(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-10-17
(45)【発行日】2022-10-25
(54)【発明の名称】熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法
(51)【国際特許分類】
C08L 63/00 20060101AFI20221018BHJP
C08G 59/40 20060101ALI20221018BHJP
C08K 5/29 20060101ALI20221018BHJP
C08K 5/19 20060101ALI20221018BHJP
C08K 9/00 20060101ALI20221018BHJP
C08K 3/16 20060101ALI20221018BHJP
C08J 5/04 20060101ALI20221018BHJP
【FI】
C08L63/00 C
C08G59/40
C08K5/29
C08K5/19
C08K9/00
C08K3/16
C08J5/04 CFC
(21)【出願番号】P 2021575999
(86)(22)【出願日】2021-12-16
(86)【国際出願番号】 JP2021046477
【審査請求日】2022-03-22
(31)【優先権主張番号】P 2020211056
(32)【優先日】2020-12-21
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021122176
(32)【優先日】2021-07-27
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】土田 紘也
(72)【発明者】
【氏名】小西 大典
(72)【発明者】
【氏名】富岡 伸之
【審査官】藤井 明子
(56)【参考文献】
【文献】特開平01-287126(JP,A)
【文献】特表2020-532596(JP,A)
【文献】特開平07-216046(JP,A)
【文献】国際公開第2020/067044(WO,A1)
【文献】特開2005-113014(JP,A)
【文献】特開2000-336191(JP,A)
【文献】特表2014-533751(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08K 3/00-13/08
C08G 59/00-59/72
C08G 18/00-18/87
C08J 5/04-5/10、5/24
(57)【特許請求の範囲】
【請求項1】
次の構成要素[a]、[b]、および[c]を含む熱硬化性エポキシ樹脂組成物であって、
次の条件(i)、および(ii)を満たし、100℃における硬化時間(Tc)と誘導時間(Ti)の関係が、1<Tc/Ti≦9を満たす熱硬化性エポキシ樹脂組成物。
(ここで、Tcは、該熱硬化性エポキシ樹脂組成物の動的粘弾性の経時変化を100℃で測定し、複素粘性率η
*
が1000000Pa・sに到達した時間である。また、Tiは、該熱硬化性エポキシ樹脂組成物の動的粘弾性の経時変化を100℃で測定し、η
*
が測定開始直後の4倍の値となった時間である。)
[a]:エポキシ樹脂
[b]:イソシアネート化合物
[c]:無機塩
条件(i):構成要素[a]に対する構成要素[b]の化学量論量比[b]/[a]が0.7~2.0の範囲にある。
(化学量論量比[b]/[a]とは、構成要素[a]に含まれるエポキシ基のモル数に対する、構成要素[b]に含まれるイソシアネート基のモル数の比率である。)
条件(ii):
0.003≦(構成要素[c]のモル数/構成要素[a]のエポキシ基モル数)≦0.05
【請求項2】
次の構成要素[e]をさらに含む、請求項1に記載の熱硬化性エポキシ樹脂組成物。
[e]:ハロゲン化オニウム塩
【請求項3】
次の構成要素[d]をさらに含む、請求項1または2に記載の熱硬化性エポキシ樹脂組成物。
[d]:式(I)で示される構造を分子内に有する化合物
【化1】
(式(I)において、nは1~6の整数を表し、mは4~1,000の整数を表す。また、R
1’およびR
2’は独立に水素原子、アルキル基、ヒドロキシル基を表す。また、R
1およびR
2は独立に水素原子、アルキル基を表わす。また、XはO、NH、S、COOを表す。
ここで、COOにはOCOの化学構造も含む。)
【請求項4】
構成要素[d]のR
1’およびR
2’が水素原子であり、かつ、XがO原子である、請求項3に記載の熱硬化性エポキシ樹脂組成物。
【請求項5】
次の構成要素[g]をさらに含む、請求項1~4のいずれかに記載のエポキシ樹脂組成物。
[g]:水酸基との反応ピーク温度Tgが構成要素[b]と水酸基との反応ピーク温度Tbよりも15℃以上低い化合物
(Tgは、1-フェノキシ-2-プロパノールと構成要素[g]を質量比10:1で混合し、昇温速度10℃/分にて示差走査熱量測定を実施し得られる反応発熱カーブのピーク温度である。Tbは、1-フェノキシ-2-プロパノールと構成要素[b]を質量比10:1で混合し、昇温速度10℃/分にて示差走査熱量測定を実施し得られる反応発熱カーブのピーク温度である。)
【請求項6】
構成要素[g]が分子内に1つのイソシアネート基を有するモノイソシアネート化合物を含む、請求項5に記載の熱硬化性エポキシ樹脂組成物。
【請求項7】
次の構成要素[f]をさらに含む、請求項1~6のいずれかに記載の熱硬化性エポキシ樹脂組成物。
[f]:エラストマー系高靭性化剤
【請求項8】
構成要素[c]がアルカリ金属のハロゲン化物を含む、請求項1~7のいずれかに記載の熱硬化性エポキシ樹脂組成物。
【請求項9】
構成要素[a]に対する構成要素[b]の化学量論量比[b]/[a]が0.7~2.0の範囲にある、請求項1~8のいずれかに記載の熱硬化性エポキシ樹脂組成物。
【請求項10】
請求項1~9のいずれかに記載の熱硬化性エポキシ樹脂組成物が熱硬化されてなる成形品。
【請求項11】
請求項10に記載の成形品と、強化繊維とを含んでなる繊維強化複合材料。
【請求項12】
前記強化繊維が、下記条件[A]および[B]を満たす炭素繊維を含む、請求項11に記載の繊維強化複合材料。
[A]実質的に真円状の断面を有する
[B]平均繊維径が4.0~8.0μmの範囲にある
【請求項13】
前記炭素繊維が、さらに下記条件[C]を満たす、請求項12に記載の繊維強化複合材料。
[C]表面比酸素濃度O/Cが0.03~0.22の範囲にある
(ここで、表面比酸素濃度は、X線光電子分光法において、O
1sピーク面積[O
1s]と、C
1sピーク面積[C
1s]から表面比酸素濃度O/C=([O
1s]/[C
1s])/(感度補正値)を算出することにより特定される。)
【請求項14】
前記強化繊維が、イソシアネート基と共有結合可能である表面官能基を有するガラス繊維を含
み、前記ガラス繊維の表面官能基が、水酸基、オキシラン基、アミノ基、チオール基、およびカルボキシ基からなる群から選ばれる少なくとも1つの官能基を含む、請求項11に記載の繊維強化複合材料。
【請求項15】
前記ガラス繊維の表面官能基が、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、およびジルコニウムカップリング剤からなる群から選ばれる少なくとも1つで処理されることで形成される、請求項1
4に記載の繊維強化複合材料。
【請求項16】
請求項1~9のいずれかに記載の熱硬化性エポキシ樹脂組成物と、強化繊維とを含んでなる繊維強化複合材料用成形材料。
【請求項17】
前記強化繊維が、下記条件[A]および[B]を満たす炭素繊維を含む、請求項
16に記載繊維強化複合材料用成形材料。
[A]実質的に真円状の断面を有する
[B]平均繊維径が4.0~8.0μmの範囲にある
【請求項18】
前記炭素繊維が、さらに下記条件[C]を満たす、請求項
17に記載の繊維強化複合材料用成形材料。
[C]表面比酸素濃度O/Cが0.03~0.22の範囲にある
(ここで、表面比酸素濃度は、X線光電子分光法において、O
1sピーク面積[O
1s]と、C
1sピーク面積[C
1s]から表面比酸素濃度O/C=([O
1s]/[C
1s])/(感度補正値)を算出することにより特定される。)
【請求項19】
前記強化繊維が、イソシアネート基と共有結合可能である表面官能基を有するガラス繊維を含
み、前記ガラス繊維の表面官能基が、水酸基、オキシラン基、アミノ基、チオール基、およびカルボキシ基からなる群から選ばれる少なくとも1つの官能基を含む、請求項
18に記載の繊維強化複合材料用成形材料。
【請求項20】
前記ガラス繊維の表面官能基が、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、およびジルコニウムカップリング剤からなる群から選ばれる少なくとも1つで処理されることで形成される、請求項
19に記載の繊維強化複合材料用成形材料。
【請求項21】
請求項
16~
20のいずれかに記載の繊維強化複合材料用成形材料が熱硬化されてなる繊維強化複合材料。
【請求項22】
強化繊維に、請求項1~9のいずれかに記載の熱硬化性エポキシ樹脂
組成物を含浸させたあと、熱硬化させる、繊維強化複合材料の製造方法。
【請求項23】
強化繊維を主成分とする織物を型内に配置し、請求項1~9のいずれかに記載の熱硬化性エポキシ樹脂組成物を注入して含浸させたあと、熱硬化させる、繊維強化複合材料の製造方法。
【請求項24】
前記強化繊維が、下記条件[A]および[B]を満たす炭素繊維を含む、請求項
22または
23に記載の繊維強化複合材料の製造方法。
[A]実質的に真円状の断面を有する
[B]平均繊維径が4.0~8.0μmの範囲にある
【請求項25】
前記炭素繊維が、さらに下記条件[C]を満たす、請求項
24に記載の繊維強化複合材料の製造方法。
[C]表面比酸素濃度O/Cが0.03~0.22の範囲にある
(ここで、表面比酸素濃度は、X線光電子分光法において、O
1sピーク面積[O
1s]と、C
1sピーク面積[C
1s]から表面比酸素濃度O/C=([O
1s]/[C
1s])/(感度補正値)を算出することにより特定される。)
【請求項26】
前記強化繊維が、イソシアネート基と共有結合可能である表面官能基を有するガラス繊維を含
み、前記ガラス繊維の表面官能基が、水酸基、オキシラン基、アミノ基、チオール基、およびカルボキシ基からなる群から選ばれる少なくとも1つの官能基を含む、請求項
22または
23に記載の繊維強化複合材料の製造方法。
【請求項27】
前記ガラス繊維の表面官能基が、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、およびジルコニウムカップリング剤からなる群から選ばれる少なくとも1つで処理されることで形成される、請求項
