【0109】
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐酸性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
【0110】
接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
【0111】
バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。
【0112】
さらに、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
【0113】
また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
【0114】
また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ポリウレタンなどが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
【0115】
イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。
【0116】
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0117】
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
【0118】
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0119】
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
【0120】
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0121】
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0122】
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
【0123】
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。
【0124】
なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
【0125】
接着層5の厚さは、上限については、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下が挙げられ、下限については、好ましくは、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
【0126】
[表面被覆層6]
本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
【0127】
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。
【0128】
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
【0129】
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
【0130】
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0131】
添加剤、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
【0132】
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
【0133】
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
【0134】
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
【0135】
2.蓄電デバイス用外装材の製造方法
蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂4がこの順となるように積層する工程を備える方法が挙げられる。前記の通り、バリア層3としては、前述した所定の組成を満たすアルミニウム合金箔を用いることができる。
【0136】
本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
【0137】
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
【0138】
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
【0139】
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。
【0140】
蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
【0141】
3.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
【0142】
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。
【0143】
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
【実施例
【0144】
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
【0145】
[実施例1-20及び比較例1-8]
<アルミニウム合金箔の製造>
表1に示す各組成(残部はAlおよびその他の不可避不純物)からなるアルミニウム合金の鋳塊を用意し、同表に示す条件で均質化処理を施した後、仕上がり温度330℃での熱間圧延にて厚さ3mmの板材とした。その後、冷間圧延、中間焼鈍、最終冷間圧延を経て、厚み40μm、幅1200mmのアルミニウム合金箔の試料を作製した。なお、中間焼鈍の方法については表1に示した。実施例8のCAL焼鈍は、昇温速度:40℃/秒、加熱温度:460℃、保持時間:1秒、冷却速度:40℃/秒の条件で行った。表1の冷間圧延の項目では、中間焼鈍直前の板厚および前記板厚までの冷間圧延率を示している。
【0146】
実施例及び比較例で作製した各アルミニウム合金箔に対して以下の試験または測定を行い、その結果を表2に示す。
【0147】
・アルミニウム合金箔の引張強さ、伸び
引張強さ、伸びのいずれも引張試験にて測定した。引張試験は、JIS Z2241:2011(ISO 6892-1を基とする)に準拠し、圧延方向に対して0°方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。なお、アルミニウム合金箔の伸びは、破断時の全伸び(伸び計の弾性伸びと塑性伸びとを合わせたもの)であり、伸び計標点距離に対する百分率で表したものである。
【0148】
<蓄電デバイス用外装材の製造>
基材層としてポリエチレンテレフタレートフィルム(12μm)/接着剤層(2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)、厚さ3μm)/二軸延伸ナイロンフィルム(厚さ15μm)が順に積層された積層フィルムを用意した。次に、基材層の二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成した前記のアルミニウム合金箔(表1の組成を有し、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜(クロメート処理によって形成された皮膜であり、クロム量が30mg/m2)を形成したアルミニウム合金箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム合金箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム合金箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ40μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ40μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(40μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0149】
なお、蓄電デバイス用外装材の両面には、それぞれ、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。
【0150】
【表1】
【0151】
<成形性の評価>
上記で得られた各蓄電デバイス用外装材を長さ(MD)90mm×幅(TD)150mmの長方形に裁断して試験サンプルとした。蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応する。試験サンプルを25℃の環境下にて、31.6mm(MD)×54.5mm(TD)の矩形状の口径を有する成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.25MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ10個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に試験サンプルを載置して成形をおこなった。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム合金箔にピンホールやクラックが生じているか否かを確認した。アルミニウム合金箔にピンホール、クラックが10個のサンプル全てにおいて発生しない最も深い成形深さを限界成形深さPmmとした。限界成形深さが4.0mm以上であった場合を評価A、3.0mm以下であった場合を評価Cとした。結果を表2に示す。
【0152】
<耐腐食性の評価>
実施例1~20及び比較例1~8で使用した各アルミニウム合金箔を、長さ45mm×幅15mmの長方形に裁断した。次に、アルミニウム合金箔の表面及び裏面の一方の面に1cmφの露出部が形成されるように、アルミニウム合金箔の表面及び裏面に長さ50mm×幅20mmの長方形のポリエチレンフィルムをアルミニウム合金箔に重ねて熱溶着し取付け被覆して、試験サンプルとした。なお、試験サンプルにおける耐腐食性の評価は、アルミニウム合金箔ALが露出した1cmφの部分で行い、試験サンプルの電解液に浸漬されない端部については、作用極に接続するために露出させた。次に、図5の模式図に示すように、試験サンプルALを作用極、金属リチウムLi(直径15mm×厚み0.35mmの円盤状)を対極にセットし、電解液(1mol/lのLiPF6と、エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネート(容量比1:1:1)の混合液とからなる)に浸漬させた。この状態で、20℃の環境下、電圧0.1Vで1時間印加した後、アルミニウム合金箔の表面を観察した。図8(比較例1)のように表面が腐食したものを評価C、図7(実施例1)のように変化しなかったものを評価Aとし、結果を表2に示す。腐食したアルミニウム合金箔表面はリチウムとの化合物が生成し、体積膨張により表面が盛り上がっている様子が観察される。
【0153】
【表2】
【0154】
表1,2に示される結果から明らかなとおり、実施例1~20の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む。実施例1~20の蓄電デバイス用外装材は、成形性及び耐腐食性に優れていた。
【0155】
以上の通り、本開示は、以下の態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む、蓄電デバイス用外装材。
項2. 前記アルミニウム合金箔の組成は、Mn:0.1質量%以下を満たす、項1に記載の蓄電デバイス用外装材。
項3. 前記アルミニウム合金箔は、JIS Z2241:2011の規定に準拠して、JIS5号試験片について測定される、引張強さが100MPa以上であり、伸びが10%以上である、項1又は2に記載の蓄電デバイス用外装材。
項4. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~3のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項5. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
前記バリア層は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.1質量%以上5.0質量%以下の組成を満たすアルミニウム合金箔を含む、蓄電デバイス用外装材の製造方法。
【符号の説明】
【0156】
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
図1
図2
図3
図4
図5
図6
図7
図8