26に記載の繊維強化複合材料の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法に関するものである。
【背景技術】
【0002】
熱硬化性のポリウレタン樹脂は、硬化物が可撓性、靱性、および異部材との接着性に優れることから、塗料、接着剤、発泡体、エラストマー等の材料として、様々な分野で使用されている。一方で、ポリウレタン樹脂は可使時間が短いため型への流入中、もしくは担持体への含浸途中で樹脂の粘度が高まり、成形品の品位が低下する問題があった。
【0003】
特許文献1には、ポリウレタンプレポリマーに少量のエポキシ樹脂を配合し、ルイス酸塩基触媒を用いることで、樹脂組成物の可使時間を延長する技術が開示されている。
【0004】
特許文献2には、イミダゾリウム系触媒を用いることで可使時間と硬化物の耐熱性を同時に改善できる触媒組成物が示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2019/046382号
【文献】国際公開第2016/102358号
【発明の概要】
【発明が解決しようとする課題】
【0006】
熱硬化性樹脂組成物の可使時間を延長するためには、活性の低い硬化剤や触媒を選択する手法が一般的だが、硬化速度が低下するため、成形のサイクルタイムが長くなる。また、触媒の活性は成形温度に合わせて選択されるため、樹脂の充填時と硬化時で温度を変更するなどの、プロセス面での工夫が不可欠であった。そこで、硬化速度に優れ、かつ広い温度域で可使時間を制御できる触媒および樹脂設計技術の創出が求められている。
【0007】
特許文献1および2に記載の熱硬化性樹脂組成物は、常温での安定性は高いが、熱硬化する温度での安定性は十分でなかった。
【0008】
本発明は、かかる従来技術の欠点を改良し、熱硬化性樹脂を硬化する温度において、潜在性を発現し、かつ硬化速度に優れる熱硬化性エポキシ樹脂組成物、またそれが熱硬化されてなる成形品を提供することを目的とする。さらに、強化繊維と組み合わせてなる繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなる熱硬化性エポキシ樹脂組成物を見出し、本発明を完成させるに至った。すなわち、本発明の熱硬化性エポキシ樹脂組成物は、以下の構成から成る。
【0010】
次の構成要素[a]、[b]、および[c]を含む熱硬化性エポキシ樹脂組成物であって、硬化時間(Tc)と誘導時間(Ti)の関係が、1<Tc/Ti≦9を満たす熱硬化性エポキシ樹脂組成物。
[a]:エポキシ樹脂
[b]:イソシアネート化合物
[c]:無機塩。
【0011】
また、本発明の成形品は、本発明の熱硬化性エポキシ樹脂組成物が熱硬化されてなる。
【0012】
本発明の繊維強化複合材料の第一の態様は、本発明の成形品と、強化繊維とを含んでなる。
【0013】
本発明の繊維強化複合材料用成形材料は、本発明の熱硬化性エポキシ樹脂組成物と、強化繊維とを含んでなる。
【0014】
本発明の繊維強化複合材料の第二の態様は、本発明の繊維強化複合材料用成形材料が熱硬化されてなる。
【0015】
本発明の繊維強化複合材料の製造方法の第一の態様は、強化繊維に、本発明の熱硬化性エポキシ樹脂を含浸させたあと、熱硬化させる。
【0016】
本発明の繊維強化複合材料の製造方法の第二の態様は、強化繊維を主成分とする織物を型内に配置し、本発明の熱硬化性エポキシ樹脂組成物を注入して含浸させたあと、熱硬化させる。
【発明の効果】
【0017】
本発明によれば、熱硬化する温度で、潜在性を発現し、かつ速硬化性に優れる熱硬化性エポキシ樹脂組成物を提供することができる。
【発明を実施するための形態】
【0018】
本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[a]、[b]、および[c]を含む。
[a]:エポキシ樹脂
[b]:イソシアネート化合物
[c]:無機塩
まず、これらの構成要素について説明する。
【0019】
(構成要素[a])
本発明における構成要素[a]はエポキシ樹脂である。かかるエポキシ樹脂は、分子内にエポキシ基を有する化合物であれば特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アミン型エポキシ樹脂、分子内に脂肪族鎖を有する脂肪族型エポキシ樹脂などが挙げられる。エポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。
【0020】
ビスフェノールA型エポキシ樹脂の市販品としては、例えば、“jER(登録商標)”825、“jER(登録商標)”827、“jER(登録商標)”828(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”840、“EPICLON(登録商標)”850(以上、DIC(株)製)、“エポトート(登録商標)”YD-128、“エポトート(登録商標)”YD-8125、“エポトート(登録商標)”YD-825GS(以上、日鉄ケミカル&マテリアル(株)製)、“DER(登録商標)”331、“DER(登録商標)”332(以上、ダウケミカル(株)製)などが挙げられる。
【0021】
ビスフェノールF型エポキシ樹脂の市販品としては、例えば、“jER(登録商標)”806、“jER(登録商標)”807、“jER(登録商標)”4004P(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”830(DIC(株)製)、“エポトート(登録商標)”YD-170、“エポトート(登録商標)”YDF-8170C、“エポトート(登録商標)”YDF-870GS(以上、日鉄ケミカル&マテリアル(株)製)などが挙げられる。
【0022】
アミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルキシリレンジアミン、もしくはこれらのハロゲン、アルキル置換体、水添品などが挙げられる。かかるエポキシ樹脂の市販品として以下のものが挙げられる。
【0023】
テトラグリシジルジアミノジフェニルメタンの市販品としては、例えば、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(日鉄ケミカル&マテリアル(株)製)、“jER(登録商標)”604(三菱ケミカル(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト(登録商標)”MY721(以上、ハンツマン・アドバンスド・マテリアルズ社製)などが挙げられる。
【0024】
テトラグリシジルジアミノジフェニルスルホンの市販品としては、例えば、TG3DAS(三井化学ファイン(株)製)などが挙げられる。
【0025】
トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールの市販品としては、例えば、“スミエポキシ(登録商標)”ELM100、“スミエポキシ(登録商標)”ELM120(以上、住友化学(株)製)、“アラルダイト(登録商標)”MY0500、“アラルダイト(登録商標)”MY0510、“アラルダイト(登録商標)”MY0600(以上、ハンツマン・アドバンスド・マテリアルズ社製)、“jER(登録商標)”630(三菱ケミカル(株)製)などが挙げられる。
【0026】
脂肪族型エポキシ樹脂としては、例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテルなどが挙げられる。かかるエポキシ樹脂の市販品として以下のものが挙げられる。
【0027】
エチレングリコールジグリシジルエーテルの市販品としては、例えば、“デナコール(登録商標)”EX-850、“デナコール(登録商標)”EX-851、“デナコール(登録商標)”EX-821(以上、ナガセケムテックス(株)製)などが挙げられる。
【0028】
プロピレングリコールジグリシジルエーテルの市販品としては、例えば、“デナコール(登録商標)”EX-911、“デナコール(登録商標)”EX-941、“デナコール(登録商標)”EX-920(以上、ナガセケムテックス(株)製)、“アデカグリシロール(登録商標)”ED-506(ADEKA(株)製)などが挙げられる。
【0029】
ヘキサメチレングリコールジグリシジルエーテルの市販品としては、例えば、“デナコール(登録商標)”EX-212(ナガセケムテックス(株)製)などが挙げられる。
【0030】
(構成要素[b])
本発明における構成要素[b]は、イソシアネート化合物である。かかるイソシアネート化合物は、分子内にイソシアネート基を有する化合物であれば特に限定されない。かかるイソシアネート基が、熱硬化により、構成要素[a]のエポキシ基と反応し、剛直なオキサゾリドン環構造を形成することにより、成形品が優れた耐湿熱性と靱性を発現する。
【0031】
かかるイソシアネート化合物としては、芳香族イソシアネート、脂肪族イソシアネート、脂環式イソシアネート等が挙げられる。中でも、分子骨格に芳香族を含む芳香族イソシアネートは、硬化反応性に優れ、かつ優れた耐熱性を発現することから好ましい。
【0032】
イソシアネート化合物としては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、トリメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、2,3-ジメチルテトラメチレンジイソシアネート、ブチレン-1,2-ジイソシアネート、ブチレン-1,3-ジイソシアネート、1,4-ジイソシアネートヘキサン、シクロペンテン-1,3-ジイソシアネート、イソホロンジイソシアネート、1,2,3,4-テトライソシアネートブタン、ブタン-1,2,3-トリイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の脂肪族イソシアネート、p-フェニレンジイソシアネート、1-メチルフェニレン-2,4-ジイソシアネート、ナフタレン-1,4-ジイソシアネート、トリレンジイソシアネート、ジフェニル-4,4-ジイソシアネート、ベンゼン-1,2,4-トリイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)、ジフェニルプロパンジイソシアネート、テトラメチレンキシレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等の芳香族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環式イソシアネート等が挙げられる。なお、これらのイソシアネート化合物を単独あるいは2種以上混合して含まれていてもよい。
【0033】
脂肪族イソシアネートの市販品としては、例えば、HDI(東ソー(株)製)、“デュラネート(登録商標)”D101、“デュラネート(登録商標)”D201(以上、旭化成(株)製)等が挙げられる。
【0034】
芳香族イソシアネートの市販品としては、例えば、“ルプラネート(登録商標)”MS、“ルプラネート(登録商標)”MI、“ルプラネート(登録商標)”M20S、“ルプラネート(登録商標)”M11S、“ルプラネート(登録商標)”M5S、“ルプラネート(登録商標)”T-80、“ルプラネート(登録商標)”MM-103、“ルプラネート(登録商標)”MM-102、“ルプラネート(登録商標)”MM-301(以上、BASF INOAC ポリウレタン(株)製)、“ミリオネート(登録商標)”MT、“ミリオネート(登録商標)”MT-F、“ミリオネート(登録商標)”MT-NBP、“ミリオネート(登録商標)”NM、“ミリオネート(登録商標)”MR-100、“ミリオネート(登録商標)”MR-200、“ミリオネート(登録商標)”MR-400、“コロネート(登録商標)”T-80、“コロネート(登録商標)”T-65、“コロネート(登録商標)”T-100(以上、東ソー(株)製)、“コスモネート(登録商標)”PH、“コスモネート(登録商標)”M-50、“コスモネート(登録商標)”T-80(以上、三井化学(株)製)等が挙げられる。
【0035】
脂環式イソシアネートの市販品としては、例えば、“タケネート(登録商標)”600(三井化学(株)製)、“フォルティモ(登録商標)”1,4-H6XDI(三井化学(株)製)等が挙げられる。
【0036】
本発明の熱硬化性エポキシ樹脂組成物において、構成要素[a]に対する構成要素[b]の化学量論量比[b]/[a]が0.7~2.0の範囲にあることが好ましい。化学量論量比[b]/[a]とは、構成要素[a]に含まれるエポキシ基のモル数に対する、構成要素[b]に含まれるイソシアネート基のモル数の比率である。[b]/[a]が前記範囲にあることで、該熱硬化性エポキシ樹脂組成物の硬化速度と、該熱硬化性エポキシ樹脂組成物を硬化させてなる樹脂硬化物の耐熱性が優れたものとなりやすい。
【0037】
(構成要素[c])
本発明における構成要素[c]は、無機塩である。無機塩は、金属元素に代表される無機物からなる陽イオンと塩基由来の陰イオンから構成される塩である。構成要素[c]の無機塩は、構成要素[a]のエポキシ基と構成要素[b]のイソシアネート基との硬化反応を促進する触媒として作用する。無機塩を触媒として用いることで、該熱硬化性エポキシ樹脂組成物は、反応が進行しない一定の期間(以下、誘導時間)を発現する、すなわち潜在性を示す。また、誘導時間の経過後には反応が急速に進行する速硬化性を示す。一般に、潜在性と速硬化性は相反する性質であり、同時に具備することは困難である。なお、本発明で述べる潜在性とは、所定の温度に熱硬化性エポキシ樹脂組成物を暴露した際に、前記誘導時間を発現する性質のことを指す。
【0038】
ここで、誘導時間と硬化時間は、熱硬化性エポキシ樹脂組成物を所定の温度に暴露した際に、測定される硬化時間(Tc)を誘導時間(Ti)で除した値、すなわち、Tc/Tiの値を指標に評価することができる。なお、硬化時間は所定の温度に暴露した時点から硬化が完了するまでの時間で、誘導時間を含むと定義する。したがって、Tcの値はTiの値より小さくなることはないためTc/Tiの値は1以下にはならず、Tc/Tiの値が1に近づくほど、潜在性と速硬化性を高いレベルで両立するといえる。本発明の熱硬化性エポキシ樹脂組成物は、硬化時間(Tc)と誘導時間(Ti)の関係が、1<Tc/Ti≦9を満たす。Tc/Tiが9より大きい場合、硬化時間、すなわち成形のサイクルタイムが長くなる、もしくは誘導時間、すなわち熱硬化過程において流動性を保つ時間が短くなるため、樹脂注入および含浸プロセスに適合しない。
【0039】
本発明の熱硬化性エポキシ樹脂組成物は、1<Tc/Ti≦5を満たすことが好ましく、より好ましくは、1<Tc/Ti≦3を満たし、さらに好ましくは、1<Tc/Ti≦2を満たす。Tc/Tiがかかる範囲にあることで、速硬化性と潜在性がより優れる。
【0040】
ここで、本発明における誘導時間(Ti)は、本発明の熱硬化性エポキシ樹脂組成物を所定の温度で測定した複素粘性率η*から評価できる。本発明では、動的粘弾性測定装置を用い、所定の温度で測定したη*が、測定開始時点から4倍に到達するまでの時間をTiとした。
【0041】
また、本発明における硬化時間(Tc)は、所定の温度での複素粘性率η*の経時変化を観測し、η*が飽和に達した時間をTcとして得ることができる。
【0042】
本発明の熱硬化性エポキシ樹脂組成物は、以下の条件を満たすことが好ましい。
0.003≦(構成要素[c]のモル数/構成要素[a]のエポキシ基モル数)≦0.05。
【0043】
かかる範囲にある場合、速硬化性と潜在性のバランスに優れた熱硬化性エポキシ樹脂組成物を与えるため好ましい。
【0044】
なお、構成要素[c]のモル数は、熱硬化性エポキシ樹脂組成物に配合される各無機塩のモル数の和のことであり、下式で表わされる。
構成要素[c]のモル数=(無機塩Aの質量/無機塩Aの分子量)+(無機塩Bの質量/無機塩Bの分子量)+・・・・+(無機塩Wの質量/無機塩Wの分子量)。
【0045】
また、構成要素[a]のエポキシ基モル数とは、各エポキシ樹脂のエポキシ基モル数の和のことであり、下式で表される。
構成要素[a]のエポキシ基モル数=(樹脂Aの質量/樹脂Aのエポキシ当量)+(樹脂Bの質量/樹脂Bのエポキシ当量)+・・・・+(樹脂Wの質量/無機塩Wのエポキシ当量)。
【0046】
本発明の構成要素[c]として用いられる無機塩としては、アルカリ金属塩、アルカリ土類金属塩、第一遷移金属塩などが挙げられる。特に、50℃から200℃まで広い温度領域で、熱硬化性エポキシ樹脂組成物を硬化させることが可能であることから、構成要素[c]がアルカリ金属のハロゲン化物を含むことが好ましい。
【0047】
かかる無機塩としては、例えば、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化リチウム、臭化リチウム、ヨウ化リチウムなどが挙げられる。中でも、潜在性と速硬化性のバランスが優れたものになりやすいことから、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウム塩が好ましい。なお、前記した無機塩は単体で含まれていても良いし、複数種組み合わせて含まれていてもよい。
【0048】
本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[d]をさらに含むことができる。[d]:式(I)で示される構造を分子内に有する化合物
【0049】
【0050】
式(I)において、nは1~6の整数を表し、mは4~1,000の整数を表す。また、R1’およびR2’は独立に水素原子、アルキル基、ヒドロキシル基を表わす。また、R1およびR2は独立に水素原子、アルキル基を表す。また、XはO、NH、S、COOを表す。ここで、COOにはOCOの化学構造も含む。
【0051】
構成要素[d]を含むことで、構成要素[c]のエポキシ樹脂への相溶性が高まるため、該熱硬化性エポキシ樹脂組成物の速硬化性が、より優れたものとなる。また、熱硬化性エポキシ樹脂組成物の均質性が向上するため、該熱硬化性エポキシ樹脂組成物を熱硬化した成形品の機械特性が優れたものとなる。
【0052】
構成要素[d]のうちX=Oの化合物として、エチレングリコール鎖、プロピレングリコール鎖、トリメチレングリコール鎖、ヘキサメチレングリコール鎖等を含む化合物が挙げられる。また、X=NHの化合物としては、エチレンイミン鎖、トリメチレンイミン鎖等を含む化合物が挙げられる。X=Sの化合物としては、エチレンスルフィドやトリメチレンスルフィド等が挙げられる。X=COOの化合物としては、メチルエステル鎖、エチルエステル鎖等を含む化合物が挙げられる。
【0053】
前記X=Oの化合物の市販品としては、PEG-200、PEG-300、PEG-400、PEG-600、PEG-1000、“サンニックス(登録商標)”PP-200、“サンニックス(登録商標)”PP-400、“サンニックス(登録商標)”PP-600、“サンニックス(登録商標)”PL-2100、“ニューポール(登録商標)”BPE-40、“ニューポール(登録商標)”BPE-60、“ニューポール(登録商標)”BPE-100、“ニューポール(登録商標)”BP-5P(以上、三洋化成工業(株)製)、“ユニオックス(登録商標)”M-400、“ユニオックス(登録商標)”M-550、“ユニオックス(登録商標)”MM-400(以上、日油(株)製)等が挙げられる。
【0054】
前記X=NHの化合物の市販品としては、“エポミン(登録商標)”SP-003、“エポミン(登録商標)”SP-006、“エポミン(登録商標)”SP-012(以上、日本触媒(株)製)等が挙げられる。
【0055】
前記X=COOの化合物の市販品としては、“サンフレックス(登録商標)”EB、“サンフレックス(登録商標)”GPA-3000(以上、三洋化成工業(株)製)等が挙げられる。
【0056】
ここで、構成要素[d]として、X=Oの化合物が好適に用いられる。X=Oの構造、すなわちエーテル鎖を有することで、構成要素[c]とエポキシ樹脂の相溶性がより高まり、硬化特性と熱硬化性エポキシ樹脂硬化物の機械特性がさらに優れたものとなるため、好ましく用いることができる。本発明の熱硬化性エポキシ樹脂組成物において、構成要素[c]とエポキシ樹脂の相溶性が特に高まり、硬化特性と熱硬化性エポキシ樹脂硬化物の機械特性がさらに優れたものとなるため、構成要素[d]のR1’およびR2’が水素原子であり、かつ、XがO原子であることがより好ましい。構成要素[d]のR1’およびR2’が水素原子であり、かつ、XがO原子である化合物の市販品としては、PEG-200、PEG-300、PEG-400、PEG-600、PEG-1000等が挙げられる。
【0057】
また、構成要素[d]のR1’、R2’、R1、R2のいずれかがアルキル基である場合、アルキル基に含まれる炭素原子の数は1~5個であることが好ましい。炭素原子の数が1~5個の場合、構成要素[c]とエポキシ樹脂の相溶性がより高まり、硬化特性と熱硬化性エポキシ樹脂硬化物の機械特性がさらに優れたものになりやすい。炭素原子が1~5個のアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基等が挙げられる。
【0058】
本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[e]をさらに含むことができる。
[e]:ハロゲン化オニウム塩。
【0059】
構成要素[c]と構成要素[e]を同時に含む事で、該熱硬化性エポキシ樹脂組成物は、構成要素[c]単独では到達できない速硬化性を発現する、すなわち、前記Tc/Tiの値が小さい値となる。この効果は、構成要素[e]が構成要素[c]の触媒活性化作用を促進するためと推察している。
【0060】
本発明におけるハロゲン化オニウム塩は、カウンターアニオンがハロゲン化物イオンであるオニウム塩である。かかるオニウム塩は特に限定されるものではないが、四級アンモニウム塩、四級ホスホニウム塩であることが好ましい。
【0061】
かかるハロゲン化四級アンモニウム塩としては、例えば、トリメチルオクタデシルアンモニウムクロリド、トリメチルオクタデシルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、(2-メトキシエトキシメチル)トリエチルアンモニウムクロリド、(2-メトキシエトキシメチル)トリエチルアンモニウムブロミド、(2-アセトキシエチル)トリメチルアンモニウムクロリド、(2-アセトキシエチル)トリメチルアンモニウムブロミド、(2-ヒドロキシエチル)トリメチルアンモニウムクロリド、(2-ヒドロキシエチル)トリメチルアンモニウムブロミド、ビス(ポリオキシエチレン)ジメチルアンモニウムクロリド、ビス(ポリオキシエチレン)ジメチルアンモニウムブロミド、1-ヘキサデシルピリジニウムクロリド、1-ヘキサデシルピリジニウムブロミドなどが挙げられる。
【0062】
かかるハロゲン化四級ホスホニウム塩としては、例えば、トリメチルオクタデシルホスホニウムクロリド、トリメチルオクタデシルホスホニウムブロミド、ベンジルトリメチルホスホニウムクロリド、ベンジルトリメチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド、(2-メトキシエトキシメチル)トリエチルホスホニウムクロリド、(2-メトキシエトキシメチル)トリエチルホスホニウムブロミド、(2-アセトキシエチル)トリメチルホスホニウムクロリド、(2-アセトキシエチル)トリメチルホスホニウムブロミド、(2-ヒドロキシエチル)トリメチルホスホニウムクロリド、(2-ヒドロキシエチル)トリメチルホスホニウムブロミド、ビス(ポリオキシエチレン)ジメチルホスホニウムクロリド、ビス(ポリオキシエチレン)ジメチルホスホニウムブロミド、テトラフェニルホスホニウムブロミド、アセトニルトリフェニルホスホニウムクロリド、(4-カルボキシブチル)トリフェニルホスホニウムブロミド、(4-カルボキシプロピル)トリフェニルホスホニウムブロミド、(2,4-ジクロロベンジル)トリフェニルホスホニウムクロリド、2-ジメチルアミノエチルトリフェニルホスホニウムブロミド、エトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド、(ホルミルメチル)トリフェニルホスホニウムクロリド、N-メチルアニリノトリフェニルホスホニウムヨージド、フェナシルトリフェニルホスホニウムブロミドなどが挙げられる。
【0063】
本発明の熱硬化性エポキシ樹脂組成物は、構成要素[a]、[b]、[c]に加え、前記構成要素[d]と前記構成要素[e]の両方を含むことがより好ましい。
【0064】
本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[f]をさらに含むことができる。
構成要素[f]:エラストマー系高靭性化剤。
【0065】
エラストマー系高靭性化剤は、成形品の靱性を向上させる効果を有する添加剤であり、かつその化学構造にエラストマー構造を含むものである。構成要素[a]~[c]を含む熱硬化性エポキシ樹脂組成物中に構成要素[f]が同時に含まれることで、該熱硬化性エポキシ樹脂硬化物の靭性が特異的に向上する。
【0066】
かかるエラストマー系高靱性化剤としては、コアシェルゴム粒子などの架橋ゴム粒子、ブロックコポリマーなどの熱可塑エラストマー、カルボキシル基末端ブタジエンニトリルゴム(以下、CTBNという場合がある)などの末端反応性ゴム、CTBN変性エポキシなどのゴム変性エポキシなどが挙げられる。
【0067】
本発明における構成要素[f]の総量は、熱硬化性エポキシ樹脂組成物の総量100質量%中に、0.2質量%以上8質量%以下含むことが好ましく、0.2質量%以上4質量%以下含むことがより好ましく、0.2質量%以上2質量%以下含むことがさらに好ましい。
【0068】
本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[g]をさらに含むことができる。
[g]:水酸基との反応ピーク温度Tgが構成要素[b]と水酸基との反応ピーク温度Tbよりも15℃以上低い化合物
Tgは、1-フェノキシ-2-プロパノールと構成要素[g]を質量比10:1で混合し、昇温速度10℃/分にて示差走査熱量測定を実施し得られる反応発熱カーブのピーク温度である。Tbは、1-フェノキシ-2-プロパノールと構成要素[b]を質量比10:1で混合し、昇温速度10℃/分にて示差走査熱量測定を実施し得られる反応発熱カーブのピーク温度である。
【0069】
かかる構成要素[g]は、水酸基キャップ剤として機能する。本発明における水酸基キャップ剤とは、水酸基と反応してこれをキャップし得る、すなわち、水酸基を保護し得る官能基を分子内に含む化合物である。
【0070】
かかる構成要素[g]が含まれることにより、熱硬化性エポキシ樹脂組成物中に存在する水酸基、特に構成要素[a]に少量含まれていることが多い水酸基がキャップされる。これにより、副反応である構成要素[b]と水酸基のウレタン化反応が起きにくくなるため、本発明のエポキシ樹脂組成物の誘導時間が長時間化し、繊維強化複合材料用マトリックス樹脂としてより好適に用いることができる。
【0071】
ここで、かかる構成要素[g]の水酸基との反応発熱ピーク温度Tgが、構成要素[b]と水酸基の反応発熱ピーク温度Tbに対して15℃以上低いことにより、熱硬化性エポキシ樹脂組成物中に存在する水酸基は、構成要素[b]より先に構成要素[g]とウレタン化反応を起こす確率が高まり、本発明の熱硬化性エポキシ樹脂組成物の潜在性がより優れたものになりやすい。
【0072】
本発明における構成要素[g]と水酸基の反応発熱ピーク温度Tgは、構成要素[g]と特定の水酸基含有化合物を混合し、一定速度で昇温していった場合に、かかる水酸基がキャップされる反応が最も激しく進行する温度を意味する。具体的には、水酸基を含有するエポキシ樹脂を模した水酸基含有化合物として、1-フェノキシ-2-プロパノールを用意し、かかる水酸基含有化合物と構成要素[g]を質量比10:1で混合した後、昇温速度10℃/分にて示差走査熱量測定(DSC)を実施して得られる反応発熱カーブにおける、水酸基キャップ反応の発熱ピーク温度がTgである。
【0073】
本発明における構成要素[b]と水酸基の反応発熱ピーク温度Tbは、構成要素[b]と特定の水酸基含有化合物を混合し、一定速度で昇温していった場合に、かかる水酸基と構成要素[b]のイソシアネート基とのウレタン化反応が最も激しく進行する温度を意味する。具体的には、水酸基を含有するエポキシ樹脂を模した水酸基含有化合物として、1-フェノキシ-2-プロパノールを用意し、かかる水酸基含有化合物と構成要素[b]を質量比10:1で混合した後、昇温速度10℃/分にて示差走査熱量測定(DSC)を実施して得られる反応発熱カーブにおける、水酸基キャップ反応の発熱ピーク温度がTbである。
【0074】
本発明における構成要素[g]の総量は、構成要素[a]の総量100質量部に対して、0.5質量部以上20質量部以下含むことが好ましく、1質量部以上15質量部以下含むことがより好ましく、1質量部以上10質量部以下含むことがさらに好ましい。
【0075】
本発明において、構成要素[g]が分子内に1つのイソシアネート基を有するモノイソシアネート化合物を含むことが好ましい。
【0076】
分子内に1つのイソシアネート基を有するモノイソシアネート化合物としては、例えば、メチルイソシアネート、エチルイソシアネート、n-プロピルイソシアネート、イソプロピルイソシアネート、n-ブチルイソシアネート、イソブチルイソシアネート、オクタデシイルイソシアネート、シクロヘキシルイソシアネート、クロロスルホニルイソシアネート、フェニルイソシアネート、クロロフェニルイソシアネート、トリルイソシアネート、キシリルイソシアネート、トリメチルフェニルイソシアネート、アセチルフェニルイソシアネート、エトキシフェニルイソシアネート、シアノフェニルイソシアネート、ジメトキシフェニルイソシアネート、ナフチルイソシアネート、ビフェニリルイソシアネート、フェノキシフェニルイソシアネート、フルオロフェニルイソシアネート、ブロモフェニルイソシアネート、ベンゼンスルホニルイソシアネート、o-トルエンスルホニルイソシアネート、p-トルエンスルホニルイソシアネートなどが挙げられる。この中でも、誘導時間増大効果の観点から、スルホニルイソシアネート化合物が好ましく、クロロスルホニルイソシアネート、ベンゼンスルホニルイソシアネート、o-トルエンスルホニルイソシアネート、p-トルエンスルホニルイソシアネートがより好ましい。
【0077】
なお、これらの分子内に1つのイソシアネート基を有するモノイソシアネート化合物は単独で含まれても良いし、2種類以上含まれても良い。
【0078】
本発明の成形品は、本発明の熱硬化性エポキシ樹脂組成物が熱硬化されてなる。熱硬化の条件や手法は特に限定されず、成形品の形状や使用目的に応じて温度や硬化時間等を設定することができる。
【0079】
本発明の繊維強化複合材料の第一の態様は、本発明の成形品と、強化繊維とを含んでなる。
【0080】
本発明の繊維強化複合材料用成形材料は、本発明の熱硬化性エポキシ樹脂組成物と、強化繊維とを含んでなる。本発明の繊維強化複合材料用成形材料は、本発明の熱硬化性エポキシ樹脂組成物と、強化繊維とを含むものであれば特に限定されず、強化繊維に熱硬化性エポキシ樹脂組成物が含浸された状態でも、未含浸の状態でも構わない。また、熱硬化性エポキシ樹脂組成物が未反応の状態でも、一部が反応しBステージ化された状態でも構わない。
【0081】
本発明の繊維強化複合材料の第二の態様は、本発明の繊維強化複合材料用成形材料が熱硬化されてなる。
【0082】
本発明の繊維強化複合材料の製造方法の第一の態様は、強化繊維に、本発明の熱硬化性エポキシ樹脂を含浸させたあと、熱硬化させる。本発明の繊維強化複合材料の製造方法の第一の態様の例としては、プリプレグ法やトウプレグ法、FW(Filament Winding)法、プレス成形法、プルトルージョン法、フィルムバッグ成形法等が挙げられる。
【0083】
本発明の繊維強化複合材料の製造方法の第二の態様は、強化繊維を主成分とする織物を型内に配置し、本発明の熱硬化性エポキシ樹脂組成物を注入して含浸させたあと、熱硬化させる。本発明の繊維強化複合材料の製造方法の第二の態様の例としては、RTM(Resin Transfer Molding:樹脂注入成形)法等が挙げられる。
【0084】
繊維強化複合材料の製造方法は特に限定されないが、本発明の熱硬化性エポキシ樹脂組成物は、硬化温度において樹脂が流動する誘導時間を示すことから、RTM法に好ましく用いられる。
【0085】
繊維強化複合材料の製造方法を、RTM法を例に挙げてさらに説明すると、熱硬化性エポキシ樹脂組成物を、成形型内に配置した強化繊維を主成分とする織物に注入して含浸させたあと、当該成形型内で熱硬化させることにより成形する。ここでいう主成分とは、織物の構成要素のうち、質量で最も大きな割合を占めるものことを指す。
【0086】
かかる繊維強化複合材料の製造方法においては、熱硬化性エポキシ樹脂組成物を、成形型内に配置した強化繊維を主成分とする織物に注入するに際して、当該熱硬化性エポキシ樹脂組成物を当該成形型に設けられた複数の箇所から注入することが好ましい。具体的には、成形型に複数の注入口を有するものを用い、当該熱硬化性エポキシ樹脂組成物を当該複数の注入口から同時に、または時間差を設けて順次注入するなど、得ようとする繊維強化複合材料に応じて適切な条件を選んで注入することが、様々な形状や大きさの成形品に対応できるため好ましい。かかる注入口の数や形状に制限はないが、短時間での注入を可能にするために注入口は多い程良く、その配置は、成形品の形状に応じて樹脂の流動長を短くできる位置が好ましい。
【0087】
熱硬化性エポキシ樹脂組成物を注入する際の注入圧力は、通常0.1~1.0MPaで、注入時間と設備の経済性の点から0.1~0.6MPaが好ましい。また、型内を真空吸引して当該熱硬化性エポキシ樹脂組成物を注入するVaRTM(Vacuum-Assisted Resin Transfer Molding)法も用いることができる。加圧注入を行う場合でも、当該熱硬化性エポキシ樹脂組成物を注入する前に型内を真空に吸引しておくと、ボイドの発生が抑えられ好ましい。
【0088】
本発明で用いられる強化繊維は、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維などが好適に用いられる。中でも、軽量でありながら、強度や、弾性率などの力学物性に優れる繊維強化複合材料が得られるという理由から、炭素繊維が好適に用いられる。
【0089】
かかる炭素繊維は、実質的に真円状の断面を有することが好ましい。ここで、断面形状が実質的に真円状であるとは、光学顕微鏡を用いて測定される単糸の断面の長径Rと短径rの比(r/R)が0.9以上であることをいう。ここで、長径Rとは、単糸の断面形状の外接円の直径を指し、短径rとは、単糸の断面形状の内接円の直径を指す。真円状であることにより、熱硬化性エポキシ樹脂組成物のかかる炭素繊維を用いた基材への含浸性が良好となり、未含浸部分の発生のリスクを低減することができる。
【0090】
かかる炭素繊維は、光学顕微鏡を用いて測定される平均繊維径が4.0~8.0μmの範囲にあることが好ましく、5.0~7.0μmの範囲にあることがより好ましく、5.3~7.0μmの範囲にあることがさらに好ましい。平均繊維径が上記範囲であることにより、かかる炭素繊維を用いた繊維強化複合材料の耐衝撃性と引張強度を両立することができる。
【0091】
かかる炭素繊維は、表面比酸素濃度O/Cが0.03~0.22の範囲にあることが好ましい。ここで、表面比酸素濃度は、X線光電子分光法において、O1sピーク面積[O1s]と、C1sピーク面積[C1s]から表面比酸素濃度O/C=([O1s]/[C1s])/(感度補正値)を算出することにより特定される。表面比酸素濃度O/Cは、0.05~0.22の範囲にあることがより好ましく、0.08~0.22の範囲にあることがさらに好ましい。O/Cが0.22以下であると、かかる炭素繊維を用いた繊維強化複合材料が十分な引張強度を有しやすくなる。O/Cが0.03以上であると、かかる炭素繊維と熱硬化性エポキシ樹脂組成物の接着性が向上し、かかる炭素繊維を用いた繊維強化複合材料が十分な力学特性を有しやすくなる。表面比酸素濃度O/Cを上記範囲とするための手段としては、例えば、電解酸化処理時の電解液の種類、濃度を変更する、電気量を変更するといった方法が挙げられる。
【0092】
かかる炭素繊維は、本発明の効果を損なわない程度に、例えば、ガラス繊維、金属繊維、セラミック繊維等の無機繊維、ポリアミド繊維、ポリエステル系繊維、ポリオレフィン系繊維、ノボロイド繊維等の有機合成繊維、金、銀、銅、青銅、黄銅、リン青銅、アルミニウム、ニッケル、スチール、ステンレススチール等からなる金属線、金属メッシュ、金属不織布等と組み合わせて用いることができる。
【0093】
かかる炭素繊維の全繊維中における含有率は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。炭素繊維の含有率が上記範囲であれば、軽量でかつ、力学特性に優れる繊維強化複合材料が得られるため好ましい。
【0094】
自動車や航空機、風車発電用ブレードのような大型部材向けには、低コスト化かつ軽量化が可能であることから、強化繊維としてガラス繊維も好適に用いられる。
【0095】
かかるガラス繊維は、イソシアネート基と共有結合を形成可能である表面官能基を有することが好ましい。ガラス繊維の表面には、シラノール基と呼ばれる水酸基が結合したケイ素(Si-OH)が存在することが知られ、シラノール基に対して必要に応じて様々な官能基を有するカップリング剤等を結合させることで、ガラス繊維表面の化学的特性を改良できることが知られている。ここで、イソシアネート基と共有結合を形成可能である表面官能基を有するとは、ガラス繊維の表面に、イソシアネート基と化学反応により共有結合を形成することが可能な官能基が少なくとも1つ以上存在することをいう。ガラス繊維がイソシアネート基と共有結合を形成可能である表面官能基を有する場合、熱硬化性エポキシ樹脂組成物に含まれる[b]イソシアネート化合物と、ガラス繊維が化学的に結合することが可能となり、得られる繊維強化複合材料においてガラス繊維と熱硬化性エポキシ樹脂組成物との接着性が向上し、高強度を発現しやすくなる。ただし、ガラス繊維とエポキシ樹脂組成物との接着性が向上しすぎると、後述のように引張強度が低下することがあり、ガラス繊維の表面はカップリング剤等で適度に処理されていることが好ましい。
【0096】
かかるガラス繊維の表面官能基は、水酸基、オキシラン基、アミノ基、チオール基、およびカルボキシ基からなる群から選ばれる少なくとも1つの官能基であることが好ましい。ガラス繊維が上記のような表面官能基を有することで、ガラス繊維と熱硬化性エポキシ樹脂組成物との界面において優れた接着性を発現しやすくなる。中でも、エポキシ樹脂組成物となじみやすく、[b]イソシアネート化合物と適度に共有結合を形成しやすいことから、ガラス繊維の表面官能基がアミノ基であることが好ましい。
【0097】
かかるガラス繊維は、その表面に活性水素を有する官能基が存在することが好ましい。ここで活性水素とは、有機化合物において窒素、酸素、硫黄と結合していて、反応性の高い水素原子のことをいう。例えば、1つのアミノ基は活性水素を2つ有する。活性水素を有する官能基の例として、水酸基、オキシラン基、アミノ基、チオール基、カルボキシ基等が挙げられる。
【0098】
かかるガラス繊維の表面官能基は、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、およびジルコニウムカップリング剤からなる群から選ばれる少なくとも一つで処理されて形成されることが好ましい。カップリング剤は、1種を単独で用いても2種類以上を組み合わせて用いても良い。ガラス繊維表面の表面にシラノール基が多すぎると、エポキシ樹脂組成物に含まれる[b]イソシアネート化合物と、ガラス繊維が化学的に強固に結合され接着性は向上するが、引張応力が加わって破断する際に繊維の強度を利用できずエポキシ樹脂が破壊してしまうため、引張強度が低下することがある。このため、ガラス繊維の表面は適度にカップリング剤等で処理されていることが好ましい。
【0099】
かかるガラス繊維に用いられるシランカップリング剤としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等のアミノ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等のチオール基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のオキシラン基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシ基含有シラン類;などを挙げることができる。
【0100】
チタンカップリング剤としては、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。
【0101】
中でも、エポキシ樹脂組成物となじみやすく、適度に接着強度を向上させ耐衝撃性を向上することができるため、アミノ基含有シラン類のシランカップリング剤が好ましい。
【0102】
かかるガラス繊維がカップリング剤を含む場合、ガラス繊維100質量部に対して0.01~5質量部であることが好ましく、0.05~4質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。カップリング剤の含有率が上記範囲であれば、ガラス繊維に対する熱硬化性エポキシ樹脂組成物の濡れ性が向上し、適度に接着性および含浸性が向上し力学特性を向上可能であるため好ましい。
【0103】
カップリング剤層の形成方法としては、例えば、カップリング剤を含む溶液をガラス繊維基材の表面に塗布した後、熱処理する方法が挙げられる。カップリング剤の溶液化に用いる溶媒としては、カップリング剤と反応しないものであれば特に限定されないが、例えば、ヘキサンのような脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレンのような芳香族系溶媒、テトラヒドロフランのようなエーテル系溶媒、メタノール、プロパノールのようなアルコール系溶媒、アセトンのようなケトン系溶媒、水等が挙げられ、これらの溶媒の1種または2種以上の混合物が用いられる。
【0104】
かかるガラス繊維は、用途に応じてあらゆる種類のガラス繊維を使用することができる。ガラス繊維の例としては、Eガラス、Aガラス、Cガラス、Dガラス、Rガラス、Sガラス、ECRガラス、NEガラス、石英およびフッ素フリーおよび/またはホウ素フリーのEガラス誘導体として一般に知られる繊維化可能なガラス組成物から調製したものなどが挙げられる。
【0105】
かかるガラス繊維は、本発明の効果を損なわない程度に、例えば、炭素繊維、金属繊維、セラミック繊維等の無機繊維、ポリアミド繊維、ポリエステル系繊維、ポリオレフィン系繊維、ノボロイド繊維等の有機合成繊維、金、銀、銅、青銅、黄銅、リン青銅、アルミニウム、ニッケル、スチール、ステンレススチール等からなる金属線、金属メッシュ、金属不織布等を組み合わせて用いることができる。
【0106】
かかるガラス繊維の全繊維中における含有率は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。ガラス繊維の含有率が上記範囲であれば、軽量でかつ、力学特性や耐候性に優れる繊維強化複合材料が得られるため好ましい。
【0107】
かかる強化繊維は、短繊維、連続繊維のいずれであってもよく、両者を併用してもよい。力学特性に優れる、高い繊維体積含有率(Vf)の繊維強化複合材料を得るためには、連続繊維が好ましい。
【0108】
本発明の繊維強化複合材料では、強化繊維はストランドの形態で用いられることもあるが、強化繊維をマット、織物、ニット、ブレイド、一方向シートなどの形態に加工した強化繊維からなる基材が好適に用いられる。中でも、高Vfの繊維強化複合材料が得やすく、かつ取扱い性に優れた織物が好適に用いられる。
【実施例】
【0109】
以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。
【0110】
実施例1~12、比較例1~7については、以下(表1~表3を含む)の通りである。
【0111】
(1)熱硬化性エポキシ樹脂組成物の原料
・構成要素[a]:エポキシ樹脂
[a]-1 “jER(登録商標)”825(ビスフェノールA型エポキシ樹脂、エポキシ当量:175、三菱ケミカル(株)製)
[a]-2 “jER(登録商標)”806(ビスフェノールF型エポキシ樹脂、エポキシ当量:165、三菱ケミカル(株)製)
[a]-3 “カネエース(登録商標)”MX-267エポキシ樹脂成分((株)カネカ製)。
【0112】
・構成要素[b]:イソシアネート化合物
[b]-1 “ルプラネート(登録商標)”M20S(ポリメリックMDI、イソシアネート当量:134、BASF INOAC ポリウレタン(株)製)
[b]-2 “ルプラネート(登録商標)”MI(モノメリックMDI、イソシアネート当量:126、BASF INOAC ポリウレタン(株)製)。
【0113】
・構成要素[c]:無機塩
[c]-1 ヨウ化リチウム(東京化成工業(株)製)
[c]-2 臭化リチウム(東京化成工業(株)製)
[c]-3 塩化リチウム(東京化成工業(株)製)
[c]-4 ヨウ化カルシウム(東京化成工業(株)製)。
【0114】
・構成要素[d]:式(I)で示される構造を分子内に有する化合物
[d]-1 PEG-300(三洋化成工業(株)製)
[d]-2 “ニューポール(登録商標)”BPE-60(ビスフェノールAエチレンオキサイド付加物、三洋化成工業(株)製)
[d]-3 “エポミン(登録商標)”SP-003(ポリエチレンイミン、日油(株)製)。
【0115】
・構成要素[e]:ハロゲン化オニウム塩
[e]-1 テトラブチルアンモニウムブロミド(東京化成工業(株)製)
[e]-2 テトラブチルアンモニウムクロリド(東京化成工業(株)製)。
【0116】
・構成要素[f]:エラストマー系高靭性化剤
[f]-1 “カネエース(登録商標)”MX-267主成分((株)カネカ製)。
【0117】
・構成要素[g]:水酸基との反応発熱ピーク温度Tgが構成要素[b]と水酸基の反応発熱ピーク温度Tbより15℃以上低い化合物
[g]-1 p-クロロフェニルイソシアネート(東京化成工業(株)製)
[g]-2 p-トルエンスルホニルイソシアネート(東京化成工業(株)製)。
【0118】
・その他の添加剤
イソホロンジアミン(東京化成工業(株)製)、“jERキュア(登録商標)”W(三菱ケミカル(株)製)、“リカシッド(登録商標)”HH(新日本理化(株)製)。
【0119】
(2)構成要素[b]と水酸基の反応発熱ピーク温度Tbの測定
水酸基含有化合物1-フェノキシ-2-プロパノール(東京化成工業(株)製)100質量部に対して、構成要素[b]を10質量部配合し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、昇温速度10℃/分にて0℃から250℃の範囲で示差走査熱量測定を実施した。得られた反応発熱カーブにおける、ウレタン化反応の発熱ピーク温度をTb(℃)とした。
【0120】
(3)構成要素[g]と水酸基の反応発熱ピーク温度Tgの測定
水酸基含有化合物1-フェノキシ-2-プロパノール(東京化成工業(株)製)100質量部に対して、構成要素[g]を10質量部配合し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、昇温速度10℃/分にて0℃から250℃の範囲で示差走査熱量測定を実施した。得られた反応発熱カーブにおける、ウレタン化反応の発熱ピーク温度をTg(℃)とした。
【0121】
(4)熱硬化性エポキシ樹脂組成物の調製
表1~3に記載した組成(質量比)で構成要素[a]、構成要素[c]、構成要素[d]、構成要素[e]を配合し、30分間室温で混練した後に、構成要素[f]や構成要素[g]またはその他の添加物を配合して熱硬化性エポキシ樹脂組成物を調製した。
【0122】
(5)熱硬化性エポキシ樹脂組成物の粘度の測定
動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、直径40mmのパラレルプレートを用い、周波数1Hz、Gap1mmの測定条件で、前記(4)熱硬化性エポキシ樹脂組成物の調製に従い調製した樹脂組成物の複素粘性率η*を、表1~3に記載の測定温度で測定し、測定開始直後に取得した値を、エポキシ樹脂組成物の粘度とした。
【0123】
(6)誘導時間(Ti)の測定
動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、直径40mmのパラレルプレートを用い、周波数1Hz、Gap1mmの測定条件で、前記(4)熱硬化性エポキシ樹脂組成物の調製に従い調製した樹脂組成物の複素粘性率η*の経時変化を、表1~3に記載の測定温度で測定した。測定開始直後と比較し、η*が4倍の値に到達した時間を誘導時間(Ti)とした。
【0124】
(7)硬化時間(Tc)の測定
ポリマー硬化測定装置(ATD-1000:アルファテクノロジーズ社製)を用い、周波数1Hz、歪み量1%の条件で、前記(4)熱硬化性エポキシ樹脂組成物の調製に従い調製した樹脂組成物の動的粘弾性の経時変化を表1~3に記載の測定温度で測定し、複素粘性率η*が1000000Pa・sに到達した時間を硬化時間(Tc)とした。
【0125】
(8)成形品の作製
前記(4)熱硬化性エポキシ樹脂組成物の調製に従い調製した樹脂組成物を真空中で脱泡した後、密閉式のプレス成形機を表1~3に記載の硬化温度で保温した状態で、プレス圧1MPaの下、前記(7)硬化時間の測定から得られたTcの時間保圧し、所望する厚みの平板形状の成形品を作製した。
【0126】
(9)成形品のガラス転移温度の測定
前記(8)成形品の作製に従って得た厚み2mmの成形品から、幅10mm、長さ40mmの試験片を切り出し、動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、固体ねじり治具に試験片をセットし、昇温速度5℃/分、周波数1Hz、歪み量0.1%にて30~300℃の温度範囲について測定を行った。縦軸が貯蔵弾性率の常用対数、横軸が温度の散布図において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度をガラス転移温度とした。
【0127】
(10)成形品の曲げ弾性率および曲げ撓み量の測定
前記(8)成形品の作製に従って得た厚み2mmの成形品から、幅10mm、長さ60mmの試験片を切り出し、スパン間距離32mmにて3点曲げを測定し、JIS K7171-1994に従い、曲げ弾性率、および靭性の指標となる曲げ撓み量を求めた。
【0128】
(11)成形品の靭性の測定
前記(8)成形品の作製に従って得た厚み6mmの成形品から、幅12.7mmの試験片を切り出し、ASTM D5045-99に記載の試験片形状に加工を行った後、ASTM D5045-99に従ってSENB試験を実施した。サンプル数はn=15とし、その平均値を臨界応力拡大係数Kicとして、靭性とした。
【0129】
(実施例1)
前記(4)熱硬化性エポキシ樹脂組成物の調製のとおり、表1の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。かかる熱硬化性エポキシ樹脂組成物の、表1に記載の測定温度で測定したTc/Tiは3.9~5.0となり、潜在性と速硬化性は良好であった。また、樹脂硬化物の曲げ撓み量は3.9~6.8mmと良好であった。なお、実施例1には、表1の実施例1-1~実施例1-3を含む。表1~表3中の他の実施例、及び比較例についても同様である。
【0130】
(実施例2)
前記(4)熱硬化性エポキシ樹脂組成物の調製のとおり、表1の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。かかる熱硬化性エポキシ樹脂組成物の、表1に記載の測定温度で測定したTc/Tiは3.0~5.2となり、潜在性と速硬化性は良好であった。また、樹脂硬化物の曲げ撓み量は3.7~6.6mmと良好であった。
【0131】
(実施例3)
実施例1に構成要素[d]としてPEG-300を添加した。かかるエポキシ樹脂硬化物のTc/Tiは2.1~2.8と優れたものとなった。また、樹脂硬化物の曲げ撓み量は5.0~7.4mmと良好であった。
【0132】
(実施例4)
実施例1の構成要素[b]を変更し、添加量を減らした。また構成要素[c]を変更した。かかるエポキシ樹脂硬化物のTc/Tiは4.4~8.2と許容されるレベルであった。また、樹脂硬化物の曲げ撓み量は3.1~4.6mmと問題ないレベルであった。
【0133】
(実施例5)
実施例3から構成要素[b]、構成要素[c]および構成要素[d]を変更した。かかるエポキシ樹脂硬化物のTc/Tiは3.5~3.8と良好であった。また、樹脂硬化物の曲げ撓み量は6.7~7.8mmと優れたものであった。
【0134】
(実施例6)
実施例1に構成要素[e]としてテトラブチルアンモニウムクロリドを添加し、構成要素[b]および構成要素[c]を変更した。かかるエポキシ樹脂硬化物のTc/Tiは1.6~1.8と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は5.1~5.5mmと問題ないレベルあった。
【0135】
(実施例7)
表2の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。かかるエポキシ樹脂硬化物のTc/Tiは1.3~1.7と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は5.5~8.3mmと良好であった。また、ガラス転移温度も硬化温度より10℃以上高く、良好であった。
【0136】
(実施例8)
実施例7の構成要素[a]を変更、構成要素[g]について、p-クロロフェニルイソシアネートを追加し、構成要素[d]を変更した。かかるエポキシ樹脂硬化物のTc/Tiは1.6と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は8.7mmと優れたものであった。
【0137】
(実施例9)
表2の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。かかるエポキシ樹脂硬化物のTc/Tiは1.4と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は8.6mmと優れたものであった。
【0138】
(実施例10)
実施例8の構成要素[g]について、p-クロロフェニルイソシアネートをp-トルエンスルホニルイソシアネートに変更した。Tc/Tiは1.5と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は5.8~8.6mmと優れたものであった。
【0139】
(実施例11)
表2の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。実施例10と比較し、構成要素[g]の配合量が多い。かかるエポキシ樹脂硬化物のTc/Tiは1.1~2.5と非常に優れたものであった。また、樹脂硬化物の曲げ撓み量は7.3~9.3mmと優れたものであった。
【0140】
(実施例12)
表2の組成欄に記載した配合部数で熱硬化性エポキシ樹脂組成物を調製した。構成要素[f]として“カネエース(登録商標)”MX-267を含む。かかるエポキシ樹脂硬化物のTc/Tiは1.7~4.4と非常に優れたものであり、樹脂硬化物の曲げ撓み量も8.0~12mmと優れたものであった。また、Kicの値は1.4~1.7MPa・m0.5と非常に優れていた。
【0141】
(比較例1)
表3に記載の通り、構成要素[a]とエポキシ樹脂硬化剤として“jERキュア(登録商標)“Wを配合した。かかるエポキシ樹脂硬化物は、70℃では硬化が十分に進行せず、Tc/Tiを得ることができなかった。温度を180℃に変更したが、Tc/Tiは50と不十分なものであった。
【0142】
(比較例2)
表3に記載の通り、構成要素[a]とエポキシ樹脂硬化剤としてイソホロンジアミンを配合した。かかるエポキシ樹脂硬化物のTc/Tiは50~60と不十分なものであった。
【0143】
(比較例3)
表3に記載の通り、構成要素[a]とエポキシ樹脂硬化剤として“リカシッド(登録商標)“HHを配合した。かかるエポキシ樹脂硬化物のTc/Tiは50~144と不十分なものであった。
【0144】
(比較例4)
実施例1~3に構成要素[f]として“カネエース(登録商標)”MX-267を追加した。かかるエポキシ樹脂硬化物のTc/Tiは41~125と不十分なものであった。また、Kicの値は0.9~1.0MPa・m0.5であり、実施例12と異なり構成要素[a]~[c]と構成要素[f]を組み合わせたことによる特異的な靭性向上効果は見られなかった。
【0145】
(比較例5)
表3に記載の通り、構成要素[a]および構成要素[b]と、エポキシ樹脂硬化剤として構成要素[e]を配合した。かかるエポキシ樹脂硬化物のTc/Tiは10~75と不十分なものであった。
【0146】
(比較例6)
表3に記載の通り、構成要素[a]と構成要素[b]からなるエポキシ樹脂組成物を作製した。かかるエポキシ樹脂組成物は硬化が十分に進行せずTc/Tiを得ることができなかった。
【0147】
(比較例7)
表3に記載の通り、構成要素[a]とエポキシ樹脂硬化剤として“リカシッド(登録商標)“HHを配合し、さらに構成要素[c]を含むエポキシ樹脂組成物を作製した。構成要素[c]を配合した。かかるエポキシ樹脂組成物のTc/Tiは48~118と不十分なものであった。また、樹脂硬化物の曲げ撓み量は2.9~3.1mmと不十分なレベルであった。
【0148】
【0149】
【0150】
【0151】
実施例13~21、比較例8については以下(表4を含む)の通りである。
【0152】
(12)熱硬化性エポキシ樹脂組成物の原料
実施例の熱硬化性エポキシ樹脂組成物を得るために用いた原料は、上記(1)熱硬化性エポキシ樹脂組成物の原料と同様である。
【0153】
(13)炭素繊維の作製
下記製法により、炭素繊維[I]~[V]を作製した。
【0154】
<炭素繊維[I]>
アクリロニトリル99.4mol%とメタクリル酸0.6mol%からなる共重合体を用いて、乾湿式紡糸法により単繊維繊度0.08tex、フィラメント数12000のアクリル系前駆体繊維を得た。
【0155】
この前駆体繊維を空気中240~280℃で、延伸比1.05で加熱し、耐炎化繊維に転換し、さらに窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし、延伸比1.10で加熱した後、1400℃まで焼成し炭化を進めた。得られた炭素繊維の目付は0.50g/m、密度は1.80g/cm3であった。
【0156】
次に、濃度1.0mol/Lの炭酸水素アンモニウム水溶液を電解液として電気量3C/g・槽で電解酸化処理した。次いで、この電解酸化処理後の炭素繊維を水洗し、150℃の空気中で乾燥し、炭素繊維[I]を得た。
【0157】
炭素繊維[I]の表面比酸素濃度O/Cは0.08、平均繊維径は5.5μmであり、断面形状はr/Rが0.95であり実質的に真円状であった。
【0158】
<炭素繊維[II]>
電解酸化処理時の電気量を30C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[II]を得た。
【0159】
炭素繊維[II]の表面比酸素濃度O/Cは0.18、平均繊維径は5.5μmであり、断面形状はr/Rが0.95であり実質的に真円状であった。
【0160】
<炭素繊維[III]>
電解酸化処理時の電気量を1C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[III]を得た。
【0161】
炭素繊維[III]の表面比酸素濃度O/Cは0.03、平均繊維径は5.5μmであり、断面形状はr/Rが0.95であり実質的に真円状であった。
【0162】
<炭素繊維[IV]>
電解酸化処理時の電気量を100C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[IV]を得た。
【0163】
炭素繊維[IV]の表面比酸素濃度O/Cは0.22、平均繊維径は5.5μmであり、断面形状はr/Rが0.95であり実質的に真円状であった。
【0164】
<炭素繊維[V]>
アクリル系前駆体繊維の紡糸法を湿式紡糸法に変更し、得られたアクリル系前駆体繊維の単繊維繊度が0.09texであった以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[V]を得た。得られた炭素繊維の目付は0.50g/m、密度は1.80g/cm3であった。
【0165】
炭素繊維[V]の表面比酸素濃度O/Cは0.05、平均繊維径は5.4μmであり、断面形状はr/Rが0.8の扁平なものであった。
【0166】
(14)炭素繊維織物の作製
上記(13)炭素繊維の作製に従って得た炭素繊維を経糸および緯糸とし、目付が190g/m2の平織の炭素繊維織物を得た。
【0167】
(15)熱硬化性エポキシ樹脂組成物の調製
表4に記載した組成(質量比)で、上記(4)熱硬化性エポキシ樹脂組成物の調製と同様にエポキシ樹脂組成物を調製した。
【0168】
(16)繊維強化複合材料の作製
板状キャビティーを持つ金型に、上記(14)炭素繊維織物の作製に従って作製した炭素繊維織物を400mm×400mmのサイズにカットしたものを10枚積層し、プレス装置で型締めを行った。その際、キャビティーの厚みは、繊維強化複合材料の繊維体積含有率が40%となるように設定した。次に、金型内を真空ポンプにより大気圧-0.1MPaに減圧し、表4に記載の硬化温度に加温した。上記(4)熱硬化性エポキシ樹脂組成物の調製のとおり調製した熱硬化性エポキシ樹脂組成物を樹脂注入機を用いて0.2MPaの圧力で注入した。その後、上記(7)硬化時間の測定に従って得たTcの時間、加温した後に速やかに脱型し、繊維強化複合材料を得た。
【0169】
(17)面内剪断強度の測定
上記(16)繊維強化複合材料の作製のとおり作製した繊維強化複合材料に対して、JIS K 7019:1999に従って±45°引張試験を行い、面内剪断強度を求めた。
【0170】
(18)強化繊維への熱硬化性エポキシ樹脂組成物の含浸性評価
上記(16)繊維強化複合材料の作製の樹脂注入工程における含浸性について、繊維強化複合材料のボイド量を基準に次の4段階で比較評価した。繊維強化複合材料中のボイド量が0.5%未満のものを「Good」、0.5%以上1%未満のものを「Fair」、繊維強化複合材料中のボイド量が1%以上であるものを「Bad」とした。
【0171】
繊維強化複合材料中のボイド量は、平滑に研磨した繊維強化複合材料断面を落射型光学顕微鏡で観察し、繊維強化複合材料中のボイド面積率から算出した。
【0172】
(実施例13)
上記(15)熱硬化性エポキシ樹脂組成物の調製のとおり、熱硬化性エポキシ樹脂を調製した後、炭素繊維として<炭素繊維[I]>を用いて、上記(16)繊維強化複合材料の作製のとおり、繊維強化複合材料を作製した。かかる繊維強化複合材料の面内剪断強度は210MPaと優れていた。また、含浸性は「Fair」の判定であった。
【0173】
(実施例14)
実施例13に構成要素[d]としてPEG-300を追加した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は220MPaと優れていた。また、含浸性は「Good」の判定で、優れたものであった。
【0174】
(実施例15)
上記(15)熱硬化性エポキシ樹脂組成物の調製のとおり、熱硬化性エポキシ樹脂を調製した後、炭素繊維として<炭素繊維[I]>を用いて、上記(16)繊維強化複合材料の作製のとおり、繊維強化複合材料を作製した。かかる繊維強化複合材料の面内剪断強度は210MPaと優れていた。また、含浸性は「Fair」の判定であった。
【0175】
(実施例16)
実施例13に構成要素[d]としてPEG-300を、構成要素[e]としてテトラブチルアンモニウムブロミドを追加した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は232MPaと優れていた。また、含浸性は「Good」の判定で、優れたものであった。
【0176】
(実施例17)
実施例16の構成要素[a]を変更、構成要素[g]について、p-トルエンスルホニルイソシアネートを追加し、構成要素[d]を変更した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は240MPaと優れていた。また、含浸性は「Good」の判定で、優れたものであった。
【0177】
(実施例18)
実施例13から炭素繊維を<炭素繊維[II]>に変更した。かかる繊維強化複合材料の面内剪断強度は255MPaと非常に優れていた。また、含浸性は「Good」の判定で、優れたものであった。
【0178】
(実施例19)
実施例13から炭素繊維を<炭素繊維[III]>に変更した。かかる繊維強化複合材料の面内剪断強度は195MPaと問題無いレベルであった。また、含浸性は「Good」の判定で、優れたものであった。
【0179】
(実施例20)
実施例13から炭素繊維を<炭素繊維[IV]>に変更した。かかる繊維強化複合材料の面内剪断強度は250MPaと非常に優れていた。また、含浸性は「Good」の判定で、優れたものであった。
【0180】
(実施例21)
実施例13から炭素繊維を<炭素繊維[V]>に変更した。かかる繊維強化複合材料の面内剪断強度は190MPaと問題無いレベルであった。また、含浸性は「Fair」の判定であった。
【0181】
(比較例8)
表4に記載の通り、構成要素[a]および構成要素[b]、および構成要素[e]を配合した熱硬化性エポキシ樹脂組成物を使用した。また、炭素繊維として<炭素繊維[I]>を使用した。かかる繊維強化複合材料の面内剪断強度は150MPaと劣っていた。また、繊維強化複合材料中に多数のボイドが見られ、含浸性は「Bad」の判定と、劣ったものであった。
【0182】
【0183】
実施例22~32、比較例9については以下(表5を含む)のとおりである。
【0184】
(19)熱硬化性エポキシ樹脂組成物の原料
実施例の熱硬化性エポキシ樹脂組成物を得るために用いた原料は、上記(1)熱硬化性エポキシ樹脂組成物の原料と同様である。
【0185】
(20)ガラス繊維の作製
下記製法により、ガラス繊維[I]~[VII]を作製した。
【0186】
<ガラス繊維[I]>
ガラス繊維織物KS2700(日東紡績(株)製)を用いた。
【0187】
<ガラス繊維「II」>
ガラス繊維織物KS2700(日東紡績(株)製)を、カップリング剤KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製)のメタノール溶液(1質量%)に7時間浸漬後、110℃の熱風オーブン内で5時間乾燥させて溶媒を除去し、表面にオキシラン基を有するガラス繊維[II]を得た。
【0188】
<ガラス繊維[III]>
カップリング剤をKBM-903(3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)とした以外は、ガラス繊維[II]と同一の条件で作製し、表面にアミノ基を有するガラス繊維[III]を得た。
【0189】
<ガラス繊維[IV]>
カップリング剤をKBM-803(3-メルカプトプロピルトリメトキシシラン、信越化学工業(株)製)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維表面にチオール基を有する[IV]を得た。
【0190】
<ガラス繊維[V]>
カップリング剤をX-12-967C(3-トリメトキシシリルプロピルコハク酸無水物、信越化学工業(株)製)とした以外は、ガラス繊維[II]と同一の条件で作製し、表面にカルボキシ基を有するガラス繊維[V]を得た。
【0191】
<ガラス繊維[VI]>
カップリング剤をKBM-1003(ビニルトリメトキシシラン、信越化学工業(株)製)とした以外は、ガラス繊維[II]と同一の条件で作製し、表面にビニル基を有するガラス繊維[VI]を得た。
【0192】
<ガラス繊維[VII]>
カップリング剤をメチルトリメトキシシラン(関東化学(株)製)とした以外は、ガラス繊維[II]と同一の条件で作製し、表面にメチル基を有するガラス繊維[VII]を得た。
【0193】
(21)熱硬化性エポキシ樹脂組成物の調製
表5に記載した組成(質量比)で、上記(4)熱硬化性エポキシ樹脂組成物の調製と同様にエポキシ樹脂組成物を調製した。
【0194】
(22)繊維強化複合材料の作製
上記(20)ガラス繊維の作製のとおり作製したガラス繊維と、上記(21)熱硬化性エポキシ樹脂組成物の調製のとおり調製した熱硬化性エポキシ樹脂組成物を用いて、上記(16)繊維強化複合材料の作製と同様に繊維強化複合材料を作製した。
【0195】
(23)面内剪断強度の測定
上記(22)繊維強化複合材料の作製のとおり作製した繊維強化複合材料に対して、上記(17)面内剪断強度の測定と同様に面内剪断強度を測定した。
【0196】
(24)引張強度の測定
上記(22)繊維強化複合材料の作製のとおり作製した繊維強化複合材料に対して、JIS K 7164:2005に従って引張試験を行い、引張強度を求めた。
【0197】
(25)強化繊維への熱硬化性エポキシ樹脂組成物の含浸性評価
上記(22)繊維強化複合材料の作製の樹脂注入工程における含浸性について、上記(18)強化繊維への熱硬化性エポキシ樹脂組成物の含浸性評価と同様に評価した。
【0198】
(実施例22)
上記(21)熱硬化性エポキシ樹脂組成物の調製のとおり、熱硬化性エポキシ樹脂を調製した後、ガラス繊維として<ガラス繊維[I]>を用いて、上記(21)繊維強化複合材料の作製のとおり、繊維強化複合材料を作製した。かかる繊維強化複合材料の面内剪断強度は170MPaと優れており、引っ張り強度は230MPaと問題無いレベルであった。また、含浸性は「Fair」の判定であった。
【0199】
(実施例23)
実施例22に構成要素[d]としてPEG-300を追加した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は172MPaと優れており、引っ張り強度は234MPaと問題無いレベルであった。また、含浸性は「Good」の判定と優れたものであった。
【0200】
(実施例24)
上記(21)熱硬化性エポキシ樹脂組成物の調製のとおり、熱硬化性エポキシ樹脂を調製した後、ガラス繊維として<ガラス繊維[I]>を用いて、上記(22)繊維強化複合材料の作製のとおり、繊維強化複合材料を作製した。かかる繊維強化複合材料の面内剪断強度は176MPaと優れており、引っ張り強度は240MPaと問題無いレベルであった。また、含浸性は「Fair」の判定であった。
【0201】
(実施例25)
実施例24に構成要素[d]としてPEG-300を、構成要素[e]としてテトラブチルアンモニウムブロミドを追加した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は175MPaと優れており、引っ張り強度は250MPaと特に優れたものであった。また、含浸性は「Good」の判定であった。
【0202】
(実施例26)
実施例25の構成要素[a]を変更、構成要素[g]について、p-トルエンスルホニルイソシアネートを追加し、構成要素[d]を変更した熱硬化性エポキシ樹脂組成物を使用した。かかる繊維強化複合材料の面内剪断強度は179MPaと優れており、引っ張り強度は245MPaと特に優れたものであった。また、含浸性は「Good」の判定であった。
【0203】
(実施例27)
実施例22からガラス繊維を<ガラス繊維[II]>に変更した。かかる繊維強化複合材料の面内剪断強度は170MPaと優れており、引っ張り強度は240MPaと優れたものであった。また、含浸性は「Good」の判定であった。
【0204】
(実施例28)
実施例22からガラス繊維を<ガラス繊維[III]>に変更した。かかる繊維強化複合材料の面内剪断強度は180MPaと非常に優れており、引っ張り強度は255MPaと特に優れたものであった。また、含浸性は「Good」の判定であった。
【0205】
(実施例29)
実施例22からガラス繊維を<ガラス繊維[IV]>に変更した。かかる繊維強化複合材料の面内剪断強度は170MPaと優れており、引っ張り強度は250MPaと特に優れたものであった。また、含浸性は「Good」の判定であった。
【0206】
(実施例30)
実施例22からガラス繊維を<ガラス繊維[V]>に変更した。かかる繊維強化複合材料の面内剪断強度は168MPaと優れており、引っ張り強度は245MPaと特に優れたものであった。また、含浸性は「Good」の判定であった。
【0207】
(実施例31)
実施例22からガラス繊維を<ガラス繊維[VI]>に変更した。かかる繊維強化複合材料の面内剪断強度は165MPaと問題の無いレベルであり、引っ張り強度は245MPaと特に優れたものであった。また、含浸性は「Fair」の判定であった。
【0208】
(実施例32)
実施例22からガラス繊維を<ガラス繊維[VII]>に変更した。かかる繊維強化複合材料の面内剪断強度は162MPaと問題無いレベルであり、引っ張り強度は247MPaと特に優れたものであった。また、含浸性は「Fair」の判定であった。
【0209】
(比較例9)
表5に記載の通り、構成要素[a]および構成要素[b]、および構成要素[e]を配合した熱硬化性エポキシ樹脂組成物を使用した。また、ガラス繊維として<ガラス繊維[I]>を使用した。かかる繊維強化複合材料の面内剪断強度は130MPa、引っ張り強度は200MPaと低いものであった。また、繊維強化複合材料中に多数のボイドが見られ、含浸性は「Bad」の判定と、劣ったものであった。
【0210】
【産業上の利用可能性】
【0211】
本発明の熱硬化性エポキシ樹脂組成物は、熱硬化する温度で、高い潜在性を発現し、かつ速硬化性に優れることから、生産性に優れる成形材料として幅広く利用することができる。特に、繊維強化複合材料の生産に好適に用いられ、様々な構造部材の軽量化に貢献することができる。
【要約】
本発明は、熱硬化性樹脂を硬化する温度において、潜在性を発現し、かつ硬化速度に優れる熱硬化性エポキシ樹脂組成物、またそれが熱硬化されてなる成形品を提供することを目的とする。さらに、強化繊維と組み合わせてなる繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法を提供することを目的とする。
上記目的を達するため、本発明の熱硬化性エポキシ樹脂組成物は、次の構成要素[a]、[b]、および[c]を含む熱硬化性エポキシ樹脂組成物であって、硬化時間(Tc)と誘導時間(Ti)の関係が、1<Tc/Ti≦9を満たす。
[a]:エポキシ樹脂
[b]:イソシアネート化合物
[c]:無機塩